WO2007094350A1 - Cooling structure of dynamo-electric machine - Google Patents

Cooling structure of dynamo-electric machine Download PDF

Info

Publication number
WO2007094350A1
WO2007094350A1 PCT/JP2007/052596 JP2007052596W WO2007094350A1 WO 2007094350 A1 WO2007094350 A1 WO 2007094350A1 JP 2007052596 W JP2007052596 W JP 2007052596W WO 2007094350 A1 WO2007094350 A1 WO 2007094350A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
rotor
refrigerant passage
cooling structure
orifice
Prior art date
Application number
PCT/JP2007/052596
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuro Ogushi
Seiji Haga
Nobuhiro Kanei
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2008500518A priority Critical patent/JP4786702B2/en
Publication of WO2007094350A1 publication Critical patent/WO2007094350A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator

Definitions

  • the present invention relates to a cooling structure for a rotating electrical machine, and more particularly to a cooling structure for a rotating electrical machine such as a motor having a refrigerant passage in a rotor shaft.
  • a cooling structure in which a refrigerant passage is provided inside a rotor shaft to allow the refrigerant to pass therethrough.
  • the motor includes a hollow cylindrical stator (stator) supported in a cylindrical frame, and a rotor (rotor) that is rotatably supported by the shaft and rotated in the stator.
  • the shaft that supports the rotor is formed with a hollow hole in the axial direction so that cooling fluid such as air, water, ethylene glycol, and lubricating oil can pass inside.
  • a projecting member inclined at a predetermined angle in the axial direction that is, a helical fin, is inserted on the inner peripheral surface of the shaft, and the contact area between the cooling fluid and the inner peripheral surface of the shaft is increased to increase heat.
  • a flow of cooling fluid is generated in the hollow hole of the shaft when the rotor rotates. In this way, the cooling structure cools the shaft, and thus the rotor that becomes hot due to iron loss is also cooled from the inside (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-34189 (page 3, lines 5 to 49, figure:! To 3)
  • the fin has a spiral shape. Therefore, when the fluid is circulated using an external pump, the driving force of the fluid is generated in the direction opposite to the driving direction of the pump. There is a problem that the cooling capacity may decrease as a result of the flow rate decreasing. In addition, depending on the angle of the spiral fin 14, there is a problem in that the heat transfer from the shaft 11 to the fluid 13 is small because the effect of disturbing the fluid 13 is small and the cooling effect is small.
  • the present invention has been made to solve such problems, and its purpose is to An object of the present invention is to provide a cooling structure for a rotating electrical machine that has a high rejection efficiency and is easily manufactured. Means for solving the problem
  • the rotating electrical machine cooling structure of the present invention cools a rotating electrical machine including a stator, a rotor, and a shaft that rotatably supports the rotor with respect to the stator.
  • a cooling structure for a rotating electrical machine provided with a refrigerant passage having a circular cross section provided in a shaft and extending in the axial direction through which a cooling medium can pass, and is closely attached to the inner peripheral surface of the refrigerant passage. It is provided with a linear protrusion that is provided and protrudes inward in the radial direction and extends in the axial direction.
  • a disk having an orifice for generating a turbulent flow of the cooling medium in the refrigerant passage may be provided.
  • FIG. 1 is a schematic cross-sectional view of a rotating electrical machine to which a rotating electrical machine cooling structure of the present invention is applied. (Example 1)
  • FIG. 2 is a schematic cross-sectional view in a plane perpendicular to the axis of the shaft according to the present invention. (Example 1)
  • FIG. 3 is a schematic cross-sectional view in the axial direction of a shaft according to the present invention.
  • FIG. 4 is a schematic perspective view of an assembly having a protrusion according to the present invention. (Example 1)
  • FIG. 5 is a characteristic diagram showing the rate of improvement in heat transfer coefficient depending on the number of protrusions in the rotating electrical machine cooling structure of the present invention. (Example 1)
  • FIG. 6 is a view showing a streamline state of the cooling medium in the shaft by the cooling structure of the rotating electric machine of the present invention. (Example 1)
  • FIG. 7 is a schematic axial sectional view showing a shaft according to another example of a cooling structure for a rotating electrical machine of the present invention. (Example 2)
  • Example 8 is a characteristic diagram showing the rate of improvement in heat transfer coefficient depending on the diameter ratio between the small-diameter pipe line and the hollow hole in the cooling structure of FIG. (Example 2)
  • FIG. 9 is a schematic axial sectional view showing a shaft according to still another example of the cooling structure for a rotating electrical machine of the present invention. (Example 3)
  • FIG. 10 is a schematic axial sectional view showing a shaft according to still another example of a cooling structure for a rotating electrical machine of the present invention. (Example 4)
  • FIG. 1 shows, as an example, a motor to which the rotating electrical machine cooling structure of the present invention is applied.
  • the present invention is applicable to general rotating electrical machines including a rotor, a generator, and the like that are driven only by a motor and equipped with a rotor that needs to be cooled.
  • the structure of the motor 1 itself in FIG. 1 is general, and the motor 1 is a stator (fixed) that supports a rotating part of the rotor (rotor) 2 and surrounds it in a non-contact manner. (Child) 3 and are housed in frame 4.
  • the frame 4 has a cylindrical shape along the axial direction of the rotor 2 and the stator 3.
  • a stator 3 is fixed at a predetermined position on the inner peripheral surface of the frame 4.
  • the stator 3 has a thick cylindrical shape, and its outer peripheral surface has the same diameter as the inner peripheral surface of the frame 4.
  • a coil winding 5 for forming a rotating magnetic field is wound around the stator 3, and a part of the coil winding 5 protrudes outward from both ends of the stator 3 as a coil end 6.
  • a rotor 2 is provided inside the inner peripheral surface of the stator 3 so as not to contact the stator 3.
  • the rotor 2 has a cylindrical shape and is provided so as to be surrounded by the stator 3 at a position corresponding to the stator 3 in the axial direction.
  • a plurality of aluminum slot bars 7 are embedded in the port 2 along the axial direction. Since the rotor 2 and the stator 3 are provided on substantially concentric circles, the circumferential gap (gap) existing between the rotor 2 and the stator 3 is substantially constant.
  • Disc-shaped end brackets 8 and 9 are fixed to both ends in the longitudinal direction of the frame 4.
  • Each of the end brackets 8 and 9 is provided with a bearing 10 at the center thereof, and a shaft 11 passes therethrough.
  • the rotor 2 and the shaft 11 are fixed by shrinkage fitting.
  • the shaft 11 is a hollow hole having a circular cross section, and a refrigerant passage 12 is formed coaxially in the axial direction so that a cooling medium 13 such as air, water, ethylene glycol, or lubricating oil passes through the shaft 11.
  • FIGS. 2 to 6 show details of the cooling structure for a rotating electric machine according to the present invention.
  • a protrusion 21 that protrudes radially inward from the inner peripheral surface force is provided.
  • the protrusion 21 extends linearly and continuously in the axial direction of the shaft 11 (that is, parallel to the axis), and is provided at a position and a length substantially corresponding to the entire length of the rotor 2.
  • the protrusion 21 can be provided in the refrigerant passage 12 in various manners.
  • two parallel press-fitted into the inner peripheral surface of the refrigerant passage 12 are provided.
  • Two rod members arranged in parallel between the ring member 22 are supported by welding or the like at both ends and constitute a force-like assembly 23 as a whole.
  • the ridge 21 is a material force having a large thermal conductivity such as copper or iron, has a uniform rectangular cross section in the axial direction, and is formed of a ridge 21 and a ring member 22.
  • the solid 23 is shrink-fitted into the refrigerant passage 12 which is a hollow through hole having a circular cross section of the shaft 11, so that the solid 11 is in close contact with the inner peripheral surface of the refrigerant passage 12 and the heat of the shaft 11 is easily transmitted to the protrusion 21. It is like that.
  • Heat from the rotor 2 is conducted to the shaft 11, most of the heat is dissipated from the inner peripheral surface of the refrigerant passage 12 in the shaft 11 to the cooling medium 13, and the remaining part is cooled via the protrusion 21. Heat is radiated to the medium 13. At this time, the cooling medium 13 flowing into the refrigerant passage 12 is agitated by the protruding ridges 21 of the rotating shaft 11, and the flow is disturbed to increase the heat transfer from the shaft 11 to the cooling medium 13 and increase the cooling effect. Become.
  • FIG. 5 shows the results of numerical analysis of the change in heat transfer coefficient depending on the number of ridges 21 of this size.
  • the protrusion 21 has a uniform cross-sectional shape and dimensions in the axial direction, the cooling effect of the rotor is increased uniformly in the axial direction of the shaft. Furthermore, since the ridge 21 is composed of a member having a high thermal conductivity, the heat of the shaft 11 is also radiated to the cooling medium 13 through the ridge 21, and the heat transfer surface area is increased by the ridge 21 to increase the rotor surface. The effect of increasing the cooling effect is also obtained. If the protrusion 21 has a radial dimension (height) of 10% to 15% of the inner diameter of the refrigerant passage 12, good results can be obtained.
  • FIG. 7 is an axial sectional view showing another example of the cooling structure of the rotating electric machine of the present invention.
  • the small diameter that generates the turbulent flow of the cooling medium 13 indicated by the arrow 32 in the refrigerant passage 12 of the shaft 11 is shown.
  • a disc 33 having an orifice 31 which is a pipe line is provided.
  • the orifice 31 is a circular hole provided at the center of the disk 33 and is arranged coaxially with respect to the shaft 11, that is, with respect to the coolant passage 12. It is installed in.
  • FIG. 9 is an axial cross-sectional view showing still another example of the cooling structure for a rotating electrical machine of the present invention.
  • an orifice 41 that is a small-diameter pipe is provided away from the central axial force of the shaft 11.
  • the orifice 41 is a small-diameter hole provided eccentrically on the disc 43 and extending in the axial direction of the shaft 11. The heat from the port 2 is radiated to the cooling medium 13 through the shaft 11 and the rotor 2 is cooled.
  • FIG. 10 is an axial cross-sectional view showing still another example of the cooling structure for a rotating electrical machine of the present invention.
  • a disc 53 is provided at the inlet of the refrigerant passage 12, and an orifice 51, which is a small-diameter pipe whose axis is inclined with respect to the central axis direction of the shaft 11, is provided at the center of the disc 53. It is provided.
  • the cooling medium 13 has a small flow passage cross-sectional area at the orifice 51, so that the flow velocity increases, and as shown by the solid line arrow 52 in the figure, the cooling medium 13 is jetted together with the effect of the rotation of the shaft 11.
  • the cooling structure of the rotating electrical machine of the present invention has been described as being separate from each other. However, these may be used in an appropriate combination within a range where there is no inconvenience, and the flow of the cooling medium 13 is further stirred. It can also be promoted.
  • the linear protrusion 21 shown in FIGS. 1 to 6 can be combined with the orifice 31 shown in FIG. 7, and the eccentric orifice 41 shown in FIG. 9 can be inclined like the orifice 51 shown in FIG.

Abstract

In order to provide the cooling structure of a dynamo-electric machine in which cooling efficiency of a rotor is enhanced, linear protrusions protruding radially inward and extending in the axial direction are provided tightly on the inner circumferential surface of the coolant passage of a rotor shaft. The protrusions are a plurality of rod members supported at the opposite ends tehreof by two ring members press fitted to the inner circumferential surface of the coolant passage. The protrusion has a height equal to 10-15% of the inside diameter of the coolant passage. In the coolant passage, a disc having an orifice of inside diameter dimension equal to 20-40% of the inside diameter of the coolant passage may be provided in order to generate turbulence of coolant. The orifice is arranged coaxially, eccentrically, or obliquely with respect to the coolant passage or arranged in combination of those arrangements. Protrusions not only increase the contact area between the fluid and the inner circumferential surface of the shaft but also induce turbulence of coolant flow in the shaft, whereby heat transmission from the shaft to the coolant is increased and cooling effect of the rotor is enhanced.

Description

明 細 書  Specification
回転電機の冷却構造  Cooling structure of rotating electric machine
技術分野  Technical field
[0001] 本発明は回転電機の冷却構造に係り、特にロータシャフト内に冷媒通路を持つモ ータ等の回転電機の冷却構造に関するものである。  The present invention relates to a cooling structure for a rotating electrical machine, and more particularly to a cooling structure for a rotating electrical machine such as a motor having a refrigerant passage in a rotor shaft.
背景技術  Background art
[0002] 従来、モータ等の回転電機のロータを冷却するために、ロータシャフト内部に冷媒 通路を設けて冷媒を通過させる冷却構造が提案されている。モータは、円筒形状の フレーム内に支持された中空円筒状のステータ(固定子)と、フレームによってシャフ トが回転可能に支持されてステータ内で回転するロータ(回転子)とを備えている。モ ータの冷却構造として、ロータを支持するシャフトには軸方向に中空孔が形成され、 内部に空気や水、エチレングリコール、潤滑油などの冷却流体が通過できるようにな つている。さらにシャフトの内周面には軸方向に所定の角度で傾斜した突状部材、す なわち螺旋形状のフィンが挿入されていて、冷却流体とシャフト内周面との接触面積 を大きくして熱交換効率を良くすると共に、ロータが回転したときにシャフトの中空孔 内に冷却流体の流れを発生させるようにしてある。冷却構造はこのようにしてシャフト を冷却し、もって鉄損により高温になるロータを内側からも冷却するものである(例え ば特許文献 1参照)。  Conventionally, in order to cool a rotor of a rotating electrical machine such as a motor, a cooling structure has been proposed in which a refrigerant passage is provided inside a rotor shaft to allow the refrigerant to pass therethrough. The motor includes a hollow cylindrical stator (stator) supported in a cylindrical frame, and a rotor (rotor) that is rotatably supported by the shaft and rotated in the stator. As a motor cooling structure, the shaft that supports the rotor is formed with a hollow hole in the axial direction so that cooling fluid such as air, water, ethylene glycol, and lubricating oil can pass inside. Furthermore, a projecting member inclined at a predetermined angle in the axial direction, that is, a helical fin, is inserted on the inner peripheral surface of the shaft, and the contact area between the cooling fluid and the inner peripheral surface of the shaft is increased to increase heat. In addition to improving the exchange efficiency, a flow of cooling fluid is generated in the hollow hole of the shaft when the rotor rotates. In this way, the cooling structure cools the shaft, and thus the rotor that becomes hot due to iron loss is also cooled from the inside (see, for example, Patent Document 1).
[0003] 特許文献 1 :特開 2002— 34189号公報(3頁 5〜49行、図:!〜 3) [0003] Patent Document 1: Japanese Patent Application Laid-Open No. 2002-34189 (page 3, lines 5 to 49, figure:! To 3)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力 ながら、上述のモータでは、フィンを螺旋状としているため,外部ポンプを使 用して流体を循環する場合は,ポンプによる駆動方向とは逆方向に流体の駆動力が 発生し、流量が低下する結果冷却能力が低下することがあるという問題がある。また、 螺旋フィン 14の角度によっては流体 13を力、き乱す効果が小さぐシャフト 11から流体 13への熱伝達が小さくなり冷却効果が小さいという問題もある。  [0004] However, in the motor described above, the fin has a spiral shape. Therefore, when the fluid is circulated using an external pump, the driving force of the fluid is generated in the direction opposite to the driving direction of the pump. There is a problem that the cooling capacity may decrease as a result of the flow rate decreasing. In addition, depending on the angle of the spiral fin 14, there is a problem in that the heat transfer from the shaft 11 to the fluid 13 is small because the effect of disturbing the fluid 13 is small and the cooling effect is small.
[0005] 本発明はこのような課題を解決するためになされたものであって、その目的は、冷 却効率が高ぐ製作容易な回転電機の冷却構造を提供することである。 課題を解決するための手段 [0005] The present invention has been made to solve such problems, and its purpose is to An object of the present invention is to provide a cooling structure for a rotating electrical machine that has a high rejection efficiency and is easily manufactured. Means for solving the problem
[0006] 上述の目的を達成するために、本発明の回転電機の冷却構造は、ステータと、ロー タと、ロータをステータに対して回転可能に支持するシャフトとを備えた回転電機を冷 却するために、シャフトに設けられて冷却媒体を通すことのできる軸方向に延びた円 形断面の冷媒通路を備えた回転電機の冷却構造であって、冷媒通路の内周面に密 着して設けられて径方向内側に突出して軸方向に延びた直線状の突条を備えたこと を特徴とするものである。冷媒通路内に冷却媒体の乱流を発生させるオリフィスを持 つ円板を備えてもよい。  [0006] In order to achieve the above-described object, the rotating electrical machine cooling structure of the present invention cools a rotating electrical machine including a stator, a rotor, and a shaft that rotatably supports the rotor with respect to the stator. In order to achieve this, there is provided a cooling structure for a rotating electrical machine provided with a refrigerant passage having a circular cross section provided in a shaft and extending in the axial direction through which a cooling medium can pass, and is closely attached to the inner peripheral surface of the refrigerant passage. It is provided with a linear protrusion that is provided and protrudes inward in the radial direction and extends in the axial direction. A disk having an orifice for generating a turbulent flow of the cooling medium in the refrigerant passage may be provided.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]本発明の回転電機の冷却構造を適用した回転電機の概略断面図である。 (実 施例 1)  FIG. 1 is a schematic cross-sectional view of a rotating electrical machine to which a rotating electrical machine cooling structure of the present invention is applied. (Example 1)
[図 2]本発明によるシャフトの軸に垂直な面での模式的断面図である。 (実施例 1) FIG. 2 is a schematic cross-sectional view in a plane perpendicular to the axis of the shaft according to the present invention. (Example 1)
[図 3]本発明によるシャフトの軸方向の模式的断面図である。 (実施例 1) FIG. 3 is a schematic cross-sectional view in the axial direction of a shaft according to the present invention. (Example 1)
[図 4]本発明による突条を持つ組立体の模式的斜視図である。 (実施例 1)  FIG. 4 is a schematic perspective view of an assembly having a protrusion according to the present invention. (Example 1)
[図 5]本発明の回転電機の冷却構造に於ける突起の数による熱伝達率向上の割合 を示す特性図である。 (実施例 1)  FIG. 5 is a characteristic diagram showing the rate of improvement in heat transfer coefficient depending on the number of protrusions in the rotating electrical machine cooling structure of the present invention. (Example 1)
[図 6]本発明の回転電機の冷却構造によるシャフト内の冷却媒体の流線状況を示す 図である。 (実施例 1)  FIG. 6 is a view showing a streamline state of the cooling medium in the shaft by the cooling structure of the rotating electric machine of the present invention. (Example 1)
[図 7]本発明の回転電機の冷却構造の別の例によるシャフトを示す模式的軸方向断 面図である。 (実施例 2)  FIG. 7 is a schematic axial sectional view showing a shaft according to another example of a cooling structure for a rotating electrical machine of the present invention. (Example 2)
[図 8]図 7の冷却構造の小口径管路と中空孔の直径比による熱伝達率向上の割合を 示す特性図である。 (実施例 2)  8 is a characteristic diagram showing the rate of improvement in heat transfer coefficient depending on the diameter ratio between the small-diameter pipe line and the hollow hole in the cooling structure of FIG. (Example 2)
[図 9]本発明の回転電機の冷却構造の更に別の例によるシャフトを示す模式的軸方 向断面図である。 (実施例 3)  FIG. 9 is a schematic axial sectional view showing a shaft according to still another example of the cooling structure for a rotating electrical machine of the present invention. (Example 3)
[図 10]本発明の回転電機の冷却構造の更に別の例によるシャフトを示す模式的軸方 向断面図である。 (実施例 4)  FIG. 10 is a schematic axial sectional view showing a shaft according to still another example of a cooling structure for a rotating electrical machine of the present invention. (Example 4)
発明を実施するための最良の形態 [0008] 実施の形態 1. BEST MODE FOR CARRYING OUT THE INVENTION [0008] Embodiment 1.
図 1には、一例として本発明の回転電機の冷却構造を適用したモータを示す。この 発明はモータだけでなぐ発電機、発電動機等を含み、冷却の必要があるロータを備 えた回転電機一般に適用できるものである。  FIG. 1 shows, as an example, a motor to which the rotating electrical machine cooling structure of the present invention is applied. The present invention is applicable to general rotating electrical machines including a rotor, a generator, and the like that are driven only by a motor and equipped with a rotor that needs to be cooled.
[0009] 図 1のモータ 1自体の構造は一般的なものであって、モータ 1は、回転する部分の口 ータ(回転子) 2とそれを非接触で取囲みながら支持するステータ(固定子) 3とがフレ ーム 4に収容されることによって構成されている。フレーム 4はロータ 2及びステータ 3 の軸方向に沿って円筒形状になっている。フレーム 4の内周面の所定箇所にはステ ータ 3が固定されている。ステータ 3は厚みのある円筒形状になっており、その外周面 はフレーム 4の内周面と同一径になっている。ステータ 3には回転磁界を形成するた めのコイル卷線 5が卷回されており、コイル卷線 5の一部がコイルエンド 6としてステー タ 3の両端部から外方へ突出している。又、ステータ 3の内周面の内側には、ステータ 3と非接触な状態でロータ 2が設けられている。ロータ 2は円柱形状であり、軸方向に おいてステータ 3と対応する位置に、ステータ 3に取囲まれるように設けられている。口 ータ 2には複数のアルミ製スロットバー 7が軸方向に沿って埋設されている。ロータ 2と ステータ 3は略同心円上に設けられているため、ロータ 2とステータ 3の間に存在する 周方向の空隙(ギャップ)は略一定になっている。  [0009] The structure of the motor 1 itself in FIG. 1 is general, and the motor 1 is a stator (fixed) that supports a rotating part of the rotor (rotor) 2 and surrounds it in a non-contact manner. (Child) 3 and are housed in frame 4. The frame 4 has a cylindrical shape along the axial direction of the rotor 2 and the stator 3. A stator 3 is fixed at a predetermined position on the inner peripheral surface of the frame 4. The stator 3 has a thick cylindrical shape, and its outer peripheral surface has the same diameter as the inner peripheral surface of the frame 4. A coil winding 5 for forming a rotating magnetic field is wound around the stator 3, and a part of the coil winding 5 protrudes outward from both ends of the stator 3 as a coil end 6. A rotor 2 is provided inside the inner peripheral surface of the stator 3 so as not to contact the stator 3. The rotor 2 has a cylindrical shape and is provided so as to be surrounded by the stator 3 at a position corresponding to the stator 3 in the axial direction. A plurality of aluminum slot bars 7 are embedded in the port 2 along the axial direction. Since the rotor 2 and the stator 3 are provided on substantially concentric circles, the circumferential gap (gap) existing between the rotor 2 and the stator 3 is substantially constant.
[0010] フレーム 4の長手方向両端部には円板状のエンドブラケット 8、 9が固定されている 。各エンドブラケット 8、 9にはそれぞれ、その中央部に軸受け 10が設けられシャフト 1 1が貫通している。ロータ 2とシャフト 11とは焼嵌めによって固定されている。シャフト 1 1には断面が円形の中空孔であり冷媒通路 12が同軸に軸方向に形成され、内部に 空気や水、エチレングリコール、潤滑油などの冷却媒体 13が通過するようになってい る。  Disc-shaped end brackets 8 and 9 are fixed to both ends in the longitudinal direction of the frame 4. Each of the end brackets 8 and 9 is provided with a bearing 10 at the center thereof, and a shaft 11 passes therethrough. The rotor 2 and the shaft 11 are fixed by shrinkage fitting. The shaft 11 is a hollow hole having a circular cross section, and a refrigerant passage 12 is formed coaxially in the axial direction so that a cooling medium 13 such as air, water, ethylene glycol, or lubricating oil passes through the shaft 11.
[0011] ステータ 3に卷回されたコイル卷線 5に電流を流して、回転磁界が形成されると、口 ータ 2に埋設されたスロットバーが力を受けてロータ 2がシャフト 11と共に回転すると 共に、ロータ 2を通る磁束の変化によってロータ 2に渦電流が発生する。この際に、コ ィル卷線に発生した熱はステータ 3を介してフレーム 4に伝導され、フレーム 4からモ ータ外部の大気中へ放出される。又、ロータ 2に渦電流が生じる際に、ロータ 2にはそ れ自身に発熱が生じる力 ロータ 2と焼嵌めによって一体的に形成されているシャフト 11内には冷媒通路 12が設けられてレ、て、その中を図示してなレ、供給源から送られ てくる冷却媒体 13が流れて通過するため、シャフト 11と冷却媒体 13との間で熱交換 が行われる。そのため、シャフト 11を強制的に冷却することが可能になるため、ロータ 2をその内部から冷却することが可能になる。 [0011] When a rotating magnetic field is formed by passing a current through the coil winding 5 wound around the stator 3, the slot bar embedded in the port 2 receives the force and the rotor 2 rotates together with the shaft 11. At the same time, an eddy current is generated in the rotor 2 due to a change in magnetic flux passing through the rotor 2. At this time, heat generated in the coil wire is conducted to the frame 4 through the stator 3 and is released from the frame 4 to the atmosphere outside the motor. In addition, when eddy current is generated in the rotor 2, the rotor 2 A force that generates heat in itself A coolant passage 12 is provided in the shaft 11 that is integrally formed by shrink fitting with the rotor 2, and is sent from a supply source. Since the incoming cooling medium 13 flows and passes, heat exchange is performed between the shaft 11 and the cooling medium 13. Therefore, the shaft 11 can be forcibly cooled, so that the rotor 2 can be cooled from the inside.
[0012] 図 2乃至図 6には、本発明の回転電機の冷却構造の詳細を示す。ロータ 2を支持す るシャフト 11内に設けられた中空の貫通孔である冷媒通路 12の内周面に、内周面 力、ら径方向内側に向かって突出した突条 21が設けられている。突条 21は、シャフト 1 1の軸方向(即ち軸心に平行)に直線的に連続して延びており、ロータ 2の全長にほ ぼ対応した位置および長さだけ設けられている。  2 to 6 show details of the cooling structure for a rotating electric machine according to the present invention. On the inner peripheral surface of the refrigerant passage 12, which is a hollow through hole provided in the shaft 11 that supports the rotor 2, a protrusion 21 that protrudes radially inward from the inner peripheral surface force is provided. . The protrusion 21 extends linearly and continuously in the axial direction of the shaft 11 (that is, parallel to the axis), and is provided at a position and a length substantially corresponding to the entire length of the rotor 2.
[0013] 突条 21は、様々な態様で冷媒通路 12内に設けることができるが、図示の例では、 図 4に示すように、冷媒通路 12の内周面に圧入された 2つの平行なリング部材 22の 間にそれぞれ両端で溶接等によって支持され、全体として力ご状の組立体 23を構成 する 2本の平行に配置された棒部材である。突条 21は、銅や鉄などの熱伝導率の大 きな材料力 なり、軸方向に一様な矩形断面を持っていて、突条 21とリング部材 22と で構成された力ご状組立体 23をシャフト 11の円形断面の中空貫通孔である冷媒通 路 12内に焼嵌めされることにより、冷媒通路 12の内周面に密着してシャフト 11の熱 が容易に突条 21に伝わるようにしてある。  [0013] The protrusion 21 can be provided in the refrigerant passage 12 in various manners. In the illustrated example, as shown in FIG. 4, two parallel press-fitted into the inner peripheral surface of the refrigerant passage 12 are provided. Two rod members arranged in parallel between the ring member 22 are supported by welding or the like at both ends and constitute a force-like assembly 23 as a whole. The ridge 21 is a material force having a large thermal conductivity such as copper or iron, has a uniform rectangular cross section in the axial direction, and is formed of a ridge 21 and a ring member 22. The solid 23 is shrink-fitted into the refrigerant passage 12 which is a hollow through hole having a circular cross section of the shaft 11, so that the solid 11 is in close contact with the inner peripheral surface of the refrigerant passage 12 and the heat of the shaft 11 is easily transmitted to the protrusion 21. It is like that.
[0014] ロータ 2からの熱はシャフト 11に伝導されて、大部分はシャフト 11内の冷媒通路 12 の内周面から冷却媒体 13へ放熱され、残りの一部は突条 21を介して冷却媒体 13に 放熱される。このとき、冷媒通路 12内に流入してきた冷却媒体 13は回転するシャフト 11の突条 21により攪拌され、流れに乱れが生じてシャフト 11から冷却媒体 13への 熱伝達が大きくなり冷却効果が大きくなる。  Heat from the rotor 2 is conducted to the shaft 11, most of the heat is dissipated from the inner peripheral surface of the refrigerant passage 12 in the shaft 11 to the cooling medium 13, and the remaining part is cooled via the protrusion 21. Heat is radiated to the medium 13. At this time, the cooling medium 13 flowing into the refrigerant passage 12 is agitated by the protruding ridges 21 of the rotating shaft 11, and the flow is disturbed to increase the heat transfer from the shaft 11 to the cooling medium 13 and increase the cooling effect. Become.
[0015] 突状部材 21は具体的には、例えばシャフト内径 40mmの場合、幅 2mm、高さ 5m mの突条 21を 2本、径方向に対向させて設けると良い結果が得られる。図 5にはこの 寸法の突条 21の数による熱伝達率の変化の数値解析による結果を示す。また図 6に はこの寸法の突条 21を 2本用いた場合のシャフト断面内の流速分布を示す。図 6中 の点線矢印に示すように突条 21により流線が変化し、シャフト 11の内壁面にぶっか る流れが生じていることが分かる。その結果、図 5に示すように突条 21がない場合 (突 条数 =0)に比べ、内壁面での熱伝達が突条の数にほぼ比例して向上してすることが わ力る。 [0015] Specifically, when the projecting member 21 has a shaft inner diameter of 40 mm, for example, a good result can be obtained by providing two projecting strips 21 having a width of 2 mm and a height of 5 mm so as to face each other in the radial direction. Figure 5 shows the results of numerical analysis of the change in heat transfer coefficient depending on the number of ridges 21 of this size. Figure 6 shows the flow velocity distribution in the shaft cross section when two ridges 21 of this size are used. As shown by the dotted line arrow in Fig. 6, the streamline changes due to the ridge 21, and it hits the inner wall surface of the shaft 11. It can be seen that there is a flow. As a result, as shown in Fig. 5, heat transfer on the inner wall surface is improved almost in proportion to the number of ridges compared to the case without ridges 21 (number of ridges = 0). .
[0016] また、突条 21は軸方向に断面形状および寸法が一様であるのでシャフトの軸方向 に一様にロータの冷却効果が増大することになる。さらに,突条 21は熱伝導率の大 きな部材から構成されているため、シャフト 11の熱が突条 21を通しても冷却媒体 13 に放熱され、突条 21により伝熱表面積が増大してロータの冷却効果が大きくなるとい う効果も得られる。突条 21は、冷媒通路 12の内径の 10%乃至 15%の径方向寸法( 高さ)とすると良レ、結果が得られる。  [0016] Further, since the protrusion 21 has a uniform cross-sectional shape and dimensions in the axial direction, the cooling effect of the rotor is increased uniformly in the axial direction of the shaft. Furthermore, since the ridge 21 is composed of a member having a high thermal conductivity, the heat of the shaft 11 is also radiated to the cooling medium 13 through the ridge 21, and the heat transfer surface area is increased by the ridge 21 to increase the rotor surface. The effect of increasing the cooling effect is also obtained. If the protrusion 21 has a radial dimension (height) of 10% to 15% of the inner diameter of the refrigerant passage 12, good results can be obtained.
[0017] 実施の形態 2.  [0017] Embodiment 2.
図 7は本発明の回転電機の冷却構造の別の例を示す軸方向断面図であり、この例 ではシャフト 11の冷媒通路 12内に矢印 32で表す冷却媒体 13の乱流を発生させる 小口径管路であるオリフィス 31を持つ円板 33が設けられている。図示の例ではオリ フィス 31は円板 33の中心に設けられた円形の孔で、シャフト 11に対してすなわち冷 媒通路 12に対して同軸に配置され、また冷媒通路 12の入口側すなわち上流側に設 けられている。  FIG. 7 is an axial sectional view showing another example of the cooling structure of the rotating electric machine of the present invention. In this example, the small diameter that generates the turbulent flow of the cooling medium 13 indicated by the arrow 32 in the refrigerant passage 12 of the shaft 11 is shown. A disc 33 having an orifice 31 which is a pipe line is provided. In the example shown in the figure, the orifice 31 is a circular hole provided at the center of the disk 33 and is arranged coaxially with respect to the shaft 11, that is, with respect to the coolant passage 12. It is installed in.
[0018] ロータ 2からの熱がシャフト 11内の流体 13へ放熱されてロータ 2を冷却する作用は 先の例と同様である。このとき、オリフィス 31では断面積が小さいため流速が増加し、 流体 13は図中実線矢印 32で示すように噴流となってシャフト 11内部に流出し、シャ フトの回転の効果と相乗してシャフト内壁にぶっかる流れが誘起され、その結果シャ フト 11内部の熱伝達率が向上し、ロータの冷却効果が大きくなるとレ、う効果が得られ る。  The action of cooling the rotor 2 by the heat from the rotor 2 being radiated to the fluid 13 in the shaft 11 is the same as in the previous example. At this time, since the sectional area of the orifice 31 is small, the flow velocity increases, and the fluid 13 flows out into the shaft 11 as shown by the solid arrow 32 in the figure, and synergizes with the effect of the rotation of the shaft. As a result, a flow effect on the inner wall is induced. As a result, the heat transfer coefficient inside the shaft 11 is improved and the cooling effect of the rotor is increased.
[0019] このときのオリフィス(小径管路) 31と冷媒通路 12の直径比に対する熱伝達率の促 進率(=中空孔がない場合に対する熱伝達率の増大割合)を示したものを図 6に示 す。図から小口径管路 31と冷媒通路 12の直径比が 0. 4以下で 5%以上の促進率と なっており、小口径管路 31と冷媒通路 12の直径比は小さいほど良いことが分かる。 オリフィス 31の内径寸法は、冷媒通路 12の内径の 20%乃至 40%とすると良い結果 が得られる。オリフィス 31の内径は、 20。/oよりも小さいと冷却媒体 13の流量が不足し て充分な冷却が困難となり、 40%よりも大きいとオリフィス 31を通る冷却媒体 13の流 速が充分に大きくならない。 [0019] Fig. 6 shows the promotion rate of the heat transfer coefficient with respect to the diameter ratio of the orifice (small-diameter pipe) 31 and the refrigerant passage 12 at this time (= increase rate of the heat transfer coefficient when there is no hollow hole). Shown in. The figure shows that the diameter ratio between the small-diameter pipe 31 and the refrigerant passage 12 is 0.4 or less, and the acceleration rate is 5% or more. . Good results can be obtained when the inner diameter of the orifice 31 is 20% to 40% of the inner diameter of the refrigerant passage 12. The inner diameter of the orifice 31 is 20. If it is smaller than / o, the flow rate of the cooling medium 13 is insufficient. Sufficient cooling is difficult, and if it exceeds 40%, the flow rate of the cooling medium 13 through the orifice 31 does not become sufficiently high.
[0020] 実施の形態 3.  [0020] Embodiment 3.
図 9は本発明の回転電機の冷却構造の更に別の例を示す軸方向断面図である。 冷媒通路 12をもつシャフト 11への冷却媒体 13の入口部には、シャフト 11の中心軸 力、ら離れて小口径管路であるオリフィス 41が設けられている。この例ではオリフィス 4 1は円板 43に偏心して設けられ、シャフト 11の軸方向に延びた小径の孔である。口 ータ 2からの熱はシャフト 11を介して冷却媒体 13に放熱されてロータ 2が冷却される 。このとき、冷却媒体 13の流れは、断面積の小さいオリフィス 41で速くなり、冷媒通路 12に対して偏心しているので、冷却媒体 13は図中実線矢印 42で示すようにシャフト 11の回転の効果と相乗して噴流旋回流となってシャフト 11内部に流出する。このた め、シャフト 11の内壁にぶっかる流れが誘起され、その結果シャフト 11内部の熱伝 達率が向上し、ロータ 2の冷却効果が大きくなるという効果が得られる。その他の構成 は図 7に示す例と同様で良い。  FIG. 9 is an axial cross-sectional view showing still another example of the cooling structure for a rotating electrical machine of the present invention. At the inlet of the cooling medium 13 to the shaft 11 having the refrigerant passage 12, an orifice 41 that is a small-diameter pipe is provided away from the central axial force of the shaft 11. In this example, the orifice 41 is a small-diameter hole provided eccentrically on the disc 43 and extending in the axial direction of the shaft 11. The heat from the port 2 is radiated to the cooling medium 13 through the shaft 11 and the rotor 2 is cooled. At this time, the flow of the cooling medium 13 is accelerated by the orifice 41 having a small cross-sectional area, and is eccentric with respect to the refrigerant passage 12, so that the cooling medium 13 has an effect of rotation of the shaft 11 as shown by a solid line arrow 42 in the figure. Synergistically, it turns into a jet swirl and flows into the shaft 11. For this reason, a flow that strikes the inner wall of the shaft 11 is induced. As a result, the heat transfer rate inside the shaft 11 is improved, and the cooling effect of the rotor 2 is increased. Other configurations may be the same as the example shown in FIG.
[0021] 実施の形態 4.  [0021] Embodiment 4.
図 10は本発明の回転電機の冷却構造の更に別の例を示す軸方向断面図である。 冷媒通路 12の入口部には、円板 53が設けられていて、この円板 53の中央部にはシ ャフト 11の中心軸方向に対して軸が傾斜した小口径管路であるオリフィス 51が設け られている。この例に於いても、冷却媒体 13は、オリフィス 51での流路断面積が小さ いため流速が増加して、図中実線矢印 52で示すようにシャフト 11の回転の効果と相 乗して噴流旋回流となってシャフト 11内部に流出し、シャフト 11の内壁にぶっかる流 れが誘起され、その結果シャフト 11内部の熱伝達率が向上し、ロータの冷却効果が 大きくなるという効果が得られる。その他の構成は図 7に示す例と同様で良い。  FIG. 10 is an axial cross-sectional view showing still another example of the cooling structure for a rotating electrical machine of the present invention. A disc 53 is provided at the inlet of the refrigerant passage 12, and an orifice 51, which is a small-diameter pipe whose axis is inclined with respect to the central axis direction of the shaft 11, is provided at the center of the disc 53. It is provided. Also in this example, the cooling medium 13 has a small flow passage cross-sectional area at the orifice 51, so that the flow velocity increases, and as shown by the solid line arrow 52 in the figure, the cooling medium 13 is jetted together with the effect of the rotation of the shaft 11. As a swirling flow, it flows out into the shaft 11 and a flow is induced against the inner wall of the shaft 11, resulting in an improvement in the heat transfer coefficient inside the shaft 11 and an increase in the cooling effect of the rotor. . Other configurations may be the same as the example shown in FIG.
[0022] 以上の例では、本発明の回転電機の冷却構造をそれぞれ別個のものとして説明し てきたが、これらを不都合の無い範囲で適宜組み合わせて使用して冷却媒体 13の 流れの攪拌を更に促進することもできる。例えば、図 1乃至図 6の直線状の突条 21と 図 7のオリフィス 31とを組み合わせることもできるし、図 9の偏心したオリフィス 41を図 10のオリフィス 51のように傾斜させることもできる。  [0022] In the above example, the cooling structure of the rotating electrical machine of the present invention has been described as being separate from each other. However, these may be used in an appropriate combination within a range where there is no inconvenience, and the flow of the cooling medium 13 is further stirred. It can also be promoted. For example, the linear protrusion 21 shown in FIGS. 1 to 6 can be combined with the orifice 31 shown in FIG. 7, and the eccentric orifice 41 shown in FIG. 9 can be inclined like the orifice 51 shown in FIG.

Claims

請求の範囲 The scope of the claims
[1] ステータと、ロータと、上記ロータを上記ステータに対して回転可能に支持するシャ フトとを備えた回転電機を冷却するために、上記シャフトに設けられて冷却媒体を通 すことのできる軸方向に延びた円形断面の冷媒通路を備えた回転電機の冷却構造 であって、  [1] In order to cool a rotating electrical machine including a stator, a rotor, and a shaft that rotatably supports the rotor with respect to the stator, a cooling medium can be provided on the shaft and can pass a cooling medium. A cooling structure for a rotating electrical machine including a refrigerant passage having a circular cross section extending in an axial direction,
上記冷媒通路の内周面に密着して設けられて径方向内側に突出して軸方向に延 びた直線状の突条を備えたことを特徴とする回転電機の冷却構造。  A cooling structure for a rotating electrical machine, comprising a linear protrusion provided in close contact with the inner peripheral surface of the refrigerant passage, protruding inward in the radial direction and extending in the axial direction.
[2] 上記突条は、上記冷媒通路の内径の 10%乃至 15%の径方向寸法を持つことを特 徴とする請求項 1記載の回転電機の冷却構造。  2. The cooling structure for a rotating electric machine according to claim 1, wherein the protrusion has a radial dimension of 10% to 15% of the inner diameter of the refrigerant passage.
[3] 上記突条は、上記冷媒通路の内周面に圧入された 2つのリング部材に両端で支持 された複数の棒部材であることを特徴とする請求項 1あるいは 2記載の回転電機の冷 却構造。 [3] The rotating electric machine according to claim 1 or 2, wherein the protrusions are a plurality of rod members supported at both ends by two ring members press-fitted into the inner peripheral surface of the refrigerant passage. Cooling structure.
[4] ステータと、ロータと、上記ロータを上記ステータに対して回転可能に支持するシャ フトとを備えた回転電機を冷却するために、上記シャフトに設けられて冷却媒体を通 すことのできる軸方向に延びた円形断面の冷媒通路を備えた回転電機の冷却構造 であって、  [4] In order to cool a rotating electrical machine including a stator, a rotor, and a shaft that rotatably supports the rotor with respect to the stator, a cooling medium can be provided on the shaft and can pass a cooling medium. A cooling structure for a rotating electrical machine including a refrigerant passage having a circular cross section extending in an axial direction,
上記冷媒通路内に設けられて、上記冷媒通路内に上記冷却媒体の乱流を発生さ せるオリフィスを持つ円板を備えたことを特徴とする回転電機の冷却構造。  A cooling structure for a rotating electrical machine, comprising a disk provided in the refrigerant passage and having an orifice for generating a turbulent flow of the cooling medium in the refrigerant passage.
[5] 上記オリフィスは、上記冷媒通路の内径の 20%乃至 40%の内径寸法を持つことを 特徴とする請求項 4記載の回転電機の冷却構造。 5. The cooling structure for a rotating electric machine according to claim 4, wherein the orifice has an inner diameter dimension of 20% to 40% of an inner diameter of the refrigerant passage.
[6] 上記オリフィスは、上記冷媒通路に対して同軸であることを特徴とする請求項 4ある いは 5記載の回転電機の冷却構造。 6. The cooling structure for a rotating electric machine according to claim 4 or 5, wherein the orifice is coaxial with the refrigerant passage.
[7] 上記オリフィスは、上記冷媒通路に対して偏心していることを特徴とする請求項 4あ るいは 5記載の回転電機の冷却構造。 7. The cooling structure for a rotating electric machine according to claim 4 or 5, wherein the orifice is eccentric with respect to the refrigerant passage.
[8] 上記オリフィスは、上記冷媒通路に対して傾斜していることを特徴とする請求項 4あ るいは 5記載の回転電機の冷却構造。 8. The cooling structure for a rotating electric machine according to claim 4 or 5, wherein the orifice is inclined with respect to the refrigerant passage.
PCT/JP2007/052596 2006-02-16 2007-02-14 Cooling structure of dynamo-electric machine WO2007094350A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008500518A JP4786702B2 (en) 2006-02-16 2007-02-14 Cooling structure of rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006039774 2006-02-16
JP2006-039774 2006-02-16

Publications (1)

Publication Number Publication Date
WO2007094350A1 true WO2007094350A1 (en) 2007-08-23

Family

ID=38371528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052596 WO2007094350A1 (en) 2006-02-16 2007-02-14 Cooling structure of dynamo-electric machine

Country Status (2)

Country Link
JP (1) JP4786702B2 (en)
WO (1) WO2007094350A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010049244A1 (en) * 2008-10-31 2010-05-06 Robert Bosch Gmbh Hybrid drive unit
DE112008003469B4 (en) * 2007-12-21 2012-10-04 Sumitomo Heavy Industries, Ltd. Reduction gear
JP2013150512A (en) * 2012-01-23 2013-08-01 Toyota Motor Corp Manufacturing method of rotor of permanent magnet dynamo-electric machine
JP2015144512A (en) * 2014-01-31 2015-08-06 株式会社豊田自動織機 Rotary electric machine
JP2015220937A (en) * 2014-05-20 2015-12-07 日産自動車株式会社 Cooling structure of rotary electric machine
JP2016046840A (en) * 2014-08-20 2016-04-04 株式会社日立製作所 Rotary electric machine
WO2016193277A1 (en) * 2015-06-03 2016-12-08 Thyssenkrupp Presta Teccenter Ag Hollow shaft arrangement
JP2019097220A (en) * 2017-11-17 2019-06-20 トヨタ自動車株式会社 Rotary electric machine
WO2023162096A1 (en) * 2022-02-24 2023-08-31 三菱電機株式会社 Rotary electric machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021211340A1 (en) 2021-10-07 2023-04-13 Mahle International Gmbh Rotor for an electric motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358364U (en) * 1976-10-20 1978-05-18
JPS5583440A (en) * 1978-12-20 1980-06-23 Fanuc Ltd Cooling device of ac motor
JP2004129407A (en) * 2002-10-03 2004-04-22 Nissan Motor Co Ltd Cooling structure for motor
JP2005049007A (en) * 2003-07-28 2005-02-24 Usui Kokusai Sangyo Kaisha Ltd Heat exchanger tube having embedded fin member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121705A (en) * 1974-03-13 1975-09-23
JPH0562176U (en) * 1992-01-22 1993-08-13 東洋電機製造株式会社 Fully closed induction motor for vehicle
JP3758583B2 (en) * 2002-02-06 2006-03-22 日産自動車株式会社 Rotating body cooling structure
JP2005295745A (en) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd Process for manufacturing rotor for rotary electric machine and rotor for rotary electric machine
WO2008004286A1 (en) * 2006-07-05 2008-01-10 Mitsubishi Electric Corporation Rotating electric machine and shaft for rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358364U (en) * 1976-10-20 1978-05-18
JPS5583440A (en) * 1978-12-20 1980-06-23 Fanuc Ltd Cooling device of ac motor
JP2004129407A (en) * 2002-10-03 2004-04-22 Nissan Motor Co Ltd Cooling structure for motor
JP2005049007A (en) * 2003-07-28 2005-02-24 Usui Kokusai Sangyo Kaisha Ltd Heat exchanger tube having embedded fin member

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008003469B4 (en) * 2007-12-21 2012-10-04 Sumitomo Heavy Industries, Ltd. Reduction gear
WO2010049244A1 (en) * 2008-10-31 2010-05-06 Robert Bosch Gmbh Hybrid drive unit
JP2013150512A (en) * 2012-01-23 2013-08-01 Toyota Motor Corp Manufacturing method of rotor of permanent magnet dynamo-electric machine
JP2015144512A (en) * 2014-01-31 2015-08-06 株式会社豊田自動織機 Rotary electric machine
JP2015220937A (en) * 2014-05-20 2015-12-07 日産自動車株式会社 Cooling structure of rotary electric machine
US10097059B2 (en) 2014-08-20 2018-10-09 Hitachi, Ltd. Rotating electric machine
JP2016046840A (en) * 2014-08-20 2016-04-04 株式会社日立製作所 Rotary electric machine
WO2016193277A1 (en) * 2015-06-03 2016-12-08 Thyssenkrupp Presta Teccenter Ag Hollow shaft arrangement
KR20180015687A (en) * 2015-06-03 2018-02-13 티센크룹 프레스타 텍센터 아게 Hollow shaft arrangement
JP2018518137A (en) * 2015-06-03 2018-07-05 ティッセンクルップ プレスタ テックセンター アクチエンゲゼルシャフト Hollow shaft arrangement
KR101951589B1 (en) 2015-06-03 2019-02-22 티센크룹 프레스타 텍센터 아게 Hollow shaft arrangement
US10686349B2 (en) 2015-06-03 2020-06-16 Thyssenkrupp Presta Teccenter Ag Hollow shaft arrangement
JP2019097220A (en) * 2017-11-17 2019-06-20 トヨタ自動車株式会社 Rotary electric machine
WO2023162096A1 (en) * 2022-02-24 2023-08-31 三菱電機株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JP4786702B2 (en) 2011-10-05
JPWO2007094350A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
WO2007094350A1 (en) Cooling structure of dynamo-electric machine
US6621186B2 (en) Alternator for vehicles
JP5367258B2 (en) Rotating electric machine
JP2007524335A5 (en)
US20080020696A1 (en) Air-cooled motor
CN101990732B (en) Electric machine comprising a fan with multiple ducts
JP6059906B2 (en) Axial gap type rotating electrical machine
JP6676668B2 (en) Rotor of rotating electric machine and rotating electric machine
JP2000333409A (en) Induction motor
JP4588709B2 (en) Rotating electric machine
US20070295568A1 (en) Electromagnetic Retarder Comprising Means Ensuring Ventilation
CN110460198A (en) High-speed permanent magnet motor
JP5013751B2 (en) Electric motor
JP6638427B2 (en) Outer rotor type rotary electric machine
US20200321830A1 (en) Motor and blower
WO2008004286A1 (en) Rotating electric machine and shaft for rotating electric machine
KR101407999B1 (en) Motor cooling apparatus for vehicle
JP2011119649A (en) Method for winding coil on object and clutch water pump provided with the same
JP2004129407A (en) Cooling structure for motor
KR20220149978A (en) Axial flux motor with airflow cooling structure
JP6391160B2 (en) Magnetic bearing and rotating machine
JP7222207B2 (en) Traction motor for vehicle
JP2009174414A (en) Axial flow fan
JP2015226376A (en) Axial gap motor
JP2019154197A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008500518

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714149

Country of ref document: EP

Kind code of ref document: A1