【0001】
【発明の属する技術分野】
本発明は、電動機の冷却構造に関し、より効果的な冷却効率を得られる冷媒通路の構造に関するものである。
【0002】
【従来の技術】
従来の電動機において、例えば、特開2000−295818号に記載の発明のように、中空構造とした回転子の内部の円筒状の冷媒通路を設け、この冷媒通路に冷媒を流通させることで回転子を内部から冷却する電動機の冷却構造が知られている。この中空の構造には、中空穴の周囲を平行とした形、中空穴の出口側が拡大した形、中空穴内部にフィンを設けた形等が知られている。
【0003】
なお、電動機の発熱部位は、主に巻線、固定子、回転子、磁石(同期電動機では永久磁石、誘導電動機ではかご型導体)であり、各々を直接冷却することで冷却効率が最も高くなる。上記の発熱部位のうち、主に巻線及び磁石が温度上昇に伴って電動機の効率を低下させる。磁石は回転子内に存在するので電動機の外側から直接冷却することが難しいため、回転軸内に中空の冷媒通路を設け通路をできる限り広げて冷媒を多く接触させ、熱抵抗を少なくするとより効果的である。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の電動機における回転軸内の中空の冷媒通路では、冷却効率を上げるために冷媒の接触面積を増やすと、通路の径が大きくなるに従って冷媒の流速が遅くなるため冷媒通路の層流部でしか冷媒が熱伝達を行えなくなるので、全体としての熱伝達率が小さくなり、結果として冷却効果が下がってしまう。
【0005】
また、冷媒を乱流にして熱伝達効率を上げるために冷媒の流速を上げる、又は冷媒通路を細くすると、冷媒の圧力損失が大きくなるために大きなポンプが必要となり、装置全体としての総合的な効率が悪化してしまうという問題があった。
【0006】
【課題を解決するための手段】
本発明は、回転子の回転軸内部を中空とし、外部より冷媒を流す冷媒通路を備えた電動機において、前記回転軸内の前記冷媒通路の内面に冷媒の流れ方向に逆らうように小径部(例えば段差部や突起部)を設け、冷媒が冷媒通路を流れる課程で乱流を起こすように構成した。
【0007】
【発明の作用及び効果】
本発明によれば、回転軸内の冷媒通路内面に流れに逆らうように小径部を設け、冷媒流れを乱流化し熱伝達率を大きくすることで、回転子を効率的に冷却でき、回転子に備えられた永久磁石の温度を低下することが可能となる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0009】
<第1の実施の形態>
図1は、本発明の第1の実施の形態の電動機の横方向の断面を示す図である。
【0010】
第1の実施の形態の電動機は、固定子1、回転子2、回転軸5、ケース7によって構成されている。
【0011】
回転子2には永久磁石4が備えられており、永久磁石4は外周方向に設けられている固定子1に備えられた巻線3から与えられる回転磁束によって反力を発生させられ、回転子の回転軸5を中心に回転するように構成されている。この永久磁石4は互いに磁極が相違するように配置されている。固定子1と回転子2の間にはエアギャップ9と呼ばれる隙間があり、互いに接触しないように設置されている。固定子1は外周面をケース7に固定され保持されており、回転子2は回転軸5、ベアリング8を介してケース7に保持されている。
【0012】
回転子2の回転軸5の内部は中空構造になっており、回転子2を冷却するための冷媒が中空の冷媒通路6を外部ポンプ(図示せず)によって冷媒入口61から送られ冷媒出口62へと流される。この冷媒は回転子2に備えられた永久磁石4の温度を下げる目的で使用される。永久磁石4の温度を下げることで固定子1から発生する磁束に対する永久磁石4の発生する反力を強め、電動機の回転効率を上げることができる。
【0013】
冷媒通路6の内面には冷媒の流れ方向に逆らう方向に段差63が設けられている。本実施の形態では、下流に向けて内径が順次縮小するように、複数の段差63a〜63dが設けられている。冷媒は冷媒入口61から冷媒通路6へと入り冷媒通路6の段差63部分で乱流を起こす。乱流が起こることで回転子2の熱をより多くの冷媒に伝達し回転子2を冷却する。回転子2の熱を奪った冷媒は冷媒出口62へと流れ出る。
【0014】
上記のように構成された第1の実施の形態の電動機では、冷媒通路6の内面に流れに逆らう方向に段差63を設けることで段差63部における冷媒の流れを乱流化することができ、段差が設けられていない冷媒通路6と比較すると内周面の熱伝達率が大きくなるので回転子2を効果よく冷却し、回転子2に備えられた永久磁石4の温度を効率よく低下することができる。
【0015】
<第2の実施の形態>
図2(A)〜(C)は、本発明の第2の実施の形態の冷媒通路の段差部の拡大図である。なお、第1の実施の形態と同一の動作をする構成には同一の符号を付して、その詳細な説明は省略する。
【0016】
第2の実施の形態の電動機は、冷媒通路6に設けた段差部が櫛形に形成されている。この櫛形段差64は、緩やかな段差部分(傾斜部)64aと、急な段差部分(櫛形突起部)64bとで構成されている。冷媒は冷媒入口61から入って冷媒出口62へと流れる課程で、櫛形段差64において傾斜部64aを流れる冷媒と突起部64bを流れる冷媒との流速が異なるので、より複雑な乱流を起こし、この乱流によって冷媒が回転子2の熱を奪い、熱を奪った冷媒は冷媒出口62へと流れる。
【0017】
上記のように構成された第2の実施の形態の電動機では、回転子2の内部の冷媒通路6の内面に櫛形段差64を設け、櫛形段差64を急な段差と緩やかな段差とで構成したので、1つの櫛形段差部にてより多くの乱流を発生させることができ、第1の実施の形態の電動機の効果に加え、より効果的に回転子2を冷却することで回転子2に備えられた永久磁石4の温度を効率よく低下することができる。
【0018】
<第3の実施の形態>
図3は、本発明の第3の実施の形態の電動機の冷媒通路の断面図を表したものである。なお、第1の実施の形態と同一の動作をする構成には同一の符号を付して、その詳細な説明は省略する。
【0019】
第3の実施の形態の電動機は、回転子2内部の冷媒通路6の内面に円周方向の段差65を複数設けている。回転子2が回転すると回転子2内部の冷媒通路6内面と冷媒との摩擦によって相対的に内部を流通する冷媒が回転方向に動かされる。冷媒は冷媒入口61から入って冷媒出口62へと流れる課程で、回転する円周方向の段差65によって乱流を発生させられる。冷媒はこの乱流によって回転子の熱を奪い、熱を奪った冷媒は冷媒出口62へと流れる。
【0020】
上記のように構成された第3の実施の形態では、冷媒通路6内面に円周方向の段差65を設けることで、回転子2の回転を利用して乱流を生成することができ、第1の実施の形態の電動機の効果に加え、より効果的な回転子2の冷却ができ、回転子2に備えられた永久磁石4の温度を効率よく低下することが可能となる。
【0021】
<第4の実施の形態>
図4は、本発明の第4の実施の形態に係る回転子の横方向の断面を示す図である。なお、第1の実施の形態と同一の動作をする構成には同一の符号を付して、その詳細な説明は省略する。
【0022】
第4の実施の形態の電動機は、回転子2内部の冷媒通路6の内部に中筒10を備えている。中筒10は、先端10aと後端10bとがそれぞれ円錐形に形成され、回転軸5と同心的に配置される。なお、中筒10は回転軸5に対してステーなどを介して指示される。冷媒は冷媒入口61から冷媒通路6へと入り冷媒通路6の段差63部分で乱流を起こす。乱流が起こることで回転子2の熱を冷媒に伝達し回転子2を冷却するが、冷媒通路6に備えられた中筒10によって冷媒がより冷媒通路6の内面近くに導かれ、しかも冷媒の流速も高められるので、より多くの熱を奪うことができる。回転子2の熱を奪った冷媒は冷媒出口62へと流れて行く。
【0023】
上記のように構成された第4の実施の形態では、冷媒通路6に中筒10を設けることで冷媒の流れを冷媒通路6の内周面に導くことができるので、第1の実施の形態の電動機の効果に加え、より効果的な回転子2の冷却ができ、回転子2に備えられた永久磁石4の温度を効率よく低下することが可能となる。
【0024】
<第5の実施の形態>
図5は、本発明の第5の実施の形態に係る回転子の横方向の断面を示す図である。なお、第1の実施の形態と同一の動作をする構成には同一の符号を付して、その詳細な説明は省略する。
【0025】
第5の実施の形態では、回転子2内部の冷媒通路6の内部に中筒10を備えている。この中筒10の外周面は、冷媒通路6の内面へと向かうように傾斜した形状に加工されており、この傾斜形状66は前記冷媒通路6の段差部63a〜63dと対応して複数形成され、冷媒をより冷媒通路6内面へ導くのに適した形状となっている。冷媒は冷媒入口61から冷媒通路6へと入り冷媒通路6の段差63部分で乱流を起こすが、この乱流が起こることで回転子2の熱を冷媒に伝達して回転子2を冷却する。このとき、冷媒は冷媒通路6に備えられた中筒10の傾斜形状66によって冷媒通路の内面に導かれ、より多くの熱を奪うことができる。回転子2の熱を奪った冷媒は冷媒出口62へと流れて行く。
【0026】
上記のように構成された第5の実施の形態の電動機では、冷媒通路の中筒の外周面を冷媒流れをより回転軸5内周面へと向かうように傾斜した形状とすることで、より冷媒の流れを回転軸5内周面に導くことができ、第1及び第4の実施の形態の電動機の効果に加え、より効果的な回転子の冷却及び回転子に備えられた永久磁石の温度を効率よく低下することが可能となる。
【0027】
なお、本実施の形態では段差部を設ける例を示したが、これに限定するものではなく、冷媒通路の内周に突起部を設けてもよい。
【0028】
上記のように本発明の電動機は永久磁石式同期電動機として説明したが、誘導電動機やSRモータ、その他の種類のモータに採用しても本質的に本発明の効果は変わらない。また、本発明の電動機は固定子コアが一体構造のものとして説明したが、固定子コアが分割構造の電動機でもよい。また、磁石極数が8極のものとして図示してあるが、他の極数の電動機にも本発明は適用可能である。さらに、本発明の実施の形態では電動機として説明したが、これを発電機に置き換えたとしても発明の本質は変わらない。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の電動機の横方向の断面を示す図である。
【図2】(A)(B)(C)は本発明の第2の実施の形態の冷媒通路の段差の拡大図である。
【図3】本発明の第3の実施の形態の冷媒通路の断面図である。
【図4】本発明の第4の実施の形態の回転子の横方向の断面を示す図である。
【図5】本発明の第5の実施の形態の回転子の横方向の断面を示す図である。
【0035】
【符号の説明】
1 固定子
2 回転子
3 巻線
4 磁石
5 回転軸
6 冷媒通路
7 ケース
8 ベアリング
9 エアギャップ
10 中筒
61 冷媒入口
62 冷媒出口
63 段差
64 櫛形段差
65 円周方向の段差
66 傾斜形状[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling structure of an electric motor, and more particularly to a structure of a refrigerant passage that can obtain more effective cooling efficiency.
[0002]
[Prior art]
In a conventional motor, for example, as in the invention described in Japanese Patent Application Laid-Open No. 2000-295818, a cylindrical refrigerant passage is provided inside a rotor having a hollow structure, and the refrigerant is caused to flow through the refrigerant passage. There is known a cooling structure of an electric motor for cooling the inside of a motor. Known hollow structures include a shape in which the periphery of the hollow hole is parallel, a shape in which the outlet side of the hollow hole is enlarged, and a shape in which fins are provided inside the hollow hole.
[0003]
The heat generating parts of the motor are mainly windings, stators, rotors, and magnets (permanent magnets for synchronous motors, cage conductors for induction motors), and cooling efficiency is highest by directly cooling each of them. . Among the above-mentioned heat generating parts, mainly the windings and the magnets reduce the efficiency of the electric motor as the temperature rises. Since the magnet is inside the rotor, it is difficult to directly cool it from the outside of the electric motor.Therefore, it is more effective to provide a hollow refrigerant passage in the rotating shaft, expand the passage as much as possible, contact the refrigerant as much as possible, and reduce the thermal resistance. It is a target.
[0004]
[Problems to be solved by the invention]
However, when the contact area of the refrigerant is increased in the hollow refrigerant passage in the rotating shaft of the conventional electric motor to increase the cooling efficiency, the flow velocity of the refrigerant decreases as the diameter of the passage increases. Therefore, the refrigerant cannot conduct heat transfer, so that the heat transfer coefficient as a whole becomes small, and as a result, the cooling effect is reduced.
[0005]
In addition, when the flow rate of the refrigerant is increased or the refrigerant passage is narrowed to increase the heat transfer efficiency by making the refrigerant turbulent, a large pump is required because the pressure loss of the refrigerant is increased, and the overall device as a whole is required. There is a problem that efficiency is deteriorated.
[0006]
[Means for Solving the Problems]
The present invention is directed to an electric motor having a hollow inside of a rotating shaft of a rotor and having a coolant passage through which a coolant flows from the outside, and a small-diameter portion (e.g., (A step portion or a projection portion) so as to generate a turbulent flow while the refrigerant flows through the refrigerant passage.
[0007]
Function and effect of the present invention
According to the present invention, a small-diameter portion is provided on the inner surface of a refrigerant passage in a rotating shaft so as to oppose the flow, and the flow of the refrigerant is turbulent to increase the heat transfer coefficient, so that the rotor can be efficiently cooled, It is possible to lower the temperature of the permanent magnet provided in the vehicle.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
<First embodiment>
FIG. 1 is a diagram illustrating a cross section in a lateral direction of a motor according to a first embodiment of the present invention.
[0010]
The electric motor according to the first embodiment includes a stator 1, a rotor 2, a rotating shaft 5, and a case 7.
[0011]
The rotor 2 is provided with a permanent magnet 4, and the permanent magnet 4 generates a reaction force by a rotating magnetic flux given from a winding 3 provided on the stator 1 provided in an outer peripheral direction, and It is configured to rotate around the rotation shaft 5 of. The permanent magnets 4 are arranged such that their magnetic poles are different from each other. There is a gap called an air gap 9 between the stator 1 and the rotor 2, and they are installed so as not to contact each other. The stator 1 has an outer peripheral surface fixed and held on a case 7, and the rotor 2 is held on the case 7 via a rotating shaft 5 and a bearing 8.
[0012]
The inside of the rotating shaft 5 of the rotor 2 has a hollow structure, and a coolant for cooling the rotor 2 is sent from a coolant inlet 61 through a hollow coolant passage 6 by an external pump (not shown) to a coolant outlet 62. Is washed away. This refrigerant is used for the purpose of lowering the temperature of the permanent magnet 4 provided in the rotor 2. By lowering the temperature of the permanent magnet 4, the reaction force generated by the permanent magnet 4 with respect to the magnetic flux generated from the stator 1 is increased, and the rotation efficiency of the electric motor can be increased.
[0013]
A step 63 is provided on the inner surface of the refrigerant passage 6 in a direction opposite to the flow direction of the refrigerant. In the present embodiment, a plurality of steps 63a to 63d are provided so that the inner diameter sequentially decreases toward the downstream. The refrigerant enters the refrigerant passage 6 from the refrigerant inlet 61 and causes a turbulent flow at the step 63 of the refrigerant passage 6. The turbulence causes the heat of the rotor 2 to be transmitted to more refrigerant and cools the rotor 2. The refrigerant that has taken the heat of the rotor 2 flows out to the refrigerant outlet 62.
[0014]
In the electric motor according to the first embodiment configured as described above, by providing the step 63 on the inner surface of the refrigerant passage 6 in a direction against the flow, the flow of the refrigerant in the step 63 can be turbulent. As compared with the refrigerant passage 6 having no step, the heat transfer coefficient of the inner peripheral surface is increased, so that the rotor 2 is effectively cooled, and the temperature of the permanent magnet 4 provided in the rotor 2 is efficiently reduced. Can be.
[0015]
<Second embodiment>
FIGS. 2A to 2C are enlarged views of a step portion of the refrigerant passage according to the second embodiment of the present invention. Note that the same reference numerals are given to the components that perform the same operations as in the first embodiment, and detailed descriptions thereof will be omitted.
[0016]
In the electric motor according to the second embodiment, the step provided in the refrigerant passage 6 is formed in a comb shape. The comb-shaped step 64 includes a gentle step (inclined portion) 64a and a steep step (comb-shaped protrusion) 64b. In the process in which the refrigerant enters from the refrigerant inlet 61 and flows to the refrigerant outlet 62, the flow rates of the refrigerant flowing through the inclined portion 64 a and the refrigerant flowing through the protruding portion 64 b are different at the comb-shaped step 64, causing a more complicated turbulent flow. Due to the turbulent flow, the refrigerant deprives the rotor 2 of heat, and the deprived refrigerant flows to the refrigerant outlet 62.
[0017]
In the electric motor of the second embodiment configured as described above, the comb-shaped step 64 is provided on the inner surface of the refrigerant passage 6 inside the rotor 2, and the comb-shaped step 64 is constituted by a steep step and a gentle step. Therefore, more turbulence can be generated in one comb-shaped stepped portion, and in addition to the effect of the electric motor of the first embodiment, the rotor 2 can be cooled more effectively, The temperature of the provided permanent magnet 4 can be efficiently reduced.
[0018]
<Third embodiment>
FIG. 3 shows a sectional view of a refrigerant passage of an electric motor according to a third embodiment of the present invention. Note that the same reference numerals are given to the components that perform the same operations as in the first embodiment, and detailed descriptions thereof will be omitted.
[0019]
The electric motor according to the third embodiment has a plurality of circumferential steps 65 on the inner surface of the refrigerant passage 6 inside the rotor 2. When the rotor 2 rotates, the refrigerant flowing relatively inside moves due to friction between the refrigerant and the inner surface of the refrigerant passage 6 inside the rotor 2 in the rotation direction. In the process in which the refrigerant enters the refrigerant inlet 61 and flows to the refrigerant outlet 62, the turbulent flow is generated by the rotating circumferential step 65. The refrigerant takes away the heat of the rotor by this turbulent flow, and the coolant that has taken the heat flows to the coolant outlet 62.
[0020]
In the third embodiment configured as described above, by providing the circumferential step 65 on the inner surface of the refrigerant passage 6, a turbulent flow can be generated using the rotation of the rotor 2, In addition to the effects of the electric motor of the first embodiment, the rotor 2 can be more effectively cooled, and the temperature of the permanent magnet 4 provided in the rotor 2 can be efficiently reduced.
[0021]
<Fourth embodiment>
FIG. 4 is a view showing a cross section in a lateral direction of a rotor according to a fourth embodiment of the present invention. Note that the same reference numerals are given to the components that perform the same operations as in the first embodiment, and detailed descriptions thereof will be omitted.
[0022]
The electric motor according to the fourth embodiment includes a middle cylinder 10 inside the refrigerant passage 6 inside the rotor 2. The front end 10 a and the rear end 10 b of the middle cylinder 10 are each formed in a conical shape, and are arranged concentrically with the rotating shaft 5. The middle cylinder 10 is instructed with respect to the rotating shaft 5 via a stay or the like. The refrigerant enters the refrigerant passage 6 from the refrigerant inlet 61 and causes a turbulent flow at the step 63 of the refrigerant passage 6. The turbulence causes the heat of the rotor 2 to be transmitted to the refrigerant and cools the rotor 2. However, the refrigerant is guided closer to the inner surface of the refrigerant passage 6 by the middle cylinder 10 provided in the refrigerant passage 6. The flow rate of the air is also increased, so that more heat can be taken. The refrigerant that has taken the heat of the rotor 2 flows to the refrigerant outlet 62.
[0023]
In the fourth embodiment configured as described above, since the flow of the refrigerant can be guided to the inner peripheral surface of the refrigerant passage 6 by providing the middle cylinder 10 in the refrigerant passage 6, the first embodiment In addition to the effect of the electric motor described above, the rotor 2 can be cooled more effectively, and the temperature of the permanent magnet 4 provided in the rotor 2 can be efficiently reduced.
[0024]
<Fifth embodiment>
FIG. 5 is a view showing a cross section in a lateral direction of a rotor according to a fifth embodiment of the present invention. Note that the same reference numerals are given to the components that perform the same operations as in the first embodiment, and detailed descriptions thereof will be omitted.
[0025]
In the fifth embodiment, a middle cylinder 10 is provided inside the refrigerant passage 6 inside the rotor 2. The outer peripheral surface of the middle cylinder 10 is formed into a shape inclined toward the inner surface of the refrigerant passage 6, and a plurality of the inclined shapes 66 are formed corresponding to the steps 63 a to 63 d of the refrigerant passage 6. The shape is suitable for guiding the refrigerant to the inner surface of the refrigerant passage 6. The refrigerant enters the refrigerant passage 6 from the refrigerant inlet 61 and causes a turbulent flow at the step 63 of the refrigerant passage 6, and the turbulence causes the heat of the rotor 2 to be transmitted to the refrigerant to cool the rotor 2. . At this time, the refrigerant is guided to the inner surface of the refrigerant passage by the inclined shape 66 of the middle cylinder 10 provided in the refrigerant passage 6, and can take more heat. The refrigerant that has taken the heat of the rotor 2 flows to the refrigerant outlet 62.
[0026]
In the electric motor according to the fifth embodiment configured as described above, the outer peripheral surface of the middle cylinder of the refrigerant passage is formed so as to be inclined so that the refrigerant flow is directed more toward the inner peripheral surface of the rotating shaft 5. The flow of the refrigerant can be guided to the inner circumferential surface of the rotating shaft 5, and in addition to the effects of the electric motors of the first and fourth embodiments, more effective cooling of the rotor and the permanent magnet provided in the rotor can be achieved. The temperature can be efficiently reduced.
[0027]
In the present embodiment, an example in which the step portion is provided has been described. However, the present invention is not limited to this, and a protrusion may be provided on the inner periphery of the refrigerant passage.
[0028]
As described above, the electric motor of the present invention has been described as a permanent magnet type synchronous motor. However, the effects of the present invention are not essentially changed even if the electric motor is applied to an induction motor, an SR motor, or another type of motor. Further, although the motor of the present invention has been described as having the stator core having an integral structure, the motor may have a stator core having a divided structure. Further, although the number of magnet poles is shown as eight, the present invention can be applied to a motor having another number of poles. Furthermore, in the embodiments of the present invention, the motor has been described, but the essence of the present invention does not change even if this is replaced with a generator.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross section in a lateral direction of a motor according to a first embodiment of the present invention.
FIGS. 2A, 2B, and 2C are enlarged views of steps of a refrigerant passage according to a second embodiment of the present invention.
FIG. 3 is a sectional view of a refrigerant passage according to a third embodiment of the present invention.
FIG. 4 is a view showing a cross section in a lateral direction of a rotor according to a fourth embodiment of the present invention.
FIG. 5 is a view showing a cross section in a lateral direction of a rotor according to a fifth embodiment of the present invention.
[0035]
[Explanation of symbols]
Reference Signs List 1 stator 2 rotor 3 winding 4 magnet 5 rotation shaft 6 refrigerant passage 7 case 8 bearing 9 air gap 10 middle cylinder 61 refrigerant inlet 62 refrigerant outlet 63 step 64 comb-shaped step 65 circumferential step 66 inclined shape