WO2008004286A1 - Rotating electric machine and shaft for rotating electric machine - Google Patents

Rotating electric machine and shaft for rotating electric machine Download PDF

Info

Publication number
WO2008004286A1
WO2008004286A1 PCT/JP2006/313378 JP2006313378W WO2008004286A1 WO 2008004286 A1 WO2008004286 A1 WO 2008004286A1 JP 2006313378 W JP2006313378 W JP 2006313378W WO 2008004286 A1 WO2008004286 A1 WO 2008004286A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
rotor
refrigerant
passage
hollow
Prior art date
Application number
PCT/JP2006/313378
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiro Kanei
Teturou Oogushi
Seiji Haga
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to PCT/JP2006/313378 priority Critical patent/WO2008004286A1/en
Publication of WO2008004286A1 publication Critical patent/WO2008004286A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator

Definitions

  • the present invention relates to a cooling structure for a rotating electrical machine such as a motor, and more particularly to a cooling structure of a type in which a hollow hole is provided in a rotor shaft to dissipate heat generated in the rotating electrical machine by injecting a coolant such as cooling water.
  • the present invention relates to a rotating electric machine and a shaft of the rotating electric machine.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-14161
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-34189
  • Patent Document 3 Japanese Patent Laid-Open No. 9-46973
  • the present invention has been made to solve such a problem, and the object thereof is to align the axial center of the rotor shaft and the refrigerant injection pipe inserted into the hollow hole of the rotor shaft. It is an object of the present invention to provide an easily manufactured rotating electrical machine that can reduce complexity and can be used stably at high speed.
  • the present invention includes a shaft to which a rotor is attached and rotates, and a hollow passage extending in the axial direction is provided in the shaft, and a refrigerant is allowed to pass through the hollow passage.
  • a plurality of refrigerant injection pipes having a group of circular pipes are closely fixed to at least the inner peripheral surface of the rotor-corresponding portion of the hollow passage provided in the shaft. It is.
  • the present invention also provides a hollow passage extending in the axial direction of a rotating electrical machine shaft to which a rotor is attached, and a plurality of circular tube group forces that are closely fixed to at least the inner peripheral surface of the rotor in the passage. And a refrigerant injection pipe configured to cool the inlet by flowing the refrigerant through the passage.
  • FIG. 1 is a schematic cross section of a rotating electrical machine to which a cooling structure for a rotating electrical machine according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is an axial sectional view showing a sectional structure of a shaft according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged view of part C in FIG. 2 above.
  • FIG. 4 is a schematic cross-sectional view taken along a plane perpendicular to the shaft axis (AA in FIG. 2) according to Embodiment 1 of the present invention.
  • FIG. 5 is an axial sectional view showing a sectional structure of a shaft according to a second embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view taken along a plane (BB in FIG. 5) perpendicular to the shaft axis according to Embodiment 2 of the present invention.
  • FIG. 7 is a configuration diagram of an annular plate 26 having a circular tube group according to a second embodiment of the present invention.
  • FIG. 8 is an enlarged view of part D in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 to 4 are diagrams showing a cooling structure according to Embodiment 1 of the present invention
  • FIG. 1 is a subject of application of the present invention, in which a hollow hole is provided in a rotor shaft, and a coolant such as cooling water is injected therein.
  • 1 is a cross-sectional view of a rotary electric machine of the type to be described.
  • the figure shows an example in which the present invention is applied to a motor.
  • the present invention includes a generator, a generator, and the like that are not limited to a motor, and can be applied to general rotating electrical machines including a rotor that needs to be cooled.
  • a motor 1 is configured by housing a rotating portion of a rotor (rotor) 2 and a stator (stator) 3 that supports the rotor 1 while surrounding it in a non-contact manner.
  • the frame 4 has a cylindrical shape along the axial direction of the rotor 2 and the stator 3.
  • a stator 3 is fixed to a predetermined portion of the inner peripheral surface of the frame 4, the stator 3 has a thick cylindrical shape, and the outer peripheral surface thereof has the same diameter as the inner peripheral surface of the frame 4.
  • a coil winding 5 for forming a rotating magnetic field is wound around the stator 3, and a part of the coil winding 5 protrudes outward from both ends of the stator 3 as a coil end 6.
  • a rotor 2 that is fixed integrally with the shaft 11 in a non-contact state with the stator 3.
  • the rotor 2 has a cylindrical shape and is provided so as to be surrounded by the stator 3 at a position corresponding to the stator 3 in the axial direction.
  • a plurality of aluminum slot bars 7 are embedded in the rotor 2 along the axial direction. Since the rotor 2 and the stator 3 are provided substantially concentrically, the circumferential gap (gap) existing between the rotor 2 and the stator 3 is constant.
  • Disc-shaped end brackets 8 and 9 are fixed to both ends in the longitudinal direction of the frame 4.
  • Each of the end brackets 8 and 9 is provided with a bearing 10 at the center thereof, and a shaft 11 passes therethrough.
  • the rotor 2 and the shaft 11 are fixed by shrinkage fitting.
  • the shaft 11 is provided with a hollow hole 11 a having a circular cross section and extending in the axial direction coaxially with the shaft 11, and this forms a refrigerant passage 12.
  • the refrigerant passage 12 has air, water, Cooling medium 13 such as glycol or lubricating oil is allowed to pass through.
  • the rotor 2 when eddy current is generated in the rotor 2, the rotor 2 is integrally formed with the rotor 2 by shrink fitting so that heat is generated by the copper loss due to the slot bar 7 and the iron loss due to the rotor core.
  • a coolant passage 12 is provided in the shaft 11, and a cooling medium 13 fed through a supply source force (not shown) flows and passes therethrough, so that there is a gap between the shaft 11 and the cooling medium 13. Heat exchange takes place at. Therefore, since the shaft 11 can be relatively cooled, the rotor 2 can also be cooled by its internal force.
  • a refrigerant injection pipe 21 having a circular tube group is integrally formed by shrink fitting on the inner peripheral surface of the refrigerant passage 12 which is a hollow through hole provided in the shaft 11 supporting the rotor 2.
  • shrink fitting only the rotor shaft 11 is heated to 120 to 150 ° C. and expanded, and the centers of the rotor shaft 11 and the refrigerant injection pipe 21 are aligned so that the refrigerant injection pipe 21 reaches the entire length of the rotor 2. This is done by inserting to almost the corresponding position.
  • Subsequent cooling causes the refrigerant injection pipe 21 with the circular tube group to be fixed to the inner surface of the shaft 11, and has a uniform cross section in the axial direction of the shaft 11 (that is, parallel to the axis). Only positions and lengths corresponding to the overall length of 2 will be provided.
  • a plurality of circular tubes 22 having a circular cross section with a large inner diameter are arranged in two steps in the outer circumferential direction, and a plurality of circular tubes 23 having an inner diameter force and a circular cross section are arranged in two steps in the inner circumferential direction and in the radial direction.
  • the circular pipes 22 and 23 are made of a material having a high thermal conductivity, such as copper or iron, and are shrink-fitted into the refrigerant passage 12 which is a hollow through hole having a circular cross section of the shaft 11. Since it is in close contact with the peripheral surface, the heat of the shaft 11 is easily transmitted to the refrigerant injection pipe 21 having a circular tube group.
  • the heat from the rotor 2 is conducted to the shaft 11, and the inner peripheral surface force of the refrigerant passage 12 in the shaft 11 is also passed through the cooling medium 13 and the refrigerant injection pipe 21 including the circular pipe groups 22 and 23. Heat is dissipated to the cooling medium 24 that passes through the circular pipe 22 having a large inner diameter and the cooling medium 25 that passes through the circular pipe 23 having a small inner diameter.
  • the cooling medium 13 is agitated by the shaft 21 having the circular pipe group, as shown in FIG. 3, at the outflow portion of the refrigerant injection pipe 21 having the circular pipe group, the jet 32 and the jet 33 As a result, the flow is disturbed, the heat transfer from the shaft 11 to the cooling medium 13, 24, 25 is increased, and the cooling effect is increased.
  • the refrigerant injection pipe 21 including the circular pipe group has a uniform cross-sectional shape and dimensions in the axial direction, the cooling effect of the rotor 2 is increased uniformly in the axial direction of the shaft 11. . Furthermore, since the heat transfer surface area is increased by the refrigerant injection pipe 21 having the circular tube group, and the member having a high thermal conductivity is also formed as described above, the heat of the shaft 11 passes through the refrigerant injection pipe 21. Thus, heat is smoothly radiated to the cooling medium 13 and the effect of increasing the cooling effect of the rotor is also obtained.
  • the refrigerant injection pipe 21 provided with the circular pipe group includes an outer circular pipe 22 having a large inner diameter and an inner pipe 20 having an inner diameter of 20% to 25% of the inner diameter of the refrigerant passage 12, and an inner small circular pipe 23 having an inner diameter. Good results can be obtained if the inner diameter is 10% to 15% of the inner diameter of the refrigerant passage 12 and eight are arranged in the circumferential direction. More specifically, when the inner diameter of the shaft 11 is 4 Omm, the refrigerant injection pipe 21 provided with a group of circular pipes, for example, the outer diameter of the circular pipe 22 is 10 mm, the inner diameter is 8 mm, and the inner diameter is 8 Good results can be obtained when the inner diameter is 23 mm and the inner diameter is 8 mm.
  • the heat transfer coefficient on the inner wall surface is compared with the case where the refrigerant injection pipe 21 with the circular tube group is not provided (when only the hollow through hole is provided in the shaft 11). As a result, it was confirmed that the improvement was about 1.6 times.
  • FIGS. 5 to 8 show a cooling structure for a rotating electrical machine according to the second embodiment of the present invention, and FIG. 1 described in the first embodiment is similarly applied to the second embodiment.
  • the same reference numerals as those in the first embodiment denote the same or corresponding parts.
  • 5 is an axial sectional view showing the sectional structure of the rotor shaft according to the second embodiment
  • FIG. 6 is a sectional view taken along the line B-B
  • FIG. 7 is a perspective view of the refrigerant injection pipe
  • FIG. 5 shows an enlarged view of part D.
  • the refrigerant injection pipe 21 having the circular pipe plate 26 is provided on the inner peripheral surface of the refrigerant passage 12 that is a hollow through hole provided in the shaft 11 that supports the rotor 2. It is integrally formed by shrink fitting. As shown in the figure, the refrigerant injection pipe 21 provided with the annular plate 26 is formed by passing through the annular plate 26 having a plurality of small-diameter circular tubes 28 in the circumferential direction and having a uniform cross section in the hollow axial direction. The large-diameter circular tube 29 having the holes 29a is arranged on the outer periphery with a predetermined interval in the axial direction thereof. The annular plate 26 is integrally attached to the large-diameter circular pipe 29 by welding or the like. A plurality of annular plates 26 are provided at positions substantially corresponding to the entire length of the rotor 2. The shaft 11 and the refrigerant injection pipe 21 have the same axis.
  • the refrigerant injection pipe 21 is made of a material having a high thermal conductivity such as copper or iron, and is shrink-fitted into the refrigerant passage 12 which is a hollow through hole of the rotor shaft 11, so that the inner circumference of the refrigerant passage 12 is obtained.
  • the shaft 11 is in close contact with the surface so that the heat of the shaft 11 can be easily transferred to the annular plate 26.
  • the shrink fitting is performed by heating only the rotor shaft 11 to 120 to 150 ° C. so that the center of the rotor shaft 11 and the large-diameter circular tube 29 having the through hole 29a are aligned.
  • the circular tube 29 is inserted in the axial direction in the refrigerant passage 12 to a position substantially corresponding to the entire length of the rotor 2. Since the outer diameters of the plurality of annular plates 26 are all the same, as in the first embodiment, it is not necessary to align the center of the shaft at the time of assembly, and workability is improved. Furthermore, since vibration due to shaft runout during high-speed rotation is eliminated, a rotating electrical machine that can be used stably at high-speed rotation can be obtained.
  • Heat from the rotor 2 is conducted to the shaft 11, and flows from the inner peripheral surface of the refrigerant passage 12 in the shaft 11 through the cooling medium 13 and the plurality of small diameter circular pipes 28 in the annular plate 26. Furthermore, heat is radiated to the cooling medium 31 flowing through the through hole 29a through the annular plate 26. At this time, since the cooling medium 13 is agitated by the annular plate 26 having the small-diameter circular tube 28, as shown in FIG. 8, a jet 34 is generated at the outflow portion of the annular plate 26, and the flow is disturbed. Therefore, the heat transfer from the shaft 11 to the cooling medium 13, 30, 31 is increased, and the cooling effect is increased.
  • the annular plate 26 having the small-diameter circular tube 28 and the circular tube 29 having the hollow axially uniform cross-section and the through-hole 29a have a uniform cross-sectional shape and dimensions in the axial direction. Because there is The cooling effect of the rotor is increased uniformly in the axial direction of the shaft 11. Further, since the annular plate 26 and the large-diameter circular tube 29 are also configured with a member having a high thermal conductivity, the heat of the shaft 11 is radiated to the cooling medium 13, 30, 31 through these members, The circular plate 26 and the large-diameter circular tube 29 have the effect of increasing the heat transfer surface area and increasing the cooling effect of the rotor.
  • the refrigerant injection pipe 21 including the annular plate 26 provided with the small-diameter circular pipe 28 and the circular pipe 29 having a through hole 29a having a uniform cross section in the hollow axial direction is the same as the small-diameter circular pipe 28.
  • the inner diameter of the through hole 29a is 50% to 55% of the inner diameter of the refrigerant passage 12
  • eight small diameter circular pipes 28 are arranged around the circular pipe 29. Good results are obtained.
  • the shaft inner diameter force was 0 mm
  • good results could be obtained by providing the inner diameter of the circular hole 28 5 mm, eight circumferential directions, and the inner diameter 20 mm of the through hole 29a.
  • the heat transfer on the inner wall surface is compared with the case where the circular pipe 29 having the annular plate 26 and the through hole 29a is not provided (that is, the case where only the hollow through hole is provided in the shaft 11). As a result, it was confirmed that the rate was improved by about 1.2 times at 1500r / min.

Abstract

A rotating electric machine having a rotating shaft with a rotor and a hollow path axially extending in the shaft, where the rotor is cooled by allowing refrigerant pass through the path. A refrigerant inlet tube made up of circular tube groups is fixed in an intimately contacting manner to the inner peripheral surface of that portion of the hollow path in the shaft which corresponds to the rotor.

Description

明 細 書  Specification
回転電機及び回転電機のシャフト  Rotating electric machine and rotating electric machine shaft
技術分野  Technical field
[0001] 本発明はモータ等の回転電機の冷却構造、特にロータシャフト内に中空孔を設け これに冷却水等の冷媒を注入することにより回転電機に発生した熱を放熱する形式 の冷却構造を採用した回転電機及び回転電機のシャフトに関するものである。  The present invention relates to a cooling structure for a rotating electrical machine such as a motor, and more particularly to a cooling structure of a type in which a hollow hole is provided in a rotor shaft to dissipate heat generated in the rotating electrical machine by injecting a coolant such as cooling water. The present invention relates to a rotating electric machine and a shaft of the rotating electric machine.
背景技術  Background art
[0002] 従来、例えば電動機等のロータを冷却するために、ロータシャフトの内部に冷媒通 路を設け、これに冷媒を通過させることによりロータに発生するジュール熱を冷却す る冷却構造が各種提案されて ヽる。  Conventionally, various cooling structures for cooling a Joule heat generated in a rotor by providing a refrigerant passage inside the rotor shaft and allowing the refrigerant to pass through the rotor shaft in order to cool a rotor such as an electric motor have been proposed. Being sung.
例えば、ロータシャフトに軸方向に伸びる中空状の通路を設け、この通路内部にス パイラル状に卷回された熱伝導率の高 、材料カゝらなるコイルあるいはフィンを挿入す ることによって、上記通路内部を流れる気流によりモータの冷却を効率的に行うもの( 例えば特許文献 1、 2参照)や、ロータシャフトの中空孔にモータのケーシングに一端 を固定された冷却液注入管を設け、この冷却液注入管を介して冷却水を注入可能と するもの (例えば特許文献 3参照)が提案されている。  For example, by providing a hollow passage extending in the axial direction in the rotor shaft, and inserting a coil or fin made of a material with high thermal conductivity wound in a spiral shape into the passage, the above-mentioned A motor that efficiently cools the motor by the airflow flowing inside the passage (see, for example, Patent Documents 1 and 2), and a cooling liquid injection pipe that is fixed at one end to the motor casing in the hollow hole of the rotor shaft. There has been proposed one that can inject cooling water through a liquid injection pipe (see, for example, Patent Document 3).
[0003] 特許文献 1 :特開平 10— 14161号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-14161
特許文献 2:特開 2000 - 34189号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-34189
特許文献 3 :特開平 9— 46973号公報  Patent Document 3: Japanese Patent Laid-Open No. 9-46973
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかしながら、上述のモータでは、ロータシャフトと、ロータシャフトの中空孔に揷入 された冷媒注入管の軸中心を合わせることが難しぐまた高速回転によるロータシャ フト及び冷媒注入管の軸振れによる振動があり、その結果、破損が生じる可能性があ るという問題があった。 [0004] However, in the motor described above, it is difficult to align the axial center of the rotor shaft and the refrigerant injection pipe inserted into the hollow hole of the rotor shaft, and also due to the shaft runout of the rotor shaft and the refrigerant injection pipe due to high-speed rotation. There was a problem that there was vibration, which could result in damage.
本発明はこのような課題を解決するためになされたものであって、その目的は、ロー タシャフトと、ロータシャフトの中空孔に挿入された冷媒注入管の軸中心を合わせる 煩雑性を削減でき、また高速回転で安定して使用できる製作容易な回転電機を提供 することにある。 The present invention has been made to solve such a problem, and the object thereof is to align the axial center of the rotor shaft and the refrigerant injection pipe inserted into the hollow hole of the rotor shaft. It is an object of the present invention to provide an easily manufactured rotating electrical machine that can reduce complexity and can be used stably at high speed.
課題を解決するための手段  Means for solving the problem
[0005] 上述の目的を達成するために、本発明は、ロータが取り付けられて回転するシャフ トを備え、上記シャフト内に軸方向に伸びる中空状の通路を設け、これに冷媒を通過 させることによりロータを冷却する回転電機において、上記シャフト内に設けられた中 空状通路の少なくともロータ対応部内周面に、複数個の円管群力 なる冷媒注入管 を密着固定したことを特徴とするものである。  [0005] In order to achieve the above-mentioned object, the present invention includes a shaft to which a rotor is attached and rotates, and a hollow passage extending in the axial direction is provided in the shaft, and a refrigerant is allowed to pass through the hollow passage. In the rotating electrical machine that cools the rotor by the above, a plurality of refrigerant injection pipes having a group of circular pipes are closely fixed to at least the inner peripheral surface of the rotor-corresponding portion of the hollow passage provided in the shaft. It is.
また本発明は、ロータが取り付けられて回転する回転電機のシャフトにおいて、軸 方向に伸びる中空状の通路と、この通路の少なくともロータ対応部内周面に密着固 定された複数個の円管群力 なる冷媒注入管とを備え、上記通路に冷媒を流して口 ータを冷却することを特徴とするものである。  The present invention also provides a hollow passage extending in the axial direction of a rotating electrical machine shaft to which a rotor is attached, and a plurality of circular tube group forces that are closely fixed to at least the inner peripheral surface of the rotor in the passage. And a refrigerant injection pipe configured to cool the inlet by flowing the refrigerant through the passage.
発明の効果  The invention's effect
[0006] この発明は、上記のように構成することにより、組立時に軸中心を合わせる煩雑性 が削減でき、作業性が向上すると共に、高速回転時に軸振れによる振動が無くなるこ とから、高速回転で安定して使用できる回転電機の冷却構造を得ることができる。 図面の簡単な説明  [0006] By configuring the present invention as described above, the complexity of aligning the shaft center during assembly can be reduced, workability is improved, and vibration due to shaft runout during high-speed rotation is eliminated. Thus, a cooling structure for a rotating electrical machine that can be used stably can be obtained. Brief Description of Drawings
[0007] [図 1]本発明実施の形態 1の回転電機の冷却構造を適用した回転電機の概略断面 である。  FIG. 1 is a schematic cross section of a rotating electrical machine to which a cooling structure for a rotating electrical machine according to Embodiment 1 of the present invention is applied.
[図 2]本発明実施の形態 1によるシャフトの断面構造を示す軸方向断面図である。  FIG. 2 is an axial sectional view showing a sectional structure of a shaft according to the first embodiment of the present invention.
[図 3]上記図 2の C部拡大図である。  FIG. 3 is an enlarged view of part C in FIG. 2 above.
[図 4]本発明実施の形態 1によるシャフトの軸に垂直な面(図 2の A—A)での模式的 断面図である。  4 is a schematic cross-sectional view taken along a plane perpendicular to the shaft axis (AA in FIG. 2) according to Embodiment 1 of the present invention.
[図 5]本発明実施の形態 2によるシャフトの断面構造を示す軸方向断面図である。  FIG. 5 is an axial sectional view showing a sectional structure of a shaft according to a second embodiment of the present invention.
[図 6]本発明実施の形態 2によるシャフトの軸に垂直な面(図 5の B— B)での模式的 断面図である。  6 is a schematic cross-sectional view taken along a plane (BB in FIG. 5) perpendicular to the shaft axis according to Embodiment 2 of the present invention.
[図 7]本発明実施の形態 2による円管群を備えた円環板 26の構成図である。  FIG. 7 is a configuration diagram of an annular plate 26 having a circular tube group according to a second embodiment of the present invention.
[図 8]上記図 5の D部拡大図である。 発明を実施するための最良の形態 FIG. 8 is an enlarged view of part D in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 実施の形態 1.  [0008] Embodiment 1.
以下、この発明の対象とする回転電機の冷却構造について説明する。図 1〜図 4は この発明の実施の形態 1による冷却構造を示す図であり、図 1は本発明の適用対象 とする、ロータシャフト内に中空孔を設けこれに冷却水等の冷媒を注入する形式の回 転電機の断面図であり、先ず、これについてその概略構造、動作を説明する。なお、 図では、モータに適用した例を示している力 この発明はモータだけでなぐ発電機、 発電動機等を含み、冷却の必要があるロータを備えた回転電機一般に適用できるも のである。  Hereinafter, a cooling structure for a rotating electrical machine as an object of the present invention will be described. 1 to 4 are diagrams showing a cooling structure according to Embodiment 1 of the present invention, and FIG. 1 is a subject of application of the present invention, in which a hollow hole is provided in a rotor shaft, and a coolant such as cooling water is injected therein. 1 is a cross-sectional view of a rotary electric machine of the type to be described. First, the schematic structure and operation thereof will be described. The figure shows an example in which the present invention is applied to a motor. The present invention includes a generator, a generator, and the like that are not limited to a motor, and can be applied to general rotating electrical machines including a rotor that needs to be cooled.
[0009] 図 1において、モータ 1は、回転する部分のロータ(回転子) 2とそれを非接触で取 囲みながら支持するステータ(固定子) 3とがフレーム 4に収容されることによって構成 されている。このフレーム 4はロータ 2及びステータ 3の軸方向に沿って円筒形状にな つている。フレーム 4の内周面の所定箇所にはステータ 3が固定されており、ステータ 3は厚みのある円筒形状になっており、その外周面はフレーム 4の内周面と同一径に なっている。ステータ 3には回転磁界を形成するためのコイル卷線 5が卷回されてお り、コイル卷線 5の一部がコイルエンド 6としてステータ 3の両端部から外方へ突出して いる。  In FIG. 1, a motor 1 is configured by housing a rotating portion of a rotor (rotor) 2 and a stator (stator) 3 that supports the rotor 1 while surrounding it in a non-contact manner. ing. The frame 4 has a cylindrical shape along the axial direction of the rotor 2 and the stator 3. A stator 3 is fixed to a predetermined portion of the inner peripheral surface of the frame 4, the stator 3 has a thick cylindrical shape, and the outer peripheral surface thereof has the same diameter as the inner peripheral surface of the frame 4. A coil winding 5 for forming a rotating magnetic field is wound around the stator 3, and a part of the coil winding 5 protrudes outward from both ends of the stator 3 as a coil end 6.
[0010] また、ステータ 3の内周面の内側には、ステータ 3と非接触な状態でシャフト 11と一 体に固定されたロータ 2が設けられている。ロータ 2は円柱形状であり、軸方向におい てステータ 3と対応する位置に、ステータ 3に取囲まれるように設けられている。ロータ 2には複数のアルミ製スロットバー 7が軸方向に沿って埋設されている。ロータ 2とステ ータ 3は略同心円上に設けられているため、ロータ 2とステータ 3の間に存在する周方 向の空隙(ギャップ)は一定になっている。  [0010] In addition, on the inner side of the inner peripheral surface of the stator 3, there is provided a rotor 2 that is fixed integrally with the shaft 11 in a non-contact state with the stator 3. The rotor 2 has a cylindrical shape and is provided so as to be surrounded by the stator 3 at a position corresponding to the stator 3 in the axial direction. A plurality of aluminum slot bars 7 are embedded in the rotor 2 along the axial direction. Since the rotor 2 and the stator 3 are provided substantially concentrically, the circumferential gap (gap) existing between the rotor 2 and the stator 3 is constant.
[0011] フレーム 4の長手方向両端部には円板状のエンドブラケット 8、 9が固定されている 。上記各エンドブラケット 8、 9にはそれぞれ、その中央部に軸受け 10が設けられシャ フト 11が貫通している。ロータ 2とシャフト 11とは焼嵌めによって固定されている。シャ フト 11には断面が円形を有しシャフト 11と同軸に軸方向に延びる中空孔 11aが設け られ、これが冷媒通路 12を形成している。冷媒通路 12は、内部に空気や水、ェチレ ングリコール、潤滑油などの冷却媒体 13が通過するようになっている。 Disc-shaped end brackets 8 and 9 are fixed to both ends in the longitudinal direction of the frame 4. Each of the end brackets 8 and 9 is provided with a bearing 10 at the center thereof, and a shaft 11 passes therethrough. The rotor 2 and the shaft 11 are fixed by shrinkage fitting. The shaft 11 is provided with a hollow hole 11 a having a circular cross section and extending in the axial direction coaxially with the shaft 11, and this forms a refrigerant passage 12. The refrigerant passage 12 has air, water, Cooling medium 13 such as glycol or lubricating oil is allowed to pass through.
[0012] ステータ 3に卷回されたコイル卷線 5に電流を流して、回転磁界が形成されると、口 ータ 2に埋設されたスロットバー 7が力を受けてロータ 2がシャフト 11と共に回転すると 共に、ロータ 2を通る磁束の変化によってロータ 2に渦電流が発生する。この際に、コ ィル卷線による銅損、及び固定子鉄心による鉄損によって発生した熱はステータ 3を 介してフレーム 4に伝導され、フレーム 4からモータ外部の大気中へ放出される。  When a current is passed through the coil winding 5 wound around the stator 3 to form a rotating magnetic field, the slot bar 7 embedded in the port 2 receives a force, and the rotor 2 moves together with the shaft 11. While rotating, an eddy current is generated in the rotor 2 due to a change in the magnetic flux passing through the rotor 2. At this time, the heat generated by the copper loss due to the coil wire and the iron loss due to the stator core is conducted to the frame 4 through the stator 3 and released from the frame 4 to the atmosphere outside the motor.
[0013] また、ロータ 2に渦電流が生じる際に、ロータ 2にはスロットバー 7による銅損、及び 回転子鉄心による鉄損によって発熱が生じる力 ロータ 2と焼嵌めによって一体的に 形成されて 、るシャフト 11内には冷媒通路 12が設けられて 、て、その中を図示して ない供給源力 送られてくる冷却媒体 13が流れて通過するため、シャフト 11と冷却 媒体 13との間で熱交換が行われる。そのため、シャフト 11を相対的に冷却することが 可能になるため、ロータ 2をその内部力も冷却することが可能になる。  In addition, when eddy current is generated in the rotor 2, the rotor 2 is integrally formed with the rotor 2 by shrink fitting so that heat is generated by the copper loss due to the slot bar 7 and the iron loss due to the rotor core. In addition, a coolant passage 12 is provided in the shaft 11, and a cooling medium 13 fed through a supply source force (not shown) flows and passes therethrough, so that there is a gap between the shaft 11 and the cooling medium 13. Heat exchange takes place at. Therefore, since the shaft 11 can be relatively cooled, the rotor 2 can also be cooled by its internal force.
[0014] 図 2乃至図 4は、本発明の回転電機のロータシャフト構造の詳細を示す。ロータ 2を 支持するシャフト 11内に設けられた中空の貫通孔である冷媒通路 12の内周面に、 円管群を備えた冷媒注入管 21が焼嵌めによって一体的に形成されている。焼き嵌 めは、ロータシャフト 11のみを 120〜150°Cまで加熱して膨張させた状態で、ロータ シャフト 11及び冷媒注入管 21の中心を合わせて、上記冷媒注入管 21をロータ 2の 全長にほぼ対応した位置まで挿入することにより行う。その後の冷却により、円管群を 備えた冷媒注入管 21がシャフト 11の内面に固定されることになり、シャフト 11の軸方 向(即ち軸心に平行)に一様な断面を持ち、ロータ 2の全長にほぼ対応した位置およ び長さだけ設けられることになる。  2 to 4 show details of the rotor shaft structure of the rotating electrical machine of the present invention. A refrigerant injection pipe 21 having a circular tube group is integrally formed by shrink fitting on the inner peripheral surface of the refrigerant passage 12 which is a hollow through hole provided in the shaft 11 supporting the rotor 2. In shrink fitting, only the rotor shaft 11 is heated to 120 to 150 ° C. and expanded, and the centers of the rotor shaft 11 and the refrigerant injection pipe 21 are aligned so that the refrigerant injection pipe 21 reaches the entire length of the rotor 2. This is done by inserting to almost the corresponding position. Subsequent cooling causes the refrigerant injection pipe 21 with the circular tube group to be fixed to the inner surface of the shaft 11, and has a uniform cross section in the axial direction of the shaft 11 (that is, parallel to the axis). Only positions and lengths corresponding to the overall length of 2 will be provided.
[0015] 円管群を備えた冷媒注入管 21の構成は、図 2及び図 3のようになっている。  [0015] The configuration of the refrigerant injection pipe 21 including the circular pipe group is as shown in Figs.
すなわち、内径が大きい円形断面を有する複数個の円管 22を外側周方向に、内径 力 、さい円形断面を有する複数個の円管 23を内側周方向に、径方向に 2段になるよ うに配置する。各円管 22、 23の材質は、銅や鉄などの熱伝導率の大きいものであり 、シャフト 11の円形断面の中空貫通孔である冷媒通路 12内に焼嵌めされて、冷媒 通路 12の内周面に密着しているため、シャフト 11の熱が容易に円管群を備えた冷媒 注入管 21に伝わるようになされている。 [0016] ロータ 2からの熱はシャフト 11に伝導されて、シャフト 11内の冷媒通路 12の内周面 力も冷却媒体 13、及び円管群 22、 23を備えた冷媒注入管 21を介して、内径大の円 管 22内を通過する冷却媒体 24と内径小の円管 23内を通過する冷却媒体 25に放熱 される。このとき、冷却媒体 13は、円管群を備えたシャフト 21により攪拌されるため、 図 3に示すように、円管群を備えた冷媒注入管 21の流出部で噴流 32、及び噴流 33 により、流れに乱れが生じ、シャフト 11から冷却媒体 13、 24、 25への熱伝達が大きく なり冷却効果が大きくなる。 That is, a plurality of circular tubes 22 having a circular cross section with a large inner diameter are arranged in two steps in the outer circumferential direction, and a plurality of circular tubes 23 having an inner diameter force and a circular cross section are arranged in two steps in the inner circumferential direction and in the radial direction. Deploy. The circular pipes 22 and 23 are made of a material having a high thermal conductivity, such as copper or iron, and are shrink-fitted into the refrigerant passage 12 which is a hollow through hole having a circular cross section of the shaft 11. Since it is in close contact with the peripheral surface, the heat of the shaft 11 is easily transmitted to the refrigerant injection pipe 21 having a circular tube group. The heat from the rotor 2 is conducted to the shaft 11, and the inner peripheral surface force of the refrigerant passage 12 in the shaft 11 is also passed through the cooling medium 13 and the refrigerant injection pipe 21 including the circular pipe groups 22 and 23. Heat is dissipated to the cooling medium 24 that passes through the circular pipe 22 having a large inner diameter and the cooling medium 25 that passes through the circular pipe 23 having a small inner diameter. At this time, since the cooling medium 13 is agitated by the shaft 21 having the circular pipe group, as shown in FIG. 3, at the outflow portion of the refrigerant injection pipe 21 having the circular pipe group, the jet 32 and the jet 33 As a result, the flow is disturbed, the heat transfer from the shaft 11 to the cooling medium 13, 24, 25 is increased, and the cooling effect is increased.
[0017] また、円管群を備えた冷媒注入管 21は軸方向に断面形状および寸法が一様であ るのでシャフト 11の軸方向に一様にロータ 2の冷却効果が増大することになる。さら に、円管群を備えた冷媒注入管 21により伝熱表面積が増大し、また上述したように 熱伝導率の大きな部材カも構成されるため、シャフト 11の熱が冷媒注入管 21を通し て冷却媒体 13に円滑に放熱され、ロータの冷却効果が大きくなるという効果も併せ て得られる。  [0017] Further, since the refrigerant injection pipe 21 including the circular pipe group has a uniform cross-sectional shape and dimensions in the axial direction, the cooling effect of the rotor 2 is increased uniformly in the axial direction of the shaft 11. . Furthermore, since the heat transfer surface area is increased by the refrigerant injection pipe 21 having the circular tube group, and the member having a high thermal conductivity is also formed as described above, the heat of the shaft 11 passes through the refrigerant injection pipe 21. Thus, heat is smoothly radiated to the cooling medium 13 and the effect of increasing the cooling effect of the rotor is also obtained.
[0018] 円管群を備えた冷媒注入管 21は、外側の内径大の円管 22をその内径が冷媒通 路 12の内径の 20%乃至 25%、内側の内径小の円管 23をその内径が冷媒通路 12 の内径の 10%乃至 15%とし、それぞれ周方向に 8個配列すると良い結果が得られる 。更に具体的には、円管群を備えた冷媒注入管 21を、例えばシャフト 11の内径が 4 Ommの場合、外側の内径大の円管 22内径を 10mm、周方向 8個とし、また内側の 内径小の円管 23内径を 5mm、周方向 8個とすると良好な結果が得られる。また、 15 OOr/minで、内壁面での熱伝達率が、円管群を備えた冷媒注入管 21を設けない場 合 (シャフト 11内に中空の貫通孔を設けたのみの場合)と比較して、約 1. 6倍向上す ることが確認できた。  [0018] The refrigerant injection pipe 21 provided with the circular pipe group includes an outer circular pipe 22 having a large inner diameter and an inner pipe 20 having an inner diameter of 20% to 25% of the inner diameter of the refrigerant passage 12, and an inner small circular pipe 23 having an inner diameter. Good results can be obtained if the inner diameter is 10% to 15% of the inner diameter of the refrigerant passage 12 and eight are arranged in the circumferential direction. More specifically, when the inner diameter of the shaft 11 is 4 Omm, the refrigerant injection pipe 21 provided with a group of circular pipes, for example, the outer diameter of the circular pipe 22 is 10 mm, the inner diameter is 8 mm, and the inner diameter is 8 Good results can be obtained when the inner diameter is 23 mm and the inner diameter is 8 mm. Also, at 15 OOr / min, the heat transfer coefficient on the inner wall surface is compared with the case where the refrigerant injection pipe 21 with the circular tube group is not provided (when only the hollow through hole is provided in the shaft 11). As a result, it was confirmed that the improvement was about 1.6 times.
[0019] 実施の形態 2.  [0019] Embodiment 2.
図 5乃至図 8は本発明の実施の形態 2による回転電機の冷却構造を示しており、図 中、実施の形態 1で説明した図 1は本実施の形態 2にも同様に適用され、また実施の 形態 2の図面中、実施の形態 1と同一符号を付したものは、同一または相当部分であ ることを示している。図 5は本実施の形態 2によるロータシャフトの断面構造を示す軸 方向断面図であり、図 6はその B— B断面図、図 7は冷媒注入管の斜視図、図 8は図 5の D部拡大図を示して 、る。 FIGS. 5 to 8 show a cooling structure for a rotating electrical machine according to the second embodiment of the present invention, and FIG. 1 described in the first embodiment is similarly applied to the second embodiment. In the drawings of the second embodiment, the same reference numerals as those in the first embodiment denote the same or corresponding parts. 5 is an axial sectional view showing the sectional structure of the rotor shaft according to the second embodiment, FIG. 6 is a sectional view taken along the line B-B, FIG. 7 is a perspective view of the refrigerant injection pipe, and FIG. 5 shows an enlarged view of part D.
[0020] 実施の形態 2においては、ロータ 2を支持するシャフト 11内に設けられた中空の貫 通孔である冷媒通路 12の内周面に、円管板 26を備えた冷媒注入管 21が焼嵌めに よって一体的に形成されている。円環板 26を備えた冷媒注入管 21は、図に示すよう に、周方向に複数個の小径円管 28を有する円環板 26が、中空の軸方向に一様な 断面を持った貫通孔 29aを有する大径円管 29の外周に互いにその軸方向に所定間 隔を有して配置されたものである。上記円環板 26の大径円管 29への取り付けは溶 接等で一体的に形成されている。円環板 26は、ロータ 2の全長にほぼ対応した位置 に複数個設けられている。なお、上記シャフト 11と冷媒注入管 21の軸心は同一であ る。 In the second embodiment, the refrigerant injection pipe 21 having the circular pipe plate 26 is provided on the inner peripheral surface of the refrigerant passage 12 that is a hollow through hole provided in the shaft 11 that supports the rotor 2. It is integrally formed by shrink fitting. As shown in the figure, the refrigerant injection pipe 21 provided with the annular plate 26 is formed by passing through the annular plate 26 having a plurality of small-diameter circular tubes 28 in the circumferential direction and having a uniform cross section in the hollow axial direction. The large-diameter circular tube 29 having the holes 29a is arranged on the outer periphery with a predetermined interval in the axial direction thereof. The annular plate 26 is integrally attached to the large-diameter circular pipe 29 by welding or the like. A plurality of annular plates 26 are provided at positions substantially corresponding to the entire length of the rotor 2. The shaft 11 and the refrigerant injection pipe 21 have the same axis.
[0021] 冷媒注入管 21は銅や鉄などの熱伝導率の大きな材料から構成され、ロータシャフ ト 11の中空貫通孔である冷媒通路 12内に焼嵌めされることにより、冷媒通路 12の内 周面に密着してシャフト 11の熱が容易に円環板 26に伝わるようになされて 、る。この 時、焼嵌めは、実施の形態 1と同様、ロータシャフト 11のみを 120〜150°Cまで加熱 することにより、ロータシャフト 11と、貫通孔 29aを有する大径円管 29の中心を合わせ て、上記冷媒通路 12内の軸方向に円管 29をロータ 2の全長にほぼ対応した位置ま で挿入することにより行う。なお、複数個設けられている円環板 26の外径寸法は全て 同一であるため、実施の形態 1と同様、組立時に、軸中心を合わせることが無くなり、 作業性が向上することになる。さらに、高速回転時に軸振れによる振動が無くなること から、高速回転で安定して使用できる回転電機を得ることができる。  [0021] The refrigerant injection pipe 21 is made of a material having a high thermal conductivity such as copper or iron, and is shrink-fitted into the refrigerant passage 12 which is a hollow through hole of the rotor shaft 11, so that the inner circumference of the refrigerant passage 12 is obtained. The shaft 11 is in close contact with the surface so that the heat of the shaft 11 can be easily transferred to the annular plate 26. At this time, as in the first embodiment, the shrink fitting is performed by heating only the rotor shaft 11 to 120 to 150 ° C. so that the center of the rotor shaft 11 and the large-diameter circular tube 29 having the through hole 29a are aligned. Then, the circular tube 29 is inserted in the axial direction in the refrigerant passage 12 to a position substantially corresponding to the entire length of the rotor 2. Since the outer diameters of the plurality of annular plates 26 are all the same, as in the first embodiment, it is not necessary to align the center of the shaft at the time of assembly, and workability is improved. Furthermore, since vibration due to shaft runout during high-speed rotation is eliminated, a rotating electrical machine that can be used stably at high-speed rotation can be obtained.
[0022] ロータ 2からの熱はシャフト 11に伝導されて、シャフト 11内の冷媒通路 12の内周面 から冷却媒体 13、円環板 26に有する複数個の小径円管 28を流れる冷却媒体 30、 更には上記円環板 26を介して貫通孔 29a内を流れる冷却媒体 31に放熱される。こ のとき、冷却媒体 13は、小径円管 28を有する円環板 26により攪拌されるため、図 8 に示すように、円環板 26の流出部で噴流 34を生じ、流れに乱れが生じることから、シ ャフト 11から冷却媒体 13、 30、 31への熱伝達が大きくなり冷却効果が大きくなる。  Heat from the rotor 2 is conducted to the shaft 11, and flows from the inner peripheral surface of the refrigerant passage 12 in the shaft 11 through the cooling medium 13 and the plurality of small diameter circular pipes 28 in the annular plate 26. Furthermore, heat is radiated to the cooling medium 31 flowing through the through hole 29a through the annular plate 26. At this time, since the cooling medium 13 is agitated by the annular plate 26 having the small-diameter circular tube 28, as shown in FIG. 8, a jet 34 is generated at the outflow portion of the annular plate 26, and the flow is disturbed. Therefore, the heat transfer from the shaft 11 to the cooling medium 13, 30, 31 is increased, and the cooling effect is increased.
[0023] また、小径円管 28を備えた円環板 26、及び中空の軸方向に一様な断面を持った 貫通孔 29aを有する円管 29は軸方向に断面形状および寸法が一様であるので、シ ャフト 11の軸方向に一様にロータの冷却効果が増大することになる。さらに、上記円 環板 26及び大径円管 29は、熱伝導率の大きな部材カも構成されているため、シャフ ト 11の熱がこれらの部材を通して冷却媒体 13、 30、 31に放熱され、円環板 26及び 大径円管 29により、伝熱表面積が増大してロータの冷却効果が大きくなるという効果 ち得られる。 [0023] In addition, the annular plate 26 having the small-diameter circular tube 28 and the circular tube 29 having the hollow axially uniform cross-section and the through-hole 29a have a uniform cross-sectional shape and dimensions in the axial direction. Because there is The cooling effect of the rotor is increased uniformly in the axial direction of the shaft 11. Further, since the annular plate 26 and the large-diameter circular tube 29 are also configured with a member having a high thermal conductivity, the heat of the shaft 11 is radiated to the cooling medium 13, 30, 31 through these members, The circular plate 26 and the large-diameter circular tube 29 have the effect of increasing the heat transfer surface area and increasing the cooling effect of the rotor.
なお、上記小径円管 28を備えた円環板 26、及び中空の軸方向に一様な断面を持 つた貫通孔 29aを有する円管 29とからなる冷媒注入管 21は、小径円管 28の内径が 冷媒通路 12の内径の 10%乃至 15%、貫通孔 29aの内径が冷媒通路 12の内径の 5 0%乃至 55%とし、円管 29の周囲に 8個の小径円管 28を配置すると良い結果が得 られる。更に具体的には、例えばシャフト内径力 0mmの場合、円形孔 28の内径 5 mm、周方向 8個、貫通孔 29aの内径 20mmを設けると良い結果が得られることを確 認した。また、内壁面での熱伝達は、上記円環板 26及び貫通孔 29aを有する円管 2 9を設けな 、場合 (すなわち、シャフト 11内に中空の貫通孔を設けたのみの場合)と 比較して、 1500r/minで、約 1. 2倍向上することが確認できた。  Note that the refrigerant injection pipe 21 including the annular plate 26 provided with the small-diameter circular pipe 28 and the circular pipe 29 having a through hole 29a having a uniform cross section in the hollow axial direction is the same as the small-diameter circular pipe 28. When the inner diameter is 10% to 15% of the inner diameter of the refrigerant passage 12, the inner diameter of the through hole 29a is 50% to 55% of the inner diameter of the refrigerant passage 12, and eight small diameter circular pipes 28 are arranged around the circular pipe 29. Good results are obtained. More specifically, for example, when the shaft inner diameter force was 0 mm, it was confirmed that good results could be obtained by providing the inner diameter of the circular hole 28 5 mm, eight circumferential directions, and the inner diameter 20 mm of the through hole 29a. In addition, the heat transfer on the inner wall surface is compared with the case where the circular pipe 29 having the annular plate 26 and the through hole 29a is not provided (that is, the case where only the hollow through hole is provided in the shaft 11). As a result, it was confirmed that the rate was improved by about 1.2 times at 1500r / min.

Claims

請求の範囲 The scope of the claims
[1] ロータが取り付けられて回転するシャフトを備え、上記シャフト内に軸方向に伸び る中空状の通路を設け、これに冷媒を通過させることによりロータを冷却する回転電 機において、上記シャフト内に設けられた中空状通路の少なくともロータ対応部内周 面に、複数個の円管群力 なる冷媒注入管を密着固定したことを特徴とする回転電 機。  [1] A rotary electric machine that includes a rotating shaft with a rotor attached thereto, and that has a hollow passage extending in the axial direction in the shaft, and that cools the rotor by passing a refrigerant through the hollow passage. A rotating electric machine, wherein a plurality of refrigerant injection pipes having a group of circular pipes are tightly fixed to at least an inner peripheral surface of a rotor-corresponding portion of a hollow passage provided in the rotary passage.
[2] 上記冷媒注入管は、それぞれ周方向に配置されてなる複数個の大径円管と複数 個の小径円管を、互いに径方向に多段配置したもの力 構成されたことを特徴とする 請求項 1に記載の回転電機。  [2] The refrigerant injection pipe is structured such that a plurality of large-diameter circular pipes and a plurality of small-diameter circular pipes arranged in the circumferential direction are arranged in multiple stages in the radial direction. The rotating electrical machine according to claim 1.
[3] 上記冷媒注入管は、その大径円管を前記中空状冷媒通路の内径の 20%乃至 25[3] The refrigerant injection pipe has a large-diameter circular pipe that is 20% to 25% of the inner diameter of the hollow refrigerant passage.
%、その小径円管を前記中空状冷媒通路の内径の 10%乃至 15%としたことを特徴 とする請求項 2に記載の回転電機。 3. The rotating electrical machine according to claim 2, wherein the small-diameter circular tube is 10% to 15% of the inner diameter of the hollow refrigerant passage.
[4] 上記冷媒注入管は、周方向に複数個の小径円管を有する円環板が、中空の軸方 向に一様な断面を持った貫通孔を有する大径円管の外周に互いにその軸方向に所 定間隔を隔てて配置されたもの力 構成されたことを特徴とする請求項 1に記載の回 転電機。 [4] The refrigerant injection pipe includes an annular plate having a plurality of small-diameter circular pipes in the circumferential direction, and the outer circumference of the large-diameter circular pipe having a through-hole having a uniform cross section in the hollow axial direction. 2. The rotating electrical machine according to claim 1, wherein the rotating electric machine is configured with a force arranged in the axial direction at a predetermined interval.
[5] 上記冷媒注入管は、その小径円管を前記中空状冷媒通路の内径の 10%乃至 15 [5] The refrigerant injection pipe has a small-diameter circular pipe that is 10% to 15% of the inner diameter of the hollow refrigerant passage.
%、貫通孔の内径を前記中空状冷媒通路の内径の 50%乃至 55%としたことを特徴 とする請求項 4に記載の回転電機。 5. The rotating electrical machine according to claim 4, wherein an inner diameter of the through hole is 50% to 55% of an inner diameter of the hollow refrigerant passage.
[6] 上記冷媒注入管の上記シャフトへの固定は焼き嵌めにより行われることを特徴とす る請求項 1〜5の何れかに記載の回転電機。 6. The rotating electrical machine according to any one of claims 1 to 5, wherein the refrigerant injection pipe is fixed to the shaft by shrink fitting.
[7] 上記冷媒注入管は熱伝導率の大き!/、部材により構成されたことを特徴とする請求 項 1〜5の何れかに記載の回転電機。 7. The rotating electrical machine according to any one of claims 1 to 5, wherein the refrigerant injection pipe is formed of a member having a large thermal conductivity! /.
[8] ロータが取り付けられて回転するシャフトであって、軸方向に伸びる中空状の通路と[8] A shaft on which a rotor is attached and rotates, and a hollow passage extending in an axial direction;
、この通路の少なくともロータ対応部内周面に密着固定された複数個の円管群から なる冷媒注入管とを備え、上記通路に冷媒を流してロータを冷却することを特徴とす る回転電機のシャフト。 And a refrigerant injection pipe comprising a plurality of circular pipe groups that are closely fixed to the inner peripheral surface of the rotor corresponding portion of the passage, and the rotor is cooled by flowing the refrigerant through the passage. shaft.
PCT/JP2006/313378 2006-07-05 2006-07-05 Rotating electric machine and shaft for rotating electric machine WO2008004286A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313378 WO2008004286A1 (en) 2006-07-05 2006-07-05 Rotating electric machine and shaft for rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313378 WO2008004286A1 (en) 2006-07-05 2006-07-05 Rotating electric machine and shaft for rotating electric machine

Publications (1)

Publication Number Publication Date
WO2008004286A1 true WO2008004286A1 (en) 2008-01-10

Family

ID=38894264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313378 WO2008004286A1 (en) 2006-07-05 2006-07-05 Rotating electric machine and shaft for rotating electric machine

Country Status (1)

Country Link
WO (1) WO2008004286A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786702B2 (en) * 2006-02-16 2011-10-05 三菱電機株式会社 Cooling structure of rotating electric machine
CN103899633A (en) * 2012-12-28 2014-07-02 永元电机(苏州)有限公司 Motor spindle capable of dissipating heat
JP2015220937A (en) * 2014-05-20 2015-12-07 日産自動車株式会社 Cooling structure of rotary electric machine
JP2016208722A (en) * 2015-04-24 2016-12-08 日産自動車株式会社 Driving unit
DE102016202416A1 (en) * 2016-02-17 2017-08-17 Hirschvogel Umformtechnik Gmbh Rotor shaft arrangement and method for its production
US20200227964A1 (en) * 2017-08-08 2020-07-16 American Axle & Manufacturing, Inc. Electric drive module having motor with heat sink insert in rotor shaft
DE102022120773A1 (en) 2022-08-17 2024-02-22 Bayerische Motoren Werke Aktiengesellschaft Rotor for an electrical machine, in particular a motor vehicle, and electrical machine for a motor vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583440A (en) * 1978-12-20 1980-06-23 Fanuc Ltd Cooling device of ac motor
JPS55107895A (en) * 1979-02-06 1980-08-19 Luwa Ag Heat exchanger pipe unit
JPS5837083U (en) * 1981-08-28 1983-03-10 東陶機器株式会社 water heater
JPS62182050U (en) * 1986-05-09 1987-11-18
JPH0590175U (en) * 1991-05-17 1993-12-07 株式会社日本アルミ Double tube heat exchanger
JPH0739275U (en) * 1993-12-22 1995-07-14 自動車電機工業株式会社 Motor cooling structure
JPH1144497A (en) * 1997-07-23 1999-02-16 Furukawa Electric Co Ltd:The Composite tube for refrigerant passage of aluminum alloy and its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583440A (en) * 1978-12-20 1980-06-23 Fanuc Ltd Cooling device of ac motor
JPS55107895A (en) * 1979-02-06 1980-08-19 Luwa Ag Heat exchanger pipe unit
JPS5837083U (en) * 1981-08-28 1983-03-10 東陶機器株式会社 water heater
JPS62182050U (en) * 1986-05-09 1987-11-18
JPH0590175U (en) * 1991-05-17 1993-12-07 株式会社日本アルミ Double tube heat exchanger
JPH0739275U (en) * 1993-12-22 1995-07-14 自動車電機工業株式会社 Motor cooling structure
JPH1144497A (en) * 1997-07-23 1999-02-16 Furukawa Electric Co Ltd:The Composite tube for refrigerant passage of aluminum alloy and its manufacture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786702B2 (en) * 2006-02-16 2011-10-05 三菱電機株式会社 Cooling structure of rotating electric machine
CN103899633A (en) * 2012-12-28 2014-07-02 永元电机(苏州)有限公司 Motor spindle capable of dissipating heat
CN103899633B (en) * 2012-12-28 2016-12-28 永元电机(苏州)有限公司 The motor spindle that can dispel the heat
JP2015220937A (en) * 2014-05-20 2015-12-07 日産自動車株式会社 Cooling structure of rotary electric machine
JP2016208722A (en) * 2015-04-24 2016-12-08 日産自動車株式会社 Driving unit
DE102016202416A1 (en) * 2016-02-17 2017-08-17 Hirschvogel Umformtechnik Gmbh Rotor shaft arrangement and method for its production
DE102016202416B4 (en) * 2016-02-17 2017-12-28 Hirschvogel Umformtechnik Gmbh Rotor shaft arrangement and method for its production
US20200227964A1 (en) * 2017-08-08 2020-07-16 American Axle & Manufacturing, Inc. Electric drive module having motor with heat sink insert in rotor shaft
US11626765B2 (en) 2017-08-08 2023-04-11 American Axle & Manufacturing, Inc. Electric drive module having motor with heat sink insert in rotor shaft
US11888356B2 (en) 2017-08-08 2024-01-30 American Axle & Manufacturing, Inc. Electric drive module having motor with heat sink insert in rotor shaft
DE102022120773A1 (en) 2022-08-17 2024-02-22 Bayerische Motoren Werke Aktiengesellschaft Rotor for an electrical machine, in particular a motor vehicle, and electrical machine for a motor vehicle

Similar Documents

Publication Publication Date Title
CN105978188B (en) Electrical machine and method of manufacture
WO2008004286A1 (en) Rotating electric machine and shaft for rotating electric machine
EP2632026B1 (en) Cooling jacket for axial flux machine
JP5690079B2 (en) Generator coil cooling baffle
JP4786702B2 (en) Cooling structure of rotating electric machine
KR101114713B1 (en) A electric motor and cooling unit thereof
CN107925305B (en) Cooling system for an electric machine
JP6436200B1 (en) Cooling structure of stator of rotating electric machine
JP7115912B2 (en) Rotor manufacturing method
US20210288554A1 (en) Axial Flux Motor Including System For Circulating Coolant Through Air Gap Between Stator And Rotor
JP2019161752A (en) Rotary electric machine stator
JP5013751B2 (en) Electric motor
JP2009081953A (en) Rotating electric machine
KR101995849B1 (en) Coolant supplying and collecting apparatus and motor comprising thr same
WO2022265009A1 (en) Rotating electric machine case and rotating electric machine
JP5779098B2 (en) Induction heating roller device
JP2006050752A (en) Stator cooling structure of disk rotary electric machine
JP2004112967A (en) Cooling structure for rotary electric machine
JP2004129407A (en) Cooling structure for motor
JP7251273B2 (en) Rotating electric machine
JP2010187490A (en) Rotary electric machine
JP2006094664A (en) Stator structure for axial-gap type rotating electric machine
JPH09233768A (en) Cooling device for stator
JP5799827B2 (en) Method for manufacturing rotor of permanent magnet type rotating electric machine
JP2019161861A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06767884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06767884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP