JP2018518137A - Hollow shaft arrangement - Google Patents

Hollow shaft arrangement Download PDF

Info

Publication number
JP2018518137A
JP2018518137A JP2017562253A JP2017562253A JP2018518137A JP 2018518137 A JP2018518137 A JP 2018518137A JP 2017562253 A JP2017562253 A JP 2017562253A JP 2017562253 A JP2017562253 A JP 2017562253A JP 2018518137 A JP2018518137 A JP 2018518137A
Authority
JP
Japan
Prior art keywords
hollow shaft
cooling body
cooling
shaft arrangement
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017562253A
Other languages
Japanese (ja)
Other versions
JP6470432B2 (en
Inventor
ムスター,マンフレッド
パウル,ダニエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Presta TecCenter AG
Original Assignee
ThyssenKrupp Presta TecCenter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Presta TecCenter AG filed Critical ThyssenKrupp Presta TecCenter AG
Publication of JP2018518137A publication Critical patent/JP2018518137A/en
Application granted granted Critical
Publication of JP6470432B2 publication Critical patent/JP6470432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • B60K17/24Arrangements of mountings for shafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2304/00Optimising design; Manufacturing; Testing
    • B60Y2304/07Facilitating assembling or mounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/05Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/02Overheat protection, i.e. means for protection against overheating
    • F16D2300/021Cooling features not provided for in group F16D13/72 or F16D25/123, e.g. heat transfer details
    • F16D2300/0214Oil or fluid cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本発明は、中空シャフト(2)、特に電動モータのロータシャフトを備える中空シャフト配置(1)に関し、このロータシャフトを通って冷却するために流体を通過させることができ、中空シャフト(2)の内部空間(3)内に、熱エネルギーを中空シャフト(2)から流体に伝達するための表面拡大冷却構造(9)が配置されている。冷却構造(9)は中空シャフト(2)に連結され、冷却構造(9)は、中空シャフト(2)とは別個に形成される冷却体(8)の一部である。
【選択図】 図1
The present invention relates to a hollow shaft (2), in particular a hollow shaft arrangement (1) comprising a rotor shaft of an electric motor, through which fluid can be passed for cooling, and the hollow shaft (2) A surface expansion cooling structure (9) for transferring heat energy from the hollow shaft (2) to the fluid is disposed in the internal space (3). The cooling structure (9) is connected to the hollow shaft (2), and the cooling structure (9) is a part of the cooling body (8) formed separately from the hollow shaft (2).
[Selection] Figure 1

Description

本発明は、請求項1の前文に記載の中空シャフト配置、及び、請求項11に記載の中空シャフト配置を組み立てる方法に関する。   The invention relates to a hollow shaft arrangement according to the preamble of claim 1 and a method for assembling the hollow shaft arrangement according to claim 11.

独国特許第102008043367A1号明細書には、内燃機関及び電動モータを有し、各場合に自動車を駆動するために、自動車用のハイブリッド駆動装置が開示されている。電動モータのロータは、ドライブトレインの中空シャフト上に配置されている。冷却流体を運搬する手段は、ロータ及び中空シャフトを冷却するために、中空シャフトの内部空間を通って前記冷却流体を運搬する。   DE 102008043367 A1 discloses a hybrid drive device for a motor vehicle having an internal combustion engine and an electric motor and in each case for driving the motor vehicle. The rotor of the electric motor is disposed on the hollow shaft of the drive train. Means for conveying the cooling fluid conveys the cooling fluid through the interior space of the hollow shaft to cool the rotor and the hollow shaft.

できる限り最良の方法で冷却流体に熱を伝達するために、冷却フィンが中空シャフトの内部空間内に配置されている。冷却フィンは、かなり複雑な方法で中空シャフトの内壁に一体的に形成されている。さらに、中空シャフトの内径、したがって冷却のために使用可能な領域の直径は非常に小さく、その結果、冷却性能が制限される。   In order to transfer heat to the cooling fluid in the best possible way, cooling fins are arranged in the interior space of the hollow shaft. The cooling fins are integrally formed on the inner wall of the hollow shaft in a rather complicated way. Furthermore, the inner diameter of the hollow shaft, and hence the diameter of the area available for cooling, is very small, resulting in limited cooling performance.

独国特許第102008043367A1号明細書German Patent No. 102008043367A1

したがって、本発明の目的は、特に簡単な構造、非常に良好な冷却挙動及び容易な組立を特徴とする中空シャフト配置を提供することである。   The object of the present invention is therefore to provide a hollow shaft arrangement which is characterized in particular by a simple structure, very good cooling behavior and easy assembly.

前記目的は、請求項1の前文のような中空シャフト配置に起因して、特徴的な特徴と併せて達成される。本発明の有利な改良点が、従属請求項及び説明の中に明記される。   The object is achieved in conjunction with characteristic features due to the hollow shaft arrangement as in the preamble of claim 1. Advantageous refinements of the invention are specified in the dependent claims and the description.

本発明によれば、特にハイブリッド自動車のドライブトレイン用の中空シャフト配置であって、中空シャフト、特に電動モータのロータシャフトを備え、シャフトを通って流体が冷却の目的で通過できる中空シャフト配置が提供される。中空シャフトから流体に熱エネルギーを伝達するための表面拡大冷却構造、特に冷却フィンが、中空シャフトの内部空間に配置されている。冷却構造は、中空シャフトに連結される。中空シャフト配置は、冷却構造が中空シャフトとは別個に形成される冷却体の一部であることを特徴とする。   According to the present invention, there is provided a hollow shaft arrangement, particularly for a hybrid vehicle drive train, comprising a hollow shaft, in particular a rotor shaft of an electric motor, through which fluid can pass for cooling purposes. Is done. A surface expansion cooling structure for transferring thermal energy from the hollow shaft to the fluid, in particular cooling fins, is arranged in the internal space of the hollow shaft. The cooling structure is connected to the hollow shaft. The hollow shaft arrangement is characterized in that the cooling structure is part of a cooling body that is formed separately from the hollow shaft.

したがって、冷却体は、中空シャフトとは別個に製造される。この場合、高い熱伝導率を有するが、強度に関する高い要求には左右されない材料が、冷却体の製造に適している。特に、アルミニウム系合金が有利であることが判明している。比較的長い中空シャフトの内部に複雑な冷却構造を形成することがないので、中空シャフト自体の製造が簡単になる。   Therefore, the cooling body is manufactured separately from the hollow shaft. In this case, a material having high thermal conductivity but not affected by high demands on strength is suitable for manufacturing a cooling body. In particular, aluminum-based alloys have proven advantageous. Since a complicated cooling structure is not formed inside the relatively long hollow shaft, the hollow shaft itself can be easily manufactured.

冷却体は、有利には、内部空間内に圧入式に保持される。特に、冷却体は、内部空間内で半径方向に締め付けられる。有利には、追加の半径方向の締結は提供されず、したがって、冷却体は半径方向に作用する圧入連結のみによって内部空間内に保持される。この目的のために、特に、応力を受けていない状態で、冷却体が挿入される中空シャフトの内径よりも大きな外径を有する、半径方向に圧縮可能な冷却体が使用される。組立のために、外径が中空シャフトの内径よりも小さくなるように、冷却体は半径方向に圧縮可能であり、すなわち、冷却体の外径が半径方向の機械的負荷によって、及び特にプレストレスを受ける工程中に縮小可能である。次に、冷却体が中空シャフトに挿入され、続いて、半径方向の負荷が除去され、それによって冷却体は再膨張し、特にこの場合には弾性的に跳ね返り、圧入式に中空シャフトの内壁に対して半径方向に支持される。   The cooling body is advantageously held in a press-fit manner in the interior space. In particular, the cooling body is clamped in the radial direction within the internal space. Advantageously, no additional radial fastening is provided, so that the cooling body is held in the interior space only by a radially acting press-fit connection. For this purpose, a radially compressible cooling body is used, in particular in an unstressed state, having an outer diameter larger than the inner diameter of the hollow shaft into which the cooling body is inserted. For assembly, the cooling body is radially compressible so that the outer diameter is smaller than the inner diameter of the hollow shaft, i.e. the outer diameter of the cooling body depends on the radial mechanical load and in particular prestressing. Can be reduced during the process of receiving. The cooling body is then inserted into the hollow shaft and subsequently the radial load is removed, whereby the cooling body re-expands, in particular in this case elastically rebounding and press-fits into the inner wall of the hollow shaft. In contrast, it is supported radially.

冷却体の外径は、有利には、中空シャフトを取り付けるための軸受、特に2つ軸受の内径よりも大きい。その結果、大きな冷却体と、冷却体と中空シャフトとの間の大きな接触面により、良好な冷却能力が可能になり、同時に、半径方向に小さい、したがって低コストで軽量の中空シャフトを取り付けるための軸受が使用され、前記軸受は、作動中に比較的低い摩擦損失をさらに特徴とする。   The outer diameter of the cooling body is advantageously larger than the inner diameter of the bearing for mounting the hollow shaft, in particular two bearings. As a result, a large cooling body and a large contact surface between the cooling body and the hollow shaft allows a good cooling capacity and at the same time for mounting a hollow shaft that is small in the radial direction and thus low in cost and weight. A bearing is used, which is further characterized by a relatively low friction loss during operation.

冷却体の外周面は、有利にも、中空シャフトの内周面を補完するように形成されており、特に外周面と内周面とが、それぞれ互いに相当する外径及び内径によって円筒状に形成されている。「互いに相当する外径及び内径」とは、特に、配置の組み立てられた状態における直径を意味する。補完的な構成の結果として、中空シャフトと冷却体との間に大きな接触面が設けられ、これにより良好な熱伝達能力を促進する。さらに、円筒状内面を有する中空シャフトは、容易に製造可能である。   The outer peripheral surface of the cooling body is advantageously formed so as to complement the inner peripheral surface of the hollow shaft, and in particular, the outer peripheral surface and the inner peripheral surface are formed in a cylindrical shape with an outer diameter and an inner diameter corresponding to each other. Has been. “Outer diameter and inner diameter corresponding to each other” means in particular the diameter in the assembled state of the arrangement. As a result of the complementary configuration, a large contact surface is provided between the hollow shaft and the cooling body, thereby promoting good heat transfer capability. Furthermore, a hollow shaft having a cylindrical inner surface can be easily manufactured.

冷却体は有利にも、冷却構造が半径方向内側に突出するスリーブ状本体を含む。スリーブ状本体は、特に、中空シャフトとの当接に役立つ円筒面を提供する。特に、相当する寸法を含み、スリーブ状形態は、半径方向の圧縮性に必要とされる弾性をもたらす。   The cooling body advantageously includes a sleeve-like body from which the cooling structure projects radially inward. The sleeve-like body in particular provides a cylindrical surface that serves to abut the hollow shaft. In particular, including the corresponding dimensions, the sleeve-like form provides the elasticity required for radial compressibility.

スリーブ状本体は、有利にも、本体が円周方向に縮小可能な円周方向領域を有する点で、半径方向の圧縮性を得る。前記円周方向領域は、特に軸方向空隙によって形成される。前記円周方向領域は、スリーブ状本体の外周、したがって外径が、塑性変形なしに、縮小可能とすることができる。さらに、前記円周方向領域は、中空シャフト及び冷却体の材料の異なる熱膨張係数にもかかわらず、低温及び高温の両方で、冷却体と中空シャフトとの間に最適な当接が常に存在することを可能にする。前記縮小可能な円周方向領域、特に軸方向空隙は、有利にも、本体の軸方向の全長にわたって延在する。   The sleeve-like body advantageously obtains radial compressibility in that the body has a circumferential region that can be reduced in the circumferential direction. Said circumferential region is formed in particular by an axial gap. In the circumferential region, the outer periphery of the sleeve-like body, and thus the outer diameter, can be reduced without plastic deformation. Furthermore, the circumferential region always has an optimum abutment between the cooling body and the hollow shaft, both at low and high temperatures, despite the different coefficients of thermal expansion of the hollow shaft and cooling body materials. Make it possible. Said shrinkable circumferential region, in particular an axial gap, advantageously extends over the entire axial length of the body.

有利な改良点としては、上記円周方向領域によって互いに分離されるスリーブ状本体の2つの端部は、半径方向内側に突出する拡張折り畳み部を介して互いに連結されている。スリーブ状本体の周囲の比較的小さな縮小の場合であっても、前記拡張折り畳み部は比較的大きな変形を受け、その結果、高いプレストレスが達成され得る。変形可能性のパラメータ、したがってプレストレスの大きさは、拡張折り畳み部を寸法形成することによって設定することができる。   As an advantageous improvement, the two ends of the sleeve-like body separated from each other by the circumferential region are connected to each other via an expansion fold projecting radially inward. Even in the case of a relatively small reduction around the sleeve-like body, the expansion fold is subjected to a relatively large deformation, so that a high prestress can be achieved. The deformability parameter, and hence the amount of prestress, can be set by dimensioning the expansion fold.

中空シャフトは、有利にも複数の部分からなる形態であり、最終的な組立の前に、冷却体を挿入するための軸方向開口部を有する少なくとも1つの、特にスリーブ状のレセプタクル部分を備え、軸方向開口部を閉鎖するための少なくとも1つの閉鎖部分を備える。レセプタクル部分及び閉鎖部分は、組立中に、例えば締り嵌めによって、互いに固定的に連結される。しかしながら、これに先立ち、冷却体は、開口部を通って中空シャフトの内部空間の中に挿入される。その後、中空シャフトは、閉鎖部分によって閉鎖される。閉鎖部分は、特に、例えば、接合可能なシャフト部分と一体に形成されたフランジとして形成される。   The hollow shaft is advantageously in the form of a plurality of parts, comprising at least one, in particular a sleeve-like receptacle part, with an axial opening for inserting the cooling body before final assembly, At least one closing portion for closing the axial opening is provided. The receptacle part and the closure part are fixedly connected to each other during assembly, for example by an interference fit. However, prior to this, the cooling body is inserted through the opening into the interior space of the hollow shaft. The hollow shaft is then closed by the closing part. The closing part is in particular formed, for example, as a flange formed integrally with the joinable shaft part.

本発明は、さらに、上記に説明されるタイプの中空シャフト配置を組み立てる方法に関し、その方法は以下の方法ステップ、半径方向内側に作用する力の負荷によって冷却体の半径方向寸法を縮小し、特に弾性的に縮小するステップと、それによって半径方向に縮小される冷却体を軸方向開口部を通って内部空間の中に挿入するステップと、半径方向の負荷を除去し、その結果、冷却体が、特に弾性的に半径方向に増大し、中空シャフトへの圧入連結を受けるステップとを含む。設置状態の冷却体は、有利にも、非設置状態の冷却体に比べて少なくとも0.5%縮小した外径を有しており、その結果、大きな温度範囲にわたって中空シャフトと冷却体との間の圧入連結に必要である半径方向プレストレスをもたらす。装置及びさらなる構成可能性に関して、特定された利点を参照されたい。弾性的な形状変化挙動に起因して、特に中空シャフトと冷却体との間の完全な接触、したがって高い熱伝達能力が、異なる作動温度にわたって保証される。   The invention further relates to a method for assembling a hollow shaft arrangement of the type described above, which method reduces the radial dimension of the cooling body by means of the following method steps, the load of forces acting radially inward, in particular: A step of elastically reducing, a step of inserting a radially reduced cooling body through the axial opening into the interior space, and removing a radial load so that the cooling body is In particular elastically increasing in a radial direction and receiving a press-fit connection to the hollow shaft. The installed cooling body advantageously has an outer diameter that is reduced by at least 0.5% compared to the non-installed cooling body, so that there is a gap between the hollow shaft and the cooling body over a large temperature range. Resulting in the radial prestress required for the press-fit connection of See the identified advantages with regard to the device and further configurability. Due to the elastic shape change behavior, in particular perfect contact between the hollow shaft and the cooling body and thus a high heat transfer capacity is ensured over different operating temperatures.

本発明を改良する追加の手段が、以下の図面に基づいて本発明の有利な例示的実施形態の説明と共に、以下により詳細に提示される。   Additional means for improving the invention are presented in more detail below, together with a description of advantageous exemplary embodiments of the invention based on the following drawings.

本発明による中空シャフト配置の縦断面図である。1 is a longitudinal sectional view of a hollow shaft arrangement according to the present invention. 図2は、図1の中空シャフト配置の冷却体を示す正面図である図2aと、図1の中空シャフト配置の冷却体を示す斜視図である図2bと、を含む。2 includes a front view of the cooling body with the hollow shaft arrangement of FIG. 1 and FIG. 2b, which is a perspective view of the cooling body with the hollow shaft arrangement of FIG. 図3は、図1の中空シャフト配置の冷却体の改良点を示す正面図である図3aと、図1の中空シャフト配置の冷却体の改良点を示す斜視図である図3bと、を含む。3 includes a front view showing an improvement of the cooling body with the hollow shaft arrangement of FIG. 1 and FIG. 3b showing a perspective view of the improvement of the cooling body with the hollow shaft arrangement of FIG. .

図1は、本発明による中空シャフト配置1を示しており、これは、例えば、ハイブリッド車両のドライブトレインに使用され得る。中空シャフト配置1は、中空シャフトの形態のロータシャフト2を備える。ロータシャフト2の外周上には、電動モータのロータが締結されている。ロータの積層パック4を見ることができる。ロータシャフト2の一方の軸方向端部に、前記シャフトは第1のシャフト部分16を備え、内燃機関が第1のシャフト部分16に連結可能である。ファンホイール19が、内燃機関とロータシャフト2との間に配置されており、ファンホイール19を経て冷却流体が中空シャフトの内部空間3内に運搬される。ロータシャフト2の他方の軸方向端部に、前記シャフトは内側歯部20を含む第2のシャフト部分17を備え、駆動軸に連結されたシフトギアボックス(図示せず)が、第2のシャフト部分17に連結可能である。ロータシャフト2は、2つの転がり軸受13を介して車体又は車両フレームに取り付けられている。前記転がり軸受13用の軸受シート14が、各場合に2つのシャフト部分16,17上に設けられている。   FIG. 1 shows a hollow shaft arrangement 1 according to the invention, which can be used, for example, in a drive train of a hybrid vehicle. The hollow shaft arrangement 1 comprises a rotor shaft 2 in the form of a hollow shaft. On the outer periphery of the rotor shaft 2, a rotor of an electric motor is fastened. The rotor stack 4 can be seen. At one axial end of the rotor shaft 2, the shaft comprises a first shaft portion 16, so that the internal combustion engine can be connected to the first shaft portion 16. A fan wheel 19 is disposed between the internal combustion engine and the rotor shaft 2, and the cooling fluid is conveyed into the internal space 3 of the hollow shaft via the fan wheel 19. At the other axial end of the rotor shaft 2, the shaft comprises a second shaft part 17 including an inner tooth part 20, and a shift gear box (not shown) connected to the drive shaft is connected to the second shaft part. 17 can be connected. The rotor shaft 2 is attached to a vehicle body or a vehicle frame via two rolling bearings 13. A bearing seat 14 for the rolling bearing 13 is provided on the two shaft parts 16, 17 in each case.

ロータシャフト2は、複数の部分からなる形態であり、軸方向の中央領域内に別個のレセプタクル部分5を備える。レセプタクル部分5は、スリーブ状の形状であり、円筒状外面及び円筒状内面12の両方を有する。前記スリーブ状レセプタクル部分5は、半径方向内側の内部空間3を画定し、内部空間3の中には、図2及び図3に基づいてさらに詳細に提示される冷却体8が配置される。両方の軸方向端部で、スリーブ状レセプタクル部分5は、各場合に、第1の閉鎖部分6又は第2の閉鎖部分7によって閉鎖される開口部15を備える。第1のシャフト部分16及び第2のシャフト部分17が、それぞれ第1の閉鎖部分6及び第2の閉鎖部分7に一体的に接合されている。   The rotor shaft 2 has a plurality of portions, and includes a separate receptacle portion 5 in an axial central region. The receptacle portion 5 has a sleeve-like shape and has both a cylindrical outer surface and a cylindrical inner surface 12. The sleeve-like receptacle part 5 defines a radially inner space 3 in which a cooling body 8 presented in more detail on the basis of FIGS. 2 and 3 is arranged. At both axial ends, the sleeve-like receptacle part 5 comprises an opening 15 that is closed in each case by the first closing part 6 or the second closing part 7. A first shaft portion 16 and a second shaft portion 17 are integrally joined to the first closing portion 6 and the second closing portion 7, respectively.

したがって、ロータシャフト2は、第1のシャフト部分16、第1の閉鎖部分6、レセプタクル部分5、第2の閉鎖部分7及び第2のシャフト部分17から形成されている。2つの閉鎖部分6,7は、それぞれ、例えば締り嵌め又は溶接継ぎ目によって、レセプタクル部分5に固定的に連結されている。組み立てられた状態では、冷却体8の外径D及び円筒状内面12の内径d12は、2つの転がり軸受13の内径d13よりもかなり大きいことを理解することができる。したがって、本発明のロータシャフト2の場合には、小さな転がり軸受を設けることが可能であるが、しかしそれでも比較的大きな直径を有する冷却体8を使用することが可能である。これまで、これらの2つの特性は互いに相容れないものであった。 Thus, the rotor shaft 2 is formed from a first shaft portion 16, a first closing portion 6, a receptacle portion 5, a second closing portion 7 and a second shaft portion 17. The two closing parts 6, 7 are each fixedly connected to the receptacle part 5, for example by an interference fit or a weld seam. It can be seen that in the assembled state, the outer diameter D 8 of the cooling body 8 and the inner diameter d 12 of the cylindrical inner surface 12 are considerably larger than the inner diameter d 13 of the two rolling bearings 13. Thus, in the case of the rotor shaft 2 according to the invention, it is possible to provide a small rolling bearing, but it is still possible to use a cooling body 8 having a relatively large diameter. To date, these two characteristics have been incompatible.

図2a及び図2bは、冷却体8を詳細に示す。冷却体8は、多数の冷却フィン9が半径方向内側に突出するスリーブ状本体18を含む。スリーブ状本体18の外周面10は、略円筒状の形態である。スリーブ状本体18は、軸方向の全長にわたって延在する軸方向空隙11を有し、それによって、本体18は原則として半径方向に弾性的に圧縮可能である。半径方向の圧縮により、冷却体8は半径方向にプレストレストを受けることができる。本体18は、圧縮を生成する負荷が存在しない場合はすぐに、この圧縮状態から自動的に膨張することが可能である。軸方向空隙11の結果として、円周方向Uに見て本体18の2つの露出した端部21が形成される。   2a and 2b show the cooling body 8 in detail. The cooling body 8 includes a sleeve-like body 18 from which a large number of cooling fins 9 protrude radially inward. The outer peripheral surface 10 of the sleeve-shaped main body 18 has a substantially cylindrical shape. The sleeve-like body 18 has an axial gap 11 extending over the entire length in the axial direction, whereby the body 18 is in principle elastically compressible in the radial direction. Due to the compression in the radial direction, the cooling body 8 can be prestressed in the radial direction. The body 18 can automatically expand from this compressed state as soon as there is no load generating compression. As a result of the axial gap 11, two exposed ends 21 of the body 18 are formed when viewed in the circumferential direction U.

半径方向の圧縮性は、配置の組立中に利用される。冷却体8は、組み立てられていない状態で、レセプタクル部分5の内面12の内径d12よりも最初は大きい外径Dを有する。組立のために、冷却体8は半径方向の負荷によって半径方向に圧縮され、それによってプレストレスを受ける。この場合、冷却体8の外径Dは、前記外径が内面12の内径d12よりも小さくなるように弾性的に縮小される。この状態で、冷却体8は、一方の軸方向開口部15を通って内部空間3の中に挿入される。次いで、半径方向の負荷が除去され、冷却体が弾性的に跳ね返る。この場合、冷却体18は半径方向に膨張し、その開始状態に戻ろうとする。応力を受けていない状態では、レセプタクル部分5の内径d12が冷却体8の外径Dよりも小さいので、そのとき冷却体8はレセプタクル部分5の内面12に対して内側から半径方向に押圧し、それによって、レセプタクル部分5に圧入により締結される。さらなる半径方向の締結は、もはや必要ではない。しかしながら、図1から分かるように、内部空間3内の冷却体8の軸方向の型枠嵌合の位置決めは、2つの閉鎖部分によって実施されることが可能である。 Radial compressibility is exploited during assembly of the arrangement. The cooling body 8 has an outer diameter D 8 that is initially larger than the inner diameter d 12 of the inner surface 12 of the receptacle portion 5 when not assembled. For assembly, the cooling body 8 is compressed radially by a radial load and is thus prestressed. In this case, the outside diameter D 8 of the cooling body 8, the outer diameter is reduced so elastically smaller than the inner diameter d 12 of the inner surface 12. In this state, the cooling body 8 is inserted into the internal space 3 through the one axial opening 15. The radial load is then removed and the cooling body springs back elastically. In this case, the cooling body 18 expands in the radial direction and tries to return to its starting state. In a state where the unstressed, since the inner diameter d 12 of the receptacle portion 5 is smaller than the outer diameter D 8 of the cooling body 8, pressed from the inside in the radial direction against the inner surface 12 at the time the cooling body 8 receptacle portion 5 Thereby, it is fastened to the receptacle part 5 by press fitting. Further radial fastening is no longer necessary. However, as can be seen from FIG. 1, the positioning of the axial form fitting of the cooling body 8 in the internal space 3 can be carried out by two closing parts.

非設置状態の外径Dが、内径d12によって画定される予想される半径方向設置空間よりも、少なくとも0.5%、特にせいぜい2.5%より大きい冷却体8が特に適している。冷却体の圧縮性が、円周方向の軸方向空隙を増大することによって向上され得るが、これによって冷却体の外面が縮小され、中空シャフトとの接触が少なくなることに起因して、冷却体の熱伝達能力が低下することにつながる。したがって、軸方向空隙、したがって圧縮性を絶対的に必要な程度に限定することが好ましい。 Outer diameter D 8 of the non-installation state, than the radial installation space which is expected is defined by the inner diameter d 12, of at least 0.5%, especially at most 2.5% greater than the cooling body 8 is particularly suitable. The compressibility of the cooling body can be improved by increasing the circumferential axial gap, but this reduces the outer surface of the cooling body and reduces contact with the hollow shaft, thereby reducing the cooling body This leads to a decrease in the heat transfer capacity. It is therefore preferable to limit the axial gap and thus the compressibility to the absolutely necessary degree.

特に適切な材料一対では、レセプタクル部分5が鋼鉄部品であり、冷却体8はアルミニウム部品である。   In a particularly suitable material pair, the receptacle part 5 is a steel part and the cooling body 8 is an aluminum part.

約80mmの典型的な外径Dの場合、軸方向空隙11は、0.5mm〜10mmの空隙幅Bを含み、20℃の設置状態で有利には約1.2mmの空隙幅Bを含む。 For a typical outer diameter D 8 of about 80 mm, the axial gap 11 comprises a gap width B of 0.5 mm to 10 mm, and advantageously comprises a gap width B of about 1.2 mm at 20 ° C. installation. .

本発明による構成では、冷却体8の寸法は、転がり軸受13の軸受内径d13から独立している。したがって、軸受内径d13は非常に小さくなるように選択することができ、同時に、冷却体8は、それとは独立して要求される熱伝達能力に従って設計することができる。レセプタクル部分5の内面12と冷却体8との間の円筒状接触面が大きいので、熱伝達のための大きな接触面が存在し、レセプタクル部分5の円筒状内面12と冷却体8の円筒状外面10との間の完全な面接触が、大きな温度範囲にわたる弾性的プレストレスによって保証される。 In the configuration according to the present invention, the size of the cooling body 8 is independent of the bearing inner diameter d 13 of the rolling bearing 13. Accordingly, the bearing inner diameter d 13 can be chosen to be very small, at the same time, the cooling body 8 can be designed in accordance with the heat transfer capability required independently of it. Since the cylindrical contact surface between the inner surface 12 of the receptacle part 5 and the cooling body 8 is large, there is a large contact surface for heat transfer, and the cylindrical inner surface 12 of the receptacle part 5 and the cylindrical outer surface of the cooling body 8. Full surface contact with 10 is ensured by elastic prestress over a large temperature range.

図3は、図2による冷却体の改良点を示す。軸方向空隙11によって互いから分離されたスリーブ状本体18の2つの端部21が、半径方向内側に突出する拡張折り畳み部22を介して互いに連結されている。本発明の場合、拡張折り畳み部はU字型である。拡張折り畳み部の設計は、スリーブ状本体の弾性パラメータにかなりの影響を及ぼす。拡張折り畳み部の弾性、したがって本体の弾性は、拡張折り畳み部22の壁厚、寸法及び形状によって設定され得る。   FIG. 3 shows an improvement of the cooling body according to FIG. Two ends 21 of the sleeve-like body 18 separated from each other by the axial gap 11 are connected to each other via an extended folding part 22 protruding radially inward. In the case of the present invention, the extended folding part is U-shaped. The design of the extended fold has a considerable effect on the elastic parameters of the sleeve-like body. The elasticity of the extension fold, and thus the elasticity of the body, can be set by the wall thickness, size and shape of the extension fold 22.

本発明は、その実施形態に関して上述した例示的な実施形態に限定されない。むしろ、根本的に異なる実施形態においても、提示された解決策を利用する多くの変形形態が考えられる。構造的詳細又は空間的配置を含む請求項、説明又は図面から生じるすべての特徴及び/又は利点は、個別的に、及び非常に幅広い様々な組み合わせの両方において、本発明に必須のものであることができる。   The invention is not limited to the exemplary embodiments described above with respect to that embodiment. Rather, many variations utilizing the presented solution are possible, even in radically different embodiments. All features and / or advantages arising from the claims, description or drawings, including structural details or spatial arrangements, are essential to the invention both individually and in a very wide variety of combinations. Can do.

1 中空シャフト配置
2 中空シャフト/ロータシャフト
3 内部空間
4 電動モータのロータの積層パック
5 レセプタクル部分
6 第1の閉鎖部分
7 第2の閉鎖部分
8 冷却体
9 冷却フィン
10 冷却体の円筒状外面
11 軸方向空隙
12 レセプタクル部分の円筒状内面
13 転がり軸受
14 軸受シート
15 中央部分の開口部
16 第1のシャフト部分
17 第2のシャフト部分
18 スリーブ状本体
19 ファンホイール
20 内側歯部
21 スリーブ状本体の端部
22 拡張折り畳み部
D8 冷却体の外径
d12 レセプタクル部分の円筒状内面の内径
d13 転がり軸受の内径
B 空隙幅
U 円周方向
DESCRIPTION OF SYMBOLS 1 Hollow shaft arrangement | positioning 2 Hollow shaft / rotor shaft 3 Inner space 4 Stacked pack 5 of electric motor rotor Receptacle part 6 First closing part 7 Second closing part 8 Cooling body 9 Cooling fin 10 Cylindrical outer surface 11 of cooling body Axial air gap 12 Cylindrical inner surface 13 of receptacle portion Rolling bearing 14 Bearing seat 15 Opening portion 16 in central portion First shaft portion 17 Second shaft portion 18 Sleeve-like body 19 Fan wheel 20 Inner tooth portion 21 Sleeve-like body End 22 Expanded folding part D8 Outer diameter d12 of cooling body Inner diameter d13 of cylindrical inner surface of receptacle part Inner diameter B of rolling bearing Gap width U Circumferential direction

Claims (12)

中空シャフト(2)、特に電動モータのロータシャフトであって、当該シャフトを通って流体が冷却の目的のために通過することができるシャフト、を具備し、
前記中空シャフト(2)から前記流体に熱エネルギーを伝達するための表面拡大冷却構造(9)が、前記中空シャフト(2)の内部空間(3)の内部に配置され、
前記冷却構造(9)が前記中空シャフト(2)に連結されている、中空シャフト配置(1)であって、
前記冷却構造(9)が、前記中空シャフト(2)とは別個に形成される冷却体(8)の一部であることを特徴とする、中空シャフト配置(1)。
A hollow shaft (2), in particular a rotor shaft of an electric motor, through which the fluid can pass for cooling purposes,
A surface expansion cooling structure (9) for transferring thermal energy from the hollow shaft (2) to the fluid is disposed inside the internal space (3) of the hollow shaft (2),
Hollow shaft arrangement (1), wherein the cooling structure (9) is connected to the hollow shaft (2),
Hollow shaft arrangement (1), characterized in that the cooling structure (9) is part of a cooling body (8) formed separately from the hollow shaft (2).
前記冷却体(8)が、前記内部空間(3)に圧入式に保持され、特に、前記内部空間(3)の内部に径方向に締め付けられる、請求項1に記載の中空シャフト配置(1)。   2. The hollow shaft arrangement (1) according to claim 1, wherein the cooling body (8) is held in the inner space (3) in a press-fit manner, and in particular is clamped radially inside the inner space (3). . 前記冷却体(8)の外径(D)が、前記中空シャフト(2)を取り付けるための軸受(13)、特に2つの軸受(13)の内径(d13)よりも大きい、請求項1又は請求項2に記載の中空シャフト配置(1)。 The outer diameter of the cooling body (8) (D 8) is a bearing for mounting the hollow shaft (2) (13), greater than, especially two of the inner diameter of the bearing (13) (d 13), according to claim 1 Or the hollow shaft arrangement (1) according to claim 2. 前記冷却体(8)の外周面(10)が、前記中空シャフト(2)の内周面(12)を補完するように形成されている、請求項1から請求項3のいずれかに記載の中空シャフト配置(1)。   The outer peripheral surface (10) of the cooling body (8) is formed so as to complement the inner peripheral surface (12) of the hollow shaft (2). Hollow shaft arrangement (1). 前記外周面(10)及び前記内周面(12)が、それぞれ互いに対応する外径(D)及び内径(d12)を用いて、各場合に円筒状に形成されている、請求項4に記載の中空シャフト配置(1)。 The outer peripheral surface (10) and the inner peripheral surface (12) are formed in a cylindrical shape in each case using an outer diameter (D 8 ) and an inner diameter (d 12 ) corresponding to each other. The hollow shaft arrangement (1) described in 1. 前記冷却体(8)が、前記冷却構造(9)が径方向内側に突出するスリーブ状本体(18)を含む、請求項1から請求項5のいずれかに記載の中空シャフト配置(1)。   The hollow shaft arrangement (1) according to any of claims 1 to 5, wherein the cooling body (8) comprises a sleeve-like body (18) from which the cooling structure (9) projects radially inward. 前記スリーブ状本体(18)が、周方向(U)に縮小可能な周方向領域(11)を含む、請求項6に記載の中空シャフト配置(1)。   The hollow shaft arrangement (1) according to claim 6, wherein the sleeve-like body (18) comprises a circumferential region (11) that can be reduced in the circumferential direction (U). 前記スリーブ状本体(18)が、軸方向空隙(11)を含む、請求項6又は請求項7に記載の中空シャフト配置(1)。   The hollow shaft arrangement (1) according to claim 6 or 7, wherein the sleeve-like body (18) comprises an axial gap (11). 前記軸方向空隙(11)によって互いから分離された前記スリーブ状本体(18)の2つの端部(21)が、径方向内側に突出する拡張折り畳み部(22)を介して互いに連結されている、請求項7又は請求項8に記載の中空シャフト配置(1)。   Two ends (21) of the sleeve-like body (18) separated from each other by the axial gap (11) are connected to each other via an expansion fold (22) protruding radially inward. A hollow shaft arrangement (1) according to claim 7 or claim 8. 前記中空シャフト(2)が、
複数の部分からなる形態であり、
前記冷却体(8)を収容するための軸方向開口部(15)を有する少なくとも1つのレセプタクル部分(5)を含み、さらに、
前記軸方向開口部(15)を閉鎖するための少なくとも1つの閉鎖部分(6,7)を含む、請求項1から請求項9のいずれかに記載の中空シャフト配置(1)。
The hollow shaft (2) is
It is a form consisting of multiple parts,
Including at least one receptacle portion (5) having an axial opening (15) for receiving the cooling body (8);
The hollow shaft arrangement (1) according to any of the preceding claims, comprising at least one closing portion (6, 7) for closing the axial opening (15).
請求項1から請求項10のいずれかに記載の中空シャフト配置(1)を組み立てるための方法であって、
径方向内側に作用する力の負荷によって前記冷却体(8)の径方向寸法を縮小するステップと、
前記冷却体(8)を、径方向に縮小せしめるように、軸方向開口部(15)を通って前記内部空間(3)の中に挿入するステップと、
前記半径方向の力の負荷を除去し、その結果、前記冷却体(8)が、径方向に増大し、前記中空シャフト(2)への圧入連結を受けるステップと、
を含む方法。
A method for assembling a hollow shaft arrangement (1) according to any of claims 1 to 10, comprising
Reducing the radial dimension of the cooling body (8) by a load of force acting radially inward;
Inserting the cooling body (8) into the internal space (3) through an axial opening (15) so as to shrink in the radial direction;
Removing the radial force load, so that the cooling body (8) increases radially and receives a press-fit connection to the hollow shaft (2);
Including methods.
設置状態の前記冷却体(8)が、非設置状態の前記冷却体に比べて少なくとも0.5%縮小されている外径(D)を有する、請求項11に記載の方法。 The cooling body installed state (8) has an outer diameter that is reduced at least 0.5% compared to the cooling of the non-installation state (D 8), The method of claim 11.
JP2017562253A 2015-06-03 2016-06-01 Hollow shaft arrangement Active JP6470432B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015108817.7 2015-06-03
DE102015108817.7A DE102015108817A1 (en) 2015-06-03 2015-06-03 Hollow shaft arrangement
PCT/EP2016/062316 WO2016193277A1 (en) 2015-06-03 2016-06-01 Hollow shaft arrangement

Publications (2)

Publication Number Publication Date
JP2018518137A true JP2018518137A (en) 2018-07-05
JP6470432B2 JP6470432B2 (en) 2019-02-13

Family

ID=56112941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017562253A Active JP6470432B2 (en) 2015-06-03 2016-06-01 Hollow shaft arrangement

Country Status (7)

Country Link
US (1) US10686349B2 (en)
EP (1) EP3303039B1 (en)
JP (1) JP6470432B2 (en)
KR (1) KR101951589B1 (en)
CN (1) CN107667027B (en)
DE (1) DE102015108817A1 (en)
WO (1) WO2016193277A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016214A (en) * 2019-07-10 2021-02-12 株式会社フジクラ motor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016225180A1 (en) * 2016-12-15 2018-06-21 Continental Automotive Gmbh Electric machine
CN110138142A (en) * 2018-02-09 2019-08-16 低碳动能开发股份有限公司 The heat-dissipating structure of electric motor car power wheel wheel shaft
FR3094153B1 (en) 2019-03-19 2021-03-12 Psa Automobiles Sa ROTOR SHAFT WITH INTEGRATED FORGED FINS AND PROCESS FOR MANUFACTURING THE ROTOR SHAFT
CN109904976B (en) * 2019-03-29 2021-01-26 重庆升科精锻科技有限公司 Two segmentation new energy automobile motor shafts
KR102117244B1 (en) * 2019-08-19 2020-06-01 정종훈 Shaft for electric vehicle
CN110868019B (en) * 2019-12-11 2022-06-28 武汉麦迪嘉机电科技有限公司 Air-cooled outer rotor permanent magnet direct-drive synchronous belt transmission roller motor
BE1027891B1 (en) * 2019-12-20 2021-07-26 Punch Powertrain Nv An electric machine and method of cooling an electric machine
DE102021201709A1 (en) 2021-02-23 2022-08-25 Thyssenkrupp Ag Rotor for an electric machine and electric machine
US20220371068A1 (en) * 2021-05-24 2022-11-24 Metal Forming & Coining Corporation Shaft assembly and method of producing the same
DE102021006306A1 (en) 2021-12-22 2023-06-22 Hirschvogel Holding GmbH Rotor shaft, rotor, electrical machine and manufacturing method for a rotor shaft
US20230291282A1 (en) * 2022-03-09 2023-09-14 American Axle & Manufacturing, Inc. Electric drive unit with rotor heat sink formed of heat sink elements
DE102022000844A1 (en) 2022-03-11 2023-09-14 Hirschvogel Holding GmbH Rotor shaft, rotor, electrical machine and manufacturing process for a rotor shaft
DE102022114906A1 (en) 2022-06-14 2023-12-14 Bayerische Motoren Werke Aktiengesellschaft Cooling fluid-carrying rotor shaft for a rotor of an electrical machine with a two-part inflow area
DE102022207609A1 (en) 2022-07-26 2024-02-01 Mahle International Gmbh Built rotor shaft of an electric motor and electric motor
EP4333267A1 (en) 2022-08-29 2024-03-06 Walter Henrich GmbH Modular rotor shaft with integrated cooling channels
DE102022003866A1 (en) 2022-10-19 2024-04-25 Hirschvogel Holding GmbH Rotor shaft assembly, rotor, electric machine and manufacturing method for a rotor shaft
DE202023100978U1 (en) 2023-03-02 2023-03-14 Mahle International Gmbh Rotor for an electric motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840222A (en) * 1985-12-06 1989-06-20 Fasco Industries, Inc. Heat sink and mounting arrangement therefor
JPH09512697A (en) * 1994-04-20 1997-12-16 サンドストランド・コーポレイション Switching reluctance starter / generator
JP2003235210A (en) * 2002-02-06 2003-08-22 Nissan Motor Co Ltd Cooling structure of rotating body
US20050285460A1 (en) * 2004-06-23 2005-12-29 Alcatel Heat sink arrangement, electric motor and casing part
JP2006230154A (en) * 2005-02-21 2006-08-31 Toshiba Corp Dynamo-electric machine
WO2007094350A1 (en) * 2006-02-16 2007-08-23 Mitsubishi Electric Corporation Cooling structure of dynamo-electric machine
US20080007916A1 (en) * 2006-07-06 2008-01-10 Alcatel Lucent Heat sink arrangement, electric motor, housing part, and springy clip

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH67317A (en) 1914-02-16 1914-12-01 Oerlikon Maschf Cooling device for toothed rotors in electrical machines
BE541198A (en) 1954-11-17
NL242656A (en) 1958-08-25
US3099141A (en) * 1961-11-30 1963-07-30 Gen Electric Shaft for use in nuclear radiation environment
GB1211660A (en) 1968-05-10 1970-11-11 Bendix Corp A liquid cooled dynamoelectric machine
US4014184A (en) * 1975-01-27 1977-03-29 Stark Martin H Propeller shaft liner and inserting apparatus
SU1236584A1 (en) * 1984-10-15 1986-06-07 Харьковский Ордена Ленина Политехнический Институт Им.В.И.Ленина Rotor of totally enclosed electric machine
JPH09150344A (en) * 1995-11-29 1997-06-10 Nippei Toyama Corp Motor built-in spindle
US5731643A (en) * 1996-05-02 1998-03-24 Chrysler Coporation Stator cooling assembly
DE19905538A1 (en) * 1999-02-10 2000-08-17 Zahnradfabrik Friedrichshafen Electrical machine
EP1077522B1 (en) * 1999-08-10 2005-02-02 The Swatch Group Management Services AG Drive apparatus comprising a liquid-cooled electric motor and a planetary gear
JP2002034189A (en) 2000-07-18 2002-01-31 Toyota Industries Corp Cooling structure of motor
JP2003079101A (en) 2001-06-21 2003-03-14 Nissan Motor Co Ltd Cooling structure for rotating electric machine
DE102008001607A1 (en) * 2008-05-07 2009-11-12 Robert Bosch Gmbh Electrical machine i.e. axle drive unit, for vehicle i.e. motor vehicle, has rotor shaft connected with inner wall of hollow shaft, and cooling agent conveying element rotating with hollow shaft
DE102008043367A1 (en) 2008-10-31 2010-05-06 Robert Bosch Gmbh Hybrid drive device
DE102009000591A1 (en) * 2009-02-04 2010-08-05 Robert Bosch Gmbh driving means
CN101752968A (en) * 2009-12-21 2010-06-23 南京高传机电自动控制设备有限公司 Internally air-cooled dual-rotor generator
US8729751B2 (en) 2010-11-10 2014-05-20 Hamilton Sundstrand Corporation Heat transfer assembly for electric motor rotor
EP2595283B1 (en) * 2011-11-21 2020-05-06 Hamilton Sundstrand Corporation Heat transfer assembly for electric motor rotor
JP2015104214A (en) * 2013-11-25 2015-06-04 株式会社安川電機 Rotary electric machine
US10294982B2 (en) * 2014-03-28 2019-05-21 The Boeing Company Systems, methods, and apparatus for supported shafts
CN204089478U (en) * 2014-09-09 2015-01-07 台州欧非机电科技有限公司 Heat-dissipation motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840222A (en) * 1985-12-06 1989-06-20 Fasco Industries, Inc. Heat sink and mounting arrangement therefor
JPH09512697A (en) * 1994-04-20 1997-12-16 サンドストランド・コーポレイション Switching reluctance starter / generator
JP2003235210A (en) * 2002-02-06 2003-08-22 Nissan Motor Co Ltd Cooling structure of rotating body
US20050285460A1 (en) * 2004-06-23 2005-12-29 Alcatel Heat sink arrangement, electric motor and casing part
JP2006230154A (en) * 2005-02-21 2006-08-31 Toshiba Corp Dynamo-electric machine
WO2007094350A1 (en) * 2006-02-16 2007-08-23 Mitsubishi Electric Corporation Cooling structure of dynamo-electric machine
US20080007916A1 (en) * 2006-07-06 2008-01-10 Alcatel Lucent Heat sink arrangement, electric motor, housing part, and springy clip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016214A (en) * 2019-07-10 2021-02-12 株式会社フジクラ motor

Also Published As

Publication number Publication date
CN107667027B (en) 2020-06-09
EP3303039A1 (en) 2018-04-11
WO2016193277A1 (en) 2016-12-08
EP3303039B1 (en) 2019-05-01
KR101951589B1 (en) 2019-02-22
US10686349B2 (en) 2020-06-16
KR20180015687A (en) 2018-02-13
CN107667027A (en) 2018-02-06
US20180147937A1 (en) 2018-05-31
JP6470432B2 (en) 2019-02-13
DE102015108817A1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6470432B2 (en) Hollow shaft arrangement
KR101759073B1 (en) Electric machine cooling system and method
WO2016194198A1 (en) Bearing device and supercharger
US9273773B2 (en) One-piece inertia ring and method of manufacturing the one-piece inertia ring
CN110312879B (en) Hybrid drive module with rotor secured to hub by clinching of end rings
JP6958312B2 (en) Rotor manufacturing method
JP5619909B2 (en) Electric motor rotor
JP2010178590A (en) Rotating electrical machine
JP6751473B2 (en) Hybrid modules and powertrains
JP4895145B2 (en) Rotating electric machine for vehicles
US20150256051A1 (en) Insulation in an electric machine
CN106849410A (en) Stator apparatus
KR101865948B1 (en) Driven Motor for Electric Vehicle
US10538156B2 (en) Power train apparatus
JP6045267B2 (en) AC generator for vehicles
JP2007202371A (en) Rotor, its manufacturing method, rotary electric machine, and internal combustion engine
US9488178B2 (en) Canned motor pump for vehicle
US9714668B2 (en) Stamped turbine hub with centring tabs for torque converter
JP6131463B2 (en) Stator fixing method of motor part in hermetic compressor
JP6479166B2 (en) Actuator
KR20210058890A (en) Rotating electric machine with connecting sleeve with integrated damper
JP4517870B2 (en) Fastening structure and manufacturing method of rotor shaft
CN106150664A (en) A kind of new automobile electromotor protects solar or lunar halo assembly
CN219623100U (en) Vibration isolation decoupler
CN109888944A (en) Stator module and motor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190117

R150 Certificate of patent or registration of utility model

Ref document number: 6470432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250