JP5367258B2 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP5367258B2
JP5367258B2 JP2007336677A JP2007336677A JP5367258B2 JP 5367258 B2 JP5367258 B2 JP 5367258B2 JP 2007336677 A JP2007336677 A JP 2007336677A JP 2007336677 A JP2007336677 A JP 2007336677A JP 5367258 B2 JP5367258 B2 JP 5367258B2
Authority
JP
Japan
Prior art keywords
cooling
rotor
end plate
rotor core
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007336677A
Other languages
Japanese (ja)
Other versions
JP2009159763A (en
Inventor
裕典 加藤
武司 河村
正典 大橋
元彦 山田
知哉 田岡
貴 遠藤
伊藤  渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2007336677A priority Critical patent/JP5367258B2/en
Publication of JP2009159763A publication Critical patent/JP2009159763A/en
Application granted granted Critical
Publication of JP5367258B2 publication Critical patent/JP5367258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating electrical machine which can improve the cooling efficiency of a rotor. <P>SOLUTION: The rotating electrical machine consists of a stator with a coil wound around a stator iron core and the rotor 3 with a rotor iron core 11 disposed in a field space of the stator. The rotor 3 consists of a permanent magnet for forming a magnetic pole, which is disposed in an outer peripheral portion of the rotor iron core 11; an end plate 12a disposed in an end portion in the axis direction of the rotor iron core 11; and a rotating shaft 13, mounted in a central portion of the rotor iron core 11 and the end plate 12a. In the outer periphery of the rotor iron core 11, there is formed a cooling groove 15 which extends from the end plate 12a side to the other end plate side; and in the end plate 12a, a cooling fin 22a which takes in cooling air with the rotation of the rotor 3 and guides it toward the outer periphery is disposed, and a passage hole 25a for discharging the cooling air from the cooling fin 22a toward the cooling groove 15 of the rotor iron core 11 is formed. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、磁極として永久磁石が配置された回転子を具備する回転電機に関する。   The present invention relates to a rotating electrical machine including a rotor in which a permanent magnet is disposed as a magnetic pole.

一般に、固定子鉄心にコイルが巻装されてなる固定子と、磁極形成用の永久磁石が配置された回転子とを具備する回転電機を運転すると、固定子のコイルが発熱して、この固定子の界磁空間内に回転子鉄心が位置する回転子も温度上昇する。このようにして回転子が温度上昇すると、回転子内の永久磁石も温度上昇して、減磁作用が生じ、磁力が低下して性能が悪くなり、又、保磁力が低下して、寿命が短くなる問題がある。
近年では、回転子鉄心内を冷却風により冷却して、回転子の温度上昇の抑制を図る構成のものがある(例えば、特許文献1参照)。
特開平8−298736号公報
Generally, when a rotating electrical machine having a stator in which a coil is wound around a stator core and a rotor in which a permanent magnet for forming a magnetic pole is operated, the stator coil generates heat, and this fixing is performed. The temperature of the rotor in which the rotor core is located in the field space of the child also rises. When the temperature of the rotor rises in this way, the temperature of the permanent magnet in the rotor also rises, causing a demagnetizing action, reducing the magnetic force and deteriorating the performance, reducing the coercive force, and reducing the service life. There is a problem of shortening.
In recent years, there is a configuration in which the rotor core is cooled with cooling air to suppress a rise in the temperature of the rotor (see, for example, Patent Document 1).
JP-A-8-298736

しかしながら、回転電機の運転中は、常に固定子のコイルが発熱して、その熱を回転子に与え続けるので、回転子の冷却効率が悪いという問題がある。
本発明は、上記の事情に鑑みてなされたものであり、その目的は、回転子の冷却効果を良く冷却することができる回転電機を提供することである。
However, during the operation of the rotating electrical machine, the stator coil always generates heat and continues to give the heat to the rotor, so that there is a problem that the cooling efficiency of the rotor is poor.
This invention is made | formed in view of said situation, The objective is to provide the rotary electric machine which can cool the cooling effect of a rotor well.

本発明の回転電機は、固定子鉄心にコイルが巻装されてなる固定子と、回転子鉄心の外周部に磁極形成用の永久磁石が配置され、該回転子鉄心の軸方向の両端部に端板が配置され、これらの回転子鉄心及び端板の中央部に回転軸が装着されて構成され、前記回転子鉄心が前記固定子の界磁空間に配置された回転子と、前記回転子における2つの端板のうちの一方の端板に配設され、その一方の端板の外周縁部に軸方向外側へ突設された外周壁に対して該一方の端板の中心側から向かう方向を外周方向として、該回転子の回転に伴って冷却風を取込んで前記外周方向に案内する冷却フィンとを具備し、前記回転子鉄心の外周に前記一方の端板側から他方の端板側に延びる冷却溝が形成され、前記一方の端板における前記冷却フィンの風上側に位置させて該一方の端板の外周部で且つ前記外周壁の内周側に通孔部が形成され、前記冷却フィンからの冷却風を前記回転子鉄心の前記冷却溝に向けて前記通孔部から吐出させることを特徴としている。
In the rotating electrical machine of the present invention, a stator in which a coil is wound around a stator core, and permanent magnets for forming magnetic poles are arranged on the outer periphery of the rotor core, and both ends of the rotor core in the axial direction are arranged. An end plate is disposed, and a rotor shaft and a rotation shaft are mounted at the center of the end plate, and the rotor core is disposed in a field space of the stator, and the rotor It is arranged on one end plate of the two end plates, and is directed from the center side of the one end plate to the outer peripheral wall projecting outward in the axial direction at the outer peripheral edge of the one end plate. as the outer circumference direction, comprising a cooling fin for guiding the cooling air with the rotation of the rotor to the outer circumferential direction by ipecac, the other end from the one end plate side of the outer periphery of the rotor core are formed cooling channels extending plate side, position on the windward side of the cooling fins definitive the end plate of said one Is being allowed through hole portion on the inner peripheral side of and the outer peripheral wall at the outer peripheral portion of one end plate said to be formed, wherein the cooling air from the cooling fins toward the cooling grooves of said rotor core wherein the hole portion It is characterized by being discharged from .

本発明によれば、回転子鉄心の外周に一方の端板側から他方の端板側に延びる冷却溝を形成し、回転子の端板に冷却フィンを配設し、冷却フィンが配設された側の端板に冷却フィンからの冷却風を冷却溝に向けて吐出させる通孔部を形成したので、冷却フィンからの冷却風により、回転子の外周を冷却することができると共に、冷却溝に供給された冷却風を、回転子の回転によって固定子の内周に当てることができるので、固定子も冷却することができ、結果的に回転子の冷却効果を良くすることができる。   According to the present invention, a cooling groove extending from one end plate side to the other end plate side is formed on the outer periphery of the rotor core, the cooling fins are arranged on the end plate of the rotor, and the cooling fins are arranged. Since the through hole portion for discharging the cooling air from the cooling fin toward the cooling groove is formed on the end plate on the other side, the outer periphery of the rotor can be cooled by the cooling air from the cooling fin, and the cooling groove Since the cooling air supplied to can be applied to the inner circumference of the stator by the rotation of the rotor, the stator can also be cooled, and as a result, the cooling effect of the rotor can be improved.

以下、本発明の第1の実施形態について、図1乃至図5を参照して説明する。
図2及び図3に、本実施形態に係る回転電機1を示す。回転電機1は、固定子2と、この固定子2の内周側に配置された回転子3と、固定子2及び回転子3を収納する有底円筒状のケーシング4と、固定子2及び回転子3を収納したケーシング4の開放部分を塞ぐ閉塞板5(図2参照)とから概略構成されている。
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
2 and 3 show the rotating electrical machine 1 according to the present embodiment. The rotating electrical machine 1 includes a stator 2, a rotor 3 disposed on the inner peripheral side of the stator 2, a bottomed cylindrical casing 4 that houses the stator 2 and the rotor 3, a stator 2 and A closing plate 5 (see FIG. 2) for closing an open portion of the casing 4 housing the rotor 3 is schematically configured.

ケーシング4の右端閉塞部(図2中の右側に位置する底部)には、回転子3の軸に対して平行に延びる貫通孔6が複数形成され、閉塞板5には、回転子3の軸に対して平行に延びる貫通孔7が複数形成されている。これらの貫通孔6,7を形成させることにより、ケーシング4及び閉塞板5の内外に存する空気(冷却風)の出入りが自由になる。   A plurality of through holes 6 extending in parallel to the axis of the rotor 3 are formed in the right end closing part (the bottom part located on the right side in FIG. 2) of the casing 4, and the axis of the rotor 3 is formed in the closing plate 5. A plurality of through holes 7 extending in parallel with each other are formed. By forming these through holes 6, 7, the air (cooling air) existing inside and outside the casing 4 and the closing plate 5 can freely enter and exit.

固定子2は、固定子鉄心8に、複数のコイル9が巻装されて構成されている。固定子鉄心8は、多数枚の円環状の鋼板が積層されて円筒形状をなし、図示しないリベット等で積層方向が一体に結着されている。又、固定子鉄心8の内周面には、図3に示すように、コイル9を配設させるためのスロット10が複数個所、例えば6箇所に形成されている。
回転子3は、図2に示すように、前記固定子鉄心8の界磁空間に位置する回転子鉄心11と、この回転子鉄心11の軸方向の両端に配置された円環状の端板12a,12bと、これら回転子鉄心11及び端板12a,12bの中央部に装着された回転軸13と、回転子鉄心11の外周部に設けられた磁極形成用の永久磁石14とから構成されている。
The stator 2 is configured by winding a plurality of coils 9 around a stator core 8. The stator core 8 has a cylindrical shape in which a large number of annular steel plates are laminated, and the lamination direction is integrally bound by a rivet or the like (not shown). Further, as shown in FIG. 3, slots 10 for arranging the coils 9 are formed in a plurality of places, for example, six places on the inner peripheral surface of the stator core 8.
As shown in FIG. 2, the rotor 3 includes a rotor core 11 positioned in the field space of the stator core 8, and an annular end plate 12 a disposed at both axial ends of the rotor core 11. , 12b, a rotating shaft 13 mounted on the center of the rotor core 11 and the end plates 12a, 12b, and a magnetic pole forming permanent magnet 14 provided on the outer periphery of the rotor core 11. Yes.

回転子鉄心11は、多数枚の円環状の鋼板が積層されて円筒形状をなし、図示しないリベット等で積層方向が一体に結着されている。尚、詳細は後述するが、回転子鉄心11の外周部には、一方の端板(左端板)12a側から他方の端板(右端板)12b側に回転子鉄心11の軸に対して平行に延びる冷却溝15が形成されている。   The rotor core 11 is formed in a cylindrical shape by laminating a large number of annular steel plates, and the lamination direction is integrally bound by a rivet or the like (not shown). Although details will be described later, the outer periphery of the rotor core 11 is parallel to the axis of the rotor core 11 from one end plate (left end plate) 12a side to the other end plate (right end plate) 12b side. A cooling groove 15 is formed extending in the direction.

回転軸13は、軸方向の一方の端部13aが閉塞板5を貫通し、他方の端部13bがケーシング4の右端閉塞部を貫通して配置されている。又、回転軸13の端部13aは、潤滑油を有する軸受、例えばボールベアリング16で支持され、回転軸13の端部13bは、ボールベアリング17で支持され、これにより、回転軸13は、回転可能な状態になっている。   The rotary shaft 13 is arranged such that one end 13 a in the axial direction passes through the closing plate 5 and the other end 13 b passes through the right end closing portion of the casing 4. Further, the end 13a of the rotating shaft 13 is supported by a bearing having lubricating oil, for example, a ball bearing 16, and the end 13b of the rotating shaft 13 is supported by a ball bearing 17, whereby the rotating shaft 13 is rotated. It is possible.

永久磁石14は、例えばネオジウム磁石からなり、図4に示すように、矩形板状をなし回転子鉄心11の軸に沿って平行に延びている。本実施形態の回転子3には、4個の永久磁石14が用いられており、これら永久磁石14は、回転子鉄心11の外周部に周方向に沿って、等間隔に配置されている。   The permanent magnet 14 is made of, for example, a neodymium magnet, has a rectangular plate shape, and extends in parallel along the axis of the rotor core 11 as shown in FIG. Four permanent magnets 14 are used in the rotor 3 of this embodiment, and these permanent magnets 14 are arranged at equal intervals along the circumferential direction on the outer peripheral portion of the rotor core 11.

さて、回転子3における2つの端板12a,12bは、共に直径が回転子鉄心11の直径と同一である円形状をなしており、一方の端板12aには、図1、図2及び図4に示すように、回転子3の回転に伴って回転するフィン装置21aが配設されている。
フィン装置21aは、端板12aを基板とし、この端板12aに配設されて、回転子3の回転に伴って回転子3外の冷却風を取込んで回転子鉄心11の外周方向に案内する冷却フィン22aと、端板12aの軸方向の外側の面のうちの内周部の回転軸13が摺接される部位に軸方向の外側に突設された内周壁23aと、端板12aの軸方向の外側の面のうちの外周縁部の部位に軸方向の外側に突設された外周壁24aとから構成されている。
Now, the two end plates 12a and 12b in the rotor 3 have a circular shape whose diameter is the same as the diameter of the rotor core 11, and the one end plate 12a is shown in FIGS. As shown in FIG. 4, a fin device 21 a that rotates as the rotor 3 rotates is disposed.
The fin device 21 a uses the end plate 12 a as a base plate, and is disposed on the end plate 12 a, and with the rotation of the rotor 3, takes the cooling air outside the rotor 3 and guides it in the outer circumferential direction of the rotor core 11. Cooling fins 22a, an inner peripheral wall 23a projecting outward in the axial direction at a portion where the rotary shaft 13 of the inner peripheral portion of the outer surface in the axial direction of the end plate 12a is in sliding contact, and the end plate 12a The outer peripheral wall 24a is provided on the outer peripheral edge portion of the outer surface in the axial direction and protrudes outward in the axial direction.

冷却フィン22aは、複数枚、例えば4枚設けられており、これら4枚の冷却フィン22aは、周方向に一定の間隔を存して配置されている。尚、本実施形態では、90度間隔に冷却フィン22aが配置されている。
冷却フィン22aは、図1に示すように、周方向に延びた形状で、周方向に傾斜しており、4枚の冷却フィン22aが、回転子3の回転に伴い、冷却風を均一に取込むことができるように、同一方向に傾斜した同一の形状をなしている。又、冷却フィン22aは、内周壁23aと外周壁24aとを直線状に連結するように設けられ、内周壁23a及び外周壁24aに一体に溶着されている。これにより、冷却フィン22aは、径方向の両側が内周壁23a及び外周壁24aに挟まれて位置される。又、周方向に延びる一方の端部22aaも、端板12aに溶着されている。尚、冷却フィン22aの端部22aaの反対側に位置する端部22abは、冷却フィン22aが回転したときの風上側に位置される。
A plurality of, for example, four cooling fins 22a are provided, and the four cooling fins 22a are arranged at a constant interval in the circumferential direction. In the present embodiment, the cooling fins 22a are arranged at intervals of 90 degrees.
As shown in FIG. 1, the cooling fins 22 a have a shape extending in the circumferential direction and are inclined in the circumferential direction, and the four cooling fins 22 a uniformly collect cooling air as the rotor 3 rotates. The same shape is inclined in the same direction. The cooling fins 22a are provided so as to linearly connect the inner peripheral wall 23a and the outer peripheral wall 24a, and are integrally welded to the inner peripheral wall 23a and the outer peripheral wall 24a. Thus, the cooling fins 22a are positioned such that both sides in the radial direction are sandwiched between the inner peripheral wall 23a and the outer peripheral wall 24a. One end 22aa extending in the circumferential direction is also welded to the end plate 12a. The end 22ab located on the opposite side of the end 22aa of the cooling fin 22a is located on the windward side when the cooling fin 22a rotates.

端板12aにおいて、冷却フィン22aが回転したときの端部22aaの風上側の外周部には、端板12aを軸方向に貫く通孔部25aが形成されている。本実施形態では、冷却フィン22aが4枚設けられているため、通孔部25aも端板12aの周方向に4つ、90度間隔で形成される。
又、回転子鉄心11の外周の端板12aの冷却フィン22a及び通孔部25aに対応した位置に冷却溝15が形成されている。本実施形態では、冷却フィン22a及び通孔部25aは4つ形成されているので、冷却溝15も4つ形成されている。
In the end plate 12a, a through hole portion 25a penetrating the end plate 12a in the axial direction is formed on the outer peripheral portion on the windward side of the end portion 22aa when the cooling fin 22a rotates. In the present embodiment, since four cooling fins 22a are provided, four through holes 25a are also formed at intervals of 90 degrees in the circumferential direction of the end plate 12a.
Further, cooling grooves 15 are formed at positions corresponding to the cooling fins 22a and the through holes 25a of the end plate 12a on the outer periphery of the rotor core 11. In the present embodiment, since four cooling fins 22a and four through holes 25a are formed, four cooling grooves 15 are also formed.

回転子3における他方の端板12bには、図2、図4及び図5に示すように、上記したフィン装置21aと同一形状のフィン装置21bが配設されている。
ここで、フィン装置21bは、冷却フィン22b、内周壁23b、外周壁24b及び通孔部25bから構成されている。冷却フィン22b(端部22ba,22bb)、内周壁23b、外周壁24b及び通孔部25bは、フィン装置21aを構成する冷却フィン22a(端部22aa,22ab)、内周壁23a、外周壁24a及び通孔部25aに夫々対応し、同形状をなしている。このフィン装置21bは、通孔部25bが冷却溝15に対応するようにして端板12bに配設されている。尚、冷却フィン22b、内周壁23b、外周壁24b及び通孔部25bの構成については、冷却フィン22a、内周壁23a、外周壁24a及び通孔部25aと同一であるため、説明を省略する。
As shown in FIGS. 2, 4 and 5, the other end plate 12b of the rotor 3 is provided with a fin device 21b having the same shape as the fin device 21a described above.
Here, the fin apparatus 21b is comprised from the cooling fin 22b, the inner peripheral wall 23b, the outer peripheral wall 24b, and the through-hole part 25b. The cooling fins 22b (ends 22ba, 22bb), the inner peripheral wall 23b, the outer peripheral wall 24b, and the through holes 25b are composed of the cooling fins 22a (ends 22aa, 22ab), the inner peripheral wall 23a, the outer peripheral wall 24a, and the fin device 21a. It corresponds to each of the through holes 25a and has the same shape. The fin device 21 b is disposed on the end plate 12 b so that the through hole portion 25 b corresponds to the cooling groove 15. In addition, about the structure of the cooling fin 22b, the inner peripheral wall 23b, the outer peripheral wall 24b, and the through-hole part 25b, since it is the same as the cooling fin 22a, the inner peripheral wall 23a, the outer peripheral wall 24a, and the through-hole part 25a, description is abbreviate | omitted.

次に、冷却風の流れについて図1及び図5を参照して説明する。
上記構成の回転電機1において、回転電機1の電源が入れられると、固定子2のコイル9に電流が流れ、固定子2に磁界が生じる。そして、この磁界が回転移動すると共に、回転子3の永久磁石14は引っ張られ、以って、回転子3は回転する。又、コイル9に電流が流れ続けると、コイル9は発熱し、近接する回転子3の回転子鉄心11及び永久磁石14も加熱されて温度上昇する。
Next, the flow of cooling air will be described with reference to FIGS.
In the rotating electrical machine 1 configured as described above, when the rotating electrical machine 1 is turned on, a current flows through the coil 9 of the stator 2 and a magnetic field is generated in the stator 2. Then, as the magnetic field rotates, the permanent magnet 14 of the rotor 3 is pulled, so that the rotor 3 rotates. Further, when a current continues to flow through the coil 9, the coil 9 generates heat, and the rotor core 11 and the permanent magnet 14 of the adjacent rotor 3 are heated and the temperature rises.

ここで、回転子3が回転(例えば図1、図4及び図5中の矢印X方向へ回転)すると、回転子3の端板12a,12bに配設されたフィン装置21a,21bも、回転子3と共に矢印X方向へ回転する。すると、ケーシング4の内外に位置し回転子3の軸方向外側に存する空気(冷却風)が、冷却フィン22aによって、冷却フィン22aと端板12aとの間に取込まれ、更に、冷却フィン22aに当たった冷却風が、冷却フィン22aの傾斜面に沿い、且つ、遠心力で、冷却フィン22aの端部22aaの風上側の外周部、即ち、通孔部25aに集められる。引き続きフィン装置21aが回転すると、通孔部25aに存する冷却風は、回転子鉄心11の冷却溝15に向かって吐出されて、冷却溝15に移動する。   Here, when the rotor 3 rotates (for example, in the direction of arrow X in FIGS. 1, 4 and 5), the fin devices 21a and 21b disposed on the end plates 12a and 12b of the rotor 3 also rotate. It rotates with the child 3 in the direction of arrow X. Then, the air (cooling air) located inside and outside the casing 4 and outside the rotor 3 in the axial direction is taken in between the cooling fin 22a and the end plate 12a by the cooling fin 22a, and further, the cooling fin 22a. The cooling air that hits the air is collected along the inclined surface of the cooling fin 22a and by the centrifugal force at the outer peripheral portion on the windward side of the end 22aa of the cooling fin 22a, that is, the through hole 25a. When the fin device 21 a continues to rotate, the cooling air existing in the through hole 25 a is discharged toward the cooling groove 15 of the rotor core 11 and moves to the cooling groove 15.

冷却溝15に移動した冷却風は、通孔部25aから供給される冷却風によって、冷却溝15に沿って他方のフィン装置21b側に押出される。このとき、冷却溝15を通る冷却風は、回転子鉄心11及び回転子鉄心11内に配置された永久磁石14の熱を奪うと共に、この冷却風の一部は、回転子3の回転によって固定子2に向かって吐出され、固定子2に当たり、固定子2のコイル9の熱をも奪う。又、冷却溝15に移動した冷却風のうちの残りの冷却風は、回転子3の回転に伴って回転するフィン装置21bの通孔部25bから取込まれ、冷却フィン22bによって周方向外方に案内して、端部22baから吐出される。   The cooling air that has moved to the cooling groove 15 is pushed out along the cooling groove 15 toward the other fin device 21b by the cooling air supplied from the through hole 25a. At this time, the cooling air passing through the cooling groove 15 takes heat of the rotor core 11 and the permanent magnet 14 disposed in the rotor core 11, and a part of the cooling air is fixed by the rotation of the rotor 3. It is discharged toward the child 2, hits the stator 2, and takes heat of the coil 9 of the stator 2. The remaining cooling air of the cooling air that has moved to the cooling groove 15 is taken in from the through hole 25b of the fin device 21b that rotates as the rotor 3 rotates, and the cooling fin 22b causes the outer circumferential direction to move outward. And discharged from the end 22ba.

上記構成によれば、回転子鉄心11の外周に端板12a側から端板12b側に延びる冷却溝15を形成し、回転子3の端板12aに冷却フィン22aを配設し、端板12aに冷却フィン22aからの冷却風を冷却溝15に向けて吐出させる通孔部25aを形成したので、冷却フィン22aからの冷却風により、回転子3の外周を冷却することができると共に、冷却溝15に供給された冷却風を、回転子3の回転によって固定子2の内周に当てることができるので、熱の発生源の固定子2(コイル9)も冷却することができ、結果として回転子3の冷却効果を良くすることができる。   According to the above configuration, the cooling groove 15 extending from the end plate 12a side to the end plate 12b side is formed on the outer periphery of the rotor core 11, the cooling fins 22a are disposed on the end plate 12a of the rotor 3, and the end plate 12a. Since the through holes 25a for discharging the cooling air from the cooling fins 22a toward the cooling grooves 15 are formed, the outer periphery of the rotor 3 can be cooled by the cooling air from the cooling fins 22a, and the cooling grooves Since the cooling air supplied to 15 can be applied to the inner periphery of the stator 2 by the rotation of the rotor 3, the stator 2 (coil 9) that is a heat generation source can also be cooled, resulting in rotation. The cooling effect of the child 3 can be improved.

又、回転子3の端板12bに冷却フィン22bを配設し、端板12bに冷却溝15からの冷却風を周方向外方に案内して吐出させる通孔部25bを形成したので、冷却溝15に存する冷却風を周方向外方に排出することができ、冷却溝15に存する冷却風の温度上昇を抑制でき、これにより、冷却溝15に存する冷却風によって、回転子鉄心11、永久磁石14及び固定子2を効率良く冷却させることができる。又、固定子2及び回転子3の外側に、これらを冷却するための固定子2程の大きさの冷却ファン等の別部材が不要となるので、省スペース化を図ることができる。   Further, the cooling fins 22b are disposed on the end plate 12b of the rotor 3, and the through holes 25b for guiding the cooling air from the cooling grooves 15 to discharge outward in the circumferential direction are formed on the end plate 12b. The cooling air existing in the grooves 15 can be discharged outward in the circumferential direction, and the temperature rise of the cooling air existing in the cooling grooves 15 can be suppressed, and thereby the rotor core 11 can be made permanent by the cooling air existing in the cooling grooves 15. The magnet 14 and the stator 2 can be efficiently cooled. Further, since a separate member such as a cooling fan about the size of the stator 2 for cooling them is not required outside the stator 2 and the rotor 3, space saving can be achieved.

冷却フィン22aは、径方向の両側が内周壁23a及び外周壁24aに挟まれて位置されているので、冷却フィン22aが回転したときに、冷却フィン22a内に取込んだ冷却風を、周方向側へ漏らすことなく、効率良く通孔部25a(冷却溝15)へ供給することができる。   Since the cooling fins 22a are positioned so that both sides in the radial direction are sandwiched between the inner peripheral wall 23a and the outer peripheral wall 24a, when the cooling fins 22a rotate, the cooling air taken into the cooling fins 22a is It can be efficiently supplied to the through hole 25a (cooling groove 15) without leaking to the side.

次に、本発明の第2の実施形態を、図6を参照して説明する。尚、上記第1の実施形態と同様な一部分には同符号を付し、その詳細な説明は省略する。
第2の実施形態では、図6に示すように、回転子鉄心31に形成される冷却溝32及び永久磁石33の形状が、第1の実施形態の回転子鉄心11に形成される冷却溝15及び永久磁石14と異なる。
Next, a second embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as the said 1st Embodiment, and the detailed description is abbreviate | omitted.
In the second embodiment, as shown in FIG. 6, the cooling groove 32 formed in the rotor core 31 and the shape of the permanent magnet 33 are the cooling grooves 15 formed in the rotor core 11 of the first embodiment. And different from the permanent magnet 14.

本実施形態では、回転子鉄心31に設けられる永久磁石33は、回転子鉄心31の軸に対してスキューを形成するように、回転子鉄心11の軸に対して傾斜状に形成されている。永久磁石33のスキューの形状は、永久磁石33のうちの、端板12a側に位置する端部33aが、永久磁石33の他方の端部33bよりも、回転子3が回転したときの周方向の風上側に位置している。又、回転子鉄心11に形成される冷却溝32は、回転子鉄心31の軸に対して永久磁石33と同じ角度の傾斜状になるように、即ち、冷却溝32が、永久磁石33の傾斜状に対して平行になるように、永久磁石33の幅方向の中心に対して平行に形成されている。これにより、端板12aに形成された通孔部25aは、端板12bの通孔部25bよりも周方向の風上側に位置し、この通孔部25a,25bを連通するように冷却溝32が形成されている。   In the present embodiment, the permanent magnet 33 provided on the rotor core 31 is formed to be inclined with respect to the axis of the rotor core 11 so as to form a skew with respect to the axis of the rotor core 31. The shape of the skew of the permanent magnet 33 is the circumferential direction when the rotor 3 rotates in the end portion 33a located on the end plate 12a side of the permanent magnet 33 rather than the other end portion 33b of the permanent magnet 33. Located on the windward side. The cooling groove 32 formed in the rotor core 11 is inclined at the same angle as the permanent magnet 33 with respect to the axis of the rotor core 31, that is, the cooling groove 32 is inclined with respect to the permanent magnet 33. The permanent magnet 33 is formed parallel to the center in the width direction so as to be parallel to the shape. Thereby, the through-hole part 25a formed in the end plate 12a is located on the windward side in the circumferential direction with respect to the through-hole part 25b of the end plate 12b, and the cooling groove 32 is communicated with the through-hole parts 25a and 25b. Is formed.

尚、この実施形態で用いられる永久磁石33は、例えばネオジウム磁石の粉末とナイロン樹脂等からなる流動性の有る材料からなるボンド磁石が用いられ、回転子鉄心31の永久磁石33を形成する部分に、このボンド磁石を充填し硬化し、着磁して永久磁石33が形成される。   The permanent magnet 33 used in this embodiment is, for example, a bonded magnet made of a fluid material made of a powder of neodymium magnet and nylon resin, and the permanent magnet 33 of the rotor core 31 is formed at a portion where the permanent magnet 33 is formed. The bonded magnet is filled, cured, and magnetized to form the permanent magnet 33.

第2の実施形態においても、第1の実施形態と同様の作用効果を奏する。
更に、通孔部25bよりも風上側に冷却風を取込む通孔部25aが形成され、通孔部25a,25bを連通するように冷却溝32が形成されているので、回転子3が回転した場合に冷却溝32に存する冷却風は風下側に押し流され、これにより、冷却溝32に存する冷却風を容易に端板12bの通孔部25bから吐出させることができる。
又、回転子鉄心31には、スキューが形成されるので、磁束の立上がりを滑らかにでき、トルクムラを低減することができる。
Also in the second embodiment, the same operational effects as in the first embodiment can be obtained.
Further, a through hole portion 25a for taking in cooling air is formed on the windward side of the through hole portion 25b, and a cooling groove 32 is formed so as to communicate with the through hole portions 25a and 25b, so that the rotor 3 rotates. In this case, the cooling air existing in the cooling groove 32 is pushed down to the leeward side, so that the cooling air existing in the cooling groove 32 can be easily discharged from the through hole portion 25b of the end plate 12b.
Further, since skew is formed in the rotor iron core 31, the rise of the magnetic flux can be made smooth and torque unevenness can be reduced.

次に、本発明の第3の実施形態を、図7及び図8を参照して説明する。尚、上記第1の実施形態と同様な一部分には同符号を付し、その詳細な説明は省略する。
第3の実施形態では、図7及び図8に示すように、回転子鉄心11に設けられるフィン装置41aが、第1の実施形態のフィン装置21aと異なる。即ち、フィン装置41aの冷却フィン42aの形状が第1の実施形態のフィン装置21aの冷却フィン22aの形状と異なる。
Next, a third embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the same part as the said 1st Embodiment, and the detailed description is abbreviate | omitted.
In 3rd Embodiment, as shown in FIG.7 and FIG.8, the fin apparatus 41a provided in the rotor core 11 differs from the fin apparatus 21a of 1st Embodiment. That is, the shape of the cooling fin 42a of the fin device 41a is different from the shape of the cooling fin 22a of the fin device 21a of the first embodiment.

冷却フィン42aは、周方向の長さが、第1の実施形態の冷却フィン22aの周方向の長さよりも長く設定されており、具体的には、冷却フィン42aの周方向の長さは、端板12aに形成された複数の通孔部25aのうちの一の通孔部25aから周方向の隣に位置する他の通孔部25aまでの寸法に設定されている(図8(b)参照)。即ち、端板12aに4つの通孔部25aが形成されている場合には、冷却フィン42aの周方向の長さは、端板12aを周方向に4等分した寸法に設定されている。これにより、冷却フィン42aと端板12aとの鋭角側のなす角は、第1の実施形態の冷却フィン22aと端板12aとの鋭角側のなす角よりも小さくなる。   The circumferential length of the cooling fin 42a is set to be longer than the circumferential length of the cooling fin 22a of the first embodiment. Specifically, the circumferential length of the cooling fin 42a is: It is set to the dimension from one through-hole part 25a of the several through-hole parts 25a formed in the end plate 12a to the other through-hole part 25a located in the circumferential direction (FIG.8 (b)). reference). That is, when the four through holes 25a are formed in the end plate 12a, the circumferential length of the cooling fin 42a is set to a dimension obtained by dividing the end plate 12a into four equal parts in the circumferential direction. Thereby, the angle formed by the acute angle side between the cooling fin 42a and the end plate 12a is smaller than the angle formed by the acute angle side between the cooling fin 22a and the end plate 12a of the first embodiment.

又、回転子3における他方の端板12bには、第1の実施形態のフィン装置21bが配設されている。尚、フィン装置21bの代わりに、フィン装置41aを端板12bに配設しても良い。   Further, the fin device 21b of the first embodiment is disposed on the other end plate 12b of the rotor 3. In addition, you may arrange | position the fin apparatus 41a to the end plate 12b instead of the fin apparatus 21b.

次に、上記構成の冷却風の流れについて説明する。
回転子3が回転(例えば図7及び図8中の矢印X方向へ回転)すると、回転子3の端板12a,12bに配設されたフィン装置41a,21bも、回転子3と一緒に矢印X方向へ回転する。すると、回転子3の軸方向外側に存する冷却風が、冷却フィン42aの回転によって、冷却フィン42aと端板12aとの間に取込まれ、更に、冷却フィン42aに当たった冷却風が、冷却フィン42aの傾斜面に沿い、且つ、遠心力で、冷却フィン42aの風上側の外周部、即ち、通孔部25aに集められる。このとき、冷却フィン42aと端板12aとのなす角が、第1の実施形態の冷却フィン22aと端板12aとのなす角よりも小さくなっているので、冷却フィン42aの端板12a側に当たった冷却風を、第1の実施形態の冷却フィン22aを使用した場合よりも効率良く通孔部25aに集められると共に、フィン装置41aの回転による空気抵抗が小さくなる。
Next, the flow of the cooling air having the above configuration will be described.
When the rotor 3 rotates (for example, in the direction of arrow X in FIGS. 7 and 8), the fin devices 41 a and 21 b disposed on the end plates 12 a and 12 b of the rotor 3 also move together with the rotor 3. Rotate in the X direction. Then, the cooling air existing outside the rotor 3 in the axial direction is taken in between the cooling fin 42a and the end plate 12a by the rotation of the cooling fin 42a, and further, the cooling air hitting the cooling fin 42a is cooled. Along the inclined surface of the fin 42a and by centrifugal force, it is collected in the outer peripheral portion on the windward side of the cooling fin 42a, that is, the through hole 25a. At this time, the angle formed between the cooling fin 42a and the end plate 12a is smaller than the angle formed between the cooling fin 22a and the end plate 12a of the first embodiment. The hit cooling air is collected in the through hole 25a more efficiently than when the cooling fins 22a of the first embodiment are used, and the air resistance due to the rotation of the fin device 41a is reduced.

そして、引き続きフィン装置41aが回転すると、通孔部25aに存する冷却風は、回転子鉄心11の冷却溝15に向かって吐出されて、第1の実施形態と同様に、冷却溝15に移動する。又、冷却溝15に移動された冷却風は第1の実施形態と同様の作用を行い、フィン装置21bの回転によって、端板12bの通孔部25bから周方向外方に案内され吐出される。   When the fin device 41a continues to rotate, the cooling air existing in the through hole 25a is discharged toward the cooling groove 15 of the rotor core 11 and moves to the cooling groove 15 as in the first embodiment. . The cooling air moved to the cooling groove 15 performs the same operation as in the first embodiment, and is guided and discharged outward in the circumferential direction from the through hole portion 25b of the end plate 12b by the rotation of the fin device 21b. .

第3の実施形態においても、第1の実施形態と同様の作用効果を奏する。
冷却フィン42aと端板12aとのなす角が第1の実施形態よりも小さく構成されているので、冷却フィン42aの端板12a側に当たった冷却風を、第1の実施形態に冷却フィン22aよりも効率良く通孔部25aに集められることができると共に、フィン装置41aの回転による空気抵抗を小さくすることができる。
In the third embodiment, the same operational effects as in the first embodiment are obtained.
Since the angle formed between the cooling fin 42a and the end plate 12a is smaller than that in the first embodiment, the cooling air that has hit the end plate 12a side of the cooling fin 42a is used as the cooling fin 22a in the first embodiment. In addition to being able to be collected in the through hole 25a more efficiently, the air resistance due to the rotation of the fin device 41a can be reduced.

尚、本発明は上記し且つ図面に示す実施形態に限定されず、次のような変形、拡張が可能である。
第1乃至第3の実施形態のフィン装置の冷却フィンは、内周壁と外周壁とを直線状に連結する構成以外の形状、例えば曲線状に連結する構成にしても良い。
The present invention is not limited to the embodiment described above and shown in the drawings, and the following modifications and expansions are possible.
The cooling fins of the fin devices of the first to third embodiments may have a configuration other than a configuration in which the inner peripheral wall and the outer peripheral wall are connected linearly, for example, a configuration that connects in a curved shape.

第1乃至第3の実施形態のフィン装置の冷却フィンは、4枚で説明したが、4枚以外でも良い。
第1乃至第3の実施形態において、回転子の両側に設けられるフィン装置の形状は、左右の形状が異なっていても良い。
Although the four cooling fins of the fin devices of the first to third embodiments have been described, other than four may be used.
In 1st thru | or 3rd embodiment, the shape of the fin apparatus provided in the both sides of a rotor may differ in the shape on either side.

第1乃至第3の実施形態の冷却溝、冷却フィン及び通孔部は、永久磁石と同数でなくても良く、又、第2の実施形態の冷却溝は、永久磁石の幅方向の中心に対して平行に形成されていなくても良い。
その他、上記した構成部品の数、寸法及び形状等について、適宜変更することができる。
The number of cooling grooves, cooling fins, and through holes in the first to third embodiments may not be the same as the number of permanent magnets, and the cooling grooves of the second embodiment may be at the center in the width direction of the permanent magnets. It does not need to be formed in parallel to.
In addition, the number, size, shape, and the like of the above-described components can be changed as appropriate.

(a)は本発明の第1の実施形態の回転電機を構成する正面側のフィン装置の正面図、(b)は図1(a)中のA−A線に沿って切断して示す展開図(A) is a front view of the fin apparatus of the front side which comprises the rotary electric machine of the 1st Embodiment of this invention, (b) is the expansion | deployment cut | disconnected and shown along the AA line in Fig.1 (a) Figure 回転電機の縦断側面図Vertical side view of rotating electrical machine 図2中のB−B線に沿う断面図Sectional drawing which follows the BB line in FIG. 回転子とフィン装置の分解斜視図Disassembled perspective view of rotor and fin unit (a)は背面側のフィン装置の背面図、(b)は図5(a)中のC−C線に沿って切断して示す展開図(A) is a rear view of the fin device on the back side, and (b) is a developed view cut along the line CC in FIG. 5 (a). 本発明の第2の実施形態を示す図4相当図FIG. 4 equivalent view showing the second embodiment of the present invention 本発明の第3の実施形態を示す図4相当図FIG. 4 equivalent view showing the third embodiment of the present invention (a)は図1(a)相当図、(b)は図8(a)中のD−D線に沿って切断して示す展開図(A) is a view corresponding to FIG. 1 (a), and (b) is a developed view cut along the line DD in FIG. 8 (a).

符号の説明Explanation of symbols

図面中、1は回転電機、2は固定子、3は回転子、8は固定子鉄心、9はコイル、11及び31は回転子鉄心、12a及び12bは端板、13は回転軸、14及び33は永久磁石、15及び32は冷却溝、22a,22b及び42aは冷却フィン、25a及び25bは通孔部を示す。   In the drawings, 1 is a rotating electrical machine, 2 is a stator, 3 is a rotor, 8 is a stator core, 9 is a coil, 11 and 31 are rotor cores, 12a and 12b are end plates, 13 is a rotating shaft, 14 and Reference numeral 33 is a permanent magnet, 15 and 32 are cooling grooves, 22a, 22b and 42a are cooling fins, and 25a and 25b are through holes.

Claims (8)

固定子鉄心にコイルが巻装されてなる固定子と、
回転子鉄心の外周部に磁極形成用の永久磁石が配置され、該回転子鉄心の軸方向の両端部に端板が配置され、これらの回転子鉄心及び端板の中央部に回転軸が装着されて構成され、前記回転子鉄心が前記固定子の界磁空間に配置された回転子と、
前記回転子における2つの端板のうちの一方の端板に配設され、その一方の端板の外周縁部に軸方向外側へ突設された外周壁に対して該一方の端板の中心側から向かう方向を外周方向として、該回転子の回転に伴って冷却風を取込んで前記外周方向に案内する冷却フィンとを具備し、
前記回転子鉄心の外周に前記一方の端板側から他方の端板側に延びる冷却溝が形成され、前記一方の端板における前記冷却フィンの風上側に位置させて該一方の端板の外周部で且つ前記外周壁の内周側に通孔部が形成され、前記冷却フィンからの冷却風を前記回転子鉄心の前記冷却溝に向けて前記通孔部から吐出させることを特徴とする回転電機。
A stator in which a coil is wound around a stator core;
Permanent magnets for magnetic pole formation are arranged on the outer periphery of the rotor core, end plates are arranged at both ends in the axial direction of the rotor core, and a rotating shaft is mounted at the center of these rotor cores and end plates A rotor in which the rotor core is arranged in a field space of the stator, and
The center of the one end plate with respect to the outer peripheral wall disposed on one end plate of the two end plates of the rotor and projecting outward in the axial direction at the outer peripheral edge of the one end plate a direction from the side as the outer peripheral direction, comprising a cooling fin for guiding the cooling air with the rotation of the rotor to the outer circumferential direction by ipecac,
The rotor core periphery wherein cooling grooves extending from one end plate side of the other end plate side is formed on the said is positioned on the windward side of the cooling fins definitive one end plate of one of the end plates the A through hole portion is formed on the outer peripheral portion and on the inner peripheral side of the outer peripheral wall, and the cooling air from the cooling fin is discharged from the through hole portion toward the cooling groove of the rotor core. Rotating electric machine.
回転子における他方の端板に、回転子鉄心の冷却溝に対応して通孔部が形成され、前記他方の端板に前記回転子の回転に伴って前記通孔部から冷却風を取込んで周方向外方に案内して吐出する冷却フィンが配設されていることを特徴とする請求項1記載の回転電機。   A through hole portion is formed in the other end plate of the rotor corresponding to the cooling groove of the rotor core, and cooling air is taken into the other end plate from the through hole portion as the rotor rotates. 2. A rotating electrical machine according to claim 1, wherein cooling fins are disposed to guide and discharge outward in the circumferential direction. 冷却溝は、回転子鉄心の軸に対して平行に形成されていることを特徴とする請求項1又は2記載の回転電機。   The rotating electrical machine according to claim 1, wherein the cooling groove is formed in parallel to the axis of the rotor core. 冷却溝は、回転子鉄心の軸に対して傾斜状に形成されていることを特徴とする請求項1又は2記載の回転電機。   The rotating electrical machine according to claim 1 or 2, wherein the cooling groove is formed to be inclined with respect to the axis of the rotor core. 永久磁石は、回転子鉄心の軸に対して傾斜状に設けられ、
前記回転子鉄心の冷却溝は、前記永久磁石の傾斜状に対して平行に形成されていることを特徴とする請求項4記載の回転電機。
The permanent magnet is provided inclined with respect to the axis of the rotor core,
5. The rotating electrical machine according to claim 4, wherein the cooling groove of the rotor core is formed in parallel to the inclined shape of the permanent magnet.
冷却フィンは、周方向に延びた形状であることを特徴とする請求項1乃至5のいずれかに記載の回転電機。   The rotating electrical machine according to any one of claims 1 to 5, wherein the cooling fin has a shape extending in a circumferential direction. 通孔部及び冷却フィンは、周方向に一定の間隔を存して複数設けられ、
冷却溝は、前記通孔部及び前記冷却フィンに対応して複数形成されていることを特徴とする請求項1乃至6のいずれかに記載の回転電機。
A plurality of through-hole portions and cooling fins are provided at regular intervals in the circumferential direction,
The rotating electrical machine according to any one of claims 1 to 6, wherein a plurality of cooling grooves are formed corresponding to the through holes and the cooling fins.
冷却フィンの周方向の長さは、端板に形成された一の通孔部から周方向の隣に位置する他の通孔部までの寸法に設定されていることを特徴とする請求項7記載の回転電機。   The circumferential length of the cooling fin is set to a dimension from one through hole formed in the end plate to another through hole located adjacent to the circumferential direction. The rotating electrical machine described.
JP2007336677A 2007-12-27 2007-12-27 Rotating electric machine Expired - Fee Related JP5367258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336677A JP5367258B2 (en) 2007-12-27 2007-12-27 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336677A JP5367258B2 (en) 2007-12-27 2007-12-27 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2009159763A JP2009159763A (en) 2009-07-16
JP5367258B2 true JP5367258B2 (en) 2013-12-11

Family

ID=40963154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336677A Expired - Fee Related JP5367258B2 (en) 2007-12-27 2007-12-27 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP5367258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515756B2 (en) 2020-03-27 2022-11-29 Dana Belgium N.V. Electric motor cooling system

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471383B2 (en) * 2009-12-08 2014-04-16 トヨタ自動車株式会社 Motor cooling device
US20120074801A1 (en) * 2010-09-27 2012-03-29 Kollmorgen Corporation Magnetic Rotor Having Inset Bridges To Promote Cooling
EP2495847A1 (en) * 2011-03-02 2012-09-05 Ching-Li Tsai Electric motor capable of heat dissipation
JP2014220901A (en) * 2013-05-08 2014-11-20 三菱電機株式会社 Permanent magnet built-in type rotary electric machine
CN103326488B (en) * 2013-07-04 2016-04-20 无锡东元电机有限公司 A kind of two oblique poles permanent magnetism wind power generator rotor of section and lamination and technique
JP6372139B2 (en) * 2014-04-04 2018-08-15 日産自動車株式会社 Rotating electric machine
KR101680101B1 (en) * 2015-03-20 2016-11-29 한국에너지기술연구원 generator of turbo-compound system with Air path for improving cooling of rotor
CN106936239A (en) * 2015-12-31 2017-07-07 丹佛斯(天津)有限公司 rotating shaft, motor and compressor for motor
JP6627520B2 (en) * 2016-01-14 2020-01-08 ダイキン工業株式会社 Method of manufacturing rotor and rotor
CN105720769A (en) * 2016-04-19 2016-06-29 江苏华源防爆电机有限公司 Cast copper rotor for electric vehicle
CN105680598A (en) * 2016-04-19 2016-06-15 江苏华源防爆电机有限公司 Power system of electric car
US10931158B2 (en) 2016-09-29 2021-02-23 Mitsubishi Electric Corporation Rotor, rotary electric machine, and compressor
US11509194B2 (en) * 2017-03-21 2022-11-22 Mitsubishi Electric Corporation Motor with rotor and endplates with blade parts and cooling hole
JP6814694B2 (en) * 2017-05-12 2021-01-20 東芝産業機器システム株式会社 Rotor core and synchronous reluctance motor
DE102017128856A1 (en) 2017-12-05 2019-06-06 Metabowerke Gmbh electric motor
KR102006189B1 (en) * 2018-01-12 2019-08-01 엘지전자 주식회사 Motor for electric vehicle
JP6676668B2 (en) * 2018-01-23 2020-04-08 本田技研工業株式会社 Rotor of rotating electric machine and rotating electric machine
WO2019188733A1 (en) * 2018-03-27 2019-10-03 デンソートリム株式会社 Rotary electric machine for internal combustion engine, and rotor therefor
CN111903042A (en) * 2018-03-27 2020-11-06 电装多利牡株式会社 Rotating electric machine for internal combustion engine and rotor thereof
CN109029013B (en) * 2018-07-23 2024-05-17 国能大渡河检修安装有限公司 Explosion-proof air cooling equipment
JP7183139B2 (en) * 2019-11-13 2022-12-05 三菱電機株式会社 Rotor and rotary electric machine
DE102021124088A1 (en) 2021-09-17 2023-03-23 Seg Automotive Germany Gmbh Electrical machine with coolant channels
JP7329721B1 (en) * 2022-07-06 2023-08-18 三菱電機株式会社 Rotating electric machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865933A (en) * 1994-08-11 1996-03-08 Matsushita Electric Ind Co Ltd Rotor core of motor
JPH09322480A (en) * 1996-05-31 1997-12-12 Toshiba Corp Motor
JP2001025209A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Rotor of motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515756B2 (en) 2020-03-27 2022-11-29 Dana Belgium N.V. Electric motor cooling system

Also Published As

Publication number Publication date
JP2009159763A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5367258B2 (en) Rotating electric machine
KR102030302B1 (en) Motor rotor holder and motor
JP5629828B2 (en) Rotating electric machine
JP5080603B2 (en) Apparatus and method for cooling an electric machine
JP5482376B2 (en) Hermetic rotary electric machine
JP5545180B2 (en) Rotating electric machine
CN105814779A (en) Embedded permanent magnet-type rotating electrical machine
CN104143892A (en) Embedded permanent magnet rotary electric machine
JP2015115973A (en) Rotor of rotary electric machine and rotary electric machine
KR102157087B1 (en) Structure of multipolar permanent magnet motor
JP2011172375A (en) Rotor for rotating electric machine
JP6818869B2 (en) Electric motor and blower
JP2014017980A (en) Rotary machine
JP2014064433A (en) Rotor shaft of rotary electric machine
US9653966B2 (en) Coolant supplying and collecting apparatus and motor including the same
KR20180026093A (en) Motor rotor with cooling
JP2018007487A (en) Rotary machine
JP2014112999A (en) Rotor and rotary electric machine using the same
KR20150002837U (en) Cooling apparatus for electric motors
JP2013046554A (en) Rotary electric machine
WO2015037069A1 (en) Dynamo-electric machine
JP2013223291A (en) Rotor of rotary electric machine
KR20230038794A (en) rotating electric machine
KR101702023B1 (en) A Electric motor Cooling System
JP2019022404A (en) Rotor for rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees