JPH1088353A - Formation of zrn coating using cvd system - Google Patents

Formation of zrn coating using cvd system

Info

Publication number
JPH1088353A
JPH1088353A JP9214509A JP21450997A JPH1088353A JP H1088353 A JPH1088353 A JP H1088353A JP 9214509 A JP9214509 A JP 9214509A JP 21450997 A JP21450997 A JP 21450997A JP H1088353 A JPH1088353 A JP H1088353A
Authority
JP
Japan
Prior art keywords
film
gas
coating
zrn
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9214509A
Other languages
Japanese (ja)
Inventor
Do Heyoung Kim
ド・ヒョ・キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
LG Semicon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Semicon Co Ltd filed Critical LG Semicon Co Ltd
Publication of JPH1088353A publication Critical patent/JPH1088353A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/205Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides

Abstract

PROBLEM TO BE SOLVED: To reduce coating thickness and to obtain stabler thin coating by simultaneously feeding a specified source converted into a gaseous state and reactive gases into a chamber and forming coating. SOLUTION: A wafer 32 is placed on a susceptor 31 at the lower part of a reaction chamber 30 in a CVD device. Next, a valve 37 is opened, and by using a carrier gas such as He, any one of source among three kinds of Zr [N (CH3 )2 ] or the like in an isothermal chamber 38 is fed to a shower head 33 in the reaction chamber. At this time, preferably, the source is heated at about 40 to 200 deg.C, is evaporated to form into a gaseous state and is flowed into the shower head 33 together with reactive gases such as N2 and H2 fed through a valve 35. In this way, the CVD process is performed, and ZrN coating is deposited on a semiconductor or the like. This ZrN coating is stabler than the conventional TiN coating, is furthermore small in resistance, reduces the coating thickness of diffused coating and reduces the parasitic resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、CVD装置を用い
たZrN膜の形成方法に関するもので、特に配線、及び
高誘電膜電極に適用しやすいCVD装置を用いたZrN
膜の形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a ZrN film using a CVD apparatus, and particularly to a method for forming a ZrN film using a CVD apparatus which is easy to apply to wiring and high dielectric film electrodes.
The present invention relates to a method for forming a film.

【0002】[0002]

【従来の技術】一般に、気相成長法(CVD)は、形成
しようとする薄膜材料を構成する元素から成る1種、又
は2種以上の単独ガス又は化合物を基板上に供給して、
気相、又は基板の表面での化学反応により所望の薄膜を
形成させる方法をいう。このCVD法は、エピタキシャ
ル成長技術の発展から発し、デバイス技術の高度化に対
応して発展して、今日のようにLSIにおける基本技術
の1つになった。CVD膜の形成は、文字通りに、化学
気相反応の応用で、エピタキシャル成長と同様に、温
度、圧力、ガス混合比、濃度等が非常に重要な要因であ
る。CVD法によって形成しようとする膜の種類と目的
に従って、選択する材料、反応形式、リアクタの構造等
を予め充分にチェックしておくべきである。CVD法で
形成可能な物質は、無定形物質(絶縁膜)、多結晶(ポ
リシリコン)、単結晶(シリコン、ゲルマニウム)等、
或いは絶縁膜、金属膜、半導体膜等が考えられる。
2. Description of the Related Art In general, in a vapor phase growth method (CVD), one or two or more individual gases or compounds composed of elements constituting a thin film material to be formed are supplied onto a substrate.
It refers to a method for forming a desired thin film by a gas phase or a chemical reaction on the surface of a substrate. This CVD method originated from the development of the epitaxial growth technology and has evolved in response to the advancement of device technology, and has become one of the basic technologies in LSI as of today. The formation of a CVD film is, as is literally, an application of a chemical vapor reaction, and the temperature, pressure, gas mixture ratio, concentration and the like are very important factors as in the case of epitaxial growth. In accordance with the type and purpose of the film to be formed by the CVD method, the material to be selected, the reaction type, the structure of the reactor, and the like should be sufficiently checked in advance. Materials that can be formed by the CVD method include amorphous materials (insulating films), polycrystals (polysilicon), single crystals (silicon, germanium), and the like.
Alternatively, an insulating film, a metal film, a semiconductor film, or the like can be considered.

【0003】以下、添付図面を参照して、従来のCVD
法を用いた薄膜形成方法について説明する。図1は、サ
ーマルCVD法を用いた薄膜形成方法を説明するための
CVD装置の構成図である。反応室10内にサセプタ1
1を水平に配置し、その上側にシャワーヘッド13が配
置されている。サセプタ11上にはウェーハ12が載せ
られる。更に、反応室10の上部(図面上、以下方向を
示す場合、特に指示がない限りいずれも図面上のもので
ある)には、シャワーヘッド13と連結される第1ガス
供給管14と、その第1ガス供給管14に流れるガスの
量を調節する第1調節弁15とが配置されている。反応
室10の左側には、液体ソースを収納し、それを一定に
気化させてガスを発生させる恒温室18が配置され、そ
の恒温室18とシャワーヘッド13との間に第2ガス供
給管16と、第2ガス供給管16に流れるガス量を調節
する第2調節弁17とが備わっている。
[0003] Referring to the accompanying drawings,
A method for forming a thin film using the method will be described. FIG. 1 is a configuration diagram of a CVD apparatus for explaining a thin film forming method using a thermal CVD method. Susceptor 1 in reaction chamber 10
1 is disposed horizontally, and a shower head 13 is disposed above the horizontal position. The wafer 12 is placed on the susceptor 11. Further, a first gas supply pipe 14 connected to the shower head 13 is provided at an upper portion of the reaction chamber 10 (in the drawing, when a direction is indicated below, unless otherwise specified, all are on the drawing). A first control valve 15 for controlling the amount of gas flowing through the first gas supply pipe 14 is provided. On the left side of the reaction chamber 10, there is disposed a constant temperature chamber 18 for accommodating a liquid source, evaporating the liquid source constantly to generate gas, and a second gas supply pipe 16 between the constant temperature chamber 18 and the shower head 13. And a second control valve 17 for controlling the amount of gas flowing through the second gas supply pipe 16.

【0004】上記した従来技術の薄膜形成方法でTiN
膜を形成するには、Ti[N(C2524と、Ti[N
(CH324と、Ti[N(CH3)(C25)]4との
うちのいずれか1つをソースとして用いてサーマルCV
D方式で堆積する。ウェーハ12を載置するサセプタ1
1はヒーティング機能を有する。このヒーティング機能
を有するサセプタ11の上にウエーハ12を載せて、第
2調節弁17を開放して、He、Ar、H2、N2、及び
混合ガス等のキャリヤガスを用いて恒温室18内のTi
[N(C2524、Ti[N(CH324、Ti[N
(CH3)(C25)]4の中のいずれか1つのソースを
反応室10の内部のシャワーヘッド13に供給する。さ
らに、第1調節弁を開放して、N2、H2、NH3 、H
e、及び混合ガス等の反応ガスを反応室10の内部のシ
ャワーヘッド13に流入させて、前記ウェーハ12上に
TiN膜を堆積する。
In the above-described conventional thin film forming method, TiN
To form a film, Ti [N (C 2 H 5 ) 2 ] 4 and Ti [N
(CH 3 ) 2 ] 4 and Ti [N (CH 3 ) (C 2 H 5 )] 4 as a source using any one of thermal CV
Deposit in the D method. Susceptor 1 on which wafer 12 is placed
1 has a heating function. The wafer 12 is placed on the susceptor 11 having the heating function, the second control valve 17 is opened, and a constant temperature chamber 18 is formed using a carrier gas such as He, Ar, H 2 , N 2 , and a mixed gas. Ti in
[N (C 2 H 5 ) 2 ] 4 , Ti [N (CH 3 ) 2 ] 4 , Ti [N
(CH 3 ) (C 2 H 5 )] 4 is supplied to the shower head 13 inside the reaction chamber 10. Further, the first control valve is opened and N 2 , H 2 , NH 3 , H
e, and a reaction gas such as a mixed gas is caused to flow into the shower head 13 inside the reaction chamber 10 to deposit a TiN film on the wafer 12.

【0005】一方、図2は、プラズマCVD法を用いた
薄膜形成方法を説明するためのCVD装置の構成図であ
る。これは、前記同様、反応室20内にサセプタ21を
水平に配置し、その上側にシャワーヘッド23を配置す
る。サセプタ21上にはウェーハ22が載せられる。更
に、反応室20の上部には、前記シャワーヘッド23と
連結される第1ガス供給管24と、第1ガス供給管24
に流れるガス量を調節する第1調節弁25と、流れるガ
スを活性化させるRFゼネレータ29とが配置されてい
る。反応室20の左側には、液体ソースと、液体ソース
を一定に気化させてガスを発生させる恒温室28と、ガ
スが流れる第2ガス供給管26と、第2ガス供給管26
に流れるガス量を調節する第2調節弁27とが備わって
いる。
FIG. 2 is a configuration diagram of a CVD apparatus for explaining a thin film forming method using a plasma CVD method. In this case, the susceptor 21 is horizontally disposed in the reaction chamber 20 and the shower head 23 is disposed above the susceptor 21 as described above. The wafer 22 is placed on the susceptor 21. Further, a first gas supply pipe 24 connected to the shower head 23 and a first gas supply pipe 24
A first control valve 25 that adjusts the amount of gas flowing through the hopper and an RF generator 29 that activates the flowing gas are disposed. On the left side of the reaction chamber 20, a liquid source, a constant temperature chamber 28 for generating a gas by evaporating the liquid source constantly, a second gas supply pipe 26 through which the gas flows, and a second gas supply pipe 26
And a second control valve 27 for controlling the amount of gas flowing through the second control valve 27.

【0006】上記した従来技術による薄膜形成方法は、
Ti[N(C2524と、Ti[N(CH324と、
Ti[N(CH3)(C25)]4との中のいずれかの1
つをソースに用いてプラズマCVD方式でTiN膜を堆
積する。CVD装置の反応室20の下部のヒーティング
機能を備えたサセプタ21にウェーハ22を載置し、第
2調節弁27を開放して、He、Ar、H2、N2、及び
混合ガス等のキャリヤガスを用いて恒温室28内のTi
[N(C2524やTi[N(CH324 等のソース
を反応室20の内部のシャワーヘッド23に流入させ
る。N2、H2、NH3、He、及び混合ガス等の反応ガ
スをRFゼネレータ29に0.01〜5KWのパワーを
加えて活性化させた後、反応室20の内部のシャワーヘ
ッド23に流入させて、前記ウェーハ22上にTiN膜
を堆積する。
The thin film forming method according to the prior art described above includes:
Ti [N (C 2 H 5 ) 2 ] 4 , Ti [N (CH 3 ) 2 ] 4 ,
Any one of Ti [N (CH 3 ) (C 2 H 5 )] 4
Using one of them as a source, a TiN film is deposited by a plasma CVD method. The wafer 22 is placed on the susceptor 21 having a heating function below the reaction chamber 20 of the CVD apparatus, the second control valve 27 is opened, and He, Ar, H 2 , N 2 , and mixed gas Ti in the constant temperature chamber 28 using carrier gas
A source such as [N (C 2 H 5 ) 2 ] 4 or Ti [N (CH 3 ) 2 ] 4 flows into the shower head 23 inside the reaction chamber 20. A reaction gas such as N 2 , H 2 , NH 3 , He, and a mixed gas is activated by applying a power of 0.01 to 5 KW to the RF generator 29 and then flows into the shower head 23 inside the reaction chamber 20. Then, a TiN film is deposited on the wafer 22.

【0007】[0007]

【発明が解決しようとする課題】上記した従来技術でT
iN膜をCVD法により形成し、それを拡散防止膜、密
着層、Ta25或いはBST誘電膜などに使用した。し
かし、デバイスのパターンサイズの減少による凹凸を補
償するために良好なステップカバレージを確保するとい
う点からみると、TiNを用いるCVD法の場合、堆積
膜の不安定、即ちエージング効果による劣化、又は高い
堆積温度のため、適用に限界がある。本発明は、上記し
た従来の問題点を解決するために提案されたもので、薄
膜の膜厚を減少させ、より安定した薄膜が得られるよう
に、CVD装置を用いた膜形成方法を提供することを目
的とする。
SUMMARY OF THE INVENTION In the prior art described above, T
An iN film was formed by a CVD method and used as a diffusion prevention film, an adhesion layer, a Ta 2 O 5 or BST dielectric film, or the like. However, from the viewpoint of securing a good step coverage to compensate for the unevenness due to the decrease in the pattern size of the device, in the case of the CVD method using TiN, instability of the deposited film, that is, deterioration due to the aging effect, or high There are limits to the application due to the deposition temperature. The present invention has been proposed to solve the above-mentioned conventional problems, and provides a film forming method using a CVD apparatus so as to reduce the thickness of a thin film and obtain a more stable thin film. The purpose is to:

【0008】[0008]

【課題を解決するための手段】上記目的を達するための
本発明によるCVD装置を用いたZrN膜の形成方法
は、CVD装置のチャンバー内に基板を入れ、ソースと
して、Zr[N(CH324、Zr[N(C
2524、Zr[N(CH3)(C25)]4を用意
し、そのソースに気化用ガスを供給してソースを気体状
態にし、これを前記チャンバー内に供給する。同時にC
VD用反応ガスをチャンバー内に供給して前記基板にZ
rN膜を形成することを特徴とする。
In order to achieve the above object, a method of forming a ZrN film using a CVD apparatus according to the present invention is as follows. A substrate is placed in a chamber of a CVD apparatus, and Zr [N (CH 3 ) is used as a source. 2 ] 4 , Zr [N (C
2 H 5) 2] 4, Zr [N (CH 3) (C 2 H 5)] 4 was prepared, and the source gas state by supplying a vaporized gas to its source, supplying it to the chamber I do. At the same time C
A VD reaction gas is supplied into the chamber and Z is supplied to the substrate.
It is characterized in that an rN film is formed.

【0009】[0009]

【発明の実施の形態】以下、添付図面を参照して、本発
明の実施形態を説明する。図3は、本発明の第1実施形
態に従うサーマルCVD法による薄膜形成方法を説明す
るためのCVD装置の構成図である。従来の場合と同
様、反応室30内にサセプタ31をほぼ水平に保ち、天
井部にシャワーヘッド33を備えている。サセプタ31
にはウェーハ32が載せられる。又、反応室30の上部
には、シャワーヘッド33と連結される第1ガス供給管
34と、第1ガス供給管34に流れるガス量を調節する
第1調節弁35とが配置されている。また、反応室30
の左側には、液体ソースを収納し、その液体ソースを一
定に気化させてガスを発生させる恒温室38が配置さ
れ、恒温室38とシャワーヘッドとの間を第2ガス供給
管36で連結し、第2ガス供給管36にそこを流れるガ
ス量を調節する第2調節弁37が取り付けられている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 3 is a configuration diagram of a CVD apparatus for describing a method of forming a thin film by a thermal CVD method according to the first embodiment of the present invention. As in the conventional case, the susceptor 31 is kept substantially horizontal in the reaction chamber 30, and the shower head 33 is provided on the ceiling. Susceptor 31
A wafer 32 is placed on the wafer. In addition, a first gas supply pipe 34 connected to the shower head 33 and a first control valve 35 for adjusting an amount of gas flowing through the first gas supply pipe 34 are disposed above the reaction chamber 30. Also, the reaction chamber 30
A constant temperature chamber 38 for storing a liquid source, evaporating the liquid source at a constant rate, and generating gas is disposed on the left side of the liquid source, and the constant temperature chamber 38 and the shower head are connected by a second gas supply pipe 36. The second gas supply pipe 36 is provided with a second control valve 37 for controlling the amount of gas flowing therethrough.

【0010】上記した本実施形態による薄膜形成方法
は、まず、CVD装置の反応室30の下部にヒーティン
グ機能を有するサセプタ31にウェーハ32を載置す
る。次いで、第2調節弁37を開放して、He、Ar、
2、N2、及び混合ガス等のキャリヤガスを用いて恒温
室38内のZr[N(CH324、Zr[N(C
2524 、Zr[N(CH3)(C25)]4 の中の
いずれかの1つのソースを反応室のシャワーヘッド33
に供給する。このとき、ソースは約40〜200℃の温
度で加熱して気体状態に蒸発させた後、N2、H2、NH
3 、He及びそれらの混合ガス等の反応ガスと共に反応
室の内部のシャワーヘッド33に流入すさることが好ま
しい。又、第1調節弁35を開放して、N2、H2、NH
3 、He、及びそれらの混合ガス等の反応ガスを反応室
の内部のシャワーヘッド33に流入させて、CVD工程
を実施する。この時、ZrN膜は、シリコン(Si)と
GaAs等の化合物半導体等の半導体、SiO2、Si
4、ポリマーなどの誘電体、Ti、Cu、Al、W、
Mo等の金属、Ta25、BST、PZT等の高誘電体
膜上に堆積される。一方、ZrN膜上にTa25、BS
T等の誘電体が堆積され、再度ZrN膜で形成されたキ
ャパシタ電極としても利用可能である。ZrN膜の形成
時の反応室の内部の堆積温度は、約25〜450℃、圧
力は、10-3〜760Torrである。ソースの温度
は、40〜200℃である。又、ZrN膜の形成後、カ
ーボンのような不純物の減少、及び膜の密度を増加させ
るために、N2/H2、又はNH3、又はN2/H2/NH3
の雰囲気の中で、500℃以上でアニーリングを実施す
ることが好ましい。
In the method for forming a thin film according to the present embodiment, first, a wafer 32 is placed on a susceptor 31 having a heating function below a reaction chamber 30 of a CVD apparatus. Next, the second control valve 37 is opened, and He, Ar,
Using a carrier gas such as H 2 , N 2 and a mixed gas, Zr [N (CH 3 ) 2 ] 4 and Zr [N (C
2 H 5 ) 2 ] 4 , Zr [N (CH 3 ) (C 2 H 5 )] 4 , and any one of the sources is used as a shower head 33 in the reaction chamber.
To supply. At this time, the source is heated at a temperature of about 40 to 200 ° C. to evaporate to a gaseous state, and then N 2 , H 2 , NH
3 , it is preferable to flow into the shower head 33 inside the reaction chamber together with a reaction gas such as He and a mixed gas thereof. Further, the first control valve 35 is opened, and N 2 , H 2 , NH
A CVD process is performed by flowing a reaction gas such as 3 , He, and a mixed gas thereof into the shower head 33 inside the reaction chamber. At this time, the ZrN film is made of silicon (Si), a semiconductor such as a compound semiconductor such as GaAs, SiO 2 , Si
N 4 , a dielectric such as a polymer, Ti, Cu, Al, W,
It is deposited on a metal such as Mo, a high dielectric film such as Ta 2 O 5 , BST, PZT or the like. On the other hand, Ta 2 O 5 , BS
A dielectric such as T is deposited, and can be used again as a capacitor electrode formed of a ZrN film. During the formation of the ZrN film, the deposition temperature inside the reaction chamber is about 25 to 450 ° C., and the pressure is 10 −3 to 760 Torr. The temperature of the sauce is between 40 and 200C. After the formation of the ZrN film, N 2 / H 2 or NH 3 or N 2 / H 2 / NH 3 is used to reduce impurities such as carbon and increase the film density.
Annealing is preferably performed at 500 ° C. or more in the above atmosphere.

【0011】図4は、本発明の第2実施形態に従うプラ
ズマCVD(PECVD)法による薄膜形成方法を説明
するためのCVD装置の構成図である。前記同様反応室
40内にはサセプタ41がほぼ水平に配置され、天井部
にはシャワーヘッド43が取り付けれらている。サセプ
タ41上にはウェーハ42が載せられる。更に、反応室
40の上部には、前記シャワーヘッド43と連結される
第1ガス供給管44と、第1ガス供給管44に流れるガ
ス量を調節する第1調節弁45と、調節弁45により流
れるガスを活性化させるRFゼネレータ49とが配置さ
れている。反応室40の左側には、液体ソースを収納
し、その液体ソースを一定に気化させてガスを発生させ
る恒温室48が配置され、その恒温室48とシャワーヘ
ッド43との間に第2ガス供給管46を配置し、その第
2ガス供給管46にそこを流れるガス量を調節する第2
調節弁47が取り付けられている。
FIG. 4 is a configuration diagram of a CVD apparatus for explaining a method of forming a thin film by a plasma CVD (PECVD) method according to a second embodiment of the present invention. As described above, a susceptor 41 is disposed substantially horizontally in the reaction chamber 40, and a shower head 43 is attached to the ceiling. A wafer 42 is placed on the susceptor 41. Further, a first gas supply pipe 44 connected to the shower head 43, a first control valve 45 for controlling the amount of gas flowing through the first gas supply pipe 44, and a control valve 45 are provided above the reaction chamber 40. An RF generator 49 for activating the flowing gas is arranged. On the left side of the reaction chamber 40, a constant temperature chamber 48 for storing a liquid source, evaporating the liquid source constantly to generate gas, and a second gas supply between the constant temperature chamber 48 and the shower head 43 are provided. A pipe 46 is arranged, and a second gas supply pipe 46 is provided with a second gas supply pipe 46 for adjusting the amount of gas flowing therethrough.
A control valve 47 is attached.

【0012】上記した本実施形態による薄膜形成方法
は、サセプタ41にウェーハ42を載置し、第2調節弁
47を開放して、He、Ar、H2、N2、及び混合ガス
等のキャリヤガスを用いて恒温室48内のZr[N(C
324、Zr[N(C2524、及びZr[N(C
3)(C25)]4の中のいずれかの1つのソースを反
応室40の内部のシャワーヘッド43に流入させる。こ
のとき、ソースは、約40〜200℃の温度で加熱して
気体状態に蒸発させた後、N2、H2、NH3 、He、及
び混合ガス等の反応ガスと共に反応室の内部のシャワー
ヘッド43に流入することが好ましい。同時に、第1調
節弁45を開放して、反応ガスをRFゼネレータ49に
10〜500KWのパワーを加えて活性化させた後、反
応室40の内部のシャワーヘッド43に流入させて、ウ
ェーハ42上にZrN膜を堆積させる。
In the above-described thin film forming method according to the present embodiment, the wafer 42 is placed on the susceptor 41, the second control valve 47 is opened, and carriers such as He, Ar, H 2 , N 2 , and a mixed gas are mixed. Using a gas, Zr [N (C
H 3) 2] 4, Zr [N (C 2 H 5) 2] 4, and Zr [N (C
H 3 ) (C 2 H 5 )] 4 is supplied to the shower head 43 inside the reaction chamber 40. At this time, the source is heated at a temperature of about 40 to 200 ° C. to evaporate to a gaseous state, and then is showered inside the reaction chamber together with a reaction gas such as N 2 , H 2 , NH 3 , He, and a mixed gas. It is preferable to flow into the head 43. At the same time, the first control valve 45 is opened, and the reaction gas is activated by applying a power of 10 to 500 KW to the RF generator 49, and then flows into the shower head 43 inside the reaction chamber 40, and Then, a ZrN film is deposited.

【0013】このZrN膜は、シリコン(Si)とGa
As等の化合物半導体等の半導体、SiO2、SiN4
ポリマー等の誘電体、Ti、Cu、Al、W、Mo等の
金属、Ta25、BST、PZT等の高誘電体膜上に堆
積される。一方、ZrN膜の上にTa25、BST等の
誘電体が堆積され、再度ZrN膜で形成されたキャパシ
タ電極としても利用可能である。ZrN膜の形成時の反
応室40の内部の堆積温度は、約25〜450℃、圧力
は、10-3〜760Torrである。又、ZrN膜の形
成後、カーボンのような不純物の減少、及び膜の密度を
増加させるために、N2/H2、又はNH3、又はN2/H
2/NH3の雰囲気の中で、500℃以上にアニーリング
を実施することが好ましい。
This ZrN film is made of silicon (Si) and Ga
Semiconductors such as compound semiconductors such as As, SiO 2 , SiN 4 ,
It is deposited on a dielectric such as a polymer, a metal such as Ti, Cu, Al, W, and Mo, or a high dielectric film such as Ta 2 O 5 , BST, or PZT. On the other hand, a dielectric such as Ta 2 O 5 or BST is deposited on the ZrN film, and can be used again as a capacitor electrode formed of the ZrN film. The deposition temperature inside the reaction chamber 40 during the formation of the ZrN film is about 25 to 450 ° C., and the pressure is 10 −3 to 760 Torr. After the formation of the ZrN film, N 2 / H 2 , NH 3 , or N 2 / H is used to reduce impurities such as carbon and increase the film density.
Annealing is preferably performed at 500 ° C. or higher in an atmosphere of 2 / NH 3 .

【0014】[0014]

【発明の効果】以上のように上述した本発明によれば、
ZrN膜はTiN膜より安定し、抵抗率も小さく、拡散
膜の膜厚を減少させ、寄生抵抗を減少させる。また、R
C時定数の減少による素子の動作速度も増加させる効果
がある。本発明は、上記した実施形態に限定されず、本
発明の技術的な思想内で、当分野の通常の知識を有して
いる者により、いろんな変形が可能であることは明らか
である。
According to the present invention described above,
The ZrN film is more stable than the TiN film, has lower resistivity, reduces the thickness of the diffusion film, and reduces the parasitic resistance. Also, R
This has the effect of increasing the operating speed of the device due to the decrease in the C time constant. The present invention is not limited to the above-described embodiments, and it is apparent that various modifications can be made by those having ordinary knowledge in the art within the technical spirit of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の技術によるサーマルCVDを用いた薄
膜形成方法を説明するためのCVD装置の構成図。
FIG. 1 is a configuration diagram of a CVD apparatus for explaining a thin film forming method using thermal CVD according to a conventional technique.

【図2】 従来の技術によるプラズマCVDを用いた薄
膜形成方法を説明するためのCVD装置の構成図。
FIG. 2 is a configuration diagram of a CVD apparatus for explaining a thin film forming method using plasma CVD according to a conventional technique.

【図3】 本発明の実施形態によるサーマルCVDを用
いた薄膜形成方法を説明するためのCVD装置の構成
図。
FIG. 3 is a configuration diagram of a CVD apparatus for explaining a thin film forming method using thermal CVD according to an embodiment of the present invention.

【図4】 本発明の実施形態によるプラズマ化学気相堆
積法を用いた薄膜形成方法を説明するためのCVD装置
の構成図。
FIG. 4 is a configuration diagram of a CVD apparatus for explaining a thin film forming method using a plasma enhanced chemical vapor deposition method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

30、40 反応室 31、41 サセプタ 32、42 ウェーハ 33、43 シャワーヘッド 34、44 第1ガス供給管 35、45 第1調節弁 36、46 第2ガス供給管 37、47 第2調節弁 38、48 恒温室 49 RFゼネレータ 30, 40 Reaction chamber 31, 41 Susceptor 32, 42 Wafer 33, 43 Shower head 34, 44 First gas supply pipe 35, 45 First control valve 36, 46 Second gas supply pipe 37, 47 Second control valve 38, 48 constant temperature room 49 RF generator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 CVD装置のチャンバー内に基板を入
れ;ソースとして、Zr[N(CH324、Zr[N
(C2524、Zr[N(CH3)(C25)]4を用意
し;前記ソースに気化用ガスを供給して前記ソースを気
体状態にし、これを前記チャンバー内に供給し;CVD
用反応ガスをチャンバー内に供給して前記基板にZrN
膜を形成する;ことを特徴とするCVD装置を用いたZ
rN膜の形成方法。
1. A substrate is placed in a chamber of a CVD apparatus; Zr [N (CH 3 ) 2 ] 4 and Zr [N
(C 2 H 5 ) 2 ] 4 and Zr [N (CH 3 ) (C 2 H 5 )] 4 are prepared; a gas for vaporization is supplied to the source to convert the source into a gaseous state; Into the chamber; CVD
Reaction gas is supplied into the chamber and ZrN
Forming a film; Z using a CVD apparatus
A method for forming an rN film.
【請求項2】 前記気化用ガスは、He、Ar、
2、H2、及び混合ガスの中ののいずれかの1つである
ことを特徴とする請求項1記載のCVD装置を用いたZ
rN膜の形成方法。
2. The gas for vaporization is He, Ar,
2. The Z using a CVD apparatus according to claim 1, wherein the Z is one of N 2 , H 2 , and a mixed gas.
A method for forming an rN film.
【請求項3】 前記CVD用ガスは、N2、He、
2、N23、及び混合ガスの中のいずれかの1つであ
ることを特徴とする請求項1記載のCVD装置を用いた
ZrN膜の形成方法。
3. The CVD gas is N 2 , He,
2. The method for forming a ZrN film using a CVD apparatus according to claim 1, wherein the ZrN film is one of H 2 , N 2 H 3 , and a mixed gas.
【請求項4】 ZrN膜は、半導体、誘電体、金属、
及び高誘電体膜の中のいずれかの1つに堆積されること
を特徴とする請求項1記載のCVD装置を用いたZrN
膜の形成方法。
4. The ZrN film includes a semiconductor, a dielectric, a metal,
2. The ZrN using a CVD apparatus according to claim 1, wherein the ZrN is deposited on any one of the first dielectric film and the high dielectric film.
Method of forming a film.
JP9214509A 1996-08-21 1997-08-08 Formation of zrn coating using cvd system Pending JPH1088353A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019960034656A KR100226764B1 (en) 1996-08-21 1996-08-21 Thin film forming method using chemical vapor deposition system
KR34656/1996 1996-08-21

Publications (1)

Publication Number Publication Date
JPH1088353A true JPH1088353A (en) 1998-04-07

Family

ID=19470261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9214509A Pending JPH1088353A (en) 1996-08-21 1997-08-08 Formation of zrn coating using cvd system

Country Status (3)

Country Link
JP (1) JPH1088353A (en)
KR (1) KR100226764B1 (en)
DE (1) DE19735990C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094044A1 (en) * 2006-02-14 2007-08-23 Fujitsu Limited Semiconductor device manufacturing method and semiconductor manufacturing apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769634B1 (en) * 2000-11-02 2007-10-23 후지쯔 가부시끼가이샤 Semiconductor device and its manufacturing method
US20150225874A1 (en) * 2012-08-21 2015-08-13 Sm Technology Method for growing zirconium nitride crystal
KR101481540B1 (en) * 2012-10-11 2015-01-13 전북대학교산학협력단 Apparatus for chemical vapor deposition apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139825A (en) * 1989-11-30 1992-08-18 President And Fellows Of Harvard College Process for chemical vapor deposition of transition metal nitrides
KR0153878B1 (en) * 1994-06-07 1998-10-15 쿠미하시 요시유키 Silicon carbide semiconductor device and method of producing the same
JPH08181075A (en) * 1994-12-26 1996-07-12 Nec Corp Thin film depositing method
KR0164149B1 (en) * 1995-03-28 1999-02-01 김주용 Method of improving ticn layer
KR100226763B1 (en) * 1996-07-31 1999-10-15 김영환 Thin film forming method using chemical vapor deposition system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094044A1 (en) * 2006-02-14 2007-08-23 Fujitsu Limited Semiconductor device manufacturing method and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
KR100226764B1 (en) 1999-10-15
DE19735990C2 (en) 2000-01-05
DE19735990A1 (en) 1998-02-26
KR19980015361A (en) 1998-05-25

Similar Documents

Publication Publication Date Title
US7674728B2 (en) Deposition from liquid sources
KR100214910B1 (en) Utilization of sih4 soak and purge in deposition processes
JP4585692B2 (en) Thin film formation method
JP5294694B2 (en) In situ deposition of silicon and titanium nitride
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
US6165555A (en) Method for forming copper film using chemical vapor deposition
US6004885A (en) Thin film formation on semiconductor wafer
US5217756A (en) Selective chemical vapor deposition of aluminum, aluminum CVD materials and process for preparing the same
JPH06240456A (en) Method and device for forming aluminum circuit of semiconductor device
JPH08170174A (en) Formation of titanium nitride film
WO2000036640A1 (en) Method of forming thin film
JPH1088353A (en) Formation of zrn coating using cvd system
JP2650530B2 (en) Gas phase reactor for semiconductor device manufacturing
KR100226763B1 (en) Thin film forming method using chemical vapor deposition system
US5130459A (en) Selective chemical vapor deposition of aluminum, aluminum CVD materials and process for preparing the same
JP2008506617A (en) Method for depositing a film containing Si and Ge
JPS6376875A (en) Vapor growth method
JPH0951035A (en) Formation of interlayer insulation layer
KR0172857B1 (en) Thin film forming method by cvd
JP2605928B2 (en) A. Method for selective formation of thin film
JPH04372118A (en) Manufacture of amorphous semiconductor thin film
TW202229641A (en) Vapor deposition assembly, method of depositing silicon nitride, and method of forming semiconductor device
JP2677230B2 (en) Method for forming TiN film
JPH08100264A (en) Formation of thin film and device therefor
KR0166844B1 (en) Method for forming barrier metal layer of semiconductor device