WO2007094044A1 - Semiconductor device manufacturing method and semiconductor manufacturing apparatus - Google Patents

Semiconductor device manufacturing method and semiconductor manufacturing apparatus Download PDF

Info

Publication number
WO2007094044A1
WO2007094044A1 PCT/JP2006/302524 JP2006302524W WO2007094044A1 WO 2007094044 A1 WO2007094044 A1 WO 2007094044A1 JP 2006302524 W JP2006302524 W JP 2006302524W WO 2007094044 A1 WO2007094044 A1 WO 2007094044A1
Authority
WO
WIPO (PCT)
Prior art keywords
cap layer
nitrogen
gas
forming
manufacturing
Prior art date
Application number
PCT/JP2006/302524
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiyuki Nakao
Noriyoshi Shimizu
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008500361A priority Critical patent/JPWO2007094044A1/en
Priority to PCT/JP2006/302524 priority patent/WO2007094044A1/en
Publication of WO2007094044A1 publication Critical patent/WO2007094044A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a semiconductor manufacturing apparatus.
  • the damascene method is usually adopted in which copper wiring is formed by embedding a copper film in the holes and grooves of the insulating film.
  • the upper and lower copper wirings are connected to each other by copper plugs. If the surface of the lower copper wiring is contaminated, corroded, or oxidized during the process, a connection failure occurs between the copper plug and the copper wiring. There is a fear. Therefore, when manufacturing a semiconductor device provided with copper wiring, a cap layer for protecting the copper wiring is required.
  • the zirconium nitride (ZrN) film has an insulating property on the insulating film and conductivity on the copper wiring. Even if no hole is formed, there is an advantage that the upper and lower copper wirings are electrically connected via the cap layer.
  • Patent Document 1 discloses that the zirconium nitride film is formed as a cap layer in this way.
  • the zirconium nitride film formed by the conventional method is nitrogen-rich, and ammonia (NH 3) is added to the deposition gas for the zirconium nitride film.
  • the zirconium nitride film formed as the cap layer has a role of protecting the copper wiring. It also serves as a barrier layer that prevents copper in the wiring from diffusing into the surrounding insulating film and prevents electrical shorting between adjacent copper wirings. Furthermore, as with the formation of other films such as interlayer insulation films and copper films, when forming a zirconium nitride film, the generation of particulates should be suppressed, device defects caused by particles can be reduced, and yields can be improved. It is necessary to let
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-17496
  • Patent Document 2 JP 2002-146535 A
  • An object of the present invention is to provide a method for manufacturing a semiconductor device provided with a cap layer having a high noria property, and a semiconductor manufacturing apparatus capable of forming a cap layer having a high barrier property.
  • a method for manufacturing a semiconductor device comprising the step of annealing the cap layer in a nitrogen-containing atmosphere.
  • the cap layer is annealed in a nitrogen-containing atmosphere, the nitrogen concentration in the zirconium nitride film constituting the cap layer is increased, and the barrier property of the cap layer against copper is improved.
  • TDE AZ (Zr [N (C H)]) gas is used as a raw material gas for zirconium nitride, and ammonia gas is not added to the raw material gas.
  • the cap layer is preferably formed by a CVD (Chemical Vapor Deposition) method.
  • the zirconium nitride film formed without using ammonia has a poor film quality, nitrogen easily enters the film during the annealing process in a nitrogen-containing atmosphere. As a result, it becomes possible to obtain a cap layer having a high nitrogen concentration and excellent copper noria properties.
  • the step of forming the cap layer and the step of annealing the cap layer are performed in the same chamber.
  • the cap layer is not exposed to an oxygen-containing atmosphere before annealing, so that it is difficult for oxygen to be taken into the cap layer, the oxygen concentration is low, and the underlying first copper wiring is formed. It becomes possible to form a cap layer that is difficult to oxidize.
  • a chamber a substrate mounting table provided in the chamber and on which a semiconductor substrate is mounted, a heater provided on the substrate mounting table, A shower head provided above the substrate mounting table in the chamber and having a hollow inside and a gas dispersion hole communicating with the hollow is formed, and a microwave is applied to the cavity inside the shower head.
  • the raw material gas flow rate control unit is controlled to introduce the zirconium raw material gas into the shower head, and in the chamber, the nitrogen annealing gas is introduced into the chamber.
  • a semiconductor manufacturing apparatus that controls the nitrogen gas flow rate control unit to introduce nitrogen gas into the shower head and controls the magnetron to introduce microwaves into the cavity of the shower head.
  • the present invention it is possible to continuously perform the formation of a zirconium nitride film and the annealing of the zirconium nitride film in a nitrogen-containing atmosphere in one chamber. Therefore, annealing can be performed before the zirconium nitride film is exposed to the oxygen-containing atmosphere. Therefore, it is difficult to oxidize copper wiring or the like with a low oxygen concentration. Annealing can increase the nitrogen concentration of the zirconium nitride film and improve the barrier property against copper.
  • FIG. 1 (a) and (b) are cross-sectional views (part 1) showing a manufacturing process of a semiconductor device according to a first embodiment of the present invention.
  • FIGS. 2 (a) and 2 (b) are cross-sectional views (part 2) showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
  • 3 (a) and 3 (b) are cross-sectional views (part 3) showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view (part 4) showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between the flow rate of ammonia gas added to the deposition gas for the zirconium nitride film and the particles.
  • FIGS. 6 (a) and 6 (b) are enlarged cross-sectional views schematically showing the mechanism of nitrogen annealing in the first embodiment of the present invention.
  • Fig. 7 is a diagram summarizing the advantages obtained by the first embodiment of the present invention.
  • FIG. 8 is a diagram obtained by investigating the diffusion of copper into the cap layers of the first embodiment and the comparative example of the present invention by XPS (X-ray Photoelectron Spectroscopy) method.
  • FIG. 9 is a top view of a semiconductor manufacturing apparatus used in the second embodiment of the present invention.
  • FIG. 10 is a configuration diagram of a nitrogen annealing chamber provided in the semiconductor manufacturing apparatus used in the second embodiment of the present invention.
  • FIG. 11 is a configuration diagram of a processing chamber provided in a semiconductor manufacturing apparatus used in the third embodiment of the present invention.
  • FIG. 1 to 3 are cross-sectional views showing manufacturing steps of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 1 (a) On the p-type silicon (semiconductor) substrate 1, an element isolation insulating layer 2 surrounding the active element region is formed. A MOS transistor 3 is formed in the active element region.
  • the MOS transistor 3 includes a gate electrode 3b formed on the silicon substrate 1 via a gate insulating film 3a, and a first LDD (Lightly Doped Drain) structure formed in the silicon substrate 1 on both sides of the gate electrode 3b. 1. It has second n-type impurity diffusion layers 3c and 3d. Insulating sidewalls 3e are formed on the side surfaces of the gate electrode 3b.
  • LDD Lightly Doped Drain
  • a first made of silicon oxide (SiO 2) covering the MOS transistor 3 is formed.
  • An interlayer insulating film 4 is formed. Of the first interlayer insulating film 4, a first contact hole 4a and a second contact hole 4b are formed on the first n-type impurity diffusion layer 3c and the second n-type impurity diffusion layer 3d, respectively. Te!
  • a first conductive plug 5a and a second conductive plug 5b are embedded in the first and second contact holes 4a and 4b, respectively.
  • the first and second conductive plugs 5a and 5b have a two-layer structure of a titanium nitride film and a tungsten film, respectively.
  • a first layer wiring 7 made of aluminum connected to the second conductive plug 5b is formed on the first interlayer insulating film 4.
  • a second interlayer insulating film 8 made of any of silicon oxide, BPSG, PSG, etc. is formed on the first interlayer insulating film 4 and the first-layer wiring 7.
  • a contact hole 8a is formed on the first conductive plug 5a in the second interlayer insulating film 8, and a third conductive film having a two-layer structure of a titanium nitride film and a tungsten film is formed therein. Plug 9 is embedded.
  • the second interlayer insulating film 8 and the third conductive plug 9 are covered with a third interlayer insulating film 10 made of 350 nm thick silicon oxide.
  • a third interlayer insulating film 10 made of 350 nm thick silicon oxide.
  • a first wiring groove 10a and a second wiring groove 10b are formed.
  • the first wiring groove 10a has a shape in which a part thereof overlaps the third conductive plug 9.
  • a first copper wiring 12a having a multilayer structure composed of a noria metal layer 1la such as tantalum, tantalum nitride, and titanium nitride and 1 lb of a copper layer is formed in the first wiring trench 10a.
  • a second copper wiring 12b having the same layer structure as the first copper wiring 12a is formed in the second wiring groove 10b.
  • the silicon substrate 1 is placed in a CVD chamber (not shown), and the substrate temperature is stabilized at about 300 ° C. Then, tetrakisjetylaminozirconium (Zr [N (CH
  • TDEAZ was vaporized at a temperature of 110 ° C to 140 ° C in a vaporizer, and the vaporized TDEAZ was
  • the supply amount of the vaporized TDEAZ is not particularly limited, but in this embodiment, the supply amount is set to 0.01 to 0.1 lgZmin, more preferably 0.05 gZmin.
  • a cap layer 13 made of zirconium nitride is formed on each of the first and second copper wirings 12a, 12b and the third interlayer insulating film 10 to a thickness of about lOnm by the CVD method. It is done.
  • the ZrN cap layer 13 formed in this way becomes a conductive layer 13a having a specific resistance of about 100 ⁇ 'cm or less in the region in contact with the first and second wirings 12a and 12b.
  • the insulating layer 13 b having a specific resistance value of approximately infinite is obtained.
  • the ZrN cap layer 13 is preferably formed to a thickness of 20 nm or less! /.
  • the substrate temperature when forming the ZrN cap layer 13 is too low, the film formation rate drops considerably. Therefore, it is preferable to form the ZrN cap layer 13 at a substrate temperature of 200 ° C or higher.
  • the substrate temperature is too high, the already formed copper wirings 12a, 12b and the like are deteriorated by heat. Therefore, it is preferable to form the ZrN cap layer 13 at a substrate temperature of 400 ° C or lower. Good.
  • the deposition pressure of the ZrN cap layer 13 is preferably a low pressure of about 2 to 50 Pa.
  • the ZrN cap layer 13 is annealed by introducing nitrogen into the chamber while the substrate is heated to this temperature. Thereby, nitrogen is taken into the film of the ZrN cap layer 13 and the nitrogen concentration of the ZrN cap layer 13 is increased.
  • the pressure of the nitrogen atmosphere is set to lkPa to lMPa, for example lOOkPa. If this nitrogen annealing is performed at a pressure higher than atmospheric pressure, transfer the substrate 1 to the pressurized chamber and perform annealing.
  • the substrate temperature of the nitrogen anneal is preferably 200 ° C or higher.
  • the substrate temperature exceeds 400 ° C, the copper wirings 12a, 12b, etc. may be deteriorated by heat. Therefore, it is preferable to perform nitrogen annealing on the ZrN cap layer 13 at a substrate temperature of 400 ° C. or lower.
  • a fifth interlayer insulating film 16 made of silicon oxide silicon is sequentially formed on the ZrN cap layer 13 by the CVD method.
  • a zirconium nitride film having a thickness of 20 or less may be used.
  • a third wiring groove 16a partially overlapping the first copper wiring 12a is formed, and at the same time A fourth wiring groove 16b that partially overlaps the second copper wiring 12b is formed.
  • the fourth interlayer insulating film 14 the first via hole 14a is formed in the portion where the third wiring groove 16a and the first copper wiring 12a overlap, and at the same time, the fourth wiring groove 16b and the second copper wiring 14a are formed.
  • a second via hole 14b is formed where the wiring 12b overlaps.
  • the order of the formation of the first and second via holes 14a, 14b and the formation of the third and fourth wiring grooves 16a, 16b may be the third and fourth wiring grooves 16a, whichever comes first.
  • the silicon nitride film 15 functions as an etching stop layer.
  • the ZrN cap layer 13 is used as an etching stop layer. Function.
  • the via holes 14a and 14b are formed on the first-layer copper wirings 12a and 12b, respectively, and expose the conductive layer 13a of the ZrN cap layer 13 (see FIG. 1B).
  • the inner and bottom surfaces of the first and second via holes 14a, 14b and the third and fourth wiring grooves 16a, 16b, and the fifth A barrier metal layer 17 is formed on the upper surface of the interlayer insulating film 16 to a thickness of 5 to 10 nm.
  • the noria metal layer 17 is formed by a sputtering method.
  • the tantalum (Ta), the tantalum nitride (TaN), or a laminated film of these layers, or a titanium nitride ( ⁇ ) force is also formed.
  • a copper seed layer 18 is formed on the noria metal layer 17 to a thickness of 30 to 100 nm by sputtering.
  • a copper layer 19 is formed on the copper seed layer 18 by an electrolytic plating method, whereby the third and fourth wiring grooves 16a and 16b and the first and second via holes 14a and 14b are completely formed. Embed.
  • the copper seed layer 18 becomes a part of the copper layer 19.
  • the copper layer 19 and the barrier metal layer 17 formed on the upper surface of the fifth interlayer insulating film 16 are removed by a CMP (Chemical Mechanical Polishing) method.
  • CMP Chemical Mechanical Polishing
  • the copper layer 19, the copper seed layer 18 and the noria metal layer 17 remaining in each of the first and second via holes 14a and 14b are used as the first and second vias 20a and 20b.
  • the copper layer 19 and the noria metal layer 17 remaining in the third and fourth wiring grooves 16a and 16b are used as the third and fourth copper wirings 21a and 21b.
  • the third copper wiring 21a is electrically connected to the first copper wiring 12a via the first via 20a and the ZrN cap layer 13.
  • the fourth copper wiring 21b is electrically connected to the second copper wiring 12b through the second via 20b and the ZrN cap layer 13.
  • a second cap layer having a thickness of 20 nm or less made of the same material as the ZrN cap layer 13 on the third and fourth copper wirings 21a, 21b and the fifth interlayer insulating film 16 ( After forming the interlayer insulating film, the copper wiring and the via according to the above-described process, a copper wiring having a multilayer structure is formed on the second interlayer insulating film 8. become.
  • the first and second via holes 20a, 20b are formed in the low resistance layer 13 of the ZrN cap layer 13. They are electrically connected to the first and second copper wirings 12a and 12b through a (see FIG. 1 (b)).
  • the first ZrN cap layer 13 becomes the high resistance layer 13b on the second interlayer insulating film 10 made of oxide silicon, the third copper wiring 21a and the fourth copper wiring 21b There is no short circuit through the 1 Zr N cap layer 13.
  • zirconium nitride is chemically stable and is less susceptible to oxidation than copper, there is no risk of oxidation or corrosion due to exposure through via holes or wiring trenches.
  • Conductive Z-insulating protective film that prevents oxidation and corrosion.
  • the inventor of the present application investigated what inconvenience occurs when ammonia is added to the deposition gas of the zirconium nitride film as in Patent Document 2. The results are shown in Fig. 5.
  • ammonia is not used when the ZrN cap layer 13 is formed, so that device failure due to particles can be prevented.
  • the flow rate of ammonia is 5 sccm or less
  • ammonia having this flow rate or less may be added to the deposition gas for the ZrN cap layer 13.
  • the flow rate of nitrogen which is a carrier gas of TDEAZ
  • the ammonia having a flow rate of 5 sccm or less has a flow rate of 1Z40 or less of the carrier gas.
  • annealing is performed on the ZrN cap layer 13 in a nitrogen atmosphere to compensate for the lack of nitrogen in the ZrN cap layer 13. did.
  • FIGS. 6 (a) and 6 (b) are enlarged cross-sectional views schematically showing the mechanism of this nitrogen annealing, FIG. 6 (a) is before annealing, and FIG. 6 (b) is the ZrN cap in annealing.
  • FIG. 4 is an enlarged sectional view of a layer 13.
  • the ZrN cap layer 13 before annealing is formed without using ammonia gas which is a nitrogen supply source, so that nitrogen (N) is deficient in the film and sparse.
  • the film quality is excellent.
  • the ZrN cap layer 13 is formed by forming the ZrN cap layer 13 by adding the ammonia gas to the film forming gas or by reducing the amount of the applied force. Nitrogen can be easily diffused into the ZrN cap layer 13 by annealing in a nitrogen atmosphere while suppressing the generation of particles during the formation of the layers.
  • FIG. 7 is a diagram summarizing the advantages obtained by the present embodiment by investigating.
  • Embodiments A and B do not add ammonia to the deposition gas of the ZrN cap layer 13 and anneal in a nitrogen-containing atmosphere after the deposition of the ZrN cap layer 13.
  • the sample which performed is shown.
  • the ZrN cap layer 13 was directly formed on an 8-inch silicon wafer in order to count the number of particles.
  • Embodiment B the ZrN cap layer 13 was formed on the copper film in order to see the copper diffusion.
  • FIG. 8 shows a ZrN cap layer using the sample of Embodiment B and Comparative Examples C and D in FIG.
  • FIG. 6 is a diagram obtained by investigating the diffusion of copper into 13 by XPS (X-ray Photoelectron Spectroscopy).
  • the nitrogen concentration in the film is 40% or more, whereas in Comparative Example C, which does not perform nitrogen annealing, the nitrogen concentration is less than 10%. As a result, it was confirmed that the nitrogen concentration of the ZrN cap layer 13 was increased by the nitrogen annealing.
  • the oxygen concentration is as low as about 10%
  • Comparative Example C immediately after film formation
  • oxygen is 40% or more and the acid resistance is low. I understand that it is a trap. This is because, in Comparative Example C, the ZrN cap layer 13 was formed without using ammonia, so the film quality of the ZrN cap layer 13 became sparse, and oxygen easily penetrated into the film and zirconium was oxidized. It is believed that there is.
  • the low oxygen concentration in Embodiment B is that the oxygen concentration of the ZrN cap layer 13 is improved by increasing the nitrogen concentration with nitrogen annealing, and oxygen is not easily taken into the ZrN cap layer 13. It is thought that this is because of summer.
  • the ZrN cap layer 13 formed in the present embodiment is a dense film having an extremely small number of particles when forming it and a nitrogen concentration of 40% or more. As a result, it is possible to obtain a highly reliable copper wiring with a high withstand voltage of the insulating layer 13b. It becomes ability. Further, since the oxygen concentration of the ZrN cap layer 13 is low, the copper wiring 12a, the copper wiring 12a,
  • the CVD chamber was used continuously to perform nitrogen annealing of FIG. 2A.
  • the nitrogen annealing is performed in a mixed atmosphere of nitrogen ions and nitrogen radicals.
  • FIG. 9 is a top view of the semiconductor manufacturing apparatus 100 used in the present embodiment.
  • the semiconductor manufacturing apparatus 100 includes a load lock chamber 101 for waiting a plurality of silicon substrates 1, a CVD chamber 102 for forming a zirconium nitride film, and a nitrogen chamber 103.
  • These chambers 101 to 103 are arranged around a transfer channel 104 in which the inside is a nitrogen atmosphere, and delivery of the silicon substrate 1 to each chamber 101 to 103 is performed by a robot 105.
  • a slit valve 10 is provided between each of the chambers 101 to 103 and the transfer chamber 104.
  • the slit valves 106 to 108 are opened when the silicon substrate 1 is delivered by the robot 105, and are closed when processing is performed in the chambers 102 and 103, and the chambers are hermetically sealed.
  • FIG. 10 is a configuration diagram of the nitrogen annealing chamber 103.
  • this chamber 103 has a gas inlet 203 for introducing nitrogen at the upper part and an exhaust outlet 204 for exhausting nitrogen at the lower part.
  • the exhaust port 204 is connected to an exhaust pump (not shown), and the interior of the chamber 103 is reduced to a predetermined pressure by the exhaust pump.
  • a substrate mounting table 205 with a built-in heater 206 is provided on the bottom surface of the chamber 103, and the silicon substrate 1 on the substrate mounting table 205 is heated to a predetermined temperature by the heater 206.
  • a magnetron 20 for generating a microwave is formed on the upper side surface of the chamber 103. 4 is connected.
  • the frequency of the microwave is not particularly limited, but a microwave of 2 GHz to 5 GHz, preferably 2.5 GHz is generated in the magnetron 204.
  • a shield plate 205 made of metal having a plurality of holes 205a is disposed at an intermediate height of the chamber 103.
  • the shield plate 205 is electrically connected to the chamber 103 that is at ground potential.
  • the chamber 103 is partitioned into a plasma generation chamber 103a and a nitriding chamber 103b by the shield plate 205.
  • plasma is generated by microwaves in the nitrogen power plasma generation chamber 103a introduced from the gas introduction port 203.
  • Plasma generation chamber 1 is generated by microwaves in the nitrogen power plasma generation chamber 103a introduced from the gas introduction port 203.
  • the silicon substrate 1 Since the plasma component in 03a does not enter the nitriding chamber 103b by the action of the shield plate 205, the silicon substrate 1 is in a state where the plasma atmosphere force is also isolated.
  • this chamber 103 only nitrogen radicals and nitrogen ions are selectively guided to the silicon substrate 1 side, and the ZrN cap layer 13 on the silicon substrate 1 is directed to the silicon substrate 1 side by these nitrogen radicals and nitrogen ions. Nitrogen annealing is performed.
  • The! /, ZrN cap layer 13 (see Fig. 1 (b)) is formed in 02.
  • the silicon substrate 1 is taken out from the CVD chamber 102 and transferred to the nitrogen annealing chamber 103 via the transfer chamber 104.
  • the transfer chamber 104 has a nitrogen atmosphere and does not contain oxygen. Therefore, the silicon substrate 1 is not exposed to an oxygen-containing atmosphere.
  • the nitrogen annealing step shown in FIG. 2 (a) is performed in the nitrogen annealing chamber 103.
  • the conditions of the nitrogen annealing are not particularly limited, but in this embodiment, the nitrogen gas flow rate is 500 sccm, the pressure is 700 Pa, the microwave frequency is 2.5 GHz, the microwave power is 700 W, the basic Nitrogen annealing is performed at a plate temperature of 100 ° C to 400 ° C, for example, 200 ° C.
  • nitrogen annealing is performed with nitrogen radicals or nitrogen ions because of the reactivity with the cap layer 13, so even if the lower limit of the substrate temperature is set to 100 ° C. lower than that of the first embodiment, the cap is used. A sufficient amount of nitrogen can be diffused into layer 13.
  • the ZrN cap layer 13 is exposed to an atmosphere containing nitrogen radicals and nitrogen ions for nitriding. According to this, as in the first embodiment, the ZrN cap layer
  • the silicon force is transferred to the nitrogen annealing chamber 103 via the transfer chamber 104 in a nitrogen atmosphere. Since the substrate 1 is transferred, the ZrN cap layer 13 is not exposed to the oxygen-containing atmosphere. As a result, oxygen can be prevented from being taken into the ZrN cap layer 13 before the nitrogen annealing is performed after the ZrN cap layer 13 is formed, and an increase in the oxygen content in the ZrN cap layer 13 can be suppressed. . As a result, it is possible to prevent the copper wirings 12a and 12b (see FIG. 1 (b)) under the ZrN cap layer 13 from being oxidized, and to obtain low-resistance and high-reliability copper wirings 12a and 12b. It becomes possible.
  • deposition of the ZrN cap layer 13 and nitrogen annealing using nitrogen radicals or nitrogen ions were performed in separate chambers 102 and 103 (see FIG. 9).
  • FIG. 11 is a configuration diagram of a processing chamber 301 provided in the semiconductor manufacturing apparatus used in the present embodiment.
  • a substrate mounting table 305 incorporating a heater 306 is provided, and an exhaust port 309 for exhausting the gas in the chamber 301 is provided.
  • the silicon substrate 1 on the substrate mounting table 305 is heated to a predetermined temperature by the heater 306.
  • the exhaust port 309 is connected to an exhaust pump (not shown), and the exhaust pump 309 No. 301 is depressurized to a predetermined pressure.
  • a shower head 305 that also serves as a shield plate against microwaves is provided on the upper portion of the processing chamber 301 so as to face the substrate mounting table 305.
  • the shower head 305 is made of metal and is maintained at the ground potential.
  • the interior of the shower head 305 is a cavity 305b, and a nitrogen gas pipe 307 and a zirconium nitride source gas pipe 308 are provided in communication with the cavity 305b.
  • Each of the pipes 307, 308 is provided with a nitrogen gas mass flow controller (nitrogen gas flow control unit) 311 and a raw material gas mass flow controller (raw material gas flow control unit) 312.
  • the gas flow rate in 308 is adjusted by these mass flow controllers 311, 312.
  • Each of the mass flow controllers 311 and 312 also has a function of cutting off the gas flow just by adjusting the gas flow rate.
  • Microwaves are supplied from the magnetron 304 to the cavity 305b inside the shower head 305.
  • the magnetron 304 and the mass flow controllers 311 and 312 are controlled by control signals S 1 to S 3 output from the control unit 315.
  • the following processing performed in the processing chamber 301 is performed under the control of the control unit 315.
  • the silicon substrate 1 is put into the chamber 301 of FIG.
  • TDEAZ vaporized at a temperature of 110 ° C to 140 ° C in the vaporizer is introduced into the shower head 305 from the raw gas piping 308 together with the carrier gas.
  • the carrier gas is a nitrogen gas having a flow rate of S200 to 500 sccm, more preferably 300 sccm.
  • the supply amount of vaporized TDEAZ is, for example, 0.01 to 0.1 lg / min, and more preferably 0.05 gZmin.
  • the TDEAZ and the carrier gas supplied in this manner are uniformly dispersed on the surface of the silicon substrate 1 by a plurality of gas dispersion holes 305a provided in the shower head 305.
  • the cap layer 13 made of zirconium nitride has a thickness of about 10 nm. Shape Will be made.
  • the magnetron 304 is turned off and nitrogen is not supplied from the nitrogen pipe 307.
  • nitrogen is supplied into the chamber 301 from the nitrogen gas pipe 307 at a flow rate of about 500 sccm.
  • the power of the magnetron 304 is turned on, and a microwave having a power of 700 W and a frequency of 2 GHz to 5 GHz, preferably 2.5 GHz is supplied to the cavity 305 b of the shower head 305.
  • a nitrogen annealing process (see FIG. 2 (a)) is performed on the ZrN cap layer 13 under the conditions that the substrate temperature is 200 ° C. and the pressure is 700 Pa, and the ZrN cap layer 13 is nitrided.
  • the substrate temperature in this nitrogen annealing process is not particularly limited, and a substrate temperature of 100 ° C. to 400 ° C. may be adopted as in the second embodiment!
  • annealing is performed on the ZrN cap layer 13 in an atmosphere containing nitrogen radicals and nitrogen ions, as in the second embodiment. Therefore, similarly to the first embodiment, it is possible to obtain the ZrN cap layer 13 having a high nitrogen concentration and rich in copper noria.
  • the film formation of the ZrN cap layer 13 and the nitrogen annealing are performed in the same chamber 301, so that the ZrN cap layer 13 is in an oxygen-containing atmosphere.
  • Nitrogen annealing can be performed on the ZrN cap layer 13 while preventing exposure to. Therefore, oxygen can be prevented from being taken into the ZrN cap layer 13 before nitrogen annealing, and the oxygen concentration in the ZrN cap layer 13 can be reduced.
  • the copper wiring 12a, 12b can be prevented from being oxidized by oxygen contained in the ZrN cap layer 13, and the copper wiring 12a, 12b can be prevented from oxidizing and becoming high resistance. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

[PROBLEMS] To provide a method for manufacturing a semiconductor device having a cap layer having high barrier characteristics and to provide a semiconductor manufacturing apparatus which can form the cap layer having the high barrier characteristics. [MEANS FOR SOLVING PROBLEMS] A semiconductor device manufacturing method is provided with a step of forming a third interlayer insulating film (10) above a silicon substrate (1); a step of forming a first wiring groove (10a) or a first hole on the third interlayer insulating film (10); a step of forming a first copper wiring (12a) by embedding copper in the first wiring groove (10a) and the first hole; a step of forming a zirconium nitride film as a cap layer (13) on the third interlayer insulating film (10) and the first copper wiring (12a); and a step of annealing the cap layer (13) in the atmosphere containing nitrogen.

Description

明 細 書  Specification
半導体装置の製造方法、及び半導体製造装置  Semiconductor device manufacturing method and semiconductor manufacturing apparatus
技術分野  Technical field
[0001] 本発明は、半導体装置の製造方法、及び半導体製造装置に関する。  The present invention relates to a semiconductor device manufacturing method and a semiconductor manufacturing apparatus.
背景技術  Background art
[0002] 半導体装置の高集積化とチップサイズの縮小化に伴い、配線の微細化及び多層 配線化が加速的に進められて!/ヽる。こうした多層配線構造を有するロジックデバイス では、配線抵抗を低減するために、低抵抗金属である銅を材料として配線を形成す ることが実用化されている。  [0002] With the high integration of semiconductor devices and the reduction in chip size, miniaturization of wiring and multilayer wiring have been accelerated! / Speak. In a logic device having such a multilayer wiring structure, in order to reduce wiring resistance, it has been put into practical use to form wiring using copper, which is a low-resistance metal.
[0003] 銅膜はアルミニウム膜に比べてパターユングするのが非常に困難であるため、銅膜 のパター-ングにより銅配線を形成するは極めて難しい。そこで、通常は、絶縁膜の ホールや溝に銅膜を埋め込んで銅配線を形成するダマシン法を採用することになる  [0003] Since a copper film is very difficult to pattern compared to an aluminum film, it is extremely difficult to form a copper wiring by patterning the copper film. Therefore, the damascene method is usually adopted in which copper wiring is formed by embedding a copper film in the holes and grooves of the insulating film.
[0004] 上下の銅配線は銅プラグによって互いに接続される力 下層の銅配線の表面がプ ロセス中に汚染、腐食、或いは酸化されると、銅プラグと銅配線との間に接続不良が 発生する恐れがある。そのため、銅配線を備えた半導体装置を作製する場合には、 銅配線を保護するためのキャップ層が必要となる。 [0004] The upper and lower copper wirings are connected to each other by copper plugs. If the surface of the lower copper wiring is contaminated, corroded, or oxidized during the process, a connection failure occurs between the copper plug and the copper wiring. There is a fear. Therefore, when manufacturing a semiconductor device provided with copper wiring, a cap layer for protecting the copper wiring is required.
[0005] キャップ層の中でも、窒化ジルコニウム (ZrN)膜は、絶縁膜の上で絶縁性を呈し、且 つ銅配線の上で導電性を呈すると 、う特異な性質を有するので、キャップ層にホー ルを形成しなくても、キャップ層を介して上下の銅配線同士が電気的に接続されると いう利点が得られる。  Among the cap layers, the zirconium nitride (ZrN) film has an insulating property on the insulating film and conductivity on the copper wiring. Even if no hole is formed, there is an advantage that the upper and lower copper wirings are electrically connected via the cap layer.
[0006] このように窒化ジルコニウム膜をキャップ層として形成する点については特許文献 1 に開示されている。  [0006] Patent Document 1 discloses that the zirconium nitride film is formed as a cap layer in this way.
[0007] 一方、特許文献 2によれば、従来法で形成された窒化ジルコニウム膜が窒素リッチ であることが問題とされ、窒化ジルコニウム膜の成膜ガスにアンモニア (NH )を添加す  [0007] On the other hand, according to Patent Document 2, it is considered that the zirconium nitride film formed by the conventional method is nitrogen-rich, and ammonia (NH 3) is added to the deposition gas for the zirconium nitride film.
3 ることで膜中の窒素が低減するとされている。  Therefore, nitrogen in the film is supposed to be reduced.
[0008] キャップ層として形成される窒化ジルコニウム膜は、銅配線の保護という役割の他に 、配線中の銅が周囲の絶縁膜に拡散するのを防止し、隣接する銅配線同士が電気 的にショートしてしまうのを防ぐバリア層としての役割も担う。更に、層間絶縁膜や銅 膜等の他の膜を形成するときと同様に、窒化ジルコニウム膜を形成するときもパーテ イタルの発生をなるベく抑え、パーティクルによるデバイス不良を低減し、歩留まりを 向上させる必要がある。 [0008] The zirconium nitride film formed as the cap layer has a role of protecting the copper wiring. It also serves as a barrier layer that prevents copper in the wiring from diffusing into the surrounding insulating film and prevents electrical shorting between adjacent copper wirings. Furthermore, as with the formation of other films such as interlayer insulation films and copper films, when forming a zirconium nitride film, the generation of particulates should be suppressed, device defects caused by particles can be reduced, and yields can be improved. It is necessary to let
特許文献 1 :特開 2003— 17496号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-17496
特許文献 2 :特開 2002— 146535号公報  Patent Document 2: JP 2002-146535 A
発明の開示  Disclosure of the invention
[0009] 本発明の目的は、ノリア性の高いキャップ層を備えた半導体装置の製造方法、及 びバリア性の高いキャップ層を形成することができる半導体製造装置を提供すること にある。  An object of the present invention is to provide a method for manufacturing a semiconductor device provided with a cap layer having a high noria property, and a semiconductor manufacturing apparatus capable of forming a cap layer having a high barrier property.
[0010] 本発明の一観点によれば、半導体基板の上方に第 1絶縁膜を形成する工程と、前 記第 1絶縁膜に第 1溝又は第 1ホールを形成する工程と、前記第 1溝又は前記第 1ホ 一ルに銅を埋め込んで第 1銅配線を形成する工程と、前記第 1絶縁膜と前記第 1銅 配線の上に、キャップ層として窒化ジルコニウム膜を形成する工程と、窒素含有雰囲 気中において前記キャップ層をァニールする工程とを有す半導体装置の製造方法 が提供される。  [0010] According to one aspect of the present invention, a step of forming a first insulating film above a semiconductor substrate, a step of forming a first groove or a first hole in the first insulating film, and the first Forming a first copper wiring by burying copper in the trench or the first hole; forming a zirconium nitride film as a cap layer on the first insulating film and the first copper wiring; There is provided a method for manufacturing a semiconductor device, comprising the step of annealing the cap layer in a nitrogen-containing atmosphere.
[0011] 本発明によれば、窒素含有雰囲気中においてキャップ層をァニールするので、キヤ ップ層を構成する窒化ジルコニウム膜中の窒素濃度が高められ、銅に対するキャップ 層のバリア性が高められる。  According to the present invention, since the cap layer is annealed in a nitrogen-containing atmosphere, the nitrogen concentration in the zirconium nitride film constituting the cap layer is increased, and the barrier property of the cap layer against copper is improved.
[0012] また、キャップ層を形成する工程において、窒化ジルコニウムの原料ガスとして TDE AZ(Zr[N(C H ) ] )ガスを用い、且つ、その原料ガスにアンモニアガスを添加せずに、  [0012] Further, in the step of forming the cap layer, TDE AZ (Zr [N (C H)]) gas is used as a raw material gas for zirconium nitride, and ammonia gas is not added to the raw material gas.
2 5 2 4  2 5 2 4
CVD(Chemical Vapor Deposition)法によりキャップ層を形成するのが好ましい。  The cap layer is preferably formed by a CVD (Chemical Vapor Deposition) method.
[0013] このようにアンモニアガスを使用しないことで、キャップ層の形成時に発生するパー ティクル数を低減でき、パーティクルに伴うデバイス不良を防止することが可能となる [0013] By not using ammonia gas in this way, the number of particles generated during the formation of the cap layer can be reduced, and device defects associated with particles can be prevented.
[0014] 更に、アンモニアを使用しないで形成された窒化ジルコニウム膜は、膜質が疎にな るため、窒素含有雰囲気中におけるァニール工程にぉ 、て膜中に窒素が容易に入 り込むようになり、窒素濃度が高く銅ノリア性に優れたキャップ層を得ることが可能と なる。 Furthermore, since the zirconium nitride film formed without using ammonia has a poor film quality, nitrogen easily enters the film during the annealing process in a nitrogen-containing atmosphere. As a result, it becomes possible to obtain a cap layer having a high nitrogen concentration and excellent copper noria properties.
[0015] また、キャップ層を形成する工程、及び該キャップ層をァニールする工程を、同じチ ヤンバ内で行うことが好ましい。  [0015] Preferably, the step of forming the cap layer and the step of annealing the cap layer are performed in the same chamber.
[0016] 同じチャンバ内でこれらの工程を行うことで、ァニール前にキャップ層が酸素含有 雰囲気に曝されないので、キャップ層に酸素が取り込まれ難くなり、酸素濃度が低く 下地の第 1銅配線を酸化させ難いキャップ層を形成することが可能となる。  By performing these steps in the same chamber, the cap layer is not exposed to an oxygen-containing atmosphere before annealing, so that it is difficult for oxygen to be taken into the cap layer, the oxygen concentration is low, and the underlying first copper wiring is formed. It becomes possible to form a cap layer that is difficult to oxidize.
[0017] また、本発明の別の観点によれば、チャンバと、前記チャンバ内に設けられ、半導 体基板が載置される基板載置台と、前記基板載置台に設けられたヒータと、前記チヤ ンバ内において前記基板載置台の上方に設けられ、内部が空洞であると共に、該空 洞に連通するガス分散孔が形成されたシャワーヘッドと、前記シャワーヘッドの内部 の空洞にマイクロ波を供給するマグネトロンと、前記シャワーヘッドの内部の空洞に連 通する窒素ガス用配管及び窒化ジルコニウム原料ガス用配管と、前記窒素ガス用配 管に設けられた窒素ガス流量調節部と、前記窒化ジルコニウム原料ガス用配管に設 けられた原料ガス流量調節部と、前記マグネトロン、前記窒素ガス流量調節部、及び 前記原料ガス流量調節部を制御する制御部とを有し、前記制御部が、前記チャンバ 内にお 、て窒化ジルコニウム膜を形成するときに、前記原料ガス流量調節部を制御 してジルコニウム原料ガスを前記シャワーヘッドに導入すると共に、前記チャンバ内 にお 、て窒素ァニールを行うときに、前記窒素ガス流量調節部を制御して窒素ガス を前記シャワーヘッドに導入し、且つ前記マグネトロンを制御して前記シャワーヘッド の前記空洞にマイクロ波を導入する半導体製造装置が提供される。  [0017] Further, according to another aspect of the present invention, a chamber, a substrate mounting table provided in the chamber and on which a semiconductor substrate is mounted, a heater provided on the substrate mounting table, A shower head provided above the substrate mounting table in the chamber and having a hollow inside and a gas dispersion hole communicating with the hollow is formed, and a microwave is applied to the cavity inside the shower head. A magnetron to be supplied; a nitrogen gas pipe and a zirconium nitride raw material gas pipe communicating with a cavity inside the shower head; a nitrogen gas flow rate adjusting unit provided in the nitrogen gas pipe; and the zirconium nitride raw material A raw material gas flow rate adjusting unit provided in the gas pipe, a magnetron, the nitrogen gas flow rate adjusting unit, and a control unit for controlling the raw material gas flow rate adjusting unit. When the zirconium nitride film is formed in the chamber, the raw material gas flow rate control unit is controlled to introduce the zirconium raw material gas into the shower head, and in the chamber, the nitrogen annealing gas is introduced into the chamber. A semiconductor manufacturing apparatus that controls the nitrogen gas flow rate control unit to introduce nitrogen gas into the shower head and controls the magnetron to introduce microwaves into the cavity of the shower head. The
[0018] 本発明によれば、一つのチャンバ内において、窒化ジルコニウム膜の成膜と、窒素 含有雰囲気中での窒化ジルコニウム膜に対するァニールとを連続的に行うことができ る。よって、酸素含有雰囲気に窒化ジルコニウム膜が曝される前にァニールを行うこ とが可能となるので、酸素濃度が低く銅配線等を酸化させ難 ヽ窒化ジルコニウム膜が 得られると共に、窒素含有雰囲気におけるァニールによってその窒化ジルコニウム膜 の窒素濃度を高め、銅に対するバリア性を向上させることができる。 [0018] According to the present invention, it is possible to continuously perform the formation of a zirconium nitride film and the annealing of the zirconium nitride film in a nitrogen-containing atmosphere in one chamber. Therefore, annealing can be performed before the zirconium nitride film is exposed to the oxygen-containing atmosphere. Therefore, it is difficult to oxidize copper wiring or the like with a low oxygen concentration. Annealing can increase the nitrogen concentration of the zirconium nitride film and improve the barrier property against copper.
図面の簡単な説明 [0019] [図 1]図 1 (a)、 (b)は、本発明の第 1実施形態に係る半導体装置の製造工程を示す 断面図(その 1)である。 Brief Description of Drawings FIG. 1 (a) and (b) are cross-sectional views (part 1) showing a manufacturing process of a semiconductor device according to a first embodiment of the present invention.
[図 2]図 2 (a)、(b)は、本発明の第 1実施形態に係る半導体装置の製造工程を示す 断面図(その 2)である。  FIGS. 2 (a) and 2 (b) are cross-sectional views (part 2) showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
[図 3]図 3 (a)、 (b)は、本発明の第 1実施形態に係る半導体装置の製造工程を示す 断面図(その 3)である。  3 (a) and 3 (b) are cross-sectional views (part 3) showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
[図 4]図 4は、本発明の第 1実施形態に係る半導体装置の製造工程を示す断面図 (そ の 4)である。  FIG. 4 is a cross-sectional view (part 4) showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
[図 5]図 5は、窒化ジルコニウム膜の成膜ガスに添加するアンモニアガスの流量とパ 一ティクルとの関係を示すグラフである。  FIG. 5 is a graph showing the relationship between the flow rate of ammonia gas added to the deposition gas for the zirconium nitride film and the particles.
[図 6]図 6 (a)、(b)は、本発明の第 1実施形態における窒素ァニールのメカニズムを 模式的に示す拡大断面図である。  FIGS. 6 (a) and 6 (b) are enlarged cross-sectional views schematically showing the mechanism of nitrogen annealing in the first embodiment of the present invention.
[図 7]図 7は、本発明の第 1実施形態により得られる利点を調査してまとめた図である  [Fig. 7] Fig. 7 is a diagram summarizing the advantages obtained by the first embodiment of the present invention.
[図 8]図 8は、本発明の第 1実施形態と比較例のそれぞれのキャップ層への銅の拡散 を XPS(X- ray Photoelectron Spectroscopy)法により調査して得られた図である。 FIG. 8 is a diagram obtained by investigating the diffusion of copper into the cap layers of the first embodiment and the comparative example of the present invention by XPS (X-ray Photoelectron Spectroscopy) method.
[図 9]図 9は、本発明の第 2実施形態で使用される半導体製造装置の上面図である。  FIG. 9 is a top view of a semiconductor manufacturing apparatus used in the second embodiment of the present invention.
[図 10]図 10は、本発明の第 2実施形態で使用される半導体製造装置が備える窒素 ァニールチャンバの構成図である。  FIG. 10 is a configuration diagram of a nitrogen annealing chamber provided in the semiconductor manufacturing apparatus used in the second embodiment of the present invention.
[図 11]図 11は、本発明の第 3実施形態で使用される半導体製造装置が備える処理 チャンバの構成図である。  FIG. 11 is a configuration diagram of a processing chamber provided in a semiconductor manufacturing apparatus used in the third embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下に、本発明の実施の形態について、添付図面を参照しながら詳細に説明する Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0021] (1)第 1実施形態 [0021] (1) First embodiment
図 1〜図 3は、本発明の第 1実施形態に係る半導体装置の製造工程を示す断面図 である。  1 to 3 are cross-sectional views showing manufacturing steps of the semiconductor device according to the first embodiment of the present invention.
[0022] まず、図 1 (a)に示す断面構造について説明する。 [0023] p型のシリコン (半導体)基板 1の上には、能動素子領域を囲む素子分離絶縁層 2が 形成されている。その能動素子領域には MOSトランジスタ 3が形成されている。 MO Sトランジスタ 3は、シリコン基板 1上にゲート絶縁膜 3aを介して形成されたゲート電極 3bと、ゲート電極 3bの両側のシリコン基板 1内に形成された LDD(Lightly Doped Drai n)構造の第 1、第 2の n型不純物拡散層 3c、 3dを有している。また、ゲート電極 3bの 側面には絶縁性サイドウォール 3eが形成されている。 First, the cross-sectional structure shown in FIG. 1 (a) will be described. On the p-type silicon (semiconductor) substrate 1, an element isolation insulating layer 2 surrounding the active element region is formed. A MOS transistor 3 is formed in the active element region. The MOS transistor 3 includes a gate electrode 3b formed on the silicon substrate 1 via a gate insulating film 3a, and a first LDD (Lightly Doped Drain) structure formed in the silicon substrate 1 on both sides of the gate electrode 3b. 1. It has second n-type impurity diffusion layers 3c and 3d. Insulating sidewalls 3e are formed on the side surfaces of the gate electrode 3b.
[0024] シリコン基板 1上には、 MOSトランジスタ 3を覆う酸化シリコン(SiO )よりなる第 1の  On the silicon substrate 1, a first made of silicon oxide (SiO 2) covering the MOS transistor 3 is formed.
2  2
層間絶縁膜 4が形成されている。第 1の層間絶縁膜 4のうち、第 1の n型不純物拡散 層 3cと第 2の n型不純物拡散層 3dの上にはそれぞれ第 1のコンタクトホール 4aと第 2 のコンタクトホール 4bが形成されて!、る。  An interlayer insulating film 4 is formed. Of the first interlayer insulating film 4, a first contact hole 4a and a second contact hole 4b are formed on the first n-type impurity diffusion layer 3c and the second n-type impurity diffusion layer 3d, respectively. Te!
[0025] 第 1及び第 2のコンタクトホール 4a、 4b内には、それぞれ第 1の導電性プラグ 5aと第 2の導電性プラグ 5bが埋め込まれている。第 1及び第 2の導電性プラグ 5a, 5bは、そ れぞれ窒化チタン膜とタングステン膜の二層構造を有している。  [0025] A first conductive plug 5a and a second conductive plug 5b are embedded in the first and second contact holes 4a and 4b, respectively. The first and second conductive plugs 5a and 5b have a two-layer structure of a titanium nitride film and a tungsten film, respectively.
[0026] 第 1の層間絶縁膜 4の上には、第 2の導電性プラグ 5bに接続されるアルミニウムより なる一層目配線 7が形成されている。また、第 1の層間絶縁膜 4と一層目配線 7の上 には、酸ィ匕シリコン、 BPSG、 PSG等のいずれかからなる第 2の層間絶縁膜 8が形成 されている。第 2の層間絶縁膜 8のうち第 1の導電性プラグ 5aの上には、コンタクトホ ール 8aが形成され、その中には窒化チタン膜とタングステン膜の二層構造を有する 第 3の導電性プラグ 9が埋め込まれて 、る。  [0026] On the first interlayer insulating film 4, a first layer wiring 7 made of aluminum connected to the second conductive plug 5b is formed. On the first interlayer insulating film 4 and the first-layer wiring 7, a second interlayer insulating film 8 made of any of silicon oxide, BPSG, PSG, etc. is formed. A contact hole 8a is formed on the first conductive plug 5a in the second interlayer insulating film 8, and a third conductive film having a two-layer structure of a titanium nitride film and a tungsten film is formed therein. Plug 9 is embedded.
[0027] 第 2の層間絶縁膜 8と第 3の導電性プラグ 9は、膜厚 350應の酸ィ匕シリコンよりなる 第 3の層間絶縁膜 10に覆われている。そして、第 3の層間絶縁膜 10には第 1の配線 溝 10aと第 2の配線溝 10bが形成されて 、る。  The second interlayer insulating film 8 and the third conductive plug 9 are covered with a third interlayer insulating film 10 made of 350 nm thick silicon oxide. In the third interlayer insulating film 10, a first wiring groove 10a and a second wiring groove 10b are formed.
[0028] 第 1の配線溝 10aは、その一部が第 3の導電性プラグ 9に重なる形状を有している。  [0028] The first wiring groove 10a has a shape in which a part thereof overlaps the third conductive plug 9.
第 1の配線溝 10aの中にはタンタル、窒化タンタル、窒化チタンなどのノリアメタル層 1 laと銅層 1 lbからなる多層構造を有する第 1の銅配線 12aが形成されて 、る。また 、第 2の配線溝 10b内には、第 1の銅配線 12aと同じ層構造を有する第 2の銅配線 12 bが形成されている。  In the first wiring trench 10a, a first copper wiring 12a having a multilayer structure composed of a noria metal layer 1la such as tantalum, tantalum nitride, and titanium nitride and 1 lb of a copper layer is formed. A second copper wiring 12b having the same layer structure as the first copper wiring 12a is formed in the second wiring groove 10b.
[0029] 次に、図 1 (b)に示す断面構造を得るまでの工程について説明する。 [0030] まず、不図示の CVDチャンバ内にシリコン基板 1を入れ、基板温度を約 300°Cに安 定させる。そして、常温で液体であるテトラキスジェチルァミノジルコニウム (Zr[N(C H Next, steps required until a sectional structure shown in FIG. [0030] First, the silicon substrate 1 is placed in a CVD chamber (not shown), and the substrate temperature is stabilized at about 300 ° C. Then, tetrakisjetylaminozirconium (Zr [N (CH
2 5 twenty five
) ]: TDEAZ)を気化器において 110°C〜140°Cの温度で気化し、気化した TDEAZを]]: TDEAZ) was vaporized at a temperature of 110 ° C to 140 ° C in a vaporizer, and the vaporized TDEAZ was
2 4 twenty four
キャリアガスと共にチャンバに供給する。そのキャリアガスとして、本実施形態では流 量力 200〜500sccm、より好ましくは 300sccmの窒素ガスを採用する。また、気化し た TDEAZの供給量は特に限定されないが、本実施形態では 0. 01〜0. lgZmin、よ り好ましくは 0. 05gZminの供給量とする。  Supply to chamber with carrier gas. As the carrier gas, nitrogen gas having a flow rate of 200 to 500 sccm, more preferably 300 sccm is employed in the present embodiment. Further, the supply amount of the vaporized TDEAZ is not particularly limited, but in this embodiment, the supply amount is set to 0.01 to 0.1 lgZmin, more preferably 0.05 gZmin.
[0031] そして、圧力を約 4Paに安定させた後、この状態を約 1分間維持することにより、図 1 [0031] Then, after the pressure is stabilized at about 4 Pa, this state is maintained for about 1 minute, whereby FIG.
(b)に示すように、第 1、第 2の銅配線 12a、 12bと第 3の層間絶縁膜 10のそれぞれの 上に窒化ジルコニウムよりなるキャップ層 13が CVD法により約 lOnmの厚さに形成さ れる。  As shown in (b), a cap layer 13 made of zirconium nitride is formed on each of the first and second copper wirings 12a, 12b and the third interlayer insulating film 10 to a thickness of about lOnm by the CVD method. It is done.
[0032] このようにして形成された ZrNキャップ層 13は、第 1、第 2配線 12a、 12bに接する領 域では比抵抗値が約 100 Ω 'cm以下の導電層 13aとなり、酸ィ匕シリコンよりなる第 3 の層間絶縁膜 10に接する領域では比抵抗値が略無限大の絶縁層 13bとなる。  [0032] The ZrN cap layer 13 formed in this way becomes a conductive layer 13a having a specific resistance of about 100 Ω'cm or less in the region in contact with the first and second wirings 12a and 12b. In the region in contact with the third interlayer insulating film 10, the insulating layer 13 b having a specific resistance value of approximately infinite is obtained.
[0033] ここで、 ZrNキャップ層 13の厚さを 20nmよりも厚くすると、導電層 13aの抵抗が高く なり、その上に後で形成される銅配線とのコンタクト抵抗が大きくなりすぎる。従って、 ZrNキャップ層 13は 20nm以下の厚さに形成するのが好まし!/、。  [0033] Here, if the thickness of the ZrN cap layer 13 is greater than 20 nm, the resistance of the conductive layer 13a increases, and the contact resistance with the copper wiring formed later on the conductive layer 13a becomes too high. Therefore, the ZrN cap layer 13 is preferably formed to a thickness of 20 nm or less! /.
[0034] 更に、この ZrNキャップ層 13を形成するときの基板温度が低すぎると成膜レートがか なり落ちるため、 200°C以上の基板温度で ZrNキャップ層 13を形成するのが好ま ヽ  [0034] Furthermore, if the substrate temperature when forming the ZrN cap layer 13 is too low, the film formation rate drops considerably. Therefore, it is preferable to form the ZrN cap layer 13 at a substrate temperature of 200 ° C or higher.
[0035] また、その基板温度が高すぎると、既に形成されている銅配線 12a、 12b等が熱に より劣化するので、 400°C以下の基板温度で ZrNキャップ層 13を形成するのが好まし い。 [0035] If the substrate temperature is too high, the already formed copper wirings 12a, 12b and the like are deteriorated by heat. Therefore, it is preferable to form the ZrN cap layer 13 at a substrate temperature of 400 ° C or lower. Good.
[0036] 更に、 ZrNキャップ層 13の成膜圧力が高すぎると、成膜雰囲気において窒化ジルコ 二ゥムの生成反応が促進され、窒化ジルコニウム塊よりなるパーティクルが発生する 恐れがある。そのため、 ZrNキャップ層 13の成膜圧力は、 2〜50Pa程度の低圧力と するのが好ましい。  [0036] Furthermore, if the deposition pressure of the ZrN cap layer 13 is too high, the formation reaction of zirconium nitride is promoted in the deposition atmosphere, and there is a possibility that particles composed of zirconium nitride lumps are generated. Therefore, the deposition pressure of the ZrN cap layer 13 is preferably a low pressure of about 2 to 50 Pa.
[0037] 次に、図 4に示す断面構造を得るまでの工程について説明する。 [0038] まず、上記のチャンバからシリコン基板 1を取り出さずに、チャンバ内の残留ガスを 排気する。このとき、シリコン基板 1は約 400°C程度に加熱された状態となっている。 [0037] Next, steps required until a sectional structure shown in FIG. [0038] First, the residual gas in the chamber is exhausted without removing the silicon substrate 1 from the chamber. At this time, the silicon substrate 1 is heated to about 400 ° C.
[0039] 次いで、図 2 (a)に示すように、基板がこの温度に加熱されている状態でチャンバ内 に窒素を導入することにより、 ZrNキャップ層 13をァニールする。これにより、 ZrNキヤ ップ層 13の膜中に窒素が取り込まれ、 ZrNキャップ層 13の窒素濃度が高められる。 そのァニールの際、窒素雰囲気の圧力は lkPa〜lMPa、例えば lOOkPaとされる。な お、大気圧よりも高い圧力でこの窒素ァニールを行う場合は、加圧チャンバに基板 1 を移し変えてァニールを行えばょ 、。  Next, as shown in FIG. 2 (a), the ZrN cap layer 13 is annealed by introducing nitrogen into the chamber while the substrate is heated to this temperature. Thereby, nitrogen is taken into the film of the ZrN cap layer 13 and the nitrogen concentration of the ZrN cap layer 13 is increased. During the annealing, the pressure of the nitrogen atmosphere is set to lkPa to lMPa, for example lOOkPa. If this nitrogen annealing is performed at a pressure higher than atmospheric pressure, transfer the substrate 1 to the pressurized chamber and perform annealing.
[0040] また、この窒素ァニールにぉ 、て、基板温度が低すぎると、窒素と ZrNキャップ層 13 との反応性が低くなり、 ZrNキャップ層 13に窒素が取り込まれ難くなる。そのため、窒 素ァニールの基板温度は 200°C以上とするのが好ましい。  In addition, if the substrate temperature is too low in this nitrogen anneal, the reactivity between nitrogen and the ZrN cap layer 13 becomes low, and it is difficult for nitrogen to be taken into the ZrN cap layer 13. Therefore, the substrate temperature of the nitrogen anneal is preferably 200 ° C or higher.
[0041] そして、その基板温度が 400°Cを超えると、銅配線 12a、 12b等が熱により劣化する 恐れがある。よって、 400°C以下の基板温度で ZrNキャップ層 13に対して窒素ァニー ルを行うのが好ましい。  [0041] When the substrate temperature exceeds 400 ° C, the copper wirings 12a, 12b, etc. may be deteriorated by heat. Therefore, it is preferable to perform nitrogen annealing on the ZrN cap layer 13 at a substrate temperature of 400 ° C. or lower.
[0042] 次に、図 2 (b)に示すように、膜厚 300應の酸ィ匕シリコンよりなる第 4の層間絶縁膜 1 4と膜厚 50應のシリコン窒化膜 15と膜厚 350應の酸ィ匕シリコンよりなる第 5の層間絶 縁膜 16を CVD法により ZrNキャップ層 13の上に順に形成する。なお、シリコン窒化 膜 15の代わりに膜厚 20應以下の窒化ジルコニウム膜を使用してもよい。  Next, as shown in FIG. 2 (b), a fourth interlayer insulating film 14 made of silicon oxide having a thickness of 300, a silicon nitride film 15 having a thickness of 50, and a thickness of 350 A fifth interlayer insulating film 16 made of silicon oxide silicon is sequentially formed on the ZrN cap layer 13 by the CVD method. Instead of the silicon nitride film 15, a zirconium nitride film having a thickness of 20 or less may be used.
[0043] 続いて、図 3 (a)に示すように、第 5の層間絶縁膜 16をパターユングすることにより、 第 1銅配線 12aに一部が重なる第 3配線溝 16aを形成し、同時に第 2銅配線 12bに 一部が重なる第 4の配線溝 16bを形成する。また、第 4の層間絶縁膜 14をパターニン グすることにより、第 3配線溝 16aと第 1銅配線 12aが重なる部分に第 1のビアホール 14aを形成し、同時に第 4配線溝 16bと第 2銅配線 12bが重なる部分に第 2のビアホ ール 14bを形成する。  Subsequently, as shown in FIG. 3 (a), by patterning the fifth interlayer insulating film 16, a third wiring groove 16a partially overlapping the first copper wiring 12a is formed, and at the same time A fourth wiring groove 16b that partially overlaps the second copper wiring 12b is formed. Also, by patterning the fourth interlayer insulating film 14, the first via hole 14a is formed in the portion where the third wiring groove 16a and the first copper wiring 12a overlap, and at the same time, the fourth wiring groove 16b and the second copper wiring 14a are formed. A second via hole 14b is formed where the wiring 12b overlaps.
[0044] 第 1及び第 2のビアホール 14a、 14bの形成と第 3及び第 4の配線溝 16a、 16bの形 成の順序はどちらが先であってもよぐ第 3及び第 4の配線溝 16a、 16bを形成する際 にシリコン窒化膜 15はエッチングストップ層として機能する。また、第 1及び第 2のビ ァホール 14a、 14bを形成する場合には ZrNキャップ層 13はエッチングストップ層とし て機能する。 [0044] The order of the formation of the first and second via holes 14a, 14b and the formation of the third and fourth wiring grooves 16a, 16b may be the third and fourth wiring grooves 16a, whichever comes first. When forming 16b, the silicon nitride film 15 functions as an etching stop layer. When forming the first and second via holes 14a and 14b, the ZrN cap layer 13 is used as an etching stop layer. Function.
[0045] それらのビアホール 14a、 14bは、それぞれ一層目の銅配線 12a、 12b上に形成さ れ、 ZrNキャップ層 13の導電層 13a (図 1 (b)参照)を露出させる。  The via holes 14a and 14b are formed on the first-layer copper wirings 12a and 12b, respectively, and expose the conductive layer 13a of the ZrN cap layer 13 (see FIG. 1B).
[0046] 次に、図 3 (b)に示すように、第 1及び第 2のビアホール 14a、 14bと第 3及び第 4の 配線溝 16a, 16bのそれぞれの内周面及び底面、および第 5の層間絶縁膜 16の上 面の上にバリアメタル層 17を 5〜10nmの厚さに形成する。ノリアメタル層 17は、スパ ッタ法により形成され、例えばタンタル (Ta)、窒化タンタル (TaN)若しくはこれらの積層 膜の 、ずれか、又は窒化チタン (ΉΝ)力も構成される。  Next, as shown in FIG. 3B, the inner and bottom surfaces of the first and second via holes 14a, 14b and the third and fourth wiring grooves 16a, 16b, and the fifth A barrier metal layer 17 is formed on the upper surface of the interlayer insulating film 16 to a thickness of 5 to 10 nm. The noria metal layer 17 is formed by a sputtering method. For example, the tantalum (Ta), the tantalum nitride (TaN), or a laminated film of these layers, or a titanium nitride (ΉΝ) force is also formed.
[0047] さらに、ノリアメタル層 17の上に銅シード層 18をスパッタ法により 30〜100nmの厚 さに形成する。  Further, a copper seed layer 18 is formed on the noria metal layer 17 to a thickness of 30 to 100 nm by sputtering.
[0048] 次に、電解メツキ法により銅層 19を銅シード層 18上に形成し、これにより第 3及び 第 4の配線溝 16a、 16bと第 1及び第 2のビアホール 14a, 14bを完全に埋め込む。こ こで、銅シード層 18は銅層 19の一部となる。  Next, a copper layer 19 is formed on the copper seed layer 18 by an electrolytic plating method, whereby the third and fourth wiring grooves 16a and 16b and the first and second via holes 14a and 14b are completely formed. Embed. Here, the copper seed layer 18 becomes a part of the copper layer 19.
[0049] この後に、図 4に示すように、第 5の層間絶縁膜 16の上面に形成された銅層 19、バ リアメタル層 17を CMP(Chemical Mechanical Polishing)法により除去する。これにより 第 1及び第 2のビアホール 14a、 14bのそれぞれの中に残った銅層 19、銅シード層 1 8、 ノリアメタル層 17を第 1及び第 2のビア 20a、 20bとして使用し、また、第 3及び第 4 の配線溝 16a、 16bのそれぞれの中に残った銅層 19、 ノリアメタル層 17を第 3及び 第 4の銅配線 21a、 21bとして使用する。  Thereafter, as shown in FIG. 4, the copper layer 19 and the barrier metal layer 17 formed on the upper surface of the fifth interlayer insulating film 16 are removed by a CMP (Chemical Mechanical Polishing) method. As a result, the copper layer 19, the copper seed layer 18 and the noria metal layer 17 remaining in each of the first and second via holes 14a and 14b are used as the first and second vias 20a and 20b. The copper layer 19 and the noria metal layer 17 remaining in the third and fourth wiring grooves 16a and 16b are used as the third and fourth copper wirings 21a and 21b.
[0050] 第 3の銅配線 21aは、第 1のビア 20aと ZrNキャップ層 13を介して第 1の銅配線 12a に電気的に接続される。また、第 4の銅配線 21bは、第 2のビア 20bと ZrNキャップ層 1 3を介して第 2の銅配線 12bに電気的に接続される。  [0050] The third copper wiring 21a is electrically connected to the first copper wiring 12a via the first via 20a and the ZrN cap layer 13. The fourth copper wiring 21b is electrically connected to the second copper wiring 12b through the second via 20b and the ZrN cap layer 13.
[0051] 更に、第 3及び第 4の銅配線 21a、 21bと第 5の層間絶縁膜 16の上に上記した ZrN キャップ層 13と同じ材料からなる膜厚 20nm以下の二層目のキャップ層(不図示)を 形成した後に、上記した工程に従って層間絶縁膜、銅配線及びビアの形成を繰り返 すことにより、第 2の層間絶縁膜 8の上には多層構造の銅配線が形成されることにな る。  [0051] Further, a second cap layer having a thickness of 20 nm or less made of the same material as the ZrN cap layer 13 on the third and fourth copper wirings 21a, 21b and the fifth interlayer insulating film 16 ( After forming the interlayer insulating film, the copper wiring and the via according to the above-described process, a copper wiring having a multilayer structure is formed on the second interlayer insulating film 8. become.
[0052] ところで、第 1及び第 2のビアホール 20a、 20bは、 ZrNキャップ層 13の低抵抗層 13 a (図 1 (b)参照)を介して第 1及び第 2の銅配線 12a、 12bにそれぞれ電気的に接続 される。この場合、第 1の ZrNキャップ層 13は、酸ィ匕シリコンよりなる第 2の層間絶縁膜 10上では高抵抗層 13bとなるので、第 3の銅配線 21aと第 4の銅配線 21bが第 1の Zr Nキャップ層 13を介して短絡することはない。し力も窒化ジルコニウムは化学的に安 定であって銅に比べて酸ィ匕され難 、ので、ビアホールや配線溝を通して露出するこ とによって酸化したり腐食したりするおそれはなぐ銅配線や銅ビアの酸化や腐食を 防止する導電性 Z絶縁性の保護膜となる。 Incidentally, the first and second via holes 20a, 20b are formed in the low resistance layer 13 of the ZrN cap layer 13. They are electrically connected to the first and second copper wirings 12a and 12b through a (see FIG. 1 (b)). In this case, since the first ZrN cap layer 13 becomes the high resistance layer 13b on the second interlayer insulating film 10 made of oxide silicon, the third copper wiring 21a and the fourth copper wiring 21b There is no short circuit through the 1 Zr N cap layer 13. However, since zirconium nitride is chemically stable and is less susceptible to oxidation than copper, there is no risk of oxidation or corrosion due to exposure through via holes or wiring trenches. Conductive Z-insulating protective film that prevents oxidation and corrosion.
[0053] 上記した本実施形態によれば、図 1 (b)の工程において、窒化ジルコニウムよりなる キャップ層 13を形成するとき、その成膜ガスとして TDEAZとキャリアガス(窒素)のみ を使用し、特許文献 2のようにアンモニアガスを使用して ヽな 、。  [0053] According to the present embodiment described above, in forming the cap layer 13 made of zirconium nitride in the step of FIG. 1 (b), only TDEAZ and a carrier gas (nitrogen) are used as the deposition gas, As shown in Patent Document 2, ammonia gas is used.
[0054] 本願発明者は、特許文献 2のように、窒化ジルコニウム膜の成膜ガスにアンモニア を添加することでどのような不都合が発生するのかを調査した。その結果を図 5に示 す。  The inventor of the present application investigated what inconvenience occurs when ammonia is added to the deposition gas of the zirconium nitride film as in Patent Document 2. The results are shown in Fig. 5.
[0055] この調査では、直径が 8インチのシリコンウェハの上に窒化ジルコニウム膜を直接形 成した後、窒化ジルコニウム膜上に付着した大きさが 0. 15 m以上のパーティクル の数が調査された。  [0055] In this investigation, after a zirconium nitride film was directly formed on a silicon wafer having a diameter of 8 inches, the number of particles having a size of 0.15 m or more adhered on the zirconium nitride film was examined. .
[0056] 図 5に示されるように、成膜ガスに添カ卩されるアンモニアの流量が 5sccm以下であれ ばパーティクルは発生しない。し力し、アンモニアの流量を 5sccmよりも多くすると、パ 一ティクルの数は急激に増大することが分かる。これは、 TDEAZとアンモニアとの反 応性が極めて高!、ため、アンモニアの流量が大き 、と気相中で窒化ジルコニウムの 塊が形成され、その塊がパーティクルになるためと考えられる。  As shown in FIG. 5, particles are not generated if the flow rate of ammonia added to the film forming gas is 5 sccm or less. However, when the flow rate of ammonia is increased above 5 sccm, the number of particles increases rapidly. This is thought to be because the reactivity between TDEAZ and ammonia is extremely high, so the flow rate of ammonia is large, and a block of zirconium nitride is formed in the gas phase, and the block becomes particles.
[0057] この点に鑑み、本実施形態では ZrNキャップ層 13の形成時にアンモニアを使用し ていないので、パーティクルによるデバイス不良を防ぐことができる。但し、図 5に示さ れるように、アンモニアの流量が 5sccm以下であればパーティクルが発生しないので 、この流量以下のアンモニアを ZrNキャップ層 13の成膜ガスに添カ卩しても構わない。 なお、本実施形態では、既述のように TDEAZのキャリアガスである窒素の流量を 200 〜500sccmとするので、流量が 5sccm以下であるアンモニアは、キャリアガスの 1Z4 0以下の流量となる。 [0058] ところで、上記のように成膜ガスにアンモニアガスを添カ卩しな力つたり、或いはその 添加量を低下させたりすると、 ZrNキャップ層 13中の窒素濃度が低減し、 ZrNキャップ 層 13の耐酸ィ匕性ゃ銅ノ リア性が低下する恐れがある。 In view of this point, in the present embodiment, ammonia is not used when the ZrN cap layer 13 is formed, so that device failure due to particles can be prevented. However, as shown in FIG. 5, since particles are not generated when the flow rate of ammonia is 5 sccm or less, ammonia having this flow rate or less may be added to the deposition gas for the ZrN cap layer 13. In the present embodiment, as described above, the flow rate of nitrogen, which is a carrier gas of TDEAZ, is set to 200 to 500 sccm. Therefore, the ammonia having a flow rate of 5 sccm or less has a flow rate of 1Z40 or less of the carrier gas. [0058] By the way, if ammonia gas is added to the film forming gas as described above or the amount of addition is reduced, the nitrogen concentration in the ZrN cap layer 13 is reduced, and the ZrN cap layer is reduced. There is a risk that the acid resistance of 13 will decrease the copper noriability.
[0059] そこで、本実施形態では、図 2 (a)に示したように、窒素雰囲気中において ZrNキヤ ップ層 13に対してァニールを施し、 ZrNキャップ層 13における窒素の不足を補うよう にした。 Therefore, in this embodiment, as shown in FIG. 2 (a), annealing is performed on the ZrN cap layer 13 in a nitrogen atmosphere to compensate for the lack of nitrogen in the ZrN cap layer 13. did.
[0060] 図 6 (a)、 (b)は、この窒素ァニールのメカニズムを模式的に示す拡大断面図であり 、図 6 (a)はァニール前、図 6 (b)はァニール中の ZrNキャップ層 13の拡大断面図で ある。  [0060] FIGS. 6 (a) and 6 (b) are enlarged cross-sectional views schematically showing the mechanism of this nitrogen annealing, FIG. 6 (a) is before annealing, and FIG. 6 (b) is the ZrN cap in annealing. FIG. 4 is an enlarged sectional view of a layer 13.
[0061] 図 6 (a)に示されるように、ァニール前の ZrNキャップ層 13は、窒素の供給源となる アンモニアガスを用いずに形成したため、膜中において窒素 (N)が欠乏し、疎な膜質 となっている。  [0061] As shown in Fig. 6 (a), the ZrN cap layer 13 before annealing is formed without using ammonia gas which is a nitrogen supply source, so that nitrogen (N) is deficient in the film and sparse. The film quality is excellent.
[0062] 一方、ァニールの中では、図 6 (b)に示されるように、疎な ZrNキャップ層 13の膜中 に窒素が容易に拡散し、窒素濃度の高 、緻密な窒化ジルコニウムよりなるキャップ層 13が得られる。  On the other hand, in the annealing, as shown in FIG. 6 (b), nitrogen easily diffuses into the sparse ZrN cap layer 13, and the cap is made of dense zirconium nitride with a high nitrogen concentration. Layer 13 is obtained.
[0063] このように、成膜ガスにアンモニアガスを添カ卩しな力つたり、或いはその添力卩量を低 下させたりして ZrNキャップ層 13を形成することで、 ZrNキャップ層 13の形成時にパー ティクルが発生するのを抑止しながら、窒素雰囲気でのァニールによって ZrNキヤッ プ層 13に窒素を容易に拡散させることが可能となる。  As described above, the ZrN cap layer 13 is formed by forming the ZrN cap layer 13 by adding the ammonia gas to the film forming gas or by reducing the amount of the applied force. Nitrogen can be easily diffused into the ZrN cap layer 13 by annealing in a nitrogen atmosphere while suppressing the generation of particles during the formation of the layers.
[0064] 図 7は、本実施形態により得られる利点を調査してまとめた図である。 FIG. 7 is a diagram summarizing the advantages obtained by the present embodiment by investigating.
[0065] 図 7におけるサンプルのうち、本実施形態 A、 Bは、 ZrNキャップ層 13の成膜ガスに アンモニアを添加せず、且つ、 ZrNキャップ層 13の成膜後に窒素含有雰囲気中でァ ニールを行ったサンプルを示す。なお、本実施形態 Aでは、パーティクル数をカウン トするために、 8インチのシリコンウェハの上に ZrNキャップ層 13を直接形成した。一 方、本実施形態 Bでは、銅の拡散を見るために、銅膜の上に ZrNキャップ層 13を形成 した。 Of the samples in FIG. 7, Embodiments A and B do not add ammonia to the deposition gas of the ZrN cap layer 13 and anneal in a nitrogen-containing atmosphere after the deposition of the ZrN cap layer 13. The sample which performed is shown. In the embodiment A, the ZrN cap layer 13 was directly formed on an 8-inch silicon wafer in order to count the number of particles. On the other hand, in Embodiment B, the ZrN cap layer 13 was formed on the copper film in order to see the copper diffusion.
[0066] 同図に示されるように、本実施形態 Aではパーティクルの数が 0個となっている。  [0066] As shown in the figure, in Embodiment A, the number of particles is zero.
[0067] 一方、 ZrNキャップ層 13の成膜ガスにアンモニアを添カ卩し、且つ窒素含有雰囲気中 でァニールを行わなかった比較例 Bでは、 2057個ものパーティクルが発生した。 [0067] On the other hand, ammonia was added to the deposition gas for the ZrN cap layer 13 and the atmosphere was nitrogen-containing. In Comparative Example B where annealing was not performed, 2057 particles were generated.
[0068] 更に、アンモニアを使用しない比較例 Aではパーティクルが発生していないことから[0068] Further, in Comparative Example A in which no ammonia is used, no particles are generated.
、パーティクルの発生要因がアンモニアであることも改めて裏付けられた。 It was confirmed once again that the cause of particle generation is ammonia.
[0069] 図 8は、図 7における本実施形態 B、比較例 C、 Dのサンプルを用い、 ZrNキャップ層FIG. 8 shows a ZrN cap layer using the sample of Embodiment B and Comparative Examples C and D in FIG.
13への銅の拡散を XPS(X- ray Photoelectron Spectroscopy)法により調査して得られ た図である。 FIG. 6 is a diagram obtained by investigating the diffusion of copper into 13 by XPS (X-ray Photoelectron Spectroscopy).
[0070] なお、この調査では、成膜直後(本実施形態 Bでは窒素ァニール後)における ZrNキ ヤップ層 13の組成の他に、銅の拡散を加速するために真空中でァニールした後の Zr Nキャップ層 13の組成も調査された。その真空ァニールは、基板温度 450°Cで 30分 間行われた。  [0070] In this investigation, in addition to the composition of the ZrN cap layer 13 immediately after film formation (after nitrogen annealing in this embodiment B), Zr after annealing in vacuum to accelerate copper diffusion was used. The composition of the N cap layer 13 was also investigated. The vacuum annealing was performed for 30 minutes at a substrate temperature of 450 ° C.
[0071] 成膜直後の本実施形態 Bでは膜中の窒素濃度が 40%以上もあるのに対し、窒素ァ ニールを行わな力つた比較例 Cでは窒素濃度が 10%にも満たない。これにより、窒 素ァニールによって ZrNキャップ層 13の窒素濃度が高められることが確かめられた。  In Embodiment B immediately after film formation, the nitrogen concentration in the film is 40% or more, whereas in Comparative Example C, which does not perform nitrogen annealing, the nitrogen concentration is less than 10%. As a result, it was confirmed that the nitrogen concentration of the ZrN cap layer 13 was increased by the nitrogen annealing.
[0072] また、成膜直後の本実施形態 Bでは酸素濃度が約 10%と低濃度であるのに対し、 成膜直後の比較例 Cでは酸素が 40%以上もあり耐酸ィ匕性が低 ヽことが分かる。これ は、比較例 Cではアンモニアを使用しないで ZrNキャップ層 13を形成したため、 ZrNキ ヤップ層 13の膜質が疎になり、膜中に酸素が容易に侵入してジルコニウムが酸ィ匕し たためであると考えられる。一方、本実施形態 Bで酸素濃度が低いのは、窒素ァニー ルで窒素濃度が高められたことにより ZrNキャップ層 13の耐酸ィ匕性が向上し、 ZrNキ ヤップ層 13に酸素が取り込まれ難くなつたためであると考えられる。  [0072] Further, in Embodiment B immediately after film formation, the oxygen concentration is as low as about 10%, whereas in Comparative Example C immediately after film formation, oxygen is 40% or more and the acid resistance is low. I understand that it is a trap. This is because, in Comparative Example C, the ZrN cap layer 13 was formed without using ammonia, so the film quality of the ZrN cap layer 13 became sparse, and oxygen easily penetrated into the film and zirconium was oxidized. It is believed that there is. On the other hand, the low oxygen concentration in Embodiment B is that the oxygen concentration of the ZrN cap layer 13 is improved by increasing the nitrogen concentration with nitrogen annealing, and oxygen is not easily taken into the ZrN cap layer 13. It is thought that this is because of summer.
[0073] 更に、真空ァニール後の比較例 Cでは 90%以上の大量の銅が拡散しているのに 対し、真空ァニール後の本実施形態 Bでは、成膜直後の場合と組成比が殆ど同じで 、銅が拡散していない。これにより、窒素雰囲気中でのァニールによって窒素濃度が 高められた ZrNキャップ層 13の銅に対するノ リア性が非常に良好であることが確認さ れた。  [0073] Furthermore, in Comparative Example C after vacuum annealing, a large amount of copper of 90% or more diffuses, whereas in Embodiment B after vacuum annealing, the composition ratio is almost the same as that immediately after film formation. And copper is not diffusing. As a result, it was confirmed that the ZrN cap layer 13 whose nitrogen concentration was increased by annealing in a nitrogen atmosphere was very good in terms of noriality with respect to copper.
[0074] このように、本実施形態で形成された ZrNキャップ層 13は、それを成膜する時のパ 一ティクル数が極めて少ないと共に、窒素濃度が 40%以上の緻密な膜となる。これ により、絶縁層 13bの絶縁耐圧が高ぐ信頼性が非常に高い銅配線を得ることが可 能となる。更に、 ZrNキャップ層 13の酸素濃度が低いので、キャップ層 13中の酸素に 起因して下地の銅配線 12a、 12bが酸化する恐れが無ぐ酸ィ匕によって銅配線 12a、As described above, the ZrN cap layer 13 formed in the present embodiment is a dense film having an extremely small number of particles when forming it and a nitrogen concentration of 40% or more. As a result, it is possible to obtain a highly reliable copper wiring with a high withstand voltage of the insulating layer 13b. It becomes ability. Further, since the oxygen concentration of the ZrN cap layer 13 is low, the copper wiring 12a, the copper wiring 12a,
12bが高抵抗となるのを防ぐことができる。 It can prevent 12b from becoming high resistance.
[0075] (2)第 2実施形態 [0075] (2) Second embodiment
第 1実施形態では、 CVDチャンバを用いて図 1 (b)の ZrNキャップ層 13を形成した 後、その CVDチャンバを引き続いて用い、図 2 (a)の窒素ァニールを行った。  In the first embodiment, after forming the ZrN cap layer 13 of FIG. 1B using a CVD chamber, the CVD chamber was used continuously to perform nitrogen annealing of FIG. 2A.
[0076] これに対し、本実施形態では、窒素イオンと窒素ラジカルの混合雰囲気中において その窒素ァニールを行う。 In contrast, in the present embodiment, the nitrogen annealing is performed in a mixed atmosphere of nitrogen ions and nitrogen radicals.
[0077] 図 9は、本実施形態で使用される半導体製造装置 100の上面図である。 FIG. 9 is a top view of the semiconductor manufacturing apparatus 100 used in the present embodiment.
[0078] その半導体製造装置 100は、複数枚のシリコン基板 1を待機させるロードロックチヤ ンバ 101、窒化ジルコニウム膜を成膜するための CVDチャンバ 102、及び窒素ァ- ールチャンバ 103を有する。 The semiconductor manufacturing apparatus 100 includes a load lock chamber 101 for waiting a plurality of silicon substrates 1, a CVD chamber 102 for forming a zirconium nitride film, and a nitrogen chamber 103.
[0079] これらのチャンバ 101〜103は、内部が窒素雰囲気となっているトランスファチャン ノ 104の周囲に配されており、各チャンバ 101〜103へのシリコン基板 1の受け渡し はロボット 105によって行われる。 These chambers 101 to 103 are arranged around a transfer channel 104 in which the inside is a nitrogen atmosphere, and delivery of the silicon substrate 1 to each chamber 101 to 103 is performed by a robot 105.
[0080] また、各チャンバ 101〜103とトランスファチャンバ 104との間にはスリットバルブ 10Further, a slit valve 10 is provided between each of the chambers 101 to 103 and the transfer chamber 104.
6〜108が設けられる。スリットバルブ 106〜108は、ロボット 105によるシリコン基板 1 の受け渡し時に開き、チャンバ 102、 103で処理を行う際には閉じてこれらのチャン バ内が密閉状態となる。 6-108 are provided. The slit valves 106 to 108 are opened when the silicon substrate 1 is delivered by the robot 105, and are closed when processing is performed in the chambers 102 and 103, and the chambers are hermetically sealed.
[0081] 図 10は、窒素ァニールチャンバ 103の構成図である。 FIG. 10 is a configuration diagram of the nitrogen annealing chamber 103.
[0082] 図 10に示されるように、このチャンバ 103は、窒素を導入するガス導入口 203を上 部に有し、下部に窒素を排気する排気口 204を有する。その排気口 204は、不図示 の排気ポンプに接続されており、その排気ポンプによってチャンバ 103内が所定の 圧力に減圧される。  As shown in FIG. 10, this chamber 103 has a gas inlet 203 for introducing nitrogen at the upper part and an exhaust outlet 204 for exhausting nitrogen at the lower part. The exhaust port 204 is connected to an exhaust pump (not shown), and the interior of the chamber 103 is reduced to a predetermined pressure by the exhaust pump.
[0083] また、チャンバ 103の底面には、ヒータ 206を内蔵した基板載置台 205が設けられ ており、基板載置台 205上のシリコン基板 1はヒータ 206によって所定の温度にまで 加熱される。  In addition, a substrate mounting table 205 with a built-in heater 206 is provided on the bottom surface of the chamber 103, and the silicon substrate 1 on the substrate mounting table 205 is heated to a predetermined temperature by the heater 206.
[0084] 更に、チャンバ 103の上部側面には、マイクロ波を発生させるためのマグネトロン 20 4が接続される。なお、マイクロ波の周波数は特に限定されないが、 2GHz〜5GHz、 好ましくは 2. 5GHzのマイクロ波がマグネトロン 204において生成される。 [0084] Further, a magnetron 20 for generating a microwave is formed on the upper side surface of the chamber 103. 4 is connected. Note that the frequency of the microwave is not particularly limited, but a microwave of 2 GHz to 5 GHz, preferably 2.5 GHz is generated in the magnetron 204.
[0085] そして、チャンバ 103の途中の高さには、複数の孔 205aを備えた金属よりなるシー ルド板 205が配される。そのシールド板 205は、接地電位となっているチャンバ 103 に電気的に接続されている。また、チャンバ 103は、そのシールド板 205により、プラ ズマ発生室 103aと窒化処理室 103bとに区画される。 [0085] Then, a shield plate 205 made of metal having a plurality of holes 205a is disposed at an intermediate height of the chamber 103. The shield plate 205 is electrically connected to the chamber 103 that is at ground potential. The chamber 103 is partitioned into a plasma generation chamber 103a and a nitriding chamber 103b by the shield plate 205.
[0086] このようにしてなるチャンバ 103では、ガス導入口 203から導入された窒素力 プラ ズマ発生室 103a内においてマイクロ波によってプラズマ化される。プラズマ発生室 1[0086] In the chamber 103 configured as described above, plasma is generated by microwaves in the nitrogen power plasma generation chamber 103a introduced from the gas introduction port 203. Plasma generation chamber 1
03a内のプラズマ成分は、シールド板 205の作用によって窒化処理室 103bには侵 入しないので、シリコン基板 1はプラズマ雰囲気力も隔離された状態となる。 Since the plasma component in 03a does not enter the nitriding chamber 103b by the action of the shield plate 205, the silicon substrate 1 is in a state where the plasma atmosphere force is also isolated.
[0087] 一方、プラズマ発生室 103a内で発生した窒素ラジカルと窒素イオンは、シールド板On the other hand, the nitrogen radicals and nitrogen ions generated in the plasma generation chamber 103a
205を通り抜けて窒化処理室 103bに至り、シリコン基板 1上に到達する。 It passes through 205, reaches the nitriding chamber 103b, and reaches the silicon substrate 1.
[0088] このように、このチャンバ 103では、窒素ラジカルと窒素イオンのみが選択的にシリ コン基板 1側に導かれ、これらの窒素ラジカルと窒素イオンによってシリコン基板 1上 の ZrNキャップ層 13に対して窒素ァニールが行われる。 As described above, in this chamber 103, only nitrogen radicals and nitrogen ions are selectively guided to the silicon substrate 1 side, and the ZrN cap layer 13 on the silicon substrate 1 is directed to the silicon substrate 1 side by these nitrogen radicals and nitrogen ions. Nitrogen annealing is performed.
[0089] 次に、このような半導体製造装置を用いた半導体製造装置を用いた半導体装置の 製造方法について説明する。 Next, a method for manufacturing a semiconductor device using a semiconductor manufacturing apparatus using such a semiconductor manufacturing apparatus will be described.
[0090] まず、第 1実施形態で説明した図 1 (a)の断面構造を得た後、図 9の CVDチャンバ 1First, after obtaining the cross-sectional structure of FIG. 1A described in the first embodiment, the CVD chamber 1 of FIG.
02内にお!/、て ZrNキャップ層 13 (図 1 (b)参照)を形成する。 The! /, ZrN cap layer 13 (see Fig. 1 (b)) is formed in 02.
[0091] 次いで、 CVDチャンバ 102からシリコン基板 1を取り出し、トランスファチャンバ 104 を経由して窒素ァニールチャンバ 103にシリコン基板 1を移す。 Next, the silicon substrate 1 is taken out from the CVD chamber 102 and transferred to the nitrogen annealing chamber 103 via the transfer chamber 104.
[0092] このとき、トランスファチャンバ 104は、窒素雰囲気となっており、酸素を含んでいい ない。よって、シリコン基板 1は、酸素含有雰囲気に曝されることなぐ CVDチャンバ 1At this time, the transfer chamber 104 has a nitrogen atmosphere and does not contain oxygen. Therefore, the silicon substrate 1 is not exposed to an oxygen-containing atmosphere.
02から窒素ァニールチャンバ 103に移されることになる。 02 will be transferred to the nitrogen annealing chamber 103.
[0093] 続いて、この窒素ァニールチャンバ 103において図 2 (a)の窒素ァニール工程を行 Subsequently, the nitrogen annealing step shown in FIG. 2 (a) is performed in the nitrogen annealing chamber 103.
[0094] その窒素ァニールの条件は特に限定されないが、本実施形態では窒素ガス流量 5 00sccm、圧力 700Pa、マイクロ波の周波数 2. 5GHz、マイクロ波のパワー 700W、基 板温度 100°C〜400°C、例えば 200°Cの条件で窒素ァニールを行う。 The conditions of the nitrogen annealing are not particularly limited, but in this embodiment, the nitrogen gas flow rate is 500 sccm, the pressure is 700 Pa, the microwave frequency is 2.5 GHz, the microwave power is 700 W, the basic Nitrogen annealing is performed at a plate temperature of 100 ° C to 400 ° C, for example, 200 ° C.
[0095] 本実施形態では、キャップ層 13と反応性のょ 、窒素ラジカルや窒素イオンで窒素 ァニールを行うので、基板温度の下限を第 1実施形態よりも低い 100°Cとしても、キヤ ップ層 13中に十分な量の窒素を拡散させることができる。 In this embodiment, nitrogen annealing is performed with nitrogen radicals or nitrogen ions because of the reactivity with the cap layer 13, so even if the lower limit of the substrate temperature is set to 100 ° C. lower than that of the first embodiment, the cap is used. A sufficient amount of nitrogen can be diffused into layer 13.
[0096] この後は、第 1実施形態で説明した図 2 (b)〜図 4の工程を行うことで、本実施形態 に係る半導体装置の基本構造を完成させる。 Thereafter, the basic structure of the semiconductor device according to the present embodiment is completed by performing the steps of FIGS. 2B to 4 described in the first embodiment.
[0097] 以上説明した本実施形態では、窒素ラジカルと窒素イオンとを含む雰囲気に ZrNキ ヤップ層 13を曝して窒化する。これによれば、第 1実施形態と同様に、 ZrNキャップ層In the present embodiment described above, the ZrN cap layer 13 is exposed to an atmosphere containing nitrogen radicals and nitrogen ions for nitriding. According to this, as in the first embodiment, the ZrN cap layer
13内に窒素が拡散し、窒素濃度が高く銅ノリア性に富んだ ZrNキャップ層 13を得る ことができる。 Nitrogen diffuses into the layer 13, and a ZrN cap layer 13 having a high nitrogen concentration and a high copper noriality can be obtained.
[0098] し力も、図 9を参照して説明したように、 CVDチャンバ 102で ZrNキャップ層 13を形 成した後、窒素雰囲気となっているトランスファチャンバ 104を経由して窒素ァニール チャンバ 103にシリコン基板 1を移すので、酸素含有雰囲気に ZrNキャップ層 13が曝 されない。これにより、 ZrNキャップ層 13を形成してから窒素ァニールを行う前に ZrN キャップ層 13に酸素が取り込まれるのを防止でき、 ZrNキャップ層 13における酸素含 有量が上昇するのを抑えることができる。その結果、 ZrNキャップ層 13の下の銅配線 12a, 12b (図 1 (b)参照)が酸ィ匕するのが防止され、低抵抗で信頼性の高い銅配線 1 2a、 12bを得ることが可能となる。  [0098] As described with reference to FIG. 9, after forming the ZrN cap layer 13 in the CVD chamber 102, the silicon force is transferred to the nitrogen annealing chamber 103 via the transfer chamber 104 in a nitrogen atmosphere. Since the substrate 1 is transferred, the ZrN cap layer 13 is not exposed to the oxygen-containing atmosphere. As a result, oxygen can be prevented from being taken into the ZrN cap layer 13 before the nitrogen annealing is performed after the ZrN cap layer 13 is formed, and an increase in the oxygen content in the ZrN cap layer 13 can be suppressed. . As a result, it is possible to prevent the copper wirings 12a and 12b (see FIG. 1 (b)) under the ZrN cap layer 13 from being oxidized, and to obtain low-resistance and high-reliability copper wirings 12a and 12b. It becomes possible.
[0099] (3)第 3実施形態  [0099] (3) Third Embodiment
第 2実施形態では、 ZrNキャップ層 13の成膜と、窒素ラジカルや窒素イオンを用い た窒素ァニールとを別々のチャンバ 102、 103 (図 9参照)で行った。  In the second embodiment, deposition of the ZrN cap layer 13 and nitrogen annealing using nitrogen radicals or nitrogen ions were performed in separate chambers 102 and 103 (see FIG. 9).
[0100] これに対し、本実施形態では、これらを同一のチャンバで行う。  [0100] On the other hand, in the present embodiment, these are performed in the same chamber.
[0101] 図 11は、本実施形態で使用される半導体製造装置が備える処理チャンバ 301の 構成図である。  [0101] FIG. 11 is a configuration diagram of a processing chamber 301 provided in the semiconductor manufacturing apparatus used in the present embodiment.
[0102] その処理チャンバ 301の底面には、ヒータ 306を内蔵した基板載置台 305が設けら れると共に、チャンバ 301内のガスを排気する排気口 309が設けられる。基板載置台 305上のシリコン基板 1はヒータ 306によって所定の温度にまで加熱される。また、排 気口 309は不図示の排気ポンプに接続されており、その排気ポンプによってチャン ノ 301内が所定の圧力に減圧される。 [0102] On the bottom surface of the processing chamber 301, a substrate mounting table 305 incorporating a heater 306 is provided, and an exhaust port 309 for exhausting the gas in the chamber 301 is provided. The silicon substrate 1 on the substrate mounting table 305 is heated to a predetermined temperature by the heater 306. The exhaust port 309 is connected to an exhaust pump (not shown), and the exhaust pump 309 No. 301 is depressurized to a predetermined pressure.
[0103] そして、基板載置台 305に対向するようにして、マイクロ波に対するシールド板を兼 ねたシャワーヘッド 305が処理チャンバ 301の上部に設けられる。そのシャワーヘッド 305は、金属で構成され、接地電位に維持されている。更に、シャワーヘッド 305の 内部は空洞 305bとなっており、窒素ガス用配管 307と窒化ジルコニウム原料ガス用 配管 308とがその空洞 305bに連通して設けられる。  Then, a shower head 305 that also serves as a shield plate against microwaves is provided on the upper portion of the processing chamber 301 so as to face the substrate mounting table 305. The shower head 305 is made of metal and is maintained at the ground potential. Further, the interior of the shower head 305 is a cavity 305b, and a nitrogen gas pipe 307 and a zirconium nitride source gas pipe 308 are provided in communication with the cavity 305b.
[0104] なお、各配管 307、 308には、それぞれ窒素ガス用マスフローコントローラ(窒素ガ ス流量調節部) 311、原料ガス用マスフローコントローラ (原料ガス流量調節部) 312 が設けられ、各配管 307、 308内のガス流量がこれらのマスフローコントローラ 311、 312によって調節される。なお、各マスフローコントローラ 311、 312は、ガス流量を調 節するだけでなぐガスの流れを遮断する機能も有する。  [0104] Each of the pipes 307, 308 is provided with a nitrogen gas mass flow controller (nitrogen gas flow control unit) 311 and a raw material gas mass flow controller (raw material gas flow control unit) 312. The gas flow rate in 308 is adjusted by these mass flow controllers 311, 312. Each of the mass flow controllers 311 and 312 also has a function of cutting off the gas flow just by adjusting the gas flow rate.
[0105] また、シャワーヘッド 305の内部の空洞 305bには、マグネトロン 304からマイクロ波 が供給される。  [0105] Microwaves are supplied from the magnetron 304 to the cavity 305b inside the shower head 305.
[0106] そのマグネトロン 304とマスフローコントローラ 311、 312は、制御部 315から出力さ れる制御信号 S1〜S3によって制御される。処理チャンバ 301で行われる以下の処理 は、その制御部 315の制御下で行われる。  The magnetron 304 and the mass flow controllers 311 and 312 are controlled by control signals S 1 to S 3 output from the control unit 315. The following processing performed in the processing chamber 301 is performed under the control of the control unit 315.
[0107] 次に、このチャンバ 301を用いた半導体装置の製造方法について説明する。  Next, a method for manufacturing a semiconductor device using the chamber 301 will be described.
[0108] まず、第 1実施形態で説明した図 1 (a)の断面構造を得た後、図 11のチャンバ 301 内にシリコン基板 1を入れる。  First, after obtaining the cross-sectional structure of FIG. 1A described in the first embodiment, the silicon substrate 1 is put into the chamber 301 of FIG.
[0109] 次いで、気化器において 110°C〜140°Cの温度で気化された TDEAZをキャリアガ スと共に原料ガス用配管 308からシャワーヘッド 305に導入する。なお、キャリアガス は、流量力 S200〜500sccm、より好ましくは 300sccmの窒素ガスである。また、気化し た TDEAZの供給量は、例えば 0. 01〜0. lg/min,より好ましくは 0. 05gZminであ る。  [0109] Next, TDEAZ vaporized at a temperature of 110 ° C to 140 ° C in the vaporizer is introduced into the shower head 305 from the raw gas piping 308 together with the carrier gas. The carrier gas is a nitrogen gas having a flow rate of S200 to 500 sccm, more preferably 300 sccm. The supply amount of vaporized TDEAZ is, for example, 0.01 to 0.1 lg / min, and more preferably 0.05 gZmin.
[0110] このようにして供給された TDEAZとキャリアガスは、シャワーヘッド 305に設けられた 複数のガス分散孔 305aによってシリコン基板 1の表面に均一に分散される。  [0110] The TDEAZ and the carrier gas supplied in this manner are uniformly dispersed on the surface of the silicon substrate 1 by a plurality of gas dispersion holes 305a provided in the shower head 305.
[0111] そして、チャンバ 301内の圧力を約 4Paに安定させ、この状態を約 1分間維持するこ とにより、窒化ジルコニウムよりなるキャップ層 13 (図 1 (b)参照)が約 10nmの厚さに形 成されることになる。なお、 ZrNキャップ層 13を形成しているときは、マグネトロン 304 の電源はオフにしておき、窒素用配管 307からの窒素の供給も行わない。 [0111] Then, by stabilizing the pressure in the chamber 301 at about 4 Pa and maintaining this state for about 1 minute, the cap layer 13 made of zirconium nitride (see FIG. 1B) has a thickness of about 10 nm. Shape Will be made. When the ZrN cap layer 13 is formed, the magnetron 304 is turned off and nitrogen is not supplied from the nitrogen pipe 307.
[0112] 次いで、原料ガス用配管 308からのガスの供給を停止し、排気口 309からチャンバ 301内の残留ガスを十分に排気する。  Next, the supply of gas from the raw material gas pipe 308 is stopped, and the residual gas in the chamber 301 is sufficiently exhausted from the exhaust port 309.
[0113] その後、窒素ガス用配管 307から窒素を約 500sccmの流量でチャンバ 301内に供 給する。これと共に、マグネトロン 304の電源をオンにし、パワーが 700Wで周波数が 2GHz〜5GHz、好ましくは 2. 5GHzのマイクロ波をシャワーヘッド 305の空洞 305bに 供給する。  [0113] Thereafter, nitrogen is supplied into the chamber 301 from the nitrogen gas pipe 307 at a flow rate of about 500 sccm. At the same time, the power of the magnetron 304 is turned on, and a microwave having a power of 700 W and a frequency of 2 GHz to 5 GHz, preferably 2.5 GHz is supplied to the cavity 305 b of the shower head 305.
[0114] これにより、シャワーヘッド 305の空洞 305bに窒素プラズマが発生する力 シャヮ 一ヘッド 305は接地電位となっているため、プラズマ成分は孔 305aを通り抜けること ができず、窒素ラジカルと窒素イオンのみが基板 1まで導かれることになる。  [0114] Thereby, the force that generates nitrogen plasma in the cavity 305b of the shower head 305. Since the head 305 is at ground potential, the plasma component cannot pass through the hole 305a, and only nitrogen radicals and nitrogen ions are present. Is led to the substrate 1.
[0115] そして、基板温度を 200°C、圧力を 700Paとする条件により、 ZrNキャップ層 13に対 する窒素ァニール工程(図 2 (a)参照)を行い、 ZrNキャップ層 13を窒化する。なお、 この窒素ァニール工程における基板温度は特に限定されず、第 2実施形態と同様に 100°C〜400°Cの基板温度を採用してよ!、。  Then, a nitrogen annealing process (see FIG. 2 (a)) is performed on the ZrN cap layer 13 under the conditions that the substrate temperature is 200 ° C. and the pressure is 700 Pa, and the ZrN cap layer 13 is nitrided. The substrate temperature in this nitrogen annealing process is not particularly limited, and a substrate temperature of 100 ° C. to 400 ° C. may be adopted as in the second embodiment!
[0116] この後は、第 1実施形態で説明した図 2 (b)〜図 4の工程を行うことで、本実施形態 に係る半導体装置の基本構造を完成させる。  Thereafter, the basic structure of the semiconductor device according to the present embodiment is completed by performing the steps of FIGS. 2B to 4 described in the first embodiment.
[0117] 以上説明した本実施形態によれば、第 2実施形態と同様に、窒素ラジカルと窒素ィ オンとを含む雰囲気にお 、て ZrNキャップ層 13に対するァニールを行う。そのため、 第 1実施形態と同様に、窒素濃度が高く銅ノリア性に富んだ ZrNキャップ層 13を得る ことができる。  [0117] According to the present embodiment described above, annealing is performed on the ZrN cap layer 13 in an atmosphere containing nitrogen radicals and nitrogen ions, as in the second embodiment. Therefore, similarly to the first embodiment, it is possible to obtain the ZrN cap layer 13 having a high nitrogen concentration and rich in copper noria.
[0118] 更に、本実施形態では、図 11を参照して説明したように、 ZrNキャップ層 13の成膜 と窒素ァニールとを同一のチャンバ 301で行うので、 ZrNキャップ層 13が酸素含有雰 囲気に曝されるのを防止しながら、 ZrNキャップ層 13に対して窒素ァニールを行うこと ができる。そのため、窒素ァニール前に ZrNキャップ層 13に酸素が取り込まれるのを 防ぐことができ、 ZrNキャップ層 13における酸素濃度を低減することができる。これに より、 ZrNキャップ層 13に含まれる酸素によって銅配線 12a、 12bが酸ィ匕されるのを防 止でき、銅配線 12a、 12bが酸ィ匕して高抵抗になるのを抑制することができる。  Furthermore, in the present embodiment, as described with reference to FIG. 11, the film formation of the ZrN cap layer 13 and the nitrogen annealing are performed in the same chamber 301, so that the ZrN cap layer 13 is in an oxygen-containing atmosphere. Nitrogen annealing can be performed on the ZrN cap layer 13 while preventing exposure to. Therefore, oxygen can be prevented from being taken into the ZrN cap layer 13 before nitrogen annealing, and the oxygen concentration in the ZrN cap layer 13 can be reduced. As a result, the copper wiring 12a, 12b can be prevented from being oxidized by oxygen contained in the ZrN cap layer 13, and the copper wiring 12a, 12b can be prevented from oxidizing and becoming high resistance. Can do.

Claims

請求の範囲 The scope of the claims
[1] 半導体基板の上方に第 1絶縁膜を形成する工程と、  [1] forming a first insulating film above the semiconductor substrate;
前記第 1絶縁膜に第 1溝又は第 1ホールを形成する工程と、  Forming a first groove or a first hole in the first insulating film;
前記第 1溝又は前記第 1ホールに銅を埋め込んで第 1銅配線を形成する工程と、 前記第 1絶縁膜と前記第 1銅配線の上に、キャップ層として窒化ジルコニウム膜を 形成する工程と、  Forming a first copper wiring by burying copper in the first trench or the first hole; forming a zirconium nitride film as a cap layer on the first insulating film and the first copper wiring; ,
窒素含有雰囲気中にぉ 、て前記キャップ層をァニールする工程と、  Annealing the cap layer in a nitrogen-containing atmosphere;
を有することを特徴とする半導体装置の製造方法。  A method for manufacturing a semiconductor device, comprising:
[2] 前記キャップ層を形成する工程において、窒化ジルコニウムの原料ガスとして TDE AZ(Zr[N(C H ) ] )ガスを用い、且つ、前記原料ガスにアンモニアガスを添加せずに、  [2] In the step of forming the cap layer, TDE AZ (Zr [N (C H)]) gas is used as a raw material gas for zirconium nitride, and without adding ammonia gas to the raw material gas,
2 5 2 4  2 5 2 4
CVD法により前記キャップ層を形成することを特徴とする請求項 1に記載の半導体装 置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein the cap layer is formed by a CVD method.
[3] 前記キャップ層を形成する工程にぉ 、て、 TDEAZ(Zr[N(C H ) ] )ガス、キャリアガス  [3] In the step of forming the cap layer, TDEAZ (Zr [N (C H)]) gas, carrier gas
2 5 2 4  2 5 2 4
、及び該キャリアガスの 1Z40以下の流量のアンモニアガスとの混合ガスを用いる CV D法により前記キャップ層を形成することを特徴とする請求項 1に記載の半導体装置 の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein the cap layer is formed by a CDV method using a mixed gas of the carrier gas with ammonia gas having a flow rate of 1Z40 or less.
[4] 前記キャリアガスとして窒素を使用することを特徴とする請求項 3に記載の半導体装 置の製造方法。  4. The method for manufacturing a semiconductor device according to claim 3, wherein nitrogen is used as the carrier gas.
[5] 前記キャップ層を形成する工程において、 20nm以下の厚さに前記キャップ層を形 成することを特徴とする請求項 1に記載の半導体装置の製造方法。  5. The method for manufacturing a semiconductor device according to claim 1, wherein in the step of forming the cap layer, the cap layer is formed to a thickness of 20 nm or less.
[6] 前記キャップ層をァニールする工程は、 200°C以上 400°C以下の基板温度で行わ れることを特徴とする請求項 1に記載の半導体装置の製造方法。 6. The method for manufacturing a semiconductor device according to claim 1, wherein the step of annealing the cap layer is performed at a substrate temperature of 200 ° C. or higher and 400 ° C. or lower.
[7] 前記キャップ層をァニールする工程は、 lkPa以上 IMPa以下の圧力で行われること を特徴とする請求項 1に記載の半導体装置の製造方法。 [7] The method for manufacturing a semiconductor device according to [1], wherein the step of annealing the cap layer is performed at a pressure of not less than lkPa and not more than IMPa.
[8] 前記キャップ層をァニールする工程は、窒素ラジカル又は窒素イオンを含む雰囲 気に前記キャップ層を曝すことにより行われることを特徴とする請求項 1に記載の半 導体装置の製造方法。 8. The method of manufacturing a semiconductor device according to claim 1, wherein the step of annealing the cap layer is performed by exposing the cap layer to an atmosphere containing nitrogen radicals or nitrogen ions.
[9] 前記キャップ層をァニールする工程は、 100°C以上 400°C以下の基板温度で行わ れることを特徴とする請求項 8に記載の半導体装置の製造方法。 [9] The step of annealing the cap layer is performed at a substrate temperature of 100 ° C to 400 ° C. The method for manufacturing a semiconductor device according to claim 8, wherein:
[10] 前記キャップ層を形成する工程、及び該キャップ層をァニールする工程を、同じチ ヤンバ内で行うことを特徴とする請求項 1に記載の半導体装置の製造方法。 10. The method for manufacturing a semiconductor device according to claim 1, wherein the step of forming the cap layer and the step of annealing the cap layer are performed in the same chamber.
[11] 前記キャップ層を形成する工程の後、酸素含有雰囲気に該キャップ層を曝さずに、 前記キャップ層をァニールする工程を行うことを特徴とする請求項 1に記載の半導体 装置の製造方法。 11. The method of manufacturing a semiconductor device according to claim 1, wherein after the step of forming the cap layer, the step of annealing the cap layer is performed without exposing the cap layer to an oxygen-containing atmosphere. .
[12] 前記キャップ層の上に第 2絶縁膜を形成する工程と、 [12] forming a second insulating film on the cap layer;
前記第 2絶縁膜のうち前記第 1銅配線の上方に第 2溝又は第 2ホールを形成する 工程と、  Forming a second groove or a second hole above the first copper wiring in the second insulating film;
前記第 2溝又は前記第 2ホールに銅を埋め込むことにより、前記キャップ層を介して 前記第 1銅配線と電気的に接続される第 2銅配線を形成する工程とを有することを特 徴とする請求項 1に記載の半導体装置の製造方法。  Forming a second copper wiring electrically connected to the first copper wiring through the cap layer by embedding copper in the second groove or the second hole. The method of manufacturing a semiconductor device according to claim 1.
[13] チャンバと、 [13] a chamber;
前記チャンバ内に設けられ、半導体基板が載置される基板載置台と、  A substrate mounting table provided in the chamber and on which a semiconductor substrate is mounted;
前記基板載置台に設けられたヒータと、  A heater provided on the substrate mounting table;
前記チャンバ内において前記基板載置台の上方に設けられ、内部が空洞であると 共に、該空洞に連通するガス分散孔が形成されたシャワーヘッドと、  A shower head provided above the substrate mounting table in the chamber, the inside of which is a cavity, and a gas dispersion hole communicating with the cavity is formed;
前記シャワーヘッドの内部の空洞にマイクロ波を供給するマグネトロンと、 前記シャワーヘッドの内部の空洞に連通する窒素ガス用配管及び窒化ジルコニゥ ム原料ガス用配管と、  A magnetron for supplying microwaves to the cavity inside the shower head; a nitrogen gas pipe and a zirconium nitride source gas pipe communicating with the cavity inside the shower head;
前記窒素ガス用配管に設けられた窒素ガス流量調節部と、  A nitrogen gas flow rate controller provided in the nitrogen gas pipe;
前記窒化ジルコニウム原料ガス用配管に設けられた原料ガス流量調節部と、 前記マグネトロン、前記窒素ガス流量調節部、及び前記原料ガス流量調節部を制 御する制御部とを有し、  A raw material gas flow rate adjusting unit provided in the zirconium nitride raw material gas pipe; and a control unit for controlling the magnetron, the nitrogen gas flow rate adjusting unit, and the raw material gas flow rate adjusting unit,
前記制御部が、前記チャンバ内において窒化ジルコニウム膜を形成するときに、前 記原料ガス流量調節部を制御してジルコニウム原料ガスを前記シャワーヘッドに導 入すると共に、  When the control unit forms a zirconium nitride film in the chamber, the control unit controls the source gas flow rate control unit to introduce the zirconium source gas into the shower head;
前記チャンバ内にお 、て窒素ァニールを行うときに、前記窒素ガス流量調節部を 制御して窒素ガスを前記シャワーヘッドに導入し、且つ前記マグネトロンを制御して 前記シャワーヘッドの前記空洞にマイクロ波を導入することを特徴とする半導体製造 装置。 When performing nitrogen annealing in the chamber, the nitrogen gas flow rate adjusting unit is A semiconductor manufacturing apparatus, wherein nitrogen gas is controlled to be introduced into the shower head and microwaves are introduced into the cavity of the shower head by controlling the magnetron.
[14] 前記シャワーヘッドが接地電位にされたことを特徴とする請求項 13に記載の半導 体製造装置。  14. The semiconductor manufacturing apparatus according to claim 13, wherein the shower head is set to a ground potential.
[15] 前記ジルコニウム原料ガス用配管から前記チャンバに TDEAZ(Zr[N(C H ) ] )ガスが  [15] TDEAZ (Zr [N (C H)]) gas is fed from the zirconium source gas pipe into the chamber.
2 5 2 4 供給されることを特徴とする請求項 13に記載の半導体製造装置。  The semiconductor manufacturing apparatus according to claim 13, wherein the semiconductor manufacturing apparatus is supplied.
PCT/JP2006/302524 2006-02-14 2006-02-14 Semiconductor device manufacturing method and semiconductor manufacturing apparatus WO2007094044A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008500361A JPWO2007094044A1 (en) 2006-02-14 2006-02-14 Semiconductor device manufacturing method and semiconductor manufacturing apparatus
PCT/JP2006/302524 WO2007094044A1 (en) 2006-02-14 2006-02-14 Semiconductor device manufacturing method and semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/302524 WO2007094044A1 (en) 2006-02-14 2006-02-14 Semiconductor device manufacturing method and semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2007094044A1 true WO2007094044A1 (en) 2007-08-23

Family

ID=38371240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302524 WO2007094044A1 (en) 2006-02-14 2006-02-14 Semiconductor device manufacturing method and semiconductor manufacturing apparatus

Country Status (2)

Country Link
JP (1) JPWO2007094044A1 (en)
WO (1) WO2007094044A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011059035A1 (en) * 2009-11-12 2011-05-19 株式会社 アルバック Semiconductor device manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088353A (en) * 1996-08-21 1998-04-07 Lg Semicon Co Ltd Formation of zrn coating using cvd system
JPH10189491A (en) * 1996-10-31 1998-07-21 Texas Instr Inc <Ti> Formation of insulation protective barrier for ti-si-n and ti-b-n base having low defect density
JP2000294632A (en) * 1999-04-05 2000-10-20 Sony Corp Semiconductor device and its manufacture
WO2002037558A1 (en) * 2000-11-02 2002-05-10 Fujitsu Limited Semiconductor device and its manufacturing method
JP2003332418A (en) * 2002-05-08 2003-11-21 Fujitsu Ltd Semiconductor device and its manufacturing method
JP2004231995A (en) * 2003-01-28 2004-08-19 Tokyo Electron Ltd Method of depositing w-based film, and w-based film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088353A (en) * 1996-08-21 1998-04-07 Lg Semicon Co Ltd Formation of zrn coating using cvd system
JPH10189491A (en) * 1996-10-31 1998-07-21 Texas Instr Inc <Ti> Formation of insulation protective barrier for ti-si-n and ti-b-n base having low defect density
JP2000294632A (en) * 1999-04-05 2000-10-20 Sony Corp Semiconductor device and its manufacture
WO2002037558A1 (en) * 2000-11-02 2002-05-10 Fujitsu Limited Semiconductor device and its manufacturing method
JP2003332418A (en) * 2002-05-08 2003-11-21 Fujitsu Ltd Semiconductor device and its manufacturing method
JP2004231995A (en) * 2003-01-28 2004-08-19 Tokyo Electron Ltd Method of depositing w-based film, and w-based film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011059035A1 (en) * 2009-11-12 2011-05-19 株式会社 アルバック Semiconductor device manufacturing method
JP5362029B2 (en) * 2009-11-12 2013-12-11 株式会社アルバック Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPWO2007094044A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
US6794311B2 (en) Method and apparatus for treating low k dielectric layers to reduce diffusion
TWI552226B (en) Hybrid manganese and manganese nitride barriers for back-end-of-line metallization and methods for fabricating the same
JP5674669B2 (en) Method for forming a ruthenium metal cap layer
TWI459508B (en) Interfacial capping layers for interconnects
JP3456391B2 (en) Method for manufacturing semiconductor device
US6284644B1 (en) IMD scheme by post-plasma treatment of FSG and TEOS oxide capping layer
TW541659B (en) Method of fabricating contact plug
US8551879B2 (en) Semiconductor device and method for manufacturing semiconductor device
JPH1140671A (en) Process for forming semiconductor device
KR20100116631A (en) Method for integrating selective low-temperature ruthenium deposition into copper metallization of a semiconductor device
KR20110084130A (en) Interfacial layers for electromigration resistance improvement in damascene interconnects
JP3606095B2 (en) Manufacturing method of semiconductor device
WO2007020684A1 (en) Semiconductor integrated circuit device and method for manufacture thereof
JP4819566B2 (en) Semiconductor device and manufacturing method thereof
JP2809196B2 (en) Method for manufacturing semiconductor device
JP3208124B2 (en) Semiconductor device, method of manufacturing semiconductor device, and apparatus for manufacturing semiconductor device
KR20220166338A (en) Dielectric Material Filling and Processing Methods
JP2004214566A (en) Method for manufacturing semiconductor device and semiconductor device
KR20090074510A (en) Metal wiring of semiconductor device and method of manufacturing the same
TW201001550A (en) Adhesion and electromigration improvement between dielectric and conductive layers
WO2007094044A1 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
KR101757037B1 (en) Method of fabricating semiconductor device including a substrate having copper interconnects
KR100496716B1 (en) Semiconductor device and its manufacturing method
KR100515370B1 (en) Method of forming plug of semiconductor device
KR100241200B1 (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008500361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713665

Country of ref document: EP

Kind code of ref document: A1