KR0166844B1 - Method for forming barrier metal layer of semiconductor device - Google Patents

Method for forming barrier metal layer of semiconductor device Download PDF

Info

Publication number
KR0166844B1
KR0166844B1 KR1019950048244A KR19950048244A KR0166844B1 KR 0166844 B1 KR0166844 B1 KR 0166844B1 KR 1019950048244 A KR1019950048244 A KR 1019950048244A KR 19950048244 A KR19950048244 A KR 19950048244A KR 0166844 B1 KR0166844 B1 KR 0166844B1
Authority
KR
South Korea
Prior art keywords
gas
metal layer
amine compound
barrier metal
organometallic complex
Prior art date
Application number
KR1019950048244A
Other languages
Korean (ko)
Other versions
KR970052214A (en
Inventor
전영권
김도형
Original Assignee
문정환
엘지반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 문정환, 엘지반도체주식회사 filed Critical 문정환
Priority to KR1019950048244A priority Critical patent/KR0166844B1/en
Publication of KR970052214A publication Critical patent/KR970052214A/en
Application granted granted Critical
Publication of KR0166844B1 publication Critical patent/KR0166844B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps

Abstract

본 발명은 반도체 소자의 제조방법에 관한 것으로, 상세하게는 고단차를 갖는 기판이나 종횡비가 큰 접속구멍에도 적용할 수 있는 반도체 소자의 배리어 금속층을 형성하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for forming a barrier metal layer of a semiconductor device that can be applied to a substrate having a high step or a connection hole having a large aspect ratio.

본 발명의 배리어 금속층 형성방법은 Ta 또는 W의 유기금속 착화합물의 가스을 웨이퍼 위로 도입하는 단계와, 도입된 상기 가스의 열분해와 화학반응에 의하여 반도체 기판위에 전이금속을 함유하는 금속층을 증착시키는 단계와, 미반응 가스와 반응 부산물 가스를 배기하는 단계를 포함하여 이루어진다.The barrier metal layer forming method of the present invention includes the steps of introducing a gas of an organometallic complex of Ta or W onto a wafer, depositing a metal layer containing a transition metal on a semiconductor substrate by thermal decomposition and chemical reaction of the introduced gas; Exhausting the unreacted gas and the reaction byproduct gas.

Description

반도체 소자의 배리어 금속층 형성방법Method of forming barrier metal layer of semiconductor device

제1도는 일반적인 고온벽형 LPCVD 장치.1 is a typical high temperature wall LPCVD apparatus.

제2도는 일반적인 저온벽형 LPCVD 장치.2 is a typical low temperature wall LPCVD apparatus.

본 발명은 반도체 소자의 제조방법에 관한 것으로, 특히 배리어 금속층의 신뢰성을 개선하는데 적당하도록 한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and is particularly suitable for improving the reliability of a barrier metal layer.

알루미늄과 그 합금박막은 전기 전도도가 높고, 건식식각에 의한 패턴형성이 용히하며 실리콘 산화막과의 접착성이 우수한 동시에 비교적 가격이 저렴하므로 반도체 회로의 배선재료로서 널리 사용되어 왔다.Aluminum and its alloy thin films have been widely used as wiring materials for semiconductor circuits because of their high electrical conductivity, ease of pattern formation by dry etching, good adhesion to silicon oxide films, and relatively low cost.

그러나 집적회로의 집적도가 증가함에 따라 소자의 크기가 감소하고 배선이 미세화, 다층화되므로 토폴로지를 갖는 부분이나 콘택트(Contact)나 비아(via) 등의 접속구멍 내부에서 단차 피복성(step coverage)이 중요하게 되었다.However, as the degree of integration of integrated circuits increases, the size of devices decreases and wiring becomes finer and multilayered. Therefore, step coverage is important in a part having a topology or inside a connection hole such as a contact or a via. Was done.

즉 기존의 금속배선막 형성방법인 스퍼터링(sputtering)을 적용하면, 이와 같이 굴곡을 갖는 부분에서는 음영효과에 의하여 국부적으로 배선막의 두께가 얇게 형성되며, 특히 종횡비(aspect ratio)가 1이상인 접속구멍에서 더욱 심각하게 나타난다.In other words, if sputtering, which is a conventional method for forming a metal wiring film, is applied, the thickness of the wiring film is locally thinned due to the shading effect in the curved part, and particularly in a connection hole having an aspect ratio of 1 or more More seriously.

따라서 이러한 물리적 증착방법 대신에 균일한 두께로 증착할 수 있는 화학기상 증착법이 도입되어 텅스텐(tungsten)막을 저압화학 기상증착(low pressure Chemical Vapor Deoposition)법으로 형성함으로써 단차 피복성을 개선하는 연구가 진행되었으나 텅스텐 배선막은 알루미늄 배선막에 비하여 비저항(resistivity)이 2배 이상 되므로 배선막으로서의 적용이 어려운 현실이다.Therefore, instead of the physical vapor deposition method, a chemical vapor deposition method capable of depositing with a uniform thickness is introduced, and a research to improve the step coverage by forming a tungsten film by a low pressure chemical vapor deposition method is performed. However, since the tungsten wiring film has a resistivity more than twice that of the aluminum wiring film, it is difficult to apply it as a wiring film.

따라서 접속구멍에 매몰층(plug)을 형성하는 방법으로서 개발이 진행되고 있다.Therefore, development is progressing as a method of forming a buried layer (plug) in the connection hole.

이에 대하여 화학기상 증착법으로 알류미늄을 위주로 하는 배선막을 형성하게 되면 단차 피복성이 개선되는 동시에 사진식각(lithography and etch) 공정 등 기존의 스퍼터링에 의한 알루미늄 배선막 기술의 주변관련 공정과의 연속성을 유지할 수 있으므로 유리하다.On the other hand, the formation of aluminum-based wiring films by chemical vapor deposition improves the step coverage and at the same time maintains the continuity with the surrounding process of aluminum wiring film technology by sputtering such as lithography and etch processes. So it is advantageous.

한편 구리는 알루미늄에 비하여 비저항(resistivity)이 낮고 일렉트로 마이그레이션(electro migration)이나 스트레스 마이그레이션(stress migration) 특성이 우수하므로 신뢰성을 더욱 개선할 수 있다.On the other hand, copper has a lower resistivity and better electro migration or stress migration characteristics than aluminum, thereby improving reliability.

구리는 스퍼터링이나 화학기상 증착법으로 형성하는 방법이 연구되고 있다.Copper has been studied to form by sputtering or chemical vapor deposition.

그러나 실온(room temperrature)에서 실리콘내에서의 확산계수가 10-8㎠/초으로 매우 빠른 격자간 침입형(interstitial) 확산속도를 나타낸다.However, at room temperature, the diffusion coefficient in silicon is 10 −8 cm 2 / sec, indicating a very fast interstitial diffusion rate.

또 실리콘내에 고용된 구리는 재결합 중심(recombination center)로 작용하므로 소수 캐리어의 수명이 감소하고 소자의 성능을 저해하는 요인이 된다.In addition, copper dissolved in silicon acts as a recombination center, reducing the lifetime of minority carriers and degrading device performance.

따라서 Cu를 소자에 성공적으로 적용하기 위해서는 Cu와 실리콘 기판사이에 확산 방지층으로서 배리어층을 설치할 필요가 있다.Therefore, in order to successfully apply Cu to the device, it is necessary to provide a barrier layer as a diffusion barrier layer between Cu and the silicon substrate.

Cu배선의 확산 배리어층으로는 W, Ni60Nb40, 비정질(amorphous) W-Si, Ta, TiB2, Ta-Si-N 그리고 TiN 등이 있다.The diffusion barrier layers of Cu wiring include W, Ni 60 Nb 40 , amorphous W-Si, Ta, TiB 2 , Ta-Si-N, TiN, and the like.

이러한 물질중에서 TiN은 현재 알루미늄 배선의 배리어층으로서 널리 적용되고 있는 관계로 유기금속 소스를 이용하여 화학기상 증착(MOCVD)하는 방법이 연구중에 있다. 한편 배선이 미세화 되면 배리어층과 Cu막의 적층구조에 있어서 배리어층의 점유비율이 증가하므로 Cu막의 적용에 의한 저항감소 효과가 줄어든다. 따라서 배리어층은 두께가 얇으면서도 그 특성을 유지할 수 있어야 하는데 이러한 관점으로 TaxNy, TaxWy, WxNy등의 재료가 연구되고 있다.Among these materials, TiN is currently being widely applied as a barrier layer for aluminum interconnects. Therefore, a method of chemical vapor deposition (MOCVD) using an organometallic source is being studied. On the other hand, when the wiring becomes finer, the occupancy ratio of the barrier layer increases in the barrier structure between the barrier layer and the Cu film, so that the effect of reducing the resistance due to the application of the Cu film is reduced. Therefore, the barrier layer should be thin and maintain its properties. From this point of view, materials such as Ta x N y , Ta x W y , and W x N y have been studied.

그러나 이들은 모두 스프터링이나 반응성 이온 스퍼터링법으로 형성하므로 고단차를 갖는 기판이나 종횡비가 큰 접속구멍에는 적용하기 어려운 상태이다.However, since they are all formed by sputtering or reactive ion sputtering, it is difficult to apply them to substrates having a high step and connecting holes having a high aspect ratio.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로서, 고단차를 갖는 기판이나 종횡비가 큰 접속구멍에도 적용할 수 있는 반도체 소자의 배리어 금속층을 형성하는 방법을 제공하는 것이 목적이다.An object of the present invention is to provide a method of forming a barrier metal layer of a semiconductor element that can be applied to a substrate having a high step and a connection hole having a high aspect ratio.

이와 같은 목적을 달성하기 위한 본 발명의 배리어 금속층 형성방법은 Ta 또는 W의 유기금속 착화합물의 가스를 웨이퍼 위로 도입하는 단계와, 도입된 상기 가스의 열 분해와 화학반응에 의하여 반도체 기판위에 전이금속을 함유하는 금속층을 증착시키는 단계와, 미반응 가스와 반응부산물 가스를 배기하는 단계를 포함하여 이루어짐에 특징이 있다.In order to achieve the above object, the barrier metal layer forming method of the present invention includes introducing a gas of an organometallic complex of Ta or W onto a wafer, and providing a transition metal on a semiconductor substrate by thermal decomposition and chemical reaction of the introduced gas. And depositing the containing metal layer and exhausting the unreacted gas and the reaction by-product gas.

본 발명은 기존의 배리어 금속층인 Ta의 질화막, Ta와 W의 화합물막, W의 질화막을 유기금속 소스를 이용하여 MOCV법으로 형성하는 방법이다.The present invention is a method for forming a nitride film of Ta which is an existing barrier metal layer, a compound film of Ta and W, and a nitride film of W by an organic metal source using the MOCV method.

먼저 Ta와 W의 소스로서는 휘발성 액상 유기금속 Ta 착화합물(organometallic Tacomplex)와 W 착화합물을 사용한다.First, volatile liquid organometallic Tacomplexes and W complexes are used as sources of Ta and W.

이들 유기금속 화합물은 디알킬아미도기 또는 시클릭아미도기 등의 이민화합물을 포함한다.These organometallic compounds include imine compounds such as dialkyl amido groups or cyclic amido groups.

특정하게는 Ta 소스로서는 비스(디메틸아미도)탄탈룸, 트리스(디메틸아미도)탄탈룸, 비스(디에틸아미도)탄탈룸, 트리스(디에틸아미도)탄탈룸, 디메틸에틸아민 탄탈룸을 사용한다.Specifically, as a Ta source, bis (dimethyl amido) tantalum, tris (dimethyl amido) tantalum, bis (diethyl amido) tantalum, tris (diethyl amido) tantalum and dimethylethylamine tantalum are used.

그리고 W소스로서는 데트라키스(디메틸아미도) 텅스텐, 테트라키스(디에틸아미도)텡스텐, 그리고 디알킬아미도기 중의 하나가 알킬기로 대체된 tert-부틸 트리스(디메틸아미도)텅스텐, 테트라키스(피페리디노) 텅스텐 및 테트라키스(피롤리디노) 텅스텐을 사용한다.As the W source, tert-butyl tris (dimethyl amido) tungsten, tetrakis, in which one of the detrakis (dimethyl amido) tungsten, the tetrakis (diethyl amido) tungsten, and the dialkyl amido group is replaced with an alkyl group. Piperidino) tungsten and tetrakis (pyrrolidino) tungsten are used.

이들 Ta이나 W을 함유하는 유기액체 또는 가스를 He, Ne, Ar등과 같은 불활성 캐리어 가스를 매개로 열분해 또는 플라즈마 분해반응과 화학반응을 통하여 TaxNy또는 WxNy등의 질화막으로서 증착한다.The organic liquid or gas containing Ta or W is deposited as a nitride film such as Ta x N y or W x N y through pyrolysis or plasma decomposition and chemical reaction through an inert carrier gas such as He, Ne, Ar, or the like. .

한편 합성반응에 있어서 NH3등의 반응성 가스를 도입하여 질소의 소스로서 이용할수도 있다.In the synthesis reaction, a reactive gas such as NH 3 may be introduced and used as a source of nitrogen.

또 Ta과 W의 소스가스를 함께 도입하면 TaxWy나 TaxWyNz등의 복합막을 형성할 수 있다.In addition, when Ta and W source gases are introduced together, a composite film such as Ta x W y or Ta x W y N z can be formed.

기본적으로 CVD반응은 반응가스와 불활성 캐리어 가스를 반응실에 장입하는 단계와 wafer기판위에 반응가스가 흡착(absorption)되는 단계, 기판위에서의 이동(migration)과 화학반응에 의하여 반응막을 형성하는 단계와, 반응의 부산물 가스가 탈착(desorption)되어 제거되는 단계로 구성된다.Basically, the CVD reaction involves charging reaction gas and inert carrier gas into the reaction chamber, adsorbing the reaction gas on the wafer substrate, forming a reaction film by migration and chemical reaction on the substrate, The by-product gas of the reaction is desorbed and removed.

이때 화학반응은 가스상태의 핵생성(nucleation)이 일어나지 않고 일정 온도하의 기판 표면에서 일어나는 불균질 반응(heterogeneous reaction)이 되도록 유도한다.In this case, the chemical reaction causes a heterogeneous reaction to occur on the surface of the substrate under a certain temperature without generating gaseous nucleation.

본 발명에서 사용하는 CVD는 LPCVD이며, 일반적으로 LPCVD리액터는 제1도에 도시된 것과 같은 고온벽형 리액터(hot wall reactor)와 제2도에 도시한 것과 같은 저온벽형 리액터(cold wall reactor)로 나눌수 있는데 본 발명에서는 둘다 사용 가능하다.The CVD used in the present invention is LPCVD, and in general, the LPCVD reactor can be divided into a hot wall reactor as shown in FIG. 1 and a cold wall reactor as shown in FIG. In the present invention, both can be used.

이들 리액터는 200-450℃ 범위내에 증착온도 및 0.1-10torr.의 증착압력의 조건하에서 가동된다.These reactors are operated under conditions of deposition temperature and deposition pressure of 0.1-10torr. In the range of 200-450 ° C.

이중 저온벽형 리액터는 그림과 같이 RF 제너레이터를 이용한 가열방식을 적용하여 플라즈마와 자유전자(free electron)을 방출시키므로서 화학반응이 더욱 촉진될 수 있으며 증착막의 접착력이나 전기적 특성이 양호하게 된다.As shown in the figure, the low-temperature wall reactor is applied with a heating method using an RF generator to emit plasma and free electrons so that the chemical reaction can be further promoted, and the adhesion and electrical properties of the deposited film are improved.

반면에 고온벽형 리액터는 증착막의 순도(purity)와 균일성 측면에서 유리하나 증착속도가 느린 결점이 있다.On the other hand, the high temperature wall reactor is advantageous in terms of purity and uniformity of the deposited film, but has a disadvantage of slow deposition rate.

먼저 제1도를 통하여 고온벽형 리액터를 이용한 TaxWy막의 형성방법과 장치를 설명하면 다음과 같다.First, a method and apparatus for forming a Ta x W y film using a high temperature wall reactor will be described with reference to FIG.

참조번호 1은 반응로를 구성하는 수직 관형로(vertical tubular furnace)를 나타내며 6 또는 8 직경의 웨이퍼들(2)이 석영 보트(12)에 지지되어 있다.Reference numeral 1 denotes a vertical tubular furnace constituting the reactor and 6 or 8 diameter wafers 2 are supported on the quartz boat 12.

히터(3)는 반응로의 외벽에 설치되어 200-450℃의 일정한 온도로 반응로를 가열한다.The heater 3 is installed on the outer wall of the reactor to heat the reactor at a constant temperature of 200-450 ° C.

배기구(exhaust)(4)는 가스를 도입하기 전에 산소, 수분, 공기 등을 배출하여 초기 진공도를 확보하기 위하여 진공펌프에 연결된다.Exhaust 4 is connected to the vacuum pump to ensure the initial vacuum degree by discharging oxygen, moisture, air, etc. before introducing the gas.

가스공급관(5)은 가스 프리믹스 챔버(7)를 통하여 나온 Ta와 W을 함유하는 혼합된 유기금속 가스를 반응로내로 공급한다.The gas supply pipe 5 supplies the mixed organometallic gas containing Ta and W from the gas premix chamber 7 into the reactor.

한편 또다른 가스공급관(6)은 Ar이나 He등의 캐리어 가스를 공급하는 통로를 제공한다. (8)과 (9)는 각각 주 반응가스인 유기가스 소스로서의 액상(liquid)인 Ta[N(CH3)2]2, Ta[N(CH3)2]3, Ta[N(CH2CH3)2]2, Tn[N(CH2CH3)2]3, Ta[N(CH3)2(CH3CH2)] 중에서 한가지를 선택하고 W[N(CH3)2]4, W[N(C2H5)2]4, W[N(CH3)2]3[C(CH3)3], W[N(CH3)2(CH3CH2)], W[C5H11N4], W[C4H9N]4중에서 한가지를 선택하여 각각에 대하여 항온 열판을 가열하면서 Ar등의 불활성 가스로 버블링 하거나 증발기(vaporizer)에 의하여 기화시켜서 기체상태로 유량조절기(mass flow controller)를 통하여 10-50sccm으로 가스 프리-믹스 챔버로 공급된다.Meanwhile, another gas supply pipe 6 provides a passage for supplying a carrier gas such as Ar or He. (8) and (9) are Ta [N (CH 3 ) 2 ] 2 , Ta [N (CH 3 ) 2 ] 3 , Ta [N (CH 2 ), which is a liquid as an organic gas source as the main reaction gas, respectively. CH 3 ) 2 ] 2 , Tn [N (CH 2 CH 3 ) 2 ] 3 , Ta [N (CH 3 ) 2 (CH 3 CH 2 )] and select W [N (CH 3 ) 2 ] 4 , W [N (C 2 H 5 ) 2 ] 4 , W [N (CH 3 ) 2 ] 3 [C (CH 3 ) 3 ], W [N (CH 3 ) 2 (CH 3 CH 2 )], W Select one of [C 5 H 11 N 4 ] and W [C 4 H 9 N] 4 and bubble the inert gas such as Ar with an inert gas or vaporize it by evaporator while heating the constant temperature heating plate for each. It is fed to the gas pre-mix chamber at 10-50 sccm through a furnace mass flow controller.

(10)과 (11)는 각각 캐리어 가스인 Ar과 Ne, He등의 가스소스를 나타내면 40~400sccm의 유량을 적용한다.(10) and (11) indicate gas sources such as Ar, Ne, and He, which are carrier gases, respectively, and apply a flow rate of 40 to 400 sccm.

이들은 또한 별도의 통로를 통하지 않고 주 원료가스 중에 포함시켜서 주 원료가스를 희석(dilution) 시키거나 증착분압(partial pressure)을 조절하는 방법을 적용할수도 있다.They can also be applied to dilute the main feed gas or to control the partial pressure by including it in the main feed gas without going through a separate passage.

한편 질소 소스가스인 NH3가스 등을 추가로 도입하는 경우에는50-100sccm의 유량을 적용한다.On the other hand, when additionally introducing NH 3 gas, which is a nitrogen source gas, a flow rate of 50-100 sccm is applied.

(14)은 로드-록으로서 반응로에 부착하여 반응 분위기를 해치지 않고 계속적으로 작업을 할 수 있는 동시에 석영 보트(12)를 반응로에 장입할 때 외기(outer gas)혼입을 차단하는 목적으로 설치한다.(14) is a rod-lock attached to the reactor to continuously work without harming the reaction atmosphere, and is installed for the purpose of blocking the intake of outer gas when charging the quartz boat 12 into the reactor. do.

로드록과 반응로는 게이트 밸브(13)에 의하여 격리한다.The load lock and reactor are isolated by a gate valve 13.

배기구(4)와 로드록은 유회전 펌프(rotery oil pump)(15)와 유확산 펌프(diffusion oil pump)(16)로서 10-6torr. 이하의 초기진공을 얻을 수 있다.The exhaust port 4 and the loadlock are a rotary oil pump 15 and a diffusion oil pump 16 which are 10 −6 torr. The following initial vacuum can be obtained.

배출가스는 가스처리기(gas scrubber)(17)에서 처리하여 배출한다.The exhaust gas is treated and discharged in a gas scrubber 17.

제2도는 저온벽형 리액터의 개략도로서 다음과 같다.2 is a schematic view of a low temperature wall reactor as follows.

기화된 주 원료가스(25)(26)와 캐리어 가스(27)(28)가 프리-믹스 챔버(10)를 통하여 균일하게 혼합된후 균일한 조성으로 반응실(21)내에 샤워헤드(24)를 통하여 공급된다.The vaporized main source gas 25, 26 and the carrier gas 27, 28 are uniformly mixed through the pre-mix chamber 10 and then the showerhead 24 in the reaction chamber 21 with a uniform composition. It is supplied through.

기판 홀더(31)와 반응실(12) 사이에는 RF 제너레이터(30)에 의하여 RF전압이 인가되므로 웨이퍼 기판(22)위의 공간부에 Ta와 W을 함유한 유기가스가 분해(decomposition)되어 플라즈마가 형성된다.Since RF voltage is applied between the substrate holder 31 and the reaction chamber 12 by the RF generator 30, an organic gas containing Ta and W is decomposed to a space portion on the wafer substrate 22 to decompose plasma. Is formed.

한편 웨이퍼 표면에서의 화학반응을 더욱 촉진시키기 위하여 H2등의 보조가스를 도입하여 H+RF플라즈마를 유도하거나 반응가스에 자외선(ultraviolet beam)이나 기타 이온빔을 조사할 수 있다.On the other hand, in order to further accelerate the chemical reaction on the wafer surface, an auxiliary gas such as H 2 may be introduced to induce H + RF plasma or irradiate ultraviolet rays or other ion beams to the reaction gas.

한편 증착압력을 0.1-10torr.로 일정하게 유지하기 위해 진공펌프(23)나 로드-록(29)과 같은 압력조절 시스템이나 배기 시스템을 설치한다.On the other hand, in order to maintain the deposition pressure at 0.1-10torr., A pressure regulating system or an exhaust system such as a vacuum pump 23 or a load-lock 29 is installed.

유기가스 소스로서는 액상(liquid)인 Ta[N(CH3)2]2, Ta[N(CH3)2]3, Ta[N(CH2CH3)2]2, Ta[N(CH2CH3)2]3, Ta[N(CH3)2(CH3CH2)] 중에서 한가지를 선택하고 W[N(CH3)2]4, W[N(C2H5)2]4, W[N(CH3)2]3[C(CH3)3]. W[N(CH3)2(CH3CH2)], W[C5H11N4], W[C4H9N]4중에서 한가지를 선택하여 각각에 대하여 항온 열판으로 가열하면서 Ar 등의 불활성 가스로 버블링하거나 증발기(vaporizer)에 의하여 기화시켜서 기체상태로 유량조절기(mass flow controller)를 통하여 10-50sccm으로 가스 프리-믹스 챔버로 공급된다(25)(26).Organic gas sources include liquid Ta [N (CH 3 ) 2 ] 2 , Ta [N (CH 3 ) 2 ] 3 , Ta [N (CH 2 CH 3 ) 2 ] 2 , Ta [N (CH 2) CH 3 ) 2 ] 3 , Ta [N (CH 3 ) 2 (CH 3 CH 2 )] and select one of W [N (CH 3 ) 2 ] 4 , W [N (C 2 H 5 ) 2 ] 4 , W [N (CH 3 ) 2 ] 3 [C (CH 3 ) 3 ]. Select one of W [N (CH 3 ) 2 (CH 3 CH 2 )], W [C 5 H 11 N 4 ], and W [C 4 H 9 N] 4 , and heat each with a constant temperature heating plate, It is bubbled with an inert gas of or vaporized by an evaporator and supplied to the gas pre-mix chamber at 10-50 sccm through a mass flow controller in a gaseous state (25, 26).

(27)와 (28)는 각각 불활성 캐리어 가스인 Ar과 Ne, He 등의 가스소스를 나타내며 50-450sccm의 유량을 적용한다.Reference numerals 27 and 28 denote gas sources such as Ar, Ne, and He, which are inert carrier gases, respectively, and apply a flow rate of 50-450 sccm.

이들은 또한 별도의 통로를 통하여 않고 주 원료가스 주에 포함시켜서 주 원료가스를 희석(dilution)시키거나 증착분압(partial pressure)을 조절하는 방법을 적용할수도 있다.They can also be applied to dilute the main source gas or to control the partial pressure by including it in the main source gas column without a separate passage.

한편 질소 소스가스인 NH3가스등을 추가로 도입하는 경우에는 50-100sccm의 유량을 적용한다.On the other hand, when additionally introducing nitrogen source gas, such as NH 3 gas, a flow rate of 50-100 sccm is applied.

이상은 Ta와 W의 화합물막의 형성에 대하여 기술하였으나 각각의 소스를 따로 이용할 경우에는 Ta의 질소 화합물이나, W의 질소 화합물에 대하여도 적용할 수 있다.Although the above has described the formation of the compound film of Ta and W, it is also applicable to the nitrogen compound of Ta and the nitrogen compound of W when each source is used separately.

이상에서 설명한 바와 같은 본 발명의 배리어 금속층 형성방법은 알루미늄 또는 구리 배선 등 도전성 물질의 배선을 형성할 때 배리어층으로서 TaN, TaW, WN등을 유기금속 소스를 이용하여 화학기상 증착법으로 형성하므로서 고단차나 접속구멍에 적용할 경우 단차 피복성(step coverage)을 개선할 수 있으며, 무기 CVD와는 달리 증착온도를 450℃이하로 낮출 수 있으므로 열공정을 감축할 수 있다.As described above, the barrier metal layer forming method of the present invention forms TaN, TaW, WN, etc. as a barrier layer by chemical vapor deposition using an organic metal source when forming conductive wires such as aluminum or copper wires. When applied to the connection hole, step coverage can be improved, and unlike inorganic CVD, the deposition temperature can be lowered to 450 ° C. or lower, thereby reducing the thermal process.

Claims (9)

반도체 기판위에 전이금속을 함유하는 배리어 금속층을 형성하는 방법에 있어서, Ta 또는 W의 유기금속 착화합물의 가스를 웨이퍼 위로 도입하는 단계와; 도입된 상기 가스의 열분해와 화학반응에 의하여 반도체 기판위에 전이금속을 함유하는 금속층을 증착시키는 단계와; 미반응 가스와 반응 부산물 가스를 배기하는 단계를 포함하는 방법을 포함하여 이루어지는 것을 특징으로 하는 배리어 금속층 형성방법.A method of forming a barrier metal layer containing a transition metal on a semiconductor substrate, comprising: introducing a gas of an organometallic complex of Ta or W onto a wafer; Depositing a metal layer containing a transition metal on a semiconductor substrate by thermal decomposition and chemical reaction of the introduced gas; A method of forming a barrier metal layer, the method comprising the step of exhausting unreacted gas and reaction byproduct gas. 제1항에 있어서, 증착온도는 200-450℃ 범위내인 것을 특징으로 하는 방법.The method of claim 1 wherein the deposition temperature is in the range of 200-450 ° C. 제1항에 있어서, 증착압력은 0.1-10torr.의 범위내인 것을 특징으로 하는 방법.The method of claim 1 wherein the deposition pressure is in the range of 0.1-10 torr. 제1항에 있어서, 유기금속 착화합물로서 Ta의 아민화합물을 사용하는 것을 특징으로 하는 방법.The method according to claim 1, wherein an amine compound of Ta is used as the organometallic complex. 제1항에 있어서, 유기금속 착화합물로서 W의 아민화합물을 사용하는 것을 특징으로 하는 방법.The method according to claim 1, wherein an amine compound of W is used as the organometallic complex. 제1항에 있어서, 유기금속 착화합물로서는 Ta의 아민화합물과 W의 아민화합물을 병용하는 것을 특징으로 하는 방법.The method according to claim 1, wherein the amine compound of Ta and the amine compound of W are used together as the organometallic complex. 제4항 또는 제6항에 있어서, Ta의 아민화합물은 Ta[N(CH3)2]2, Ta[N(CH3)2]3, Ta[N(CH2CH3)2]2, Ta[N(CH2CH3)2]3, Ta[N(CH3)2(CH3CH2)]으로 이루어지는 군에서 선택된 1종 이상의 화합물인 것을 특징으로 하는 방법.The amine compound of claim 4 or 6, wherein the amine compound of Ta is selected from Ta [N (CH 3 ) 2 ] 2 , Ta [N (CH 3 ) 2 ] 3 , Ta [N (CH 2 CH 3 ) 2 ] 2 , Ta [N (CH 2 CH 3 ) 2 ] 3 , Ta [N (CH 3 ) 2 (CH 3 CH 2 )], characterized in that at least one compound selected from the group consisting of. 제5항 또는 제6항에 있어서, W의 아민화합물은 W[N(CH3)2]4, W[N(C2H5)2]4, W[N(CH3)2]3[C(CH3)3], W[N(CH3)2(CH3CH2)], W[C5H11N4], W[C4H9N]4으로 이루어지는 군에서 선택된 1종 이상의 화합물인 것을 특징으로 하는 방법.The amine compound according to claim 5 or 6, wherein the amine compound of W is W [N (CH 3 ) 2 ] 4 , W [N (C 2 H 5 ) 2 ] 4 , W [N (CH 3 ) 2 ] 3 [ C (CH 3 ) 3 ], W [N (CH 3 ) 2 (CH 3 CH 2 )], W [C 5 H 11 N 4 ], W [C 4 H 9 N] 4 Method characterized by the above compound. 제1항에 있어서, 암모니아 가스를 상기 유기금속 착화합물과 병용하는 것을 특징으로 하는 방법.The method according to claim 1, wherein ammonia gas is used in combination with the organometallic complex.
KR1019950048244A 1995-12-11 1995-12-11 Method for forming barrier metal layer of semiconductor device KR0166844B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950048244A KR0166844B1 (en) 1995-12-11 1995-12-11 Method for forming barrier metal layer of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950048244A KR0166844B1 (en) 1995-12-11 1995-12-11 Method for forming barrier metal layer of semiconductor device

Publications (2)

Publication Number Publication Date
KR970052214A KR970052214A (en) 1997-07-29
KR0166844B1 true KR0166844B1 (en) 1999-02-01

Family

ID=19438964

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950048244A KR0166844B1 (en) 1995-12-11 1995-12-11 Method for forming barrier metal layer of semiconductor device

Country Status (1)

Country Link
KR (1) KR0166844B1 (en)

Also Published As

Publication number Publication date
KR970052214A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
KR102572271B1 (en) Low resistivity films containing molybdenum
US7262125B2 (en) Method of forming low-resistivity tungsten interconnects
US8101521B1 (en) Methods for improving uniformity and resistivity of thin tungsten films
US7211506B2 (en) Methods of forming cobalt layers for semiconductor devices
US6399490B1 (en) Highly conformal titanium nitride deposition process for high aspect ratio structures
KR0172772B1 (en) Method of forming ruo2 film of semiconductor equipment
US8048805B2 (en) Methods for growing low-resistivity tungsten film
US5478780A (en) Method and apparatus for producing conductive layers or structures for VLSI circuits
US4918033A (en) PECVD (plasma enhanced chemical vapor deposition) method for depositing of tungsten or layers containing tungsten by in situ formation of tungsten fluorides
US6436819B1 (en) Nitrogen treatment of a metal nitride/metal stack
US8669181B1 (en) Diffusion barrier and etch stop films
US20030143328A1 (en) Apparatus and method for plasma assisted deposition
KR100187451B1 (en) Formation of titanium nitride thin film and film forming device used therefor
JP2001319894A (en) Plasma cvd of metal nitride layer
US6455421B1 (en) Plasma treatment of tantalum nitride compound films formed by chemical vapor deposition
US6812146B2 (en) Chemical vapor deposition process for depositing titanium nitride films from an organo-metallic compound
WO1999063590A9 (en) A method for treating a deposited film for resistivity reduction
EP0539948B1 (en) Apparatus for forming metal film and process for forming metal film
KR100195681B1 (en) Method to deposit tin
KR19990013876A (en) Titanium film formation method by chemical vapor deposition
US6500501B1 (en) Chemical vapor deposition process for depositing titanium silicide films from an organometallic compound
KR0166844B1 (en) Method for forming barrier metal layer of semiconductor device
WO2006014082A1 (en) Thermal oxide formation apparatus and the method by chemical vapor deposition in wafer
CN100576496C (en) The formation method of dual-damascene structure
KR0161889B1 (en) Formation method of wiring in semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100825

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee