KR100187451B1 - Formation of titanium nitride thin film and film forming device used therefor - Google Patents

Formation of titanium nitride thin film and film forming device used therefor Download PDF

Info

Publication number
KR100187451B1
KR100187451B1 KR1019960002020A KR19960002020A KR100187451B1 KR 100187451 B1 KR100187451 B1 KR 100187451B1 KR 1019960002020 A KR1019960002020 A KR 1019960002020A KR 19960002020 A KR19960002020 A KR 19960002020A KR 100187451 B1 KR100187451 B1 KR 100187451B1
Authority
KR
South Korea
Prior art keywords
thin film
gas
titanium nitride
tetrakis
titanium
Prior art date
Application number
KR1019960002020A
Other languages
Korean (ko)
Other versions
KR960034487A (en
Inventor
히토시 진바
김서원
아츠시 세키구치
Original Assignee
니시히라 슈닌지
아네루바 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니시히라 슈닌지, 아네루바 가부시키가이샤 filed Critical 니시히라 슈닌지
Publication of KR960034487A publication Critical patent/KR960034487A/en
Application granted granted Critical
Publication of KR100187451B1 publication Critical patent/KR100187451B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명을 테트라키스디알킬아미노티탄을 사용한 질화티탄박막의 제작에 있어서, 애스펙트비가 큰 구멍에 대하여도 피복성이 양호하게 막형성되도록 한다.In the production of a titanium nitride thin film using tetrakis dialkylamino titanium according to the present invention, it is possible to form a film with good coverage even in a hole having a large aspect ratio.

반응용기(1)내에 원료가스 도입계(4)에 의해 테트라키스디알킬아미노티탄의 원료가스를 도입한다. 홀더온도조절기구(31)에 의해 미리 가열된 기판(2)에 원료가스가 공급되면, 소정의 열화학반응이 생겨 질화티탄을 주성분으로 하는 박막이 제작된다.A raw material gas of tetrakis (dialkylamino) titanium is introduced into the reaction vessel 1 by the raw material gas introducing system 4. When the raw material gas is supplied to the substrate 2 previously heated by the holder temperature adjusting mechanism 31, a predetermined thermochemical reaction is caused to produce a thin film composed mainly of titanium nitride.

반응용기(1)내의 압력은 배기계에 의해 제어되고, 0.1 내지 15파스칼 범위내의 소정치로 되도록 유지된다.The pressure in the reaction vessel 1 is controlled by an exhaust system and is maintained to be a predetermined value within the range of 0.1 to 15 Pascals.

Description

질화티탄박막의 제작방법Manufacturing method of titanium nitride thin film

본원의 발명은 반도체 디바이스와 같은 전자 디바이스의 제작시에 행해지는 질화티탄을 주성분으로 하는 박막의 제작에 관한 것이다.The present invention relates to the production of a thin film containing titanium nitride as a main component, which is carried out at the time of manufacturing an electronic device such as a semiconductor device.

(종래의 기술)(Prior art)

반도체 디바이스, 초전도 디바이스, 각종 센서와 같은 전자 디바이스를 제작할때에 행해지는 확산방지막, 밀착층막, 배선막, 절연막, 유전체막과 같은 박막의 제작에는 증착법, 스패터링법, 화학기상성장(CVD)법, 플라즈마 어시스트법, 스핀코트법이 종전부터 채용되고 있다.Sputtering, sputtering, chemical vapor deposition (CVD), or the like can be used to produce a thin film such as a diffusion preventing film, a close contact layer film, a wiring film, an insulating film, and a dielectric film which is used when an electronic device such as a semiconductor device, a superconducting device, , A plasma assist method, and a spin coating method have been employed since the past.

최근, 전자 디바이스의 집적화, 특히, 반도체 디바이스의 집적화가 높아짐에 따라, 고애스펙트비(aspect ratio)의 콘택트 구멍이나 홈에의 피복성이 양호한 박막의 제작이 요구되어 오고 있다.2. Description of the Related Art In recent years, as integration of electronic devices, in particular, integration of semiconductor devices, has become high, it has been required to produce thin films having good aspect ratio coverage with contact holes and grooves.

다른 한편, 최근에는 반도체 디바이스에 질화티탄을 주성분으로 한 박막을 제작할 필요성이 강하게 요구되고 있다. 예컨대, 반도체 집적회로의 콘택트부의 제작 기술로서, 배선용 텅스텐(W)과 기판인 실리콘(Si)과의 상호 확산을 방지하여 안정된 전기적 특성을 얻기 위하여 텅스텐과 실리콘과의 사이에 질화티탄을 주성분으로 하는 확산방지층용의 박막을 제작한다.On the other hand, in recent years, there is a strong demand for fabricating a thin film containing titanium nitride as a main component in a semiconductor device. For example, as a manufacturing technique of a contact portion of a semiconductor integrated circuit, in order to prevent mutual diffusion of tungsten for wiring (W) and silicon (Si) as a substrate to obtain stable electric characteristics, titanium nitride is used as a main component between tungsten and silicon Thereby forming a thin film for the diffusion preventing layer.

또는, 로직(logic)계 집적회로용 배선의 구리(Cu)가 기판(Si)이나 절연층(SiO2)중에 확산되고 마는 것을 방지하기 위하여, 구리와 실리콘 또는 산화 실리콘 사이에 질화티탄을 주성분으로 하는 확산방지층용의 박막을 제작한다. 그리고 다시 반도체 집적회로의 층간 배선기술로서 하부층의 알루미늄막층과 상부층의 알루미늄막층을 연결하도록 설치된 스루홀(through hole)중에 통전(通電)용의 박막을 제작하는 것이 필요하다. 이 도통용의 박막으로서는 역시 질화티탄을 주성분으로 하는 박막(이하, 질화티탄박막)이 사용된다. 고 애스펙트비의 구멍, 예컨대 콘택트홀(contact hole), 스루홀에 양호한 피복성으로 질화티탄박막을 제작하는 것이 최근에 한층 요구되고 있다.Alternatively, in order to prevent copper (Cu) of the logic integrated circuit wiring from diffusing into the substrate (Si) or the insulating layer (SiO 2 ), titanium nitride is used as a main component between copper and silicon or silicon oxide A thin film for the diffusion preventing layer is formed. Then, it is necessary to fabricate a thin film for energization in a through hole provided so as to connect the aluminum film layer of the lower layer and the aluminum film layer of the upper layer as the interlayer wiring technique of the semiconductor integrated circuit. As the conducting thin film, a thin film mainly containing titanium nitride (hereinafter referred to as a titanium nitride thin film) is also used. It has been recently required to fabricate a titanium nitride thin film with good coverage in holes of a high aspect ratio, for example, a contact hole and a through hole.

상기 질화티탄박막을 비교적 양호한 피복성으로 제작하는 방법으로서 주목되고 있는 방법의 하나에, 유기금속화합물이나 유기금속착체를 원료로 하여 사용한 CVD기술, 소위 MOCVD기술이 있다.One of the methods that have attracted attention as a method of producing the titanium nitride thin film with relatively good covering properties is a CVD technique using an organometallic compound or an organic metal complex as a raw material, so-called MOCVD technique.

예컨대, M. Eizenberg등의 Appl. Phys. Lett.65(19), 7 November 1994 p. 2416-p. 2418 중에 질화티탄박막의 제작방법이 기재되어 있다.See, for example, M. Eizenberg et al., Appl. Phys. Lett. 65 (19), 7 November 1994 p. 2416-p. 2418 discloses a method for producing a titanium nitride thin film.

M. Eizenberg등은 테트라키스디메틸아미노티탄(TDMAT)만을 원료로 하고, 분위기 압력 0.45Torr(60Pa)로 질화티탄박막을 제작하고 있다. 256 메가비트DRAM(기억유지 동작이 필요한 수시기입 판독형 기억소자)의 경우, 확산 방사층으로서 구멍직경 0.25㎛, 애스펙트비 4.0의 콘택트홀과 같은 구멍을 피복율 90%로 질화티탄박막이 제작되는 것이 요망되고 있다.M. Eizenberg et al. Produced a titanium nitride thin film using tetrakis dimethylamino titanium (TDMAT) alone as the raw material at an atmospheric pressure of 0.45 Torr (60 Pa). In the case of a 256 megabit DRAM (occasionally a read-write memory element requiring a memory retention operation), a hole such as a contact hole having a hole diameter of 0.25 mu m and an aspect ratio of 4.0 is formed as a diffusion radiation layer at a coating rate of 90% Is desired.

그러나, M. Eizenberg등이 제작한 박막의 저부 피복율은 구멍직경 0.6㎛, 애스펙트비 1.5의 콘택트홀에 대하여 85%이었다. M.Eizenberg등의 제작방법에서는 피복율 90%의 요구를 달성하는 것은 불가능하다.However, the bottom coverage of the thin film produced by M. Eizenberg et al. Was 85% for the contact hole having a hole diameter of 0.6 탆 and an aspect ratio of 1.5. It is impossible to achieve a coverage rate of 90% in the manufacturing method of M. Eizenberg et al.

또, Ivo J.Raaijmakers등의 Thin Solid Films. Vol. 247 (1994) p.85-p.93에서는 다른 질화티탄박막의 제작방법이 기재되어 있다.Also, Thin Solid Films of Ivo J. Raaijmakers et al. Vol. 247 (1994) p.85-p. 93 describes a method for producing another titanium nitride film.

Ivo J.Raaijmakers등은 TDMAT나 테트라키스디에틸아미노티탄(TDEAT)에 암모니아 (NH3)를 첨가한 원료가스(이하, TDMAT-NH3,TDEAT-NH3)를 사용하여 분위기 압력 10Torr로 질화티탄박막을 제작하고 있다. 그러나, Ivo J.Raaijmakers등이 제작한 박막에 있어서도 구멍직경 0.8㎛, 애스펙트비 1.0의 콘택트홀에 대하여 TDMAT-NH3로 20%,TDEAT-NH3로 85%이었다. 이 경우에도, 피복율 90%의 요구를 달성하는 것은 불가능하다.Ivo J. Raaijmakers et al. Used a source gas (hereinafter referred to as TDMAT-NH 3 , TDEAT-NH 3 ) in which ammonia (NH 3 ) was added to TDMAT or tetrakis diethylaminotitanium (TDEAT) And a thin film is produced. However, Ivo J.Raaijmakers such as the hole diameter was also in a thin film 0.8㎛, with respect to the contact hole of an aspect ratio 1.0 to 20% by TDMAT-NH 3, 85% to TDEAT-NH 3. Even in this case, it is impossible to achieve the requirement of the coverage rate of 90%.

이상과 같이, 종래의 방법에서는 테트라키스디알킬아미노티탄만의 원료가스, 또는 테트라키스디알킬아미노티탄에 암모니아를 첨가한 원료가스를 사용하여 질화티탄박막을 제작하는 경우,256Mb DRAM의 확산 방지층으로서 요구되고 있는 구멍직경 0.25㎛, 애스펙트비 4.0의 콘택트홀을 피복율90%로 막형성하는 것이 불가능하다고 하는 결점이 있다. 본 발명은 이와 같은 과제를 해결하기 위하여 이루어진 것이며, 테트라키스디알킬아미노티탄을 사용한 질화티탄박막의 제작에 있어서, 애스펙트비가 높은 구멍에 대해서도 피복성이 양호한 박막을 제작하도록 하는 것을 목적으로 하고 있다.As described above, in the conventional method, when a titanium nitride thin film is manufactured using a source gas containing only tetrakis dialkylamino titanium or a source gas obtained by adding ammonia to tetrakis (dialkylamino titanium), a diffusion barrier layer of a 256 Mb DRAM It is impossible to form the required contact hole with a hole diameter of 0.25 mu m and an aspect ratio of 4.0 at a coating rate of 90%. The present invention has been made to solve such problems, and an object of the present invention is to produce a thin film having good coatability even in a hole having a high aspect ratio in the production of a titanium nitride thin film using tetrakis dialkylamino titanium.

(과제를 해결하기 위한 수단)(MEANS FOR SOLVING THE PROBLEMS)

상기 목적을 달성하기 위하여, 본 발명은 원료가스로서 기화된 테트라키스디알킬아미노티탄을 열적으로 화학반응시켜서, 표면에 고 애스펙트비의 구멍이 형성된 모재상에 질화티탄을 주성분으로 하는 박막을 제작하는 방법이다. 모재표면의 구멍에 대하여 박막의 피복성을 향상하기 위하여, 이 방법은 열적으로 화학반응이 생기는 분위기의 압력을 0.1 부터 15파스칼 범위내에 설정하는 것을 특징으로 한다.In order to achieve the above object, the present invention relates to a method for producing a thin film comprising titanium nitride as a main component on a mother material having vapor-deposited tetrakis dialkylamino titanium reacted thermally with a high aspect ratio hole as a raw material gas Method. The method is characterized in that the pressure of the atmosphere in which the thermal chemical reaction occurs is set within the range of 0.1 to 15 Pascals in order to improve the coverage of the thin film against the hole in the surface of the base material.

제작된 박막의 도전성을 높이기 위해 첨가가스를 원료가스에 첨가한다.An additive gas is added to the source gas to increase the conductivity of the produced thin film.

첨가가스는 암모니아 가스가 가장 적합하다. 또한 15sccm으로 암모니아 가스를 첨가하면, 질화티탄박막의 저부 피복율은 100%에 달한다. 원료인 테트라키스디알킬아미노티탄은 테트라키스디에틸아미노티탄, 테트라키스디메틸아미노티탄, 테트라키스디프로필아미노티탄, 테트라키스디이소부틸아미노티탄, 또는 테트라키스디tert-부틸아미노티탄이 적합하다.Ammonia gas is most suitable as the additive gas. When ammonia gas is added at 15 sccm, the coverage of the bottom of the titanium nitride thin film reaches 100%. As the raw material tetrakis dialkylamino titanium, tetrakis diethyl amino titanium, tetrakis dimethyl amino titanium, tetrakis dipropyl amino titanium, tetrakis di isobutyl amino titanium, or tetrakis ditert-butyl amino titanium are suitable.

(실시예)(Example)

이하, 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.

제 1도는,질화티탄박막의 제작방법의 실시예에 사용되는 핫 월(hot wall)형의 CVD장치의 개략도이다.FIG. 1 is a schematic view of a hot wall type CVD apparatus used in an embodiment of a method for producing a titanium nitride thin film.

제1도에 도시한 CVD 장치는 배기계(11)및 진공계(12, 13)를 구비한 반응용기(1)를 가지고 있다. 그 반응용기(1)는 질화티탄박막을 표면에 제작하는 기판(2), 예컨대 실리콘 웨이퍼를 배치하기 위한 기판홀더(3)와, 반응용기(1)내에 테트라키스디알킬아미노티탄으로 이루어지는 원료가스를 도입하는 원료가스 도입계(4)를 구비하고 있다.The CVD apparatus shown in FIG. 1 has a reaction vessel 1 having an exhaust system 11 and vacuum gages 12 and 13. The reaction vessel 1 comprises a substrate 2 for producing a titanium nitride thin film on the surface thereof, for example, a substrate holder 3 for placing a silicon wafer, and a reaction vessel 1 in which a raw material gas comprising tetrakis dialkylamino titanium And a raw material gas introducing system 4 for introducing the raw material gas.

그 기판홀더(3)에는 그 내부에 홀더온도조정기구를 구비하고 있다.The substrate holder 3 is provided with a holder temperature adjusting mechanism inside thereof.

그 홀더온도조정기구에 의해, 기판홀더(3)를 통하여 기판(2)이 가열된다.And the substrate 2 is heated by the holder temperature adjusting mechanism through the substrate holder 3.

기판(2)이 가열됨으로써, 반응용기(1)내에 도입된 원료가스를 열적으로 화학반응시켜 질화티탄박막을 제작한다.By heating the substrate 2, the raw material gas introduced into the reaction vessel 1 is thermally chemically reacted to produce a titanium nitride film.

스테인레스제의 기밀한 용기인 반응용기(1)는 배기계(11)에 의해 내부가 진공배기된다. 배기계(11)로서는 회전펌프와 터보분자펌프로 구성되어 있다. 이 구성으로 반응용기(1)내를 10-4파스칼 정도까지 배기한다.The inside of the reaction vessel 1, which is an airtight vessel made of stainless steel, is evacuated by an evacuation system 11. The exhaust system 11 is composed of a rotary pump and a turbo molecular pump. With this configuration, the interior of the reaction vessel 1 is evacuated to about 10 -4 Pascals.

반응용기(1)내의 압력을 측정하는 진공계(12,13)로서는 다이어프램 진공계(12)와 전리 진공계(13)의 두개가 사용되고 있다. 다이어프램 진공계(12)는 0.1~133파스칼 정도의 범위에서 고 정밀도로 측정하는 진공계, 예컨대 MKS사제 바라트론 TYPE 128A가 사용되고 있다. 또, 전리진공계(13)는 10-2~10-6파스칼 정도의 범위에서 측정하는 진공계, 예컨대 아네루바사제 BA게이지 UGD-1S가 사용되고 있다.As the vacuum gages 12 and 13 for measuring the pressure in the reaction vessel 1, two diaphragm vacuum gages 12 and an ionization vacuum gauge 13 are used. The diaphragm vacuum gauge 12 is a vacuum gauge measuring a high accuracy in the range of about 0.1 to 133 Pascals, for example, Baratron Type 128A manufactured by MKS. A vacuum gauge, for example, BA gauge UGD-1S manufactured by Anerova, is used for the ionization vacuum system 13, which is measured in the range of about 10 -2 to 10 -6 pascals.

반응용기(1)의 외벽면에는 용기온도 조절기구(14)가 배열설치 되어 있다.A container temperature adjusting mechanism (14) is arranged on the outer wall surface of the reaction vessel (1).

이 용기온도 조절기구(14)는 반응용기(1)의 외벽면에 따라 배열설치된 히터(141)와, 반응용기(1)의 온도를 측정하기 위하여 반응용기(1)의 외벽에 장착된 열전대(142)와, 히터(141)를 통전하여 승온시키는 전원(143)과, 열전대(142)에 의해 측정된 반응용기(1)의 온도에 의거하여 제어소자, 예컨대 사이리스터 유닛(Thy ristor unit)을 사용하면서, 전원(143)의 출력전류를 제어하는 제어기(144), 예컨대 PID제어, PI제어, ON-OFF제어, 퍼지 (purge)제어로 구성되어 있다.The container temperature adjusting mechanism 14 includes a heater 141 arranged along the outer wall surface of the reaction vessel 1 and a thermocouple 141 mounted on the outer wall of the reaction vessel 1 for measuring the temperature of the reaction vessel 1 A thyristor unit is used based on the temperature of the reaction vessel 1 measured by the thermocouple 142. The control unit 143 controls the temperature of the reaction vessel 1 A PID control, a PI control, an ON-OFF control, and a purge control for controlling the output current of the power source 143 while controlling the output current of the power source 143. [

이와같은 용기온도조절기구(14)에 의해 반응용기(1)는 70℃정도까지 가열된다.The reaction vessel 1 is heated to about 70 占 폚 by the container temperature adjusting mechanism 14 as described above.

또한, 반응용기(1)는 기판(2)의 출납을 행하기 위한 도시하지 않은 게이트 밸브를 구비하고 있다. 질화티탄박막의 제작이 행해지는 기판(2)은 이 게이트 밸브를 통과하여 반응용기(1)내에 진입하여 기판홀더(3)에 유지된다.The reaction vessel 1 is also provided with a gate valve (not shown) for inserting and withdrawing the substrate 2. [ The substrate 2 on which the titanium nitride thin film is formed passes through the gate valve, enters the reaction vessel 1, and is held in the substrate holder 3.

기판홀더(3)는 내부에 홀더온도조정기구를 구비하고 있다. 홀더온도조정기구는 기판홀더(3)내부에 매립된 히터(311)와, 기판홀더(3)의 온도를 측정하는 열전대(312)와, 히터(311)를 통전하여 승온시키는 전원(313)과 열전대(312)에 의해 측정된 기판홀더(3)의 온도에 의거하여 제어소자, 예컨대 사이리스터 유닛을 사용하면서 전원(313)의 출력전류를 제어하는 제어기(314), 예컨대 PID제어, PI제어, ON-OFF제어, 퍼지제어로 구성되어 있다. 이와같은 홀더온도조절기구(31)에 의해 기판홀더(3)는 350℃정도까지 가열된다.The substrate holder 3 is provided therein with a holder temperature adjusting mechanism. The holder temperature adjusting mechanism includes a heater 311 embedded in the substrate holder 3, a thermocouple 312 for measuring the temperature of the substrate holder 3, a power source 313 for heating the heater 311 to increase the temperature thereof, A controller 314 for controlling the output current of the power supply 313 while using a control element such as a thyristor unit based on the temperature of the substrate holder 3 measured by the thermocouple 312, -OFF control, and fuzzy control. The substrate holder 3 is heated to about 350 DEG C by the holder temperature adjusting mechanism 31 as described above.

다음에, 상기 반응용기(1)에는 원료가스 도입계(4)와, 첨가가스 도입계(5)및 캐리어 가스 도입계(6)가 각각 설정되어 있다. 원료가스 도입계(4)는 원료인 액체 테트라키스디알킬아미노티탄 (이하,TDAAT), 예컨대, 테트라키스디에틸아미노티탄(TDEAT), 테트라키스디메틸아미노티탄(TDMAT)을 모은 원료용기(41)와, TDAAT를 기화시키는 도시하지 않은 기화수단, 예컨대 버블러(bubbler), 베이퍼라이저(vaporizer)와, TDAAT가스의 유량을 제어하는 유량제어기(42)로 구성되어 있다. 원료용기(41)는 스테인레스로 형성된것이며, 그 내벽은 전해 연마처리가 되어 있다.Next, the reaction vessel 1 is set with a source gas introduction system 4, an addition gas introduction system 5, and a carrier gas introduction system 6, respectively. The raw material gas introducing system 4 is composed of a raw material vessel 41 in which liquid Tetrakis dialkylaminotitanium (hereinafter referred to as TDAAT) such as tetrakis diethylaminotitanium (TDEAT) and tetrakis dimethylaminotitanium (TDMAT) And a flow controller 42 for controlling the flow rate of the TDAAT gas and a vaporizer (not shown) for vaporizing the TDAAT, such as a bubbler, a vaporizer, and the like. The raw material container 41 is formed of stainless steel, and its inner wall is electrolytically polished.

또, 첨가가스 도입계(5)는 첨가가스, 예컨대 암모니아가스를 저장한 가스탱크(51)와, 첨가가스유량을 제어하는 유량제어기(52)로 구성되어 있다.The additive gas introducing system 5 comprises a gas tank 51 storing an additive gas such as ammonia gas and a flow controller 52 for controlling the flow rate of the additive gas.

캐리어가스 도입계(6)는 소정의 캐리어가스를 소장한 가스탱크(61)와 캐리어가스의 유량을 제어하는 유량제어기(62)로 구성되어 있다. 기화된 TDEAT가스 및 캐리어가스와의 혼합가스는 배관(40)을 통과하여 반응용기(1)내에 도입된다.The carrier gas introduction system 6 comprises a gas tank 61 containing a predetermined carrier gas and a flow rate controller 62 for controlling the flow rate of the carrier gas. The mixed gas of the vaporized TDEAT gas and the carrier gas is introduced into the reaction vessel 1 through the pipe 40.

기화된 TDAAT가 액화되지 않도록 이 배관(40)에는 도시되어 있지 않으나 온도조절기구가 설정되어 있다.The pipe 40 is not shown so that the vaporized TDAAT is liquefied, but a temperature control mechanism is set.

다음에, 상기의 CVD장치의 동작을 설명하면서, 본원 발명의 질화티탄박막의 제작방법의 실시예에 대하여 설명한다.Next, an explanation will be given of the operation of the CVD apparatus and an embodiment of the method for manufacturing the titanium nitride thin film of the present invention.

먼저, 기판(2)은 도시되지 않은 운송용 로보트로 도시되지 않은 게이트 밸브를 통과하여 반응용기(1)내에 집입되고 기판홀더(3)에 유지된다.First, the substrate 2 is taken into the reaction vessel 1 and held in the substrate holder 3 through a gate valve (not shown), not shown, for transporting robots.

기판홀더(3)는 홀더온도조절기구(31)에 의해 미리 약 350℃로 가열된다.The substrate holder 3 is previously heated to about 350 캜 by the holder temperature adjusting mechanism 31.

따라서, 기판(2)도 또 약 350℃로 가열되고 있다고 말할수 있다.Therefore, it can be said that the substrate 2 is also heated to about 350 캜.

그 한쪽에서 반응용기(1)의 내부는 배기계(11)에 의해 약 10-4파스칼까지 배기된다. 또한, 이 배기중의 반응용기(1)의 내부압력은 전리진공계(12,13)에 의해 측정된다. 배기후, 원료가스 및 캐리어가스를 도입하는 배관(40)에 설치된 밸브(43)을 연다. 원료가스인 TDAAT가스 및 캐이러가스의 혼합가스를 반응용기(1)내에 도입한다.On the other hand, the inside of the reaction vessel 1 is exhausted to about 10 -4 Pascals by the exhaust system 11. The internal pressure of the reaction vessel 1 during the exhaust is measured by the ionization vacuum gages 12 and 13. After the evacuation, the valve 43 provided in the pipe 40 for introducing the raw material gas and the carrier gas is opened. A mixed gas of TDAAT gas and calorie gas as a raw material gas is introduced into the reaction vessel 1.

동시에 첨가가스 도입계(5)에 설치된 밸브(53)도 열어서 첨가가스도 반응용기(1)내에 도입한다.At the same time, the valve 53 provided in the additive gas introducing system 5 is also opened to introduce the additive gas into the reaction vessel 1 as well.

도입된 TDAAT가스는 반응용기(1)에 설정된 용기온도조절기구(14)에 의해 가열된 후, 홀더온도조절기구(31)에 의해 기판(2)상에서 더욱 가열되어 열화학반응이 생긴다.The introduced TDAAT gas is heated by the container temperature adjusting mechanism 14 set in the reaction vessel 1 and then further heated on the substrate 2 by the holder temperature adjusting mechanism 31 to generate a thermochemical reaction.

이 결과, 기판(2)표면에는 질화티탄박막이 형성된다. 박막의 두께가 소정치, 예컨대 200으로부터 300옹스트롬에 달하면, 각 밸브(43,53)를 닫아서 원료가스나 첨가가스의 공급을 정지한다. 배기계(11)에 의해 반응용기(1)내에 잔류되어 있는 가스를 배기한다. 배기후, 반응용기(1)내를 대기압에 되돌려 운송로보트로 기판(2)을 반응용기(1)로부터 끄집어낸다.As a result, a titanium nitride thin film is formed on the surface of the substrate 2. When the thickness of the thin film reaches a predetermined value, for example, 200 to 300 angstroms, the valves 43 and 53 are closed to stop the supply of the raw material gas and the additive gas. And the gas remaining in the reaction vessel 1 is exhausted by the exhaust system 11. After evacuating, the interior of the reaction vessel 1 is returned to the atmospheric pressure, and the substrate 2 is taken out of the reaction vessel 1 by the transportation robot.

질화티탄박막의 제작중의 반응용기(1)내의 압력은 0.1~15파스칼의 범위내로 되도록 각 유량조정기(42,52,62)로 TDAAT가스, 캐리어가스 및 첨가가스유량을 조정함으로써 조정된다. 이 압력 조정은 미리 예비적 실험으로 얻어진 0.1~15파스칼 범위내의 압력에 대응하는 유량조건에 따라 유량조정기(42,52,53)를 조작함으로써 행해진다.The pressure in the reaction vessel 1 during the production of the titanium nitride thin film is adjusted by adjusting the TDAAT gas, the carrier gas and the additive gas flow rate to the respective flow rate regulators 42, 52 and 62 so as to fall within the range of 0.1 to 15 pascals. This pressure adjustment is performed by operating the flow rate regulators 42, 52, 53 in accordance with the flow rate conditions corresponding to the pressure within the range of 0.1 to 15 Pascal obtained in advance in the preliminary experiment.

또한, 이 예비적인 실험시나 상기 질화티탄박막의 제작시에는 반응용기(1)내의 압력은 다이어프램 진공계(12)에 의해 측정된다. 질화티탄박막 제작중에 반응용기(1)내의 압력이 상기 압력범위내인지의 여부를 다이어프램 진공계(12)에 의해 상시 감시한다.Further, in this preliminary experiment or in the production of the titanium nitride thin film, the pressure in the reaction vessel 1 is measured by the diaphragm vacuum gauge 12. The diaphragm vacuum system 12 constantly monitors whether the pressure in the reaction vessel 1 is within the above-mentioned pressure range during the production of the titanium nitride thin film.

제2도는 질화티탄박막 제작중의 압력에 대한 형성속도와 저부 피복율의 의존성을 나타낸다.FIG. 2 shows the dependence of the formation rate and the coverage rate on the pressure during the production of the titanium nitride thin film.

질화티탄박막은 콘택트홀로서 직경 0.25㎛, 애스팩트비 4.0의 구멍이 표면에 형성된 실피콘 웨이퍼상에 제작되었다. 그 제작시의 실리콘 웨이퍼의 온도는 300℃로 설정되었다.The titanium nitride thin film was fabricated on a sapphire wafer in which holes having a diameter of 0.25 mu m and an aspect ratio of 4.0 as a contact hole were formed on the surface. The temperature of the silicon wafer at the time of its fabrication was set at 300 캜.

TDAAT로서 TDEAT의 유량은 0.02로부터 0.20g/분의 범위내에서 설정할 수 있으나, 그 제작시에는 0.12g/분으로 설정되었다. 또, 그 제작시에는 캐이어로서 사용된 질소가스의 유량은 150sccm, 첨가가스로서의 암모니아가스 유량은 15sccm으로 설정되었다.The flow rate of TDEAT as TDAAT can be set within the range of 0.02 to 0.20 g / min, but it was set at 0.12 g / min during the production. At the time of the production, the flow rate of the nitrogen gas used as the carrier was set to 150 sccm, and the flow rate of the ammonia gas as the additive gas was set to 15 sccm.

반응용기(1)내에 압력을 설정하기 위하여, 소망의 압력에 대한 질소가스와 암모니아가스의 혼합가스의 압력과 TDEAT 가스유량의 관계를 미리 구해둔다.In order to set the pressure in the reaction vessel 1, the relationship between the pressure of the mixed gas of the nitrogen gas and the ammonia gas with respect to the desired pressure and the TDEAT gas flow rate is obtained in advance.

다음에, 질소가스와 암모니아가스를 반응용기(1)에 도입하여 배기계(11)에 비치된 밸브(도시되어 있지 않음)의 개폐를 조정하고, 이 관계에 따라 소망의 압력보다 낮은 압력에 설정한다. 그후, 0.12g/분으로 설정된 TDEAT가스를 반응용기(1)내에 도입함으로써 소망의 압력에 설정된다.Next, nitrogen gas and ammonia gas are introduced into the reaction vessel 1 to adjust opening and closing of a valve (not shown) provided in the exhaust system 11, and set to a pressure lower than a desired pressure according to this relationship . Thereafter, the TDEAT gas set at 0.12 g / min is introduced into the reaction vessel 1 and set at a desired pressure.

제2도의 그래프에 있어서, 횡축은 박막제작중의 반응용기(1)내의 압력(Pa), 좌측의 종축은 저부 피복율(%), 우측의 종축은 막형성속도(㎛/분)를 나타낸다.In the graph of FIG. 2, the abscissa represents the pressure Pa in the reaction vessel 1 during the thin film production, the left vertical axis represents the bottom coverage rate (%) and the right vertical axis represents the film formation rate (m / min).

저부 피복율은, 막형성속도는로 표시한다.The bottom coverage rate , The film formation rate is .

제 2도에 도시한 바와 같이 압력이 0.1파스칼보다 낮은 압력에서는 막형성속도가 현저하게 낮아져 실용상 채용이 곤란하다. 또, 15파스칼을 초과하는 압력에서는 저부 피복율이 극단적으로 저하하고, 콘택트홀과 같은 애스펙트비가 높은 구멍에의 막형성에 대해서는 부적합한 것이다. 또, TDAAT로서 TDMAT를 사용한 경우에도 동일한 결과가 얻어졌다. 또한, TDAAT로서 테트라키스디프로필아미노티탄, 테트라키스디이소부틸아미노티탄, 테트라키스디 tert-부틸아미노티탄을 사용한 경우도 동일한 결과가 얻어졌다.As shown in FIG. 2, at a pressure lower than 0.1 Pascal, the film-forming speed is remarkably low, making it difficult to adopt it for practical use. In addition, at a pressure exceeding 15 Pascal, the coating rate of the bottom portion is extremely lowered, and it is unsuitable for forming a film on a hole having a high aspect ratio such as a contact hole. The same result was obtained when TDMAT was used as the TDAAT. The same results were also obtained when tetrakis (dipropyl) amino titanium, tetrakis diisobutyl amino titanium, and tetrakis ditert-butyl amino titanium were used as TDAAT.

이들의 TDAAT는 상온 상압에서 고체이므로 질화티탄박막 제작시 이들의 TDAAT를 사용할때에는 용매, 예컨대 헥산에 용해시켜서 액체원료로 한다.Since these TDAATs are solid at room temperature and normal pressure, when these TDAATs are used in the production of a titanium nitride thin film, they are dissolved in a solvent such as hexane to prepare a liquid raw material.

이들의 실험결과로부터, TDAAT를 사용하여 질화티탄박막의 제작을 행하는 경우, 0.1로 부터 15파스칼의 압력범위에 있어서 막형성을 행하는 것이 질화티탄박막의 제작을 높은 피복율로, 또한 높은 막형성속도로 행하기 위해 필요함을 알 수 있다.From these experimental results, it is found that, when the titanium nitride thin film is produced by using TDAAT, the film formation is carried out in the pressure range of 0.1 to 15 Pascal at a high coating rate and at a high film formation rate As shown in FIG.

이 결과는 0.02~0.20g/분의 범위내에서 원료가스의 유량이 변하여도 상기 압력조건의 유효성이 확인되었다. 이와 같은 압력조건에 있어서, 질환티탄박막의 고피복율 또한 고속의 제작이 행해질 수 있는 이유에 대해서는 다음과 같은 것으로 생각된다.This result confirmed the validity of the pressure condition even when the flow rate of the raw material gas varied within the range of 0.02 to 0.20 g / min. Under such a pressure condition, the reason why the high coverage rate of the disease titanium thin film can be made at a high speed is considered as follows.

즉, 압력이 낮은 경우에는 기판(2)에 충분히 원료가스가 공급되지 않으며, 따라서 막형성속도가 지연되고 만다. 또, 15파스칼을 초과하는 높은 압력의 경우, 기판 전방의 공간중에 있어서, 기판의 표면에 대한 부착확율이 높은 활성의 중간체가 생기고 만다고 생각된다. 이 중간체가 구멍의 저부에 달하기 전에 기판의 표면이나 구멍의 측벽에 부착되고 만다.That is, when the pressure is low, the source gas is not sufficiently supplied to the substrate 2, and thus the film formation rate is delayed. Further, in the case of a high pressure exceeding 15 Pascal, it is considered that an active intermediate having a high adhesion probability to the surface of the substrate is generated in the space in front of the substrate. The intermediate is attached to the surface of the substrate or the side wall of the hole before reaching the bottom of the hole.

이 중간체의 구멍저부까지 달하는 확율은 낮아지고, 결과적으로 피복율이 악화되고 만다. 압력을 15파스칼 이하로 내리면, 이와 같은 부착확율이 높은 중간체의 생성이 억제되고, 부착확율이 낮은 물질이 다량 생산되게 된다.The probability of reaching the bottom of the hole of this intermediate is lowered, and as a result, the coverage rate deteriorates. When the pressure is lowered to 15 pascals or less, the generation of intermediates having such a high adhesion probability is suppressed, and a substance having a low adhesion probability is produced in large quantities.

이들 물질은 구멍의 저부에 달하는 확율이 높으므로, 결과적으로 구멍의 피복율이 높게 되는 것으로 생각된다.These materials have a high probability of reaching the bottom of the hole, and consequently, the coverage rate of the hole is considered to be high.

제3도는 첨가가스인 암모니아가스의 유량에 대한 막형성속도, 저부 피복율 및 비저항의 의존성을 나타낸다. 제3도의 그래프의 횡축은 암모니아가스의 유량(sccm), 우측의 종축은 막형성속도(nm/min),좌측의 종축은 저부 피복율(%) 및 비저항(μΩ㎝)을 나타낸다. 막형성속도는, 저부피복율은,비저항은 ▲로 표시한다.FIG. 3 shows the dependence of the film formation rate, the bottom coverage rate and the resistivity on the flow rate of the ammonia gas as the additive gas. The abscissa of the graph in FIG. 3 represents the flow rate (sccm) of the ammonia gas, the ordinate on the right side represents the film formation rate (nm / min), and the ordinate on the left side represents the coverage percentage (%) and resistivity (占 ㎝ m). The film formation rate is , The bottom coverage rate , And the resistivity is indicated by?.

질화티탄박막은 압력 6.7Pa하에 직경 0.25㎛, 애스펙트비 4.0의 콘택트홀이 표면에 형성된 온도 300℃의 실리콘 웨이퍼상에 제작되었다.The titanium nitride thin film was formed on a silicon wafer having a contact hole having a diameter of 0.25 mu m and an aspect ratio of 4.0 formed at a temperature of 300 DEG C under a pressure of 6.7 Pa.

TDAAT로서 TDEAT의 유량은 그 제작시에는 0.12g/분에, 캐리어로서 사용된 질소가스의 유량은 150sccm에 설정되었다.The flow rate of TDEAT as TDAAT was set at 0.12 g / minute at the time of the production and the flow rate of the nitrogen gas used as the carrier at 150 sccm.

암모니아가스의 유량이 15sccm으로, 저부피복율이 100%에 달하고 있다.The flow rate of the ammonia gas is 15 sccm, and the coverage rate of the bottom portion reaches 100%.

또한, 비저항에 관하여 암모니아가스를 첨가하고 있지 않는 경우에 약24,000μΩ㎝이 었던 것에 비해, 유량 ФS5sccm로 암모니아가스를 첨가한 경우에는 약10,000μΩ㎝까지 감소되고 있다. 암모니아가스의 유량을 15sccm이상 첨가하여도, 약10,000μΩ㎝의 일정한 그대로이다. 또, 막형성속도에 관하여, 암모니아가스를 첨가하고 있지 않는 경우에 약 2nm/min이었던것이 유량 15sccm로 암모니아가스를 첨가한 경우에는 약 16nm/min으로 급격하게 증가 되고 있다. 또한 15sccm이상으로 암모니아가스의 유량을 증가하면, 막형성속도는 완만하게 증가한다. 또한, 상기 실시예에 있어서 첨가가스로서 사용된 암모니아가스는 제작되는 질화티탄박막의 도전성을 향상시키기 위한 것이다.Further, in the case of adding the ammonia gas at the flow rate? S of 5sccm, the resistivity is reduced to about 10,000 占 占 ㎝ m compared with the case where the ammonia gas is not added at about 24,000 占 ㎝ m. Even when the flow rate of the ammonia gas is 15 sccm or more, the ammonia gas remains constant at about 10,000 占 cm. With respect to the film formation rate, the film was abruptly increased to about 16 nm / min when ammonia gas was added at a flow rate of 15 sccm when ammonia gas was not added, to about 2 nm / min. Also, when the flow rate of the ammonia gas is increased to 15 sccm or more, the film formation rate is gradually increased. The ammonia gas used as the additive gas in the above embodiment is intended to improve the conductivity of the titanium nitride thin film to be produced.

암모니아가스를 첨가하여 박막 제작을 행항 경우, 0.1로부터 15Pa의 압력범위내에서 암모니아가스가 15sccm이면 저부 피복율 100%가 달성된다.In the case of preparing a thin film by adding ammonia gas, when the ammonia gas is 15 sccm in a pressure range of 0.1 to 15 Pa, a bottom coverage rate of 100% is achieved.

제 1도는 본 발명의 실시예에 사용되는 CVD장치의 개략도, 제 2도는 질화티탄박막 제작중의 압력에 대한 막형성속도와 저부 피복율의 의존성을 나타내는 그래프, 제 3도는 첨가 가스인 암모니아가스의 유량에 대한 막형성속도, 저부 피복율 및 비저항(比抵抗)의 의존성을 나타내는 그래프이다.1 is a schematic view of a CVD apparatus used in the embodiment of the present invention, FIG. 2 is a graph showing the dependency of the film formation rate and the bottom coverage ratio on the pressure during the production of the titanium nitride thin film, And the dependency of resistivity (resistivity) on the film formation rate, the bottom coverage rate and the flow rate.

* 도면의 주요부분에 대한 부호의 설명DESCRIPTION OF THE REFERENCE NUMERALS

1: 반응용기 11: 배기계(俳氣系)1: Reaction vessel 11: Exhaust system (Haiku system)

12: 전리(電離) 진공계 13: 다이어프램(diaphragm) 진공계12: ionization vacuum gauge 13: diaphragm vacuum gauge

14: 용기온도조절기구 2: 기판(基板)14: container temperature control mechanism 2: substrate (substrate)

3: 기판홀더 31: 가열수단으로서의 홀더온도조절기구3: substrate holder 31: holder temperature adjusting mechanism as heating means

4: 원료가스 도입계 5: 첨가가스 도입계4: feed gas introduction system 5: additive gas introduction system

이상 설명한 바와 같이, 본 발명의 질화티탄 제작방법에 의하면, 애스펙트비가 큰 콘택트 구멍에 대하여 높은 막형성속도로 박막을 제작하며, 그리고 애스팩트비가 큰 구멍에 대하여 피복율이 높은 박막이 형성된다. 또한 암모니아가스를 첨가하면 피복율 100%가 달성된다.As described above, according to the titanium nitride manufacturing method of the present invention, a thin film is formed at a high film forming rate with respect to a contact hole having a large aspect ratio, and a thin film having a high coating ratio is formed with respect to a hole having a large aspect ratio. Addition of ammonia gas also achieves coverage rate of 100%.

Claims (5)

원료가스인 기화된 테트라키스디알킬아미노티탄을 압력이 0.1에서 15파스칼 범위내인 분위기중에서 열적으로 화학반응시켜서 기판의 표면상에 질화티탄을 주성분으로 하는 박막을 퇴적하는 질화티탄박막의 제작방법.Vaporized tetrakis (dialkylamino titanium) as a raw material gas is thermally chemically reacted in an atmosphere having a pressure within a range of 0.1 to 15 Pascals, thereby depositing a thin film containing titanium nitride as a main component on the surface of the substrate. 제 1항에 있어서, 또하나의 가스를 그 원료가스에 첨가하는 것을 특징으로 하는 질화티탄박막의 제작방법.The method for producing a titanium nitride thin film according to claim 1, wherein another gas is added to the raw material gas. 제 2항에 있어서, 그 첨가가스는 암모니아가스인 것을 특징으로 하는 질화티탄박막의 제작방법.The method for producing a titanium nitride thin film according to claim 2, wherein the added gas is an ammonia gas. 제 3항에 있어서, 유량 15sccm으로 암모니아가스를 그 원료가스에 첨가하는 것을 특징으로 하는 질화티탄박막의 제작방법.4. The method for producing a titanium nitride thin film according to claim 3, wherein an ammonia gas is added to the source gas at a flow rate of 15 sccm. 제 1항에 있어서, 원료인 테트라키스디알킬아미노티탄은 테트라키스디에틸아미노티탄, 테트라키스디메틸아미노티탄, 테트라키스디프로필아미노티탄, 테트라키스디이소부틸아미노티탄, 또는 티트라키스디 tert-부틱아미노티탄인 것을 특징으로 하는 질화티탄박막의 제작방법The method according to claim 1, wherein the raw material tetrakis dialkylamino titanium is at least one selected from the group consisting of tetrakis diethylaminotitanium, tetrakis dimethylaminothitan, tetrakis dipropylaminothiotin, tetrakis diisobutylaminothiotin, A process for producing a titanium nitride thin film characterized by being a bichatic amino titanium
KR1019960002020A 1995-03-28 1996-01-30 Formation of titanium nitride thin film and film forming device used therefor KR100187451B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP09616795A JP3563819B2 (en) 1995-03-28 1995-03-28 Method for producing titanium nitride thin film and thin film producing apparatus used for the method
JP95-096167 1995-03-28

Publications (2)

Publication Number Publication Date
KR960034487A KR960034487A (en) 1996-10-22
KR100187451B1 true KR100187451B1 (en) 1999-04-15

Family

ID=14157784

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960002020A KR100187451B1 (en) 1995-03-28 1996-01-30 Formation of titanium nitride thin film and film forming device used therefor

Country Status (4)

Country Link
US (1) US5672385A (en)
JP (1) JP3563819B2 (en)
KR (1) KR100187451B1 (en)
TW (1) TW311276B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080446A (en) * 1997-08-21 2000-06-27 Anelva Corporation Method of depositing titanium nitride thin film and CVD deposition apparatus
US5966613A (en) * 1997-09-08 1999-10-12 Lsi Corporation Consistent alignment mark profiles on semiconductor wafers using metal organic chemical vapor deposition titanium nitride protective
US5981352A (en) * 1997-09-08 1999-11-09 Lsi Logic Corporation Consistent alignment mark profiles on semiconductor wafers using fine grain tungsten protective layer
US6179277B1 (en) 1998-02-27 2001-01-30 Applied Materials, Inc. Liquid vaporizer systems and methods for their use
US6071562A (en) * 1998-05-07 2000-06-06 Lsi Logic Corporation Process for depositing titanium nitride films
US6177305B1 (en) 1998-12-17 2001-01-23 Lsi Logic Corporation Fabrication of metal-insulator-metal capacitive structures
US6468604B1 (en) 1999-03-17 2002-10-22 Anelva Corporation Method for manufacturing a titanium nitride thin film
JP2000328246A (en) * 1999-03-17 2000-11-28 Anelva Corp Method for manufacture of titanium nitride thin film and manufacturing apparatus therefor
US6303480B1 (en) 1999-09-13 2001-10-16 Applied Materials, Inc. Silicon layer to improve plug filling by CVD
KR100709919B1 (en) * 2000-08-11 2007-04-24 주성엔지니어링(주) Apparatus for forming a TiN thin film and method of forming a MOCVD-TiN thin film using the same
JP2004273470A (en) * 2000-10-31 2004-09-30 Tokyo Electron Ltd Device and method for forming thin multicomponent metal oxide film
US6576538B2 (en) * 2001-08-30 2003-06-10 Micron Technology, Inc. Technique for high efficiency metalorganic chemical vapor deposition
KR20030025494A (en) * 2001-09-21 2003-03-29 삼성전자주식회사 Semiconductor device having contact between ruthenium layer and metal layer and method for manufacturing the same
US6918960B2 (en) 2001-11-28 2005-07-19 Micron Technology, Inc. CVD of PtRh with good adhesion and morphology
US7067409B2 (en) * 2004-05-10 2006-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma treatment at film layer to reduce sheet resistance and to improve via contact resistance
US7378744B2 (en) * 2004-05-10 2008-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma treatment at film layer to reduce sheet resistance and to improve via contact resistance
US7966969B2 (en) 2004-09-22 2011-06-28 Asm International N.V. Deposition of TiN films in a batch reactor
US7691757B2 (en) 2006-06-22 2010-04-06 Asm International N.V. Deposition of complex nitride films
US7629256B2 (en) 2007-05-14 2009-12-08 Asm International N.V. In situ silicon and titanium nitride deposition
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478780A (en) * 1990-03-30 1995-12-26 Siemens Aktiengesellschaft Method and apparatus for producing conductive layers or structures for VLSI circuits
US5393565A (en) * 1992-06-08 1995-02-28 Fujitsu Limited Method for deposition of a refractory metal nitride and method for formation of a conductive film containing a refractory metal nitride
US5399379A (en) * 1993-04-14 1995-03-21 Micron Semiconductor, Inc. Low-pressure chemical vapor deposition process for depositing high-density, highly-conformal titanium nitride films of low bulk resistivity
US5480684A (en) * 1994-09-01 1996-01-02 Micron Technology, Inc. Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organometallic precursor compounds

Also Published As

Publication number Publication date
JPH08269720A (en) 1996-10-15
KR960034487A (en) 1996-10-22
TW311276B (en) 1997-07-21
JP3563819B2 (en) 2004-09-08
US5672385A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
KR100187451B1 (en) Formation of titanium nitride thin film and film forming device used therefor
US6586330B1 (en) Method for depositing conformal nitrified tantalum silicide films by thermal CVD
US5834068A (en) Wafer surface temperature control for deposition of thin films
US6218301B1 (en) Deposition of tungsten films from W(CO)6
US8071478B2 (en) Method of depositing tungsten film with reduced resistivity and improved surface morphology
JP4919535B2 (en) Plasma treatment of thermal CVD TaN films from tantalum halide precursors
US6827978B2 (en) Deposition of tungsten films
US5478780A (en) Method and apparatus for producing conductive layers or structures for VLSI circuits
US4766006A (en) Low pressure chemical vapor deposition of metal silicide
Jeon et al. Study on the characteristics of TiN thin film deposited by the atomic layer chemical vapor deposition method
US5856236A (en) Method of depositing a smooth conformal aluminum film on a refractory metal nitride layer
JP2001291682A (en) Plasma treatment of titanium nitride film formed by chemical vapor deposition
KR20070061898A (en) Deposition of ruthenium metal layers in a thermal chemical vapor deposition process
US6165555A (en) Method for forming copper film using chemical vapor deposition
US6495461B2 (en) Process for forming amorphous titanium silicon nitride on substrate
KR100783844B1 (en) Method of forming tungsten film
US20030211736A1 (en) Method for depositing tantalum silicide films by thermal chemical vapor deposition
US5653810A (en) Apparatus for forming metal film and process for forming metal film
US5741547A (en) Method for depositing a film of titanium nitride
Kim et al. The Growth of Tantalum Thin Films by Plasma-Enhanced Atomic Layer Deposition and Diffusion Barrier Properties
KR100395171B1 (en) Cvd-ti film forming method
US6387445B1 (en) Tungsten layer forming method and laminate structure of tungsten layer
JPH06283453A (en) Manufacture of semiconductor device
Chiou et al. Copper chemical vapor deposition from Cu (hexafluoroacetylacetonate) trimethylvinylsilane
JP3718297B2 (en) Thin film manufacturing method and thin film manufacturing apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131218

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20141205

Year of fee payment: 17