KR19980015361A - Thin Film Forming Method Using Chemical Vapor Deposition (CVD) Device - Google Patents
Thin Film Forming Method Using Chemical Vapor Deposition (CVD) Device Download PDFInfo
- Publication number
- KR19980015361A KR19980015361A KR1019960034656A KR19960034656A KR19980015361A KR 19980015361 A KR19980015361 A KR 19980015361A KR 1019960034656 A KR1019960034656 A KR 1019960034656A KR 19960034656 A KR19960034656 A KR 19960034656A KR 19980015361 A KR19980015361 A KR 19980015361A
- Authority
- KR
- South Korea
- Prior art keywords
- cvd
- gas
- forming
- zrn
- zrn film
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000005229 chemical vapour deposition Methods 0.000 title claims description 41
- 239000010409 thin film Substances 0.000 title abstract description 18
- 239000007789 gas Substances 0.000 claims abstract description 55
- 239000012495 reaction gas Substances 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 8
- 238000002230 thermal chemical vapour deposition Methods 0.000 claims description 6
- 230000008016 vaporization Effects 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 238000009834 vaporization Methods 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 42
- 238000006243 chemical reaction Methods 0.000 description 33
- 235000012431 wafers Nutrition 0.000 description 10
- 239000007788 liquid Substances 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- IUHFWCGCSVTMPG-UHFFFAOYSA-N [C].[C] Chemical compound [C].[C] IUHFWCGCSVTMPG-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000003679 aging effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- H01L21/205—
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
본 발명은 CVD 장치를 이용한 박막 형성방법에 관한 것으로서, 특히, 배선 및, 고유전막 전극에 적용이 용이하도록 CVD 장치를 이용한 ZrN막 형성방법에 관한 것이다.The present invention relates to a thin film forming method using a CVD apparatus, and more particularly, to a method of forming a ZrN film using a CVD apparatus so as to be easily applicable to a wiring and a high-k film electrode.
본 발명에 따른 CVD 장치를 이용한 ZrN막 형성방법은, CVD 장치의 챔버 내에 기판을 넣는 단계, 소오스로서 Zr[N(CH3)2]4, Zr[N(C2H5)2]4, Zr[N(CH3)(C2H5)]4를 마련하는 단계, 상기 소오스에 가스를 제공하여 상기 소오스를 기체상태로 만들고 이를 상기 챔버 내에 공급하는 단계 및, CVD용 반응가스를 챔버 내에 공급하여 상기 기판에 ZriN막을 형성하는 단계를 포함하여 구성된다.ZrN film forming method using the CVD apparatus according to the present invention, the method, the source into the substrate in a chamber of a CVD apparatus Zr [N (CH 3) 2 ] 4, Zr [N (C 2 H 5) 2] 4, Zr [N (CH 3) ( C 2 H 5)] in the step, by providing a gas in the source to create the source and a gaseous step of supplying it into the chamber and a reaction gas for CVD to provide a four chamber And forming a ZrN film on the substrate.
Description
본 발명은 CVD 장치를 이용한 ZrN막 형성방법에 관한 것으로서, 특히, 배선 및, 고유전막 전극에 적용이 용이하도록 CVD 장치를 이용한 ZrN막 형성방법에 관한 것이다.The present invention relates to a method of forming a ZrN film using a CVD apparatus, and more particularly to a method of forming a ZrN film using a CVD apparatus so as to be easily applied to wiring and a high-k film electrode.
일반적으로 화학가 기상 증착(chemical vapor deposition: CVD)은 형성하려는 박막재료를 구성하는 원소로된 1종 또는 2이상의 화합물, 단체의 가스를 기판위에 공급해, 기상 또는 기판 표면에서의 화학반응에 의해서 원하는 박막을 형성시키는 방법을 말한다.In general, chemical vapor deposition (CVD) is a method in which one or more compounds of a single element or two or more compounds constituting a thin film material to be formed are supplied on a substrate, and a desired thin film . ≪ / RTI >
이러한 화학 기상 증착(CVD)법은 에피택셜 성장 기술의 발전에서 발단하고, 디바이스 기술의 고도화에 대응해서 전개해 오늘날처럼 LSI에서의 기본 기술의 하나가 되었다.This chemical vapor deposition (CVD) method has been developed from the development of epitaxial growth technology, developed in response to the advancement of device technology, and became one of the basic technologies in LSI as it is today.
화학 기상 증착(CVD)막 형성은 문자대로 화학반응의 응용으로, 에피택셜 성장과 마찬가지로 온도, 압력, 가스혼합비나 농도등이 대단히 중요한 요인이다. 화학 기상증착(CVD)법에 의해서 형성하려는 막의 종류와 목적에 따라서, 선택하는 재료나 반응형식, 리액터의 구조 등을 미리 충분히 체크해 두어야 한다.Chemical vapor deposition (CVD) film formation is an application of chemical reactions, and temperature, pressure, gas mixture ratio and concentration are very important factors as well as epitaxial growth. Depending on the type and purpose of the film to be formed by the chemical vapor deposition (CVD) method, the material to be selected, the reaction type, and the structure of the reactor must be fully checked in advance.
화학기상증착(CVD)법에서 형성가능한 물질은 무정형 물질(절연막), 다결정(폴리실리콘), 단결정(실리콘, 게르마늄) 등의 분류나 절연막, 금속막, 반도체막 등의 분류에 따라서 생각할 수 있다.Materials that can be formed by chemical vapor deposition (CVD) can be classified according to classification of amorphous material (insulating film), polycrystalline (polysilicon), single crystal (silicon, germanium), and insulating film, metal film and semiconductor film.
이하 첨부한 도면을 참조하여 종래의 화학 기상 증착(CVD)법을 이용한 박막형성방법에 대해서 알아보기로 한다.Hereinafter, a thin film forming method using a conventional chemical vapor deposition (CVD) method will be described with reference to the accompanying drawings.
도 1은 써머(thermal) CVD법을 이용한 박막 형성 방법을 설명하기 위한 CVD 장치의 구성도로서, 반응실(10)과 상기 반응실(10) 내에 수평으로 위치하는 서셉터(susceptor)(11)와 샤워헤드(13)와 상기 서셉터(11) 상에 웨이퍼(12)가 마련된다.1 is a schematic view of a CVD apparatus for explaining a thin film forming method using a thermal CVD method and includes a reaction chamber 10 and a susceptor 11 horizontally disposed in the reaction chamber 10. [ A showerhead 13, and a susceptor 11, as shown in Fig.
또한 반응실(10)의 상부에는 상기 샤워헤드(13)와 연결되는 제 1가스공급관(14)과 상기 제 1가스공급관(14)으로 흐르는 가스량을 조절하는 제 1조절밸브(15)가 마련된다. 상기 반응실(10) 좌측에는 액체소스와 상기 액체소스를 일정하게 기화시켜 가스를 발생시키는 항온실(18)과 상기 가스가 흐르는 제 2가스공급관(16)과 상기 제 2가스공급간(16)으로 흐르는 가스량을 조절하는 제 2조절밸브(17)가 마련된다.A first gas supply pipe 14 connected to the shower head 13 and a first control valve 15 for controlling the amount of gas flowing to the first gas supply pipe 14 are provided on the upper part of the reaction chamber 10 . On the left side of the reaction chamber 10, there are provided a thermostatic chamber 18 for generating a gas by uniformly vaporizing the liquid source and the liquid source, a second gas supply pipe 16 through which the gas flows, A second control valve 17 is provided for controlling the amount of gas flowing to the second control valve 17.
상기한 종래기술의 박막형성방법은 Ti[N(C2H5)2]4, Ti[N(CH3)2]4, 및, TI[N(CH3)(C2H5)]4중 어느 하나를 소오스로 이용하여 써머(thermal) CVD 방식으로 TiN막을 증착하는 것으로, CVD 장치의 반응실(10) 하부에 히팅(heating) 기능을 갖춘 서셉터(susceptor)(11)에 웨이퍼(12)를 올려놓는다. 이어 제 2조절밸브(15)를 열어 He, Ar, H2, N2및 혼합가스 등의 캐리어 가스를 이용하여 항온실(18) 내의 Ti[N(C2H5)]4, Ti[N(CH3)2]4및, Ti[N(CH3)(C2H5)]4중 어느 하나의 소오스를 반응실(10) 내부의 샤워헤드(13)로 공급한다. 또한, 제 1조절밸브(15)를 열어 N2, H2, NH3, He 및 혼합가스 등의 반응가스를 반응실(10) 내부의 샤워헤드(13)에 유입시켜 상기 웨이퍼(12) 상에 TiN막을 증착한다.Thin film formation method of the prior art is Ti [N (C 2 H 5 ) 2] 4, Ti [N (CH 3) 2] 4, and, TI [N (CH 3) (C 2 H 5)] 4 A TiN film is deposited by a thermal CVD method using any one of the wafers 12 as a source to deposit a TiN film on a susceptor 11 having a heating function under the reaction chamber 10 of the CVD apparatus ). Followed by the second control valve 15 to open He, Ar, H 2, N 2 and Ti [N (C 2 H 5 )] in using a carrier gas such as mixed gas thermostatic chamber (18) 4, Ti [N (CH 3 ) 2 ] 4 and Ti [N (CH 3 ) (C 2 H 5 )] 4 is supplied to the showerhead 13 inside the reaction chamber 10. The first control valve 15 is opened to allow reaction gases such as N 2 , H 2 , NH 3 , He and mixed gas to flow into the showerhead 13 in the reaction chamber 10, A TiN film is deposited.
한편, 도 2는 플라즈마 CVD법을 이용한 박막 형성 방법을 설명하기 위한 CVD 장치의 구성도로서, 반응실(20)과 상기 반응실(20) 내에 수평으로 위치하는 서셉터(susceptor)(21)와 샤워헤드(23)와 상기 서셉터(21) 상에 웨이퍼(22)가 마련된다.2 shows a structure of a CVD apparatus for explaining a thin film forming method using the plasma CVD method. The apparatus includes a reaction chamber 20, a susceptor 21 horizontally disposed in the reaction chamber 20, A wafer 22 is provided on the showerhead 23 and the susceptor 21.
또한 반응실(200의 상부에는 상기 샤워헤드(23)와 연결되는 제 1가스공급관(24)과 상기 제 1가스공급관(24)으로 흐르는 가스량을 조절하는 제 1조절밸브(25)와 상기 제 1조절밸브(25)에 의해 흐르는 가스를 활성화 시키는 RF 제너레이터(29)가 마련된다. 상기 반응실(20) 좌측에는 액체소스와 상기 액체소스를 일정하게 기화시켜 가스를 발생시키는 항온실(28)과 상기 가스가 흐르는 제 2가스공급관(26)과 상기 제 2가스공급관(26)으로 흐르는 가스량을 조절하는 제 2조절밸브(27)가 마련된다.A first control valve 25 for controlling the amount of gas flowing to the first gas supply pipe 24 and a second control valve 25 for controlling the amount of gas flowing to the first gas supply pipe 24, There is provided a RF generator 29 for activating the gas flowing by the control valve 25. A reaction chamber 20 is provided on the left side with a thermostatic chamber 28 for generating a gas by uniformly vaporizing the liquid source and the liquid source, A second control valve 27 for controlling the amount of gas flowing to the second gas supply pipe 26 through which the gas flows and the second gas supply pipe 26 is provided.
상기한 종래기술에 의한 박막형성방법은 Ti[N(C2H5)2]4, Ti[N(CH3)2]4, 및, TI[N(CH3)(C2H5)]4중 어느 하나를 소오스로 이용하여 플라즈마 CVD 방식으로 TiN 필름을 증착하는 것으로, CVD 장치의 반응실(20) 하부에 히팅(heating) 기능을 갖춘 서셉터(susceptor)(21)에 웨이퍼(22)를 올려 놓고, 제 2조절밸브(27)를 열어 He, Ar, H2, N2및, 혼합가스 등의 캐리어 가스를 이용하여 항온실(28) 내의 Ti[N(C2H5)2]4혹은 Ti[N(CH3)2]4등의 소오스를 반응실 내부의 샤워헤드(23)로 유입시킨다. N2, H2, NH3, He 및, 혼합가스 등의 반응가스를 RF 제너레이터(29)에 0.01~5KW의 파워를 가하여 활성화시킨 후, 반응실(20) 내부의 샤워헤드(23)에 유입시켜 상기 웨이퍼(22) 상에 TiN막을 증착한다.Thin-film forming method according to the related art is Ti [N (C 2 H 5 ) 2] 4, Ti [N (CH 3) 2] 4, and, TI [N (CH 3) (C 2 H 5)] 4 is deposited on the TiN film by the plasma CVD method to deposit the TiN film on the wafer 22 in the susceptor 21 having a heating function under the reaction chamber 20 of the CVD apparatus. The second control valve 27 is opened and Ti [N (C 2 H 5 ) 2 ] in the anti-chlorine chamber 28 is removed by using a carrier gas such as He, Ar, H 2 , N 2 , 4 or Ti [N (CH 3 ) 2 ] 4 is introduced into the showerhead 23 inside the reaction chamber. A reaction gas such as N 2 , H 2 , NH 3 , He and a mixed gas is activated by applying a power of 0.01 to 5 kW to the RF generator 29 and then introduced into the showerhead 23 inside the reaction chamber 20 A TiN film is deposited on the wafer 22.
종래기술에 따른 박막형성방법에 의하면, TiN막을 CVD법으로 형성하여 확산방지막(diffusion barrier)이나 밀착층(adhesion layer) 그리고 Ta2O5나 BST 전극으로 사용하였다. 그러나 디바이스의 피처 사이즈(feature size) 감소에 따라서 양호한 스텝 커버리지(step coverage)를 확보하기 위한 차원에서 볼때, TiN을 사용하는 CVD법의 경우 증착막의 불안정(unstable) 즉, 에이징 효과(aging effect) 또는 높은 증착 온도로 이러한 적용에 한계가 있다.According to the conventional method of forming a thin film, a TiN film is formed by a CVD method and used as a diffusion barrier, an adhesion layer and a Ta 2 O 5 or BST electrode. However, from the viewpoint of ensuring good step coverage in accordance with the reduction of the feature size of the device, in the CVD method using TiN, the unstable of the evaporation film, that is, the aging effect, High deposition temperatures limit this application.
본 발명은 상기한 종래의 문제점을 해결하기 위하여 제안된 것으로서, 박막의 두께를 감소시키고 보다 안정된 박막을 얻을 수 있도록 CVD 장치를 이용한 ZrN막 형성 방법을 제공하는데 그 목적이 있다.It is an object of the present invention to provide a method of forming a ZrN film using a CVD apparatus so as to reduce a thickness of a thin film and obtain a more stable thin film.
도 1은 종래기술에 따른 써머(thermal) 화학기상증착법을 이용한 박막형성방법을 설명하기 위한 CVD 장치의 구성도FIG. 1 is a schematic view of a CVD apparatus for explaining a thin film forming method using a thermal chemical vapor deposition
도 2는 종래기술에 따른 플라즈마 화학기상증착법을 이용한 박막형성방법을 설명하기 위한 CVD 장치의 구성도FIG. 2 is a view showing a constitution of a CVD apparatus for explaining a thin film forming method using a plasma chemical vapor deposition
도 3은 본 발명에 따른 써머(thermal) 화학기상증착법을 이용한 박막형성방법을 설명하기 위한 CVD 장치의 구성도FIG. 3 is a schematic view of a CVD apparatus for explaining a thin film forming method using a thermal chemical vapor deposition method according to the present invention
도 4는 본 발명에 따른 플라즈마 화학기상증착법을 이용한 박막형성방법을 설명하기 위한 CVD 장치의 구성도4 is a schematic view of a CVD apparatus for explaining a thin film forming method using the plasma enhanced chemical vapor deposition method according to the present invention
*도면의 주요부분에 대한 부호의 설명*Description of the Related Art [0002]
30,40:반응실31,41:서셉터30, 40: reaction chamber 31, 41: susceptor
32,42:웨이퍼33,43:샤워헤드32, 42: Wafer 33, 43: Shower head
34,44:제 1가스공급관35,45:제 1조절밸브34, 44: first gas supply pipe 35, 45: first control valve
36,46:제 2가스공급관37,47:제 2조절밸브36, 46: second gas supply pipe 37, 47: second control valve
38,48:항온실49:RF 제너레이터38, 48: anti-greenhouse 49: RF generator
본 발명에 따른 CVD 장치를 이용한 ZrN막 형성방법은, CVD 장치의 챔버 내에 기판을 넣는 단계; 소오스로서 Zr[N(CH3)2]4, Zr[N(C2H5)2]4, Zr[N(CH3)(C2H5)]4를 마련하는 단계; 상기 소오스에 기화용 가스를 제공하여 상기 소오스를 기체상태로 만들고 이를 상기 챔버 내에 공급하는 단계; 및, CVD용 반응가스를 챔버 내에 공급하여 상기 기판에 ZrN막을 형성하는 단계로 구비되는 것을 특징으로 한다.A method of forming a ZrN film using a CVD apparatus according to the present invention includes: placing a substrate in a chamber of a CVD apparatus; As a source comprising: providing a Zr [N (CH 3) 2 ] 4, Zr [N (C 2 H 5) 2] 4, Zr [N (CH 3) (C 2 H 5)] 4; Supplying a gas for vaporization to the source to cause the source to be in a gaseous state and supplying the gas to the chamber; And supplying a CVD reaction gas into the chamber to form a ZrN film on the substrate.
이하 첨부한 도면을 참조하여 본 발명을 더욱 상세하게 설명하면 다음과 같다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 3은 본 발명의 제 1실시예에 따른 써머 CVD(thermal CVD)법에 의한 박막 형성 방법을 설명하기 위한 CVD 장치의 구성도로서, 반응실(30)과 상기 반응실(30) 내에 수평으로 위치하는 서셉터(susceptor)(31)와 샤워헤드(33)와 상기 서셉터(31) 상에 웨이퍼(32)가 마련된다. 또한, 반응실(30)의 상부에는 상기 샤워헤드(33)와 연결되는 제 1가스공급관(34)과 상기 제 1가스공급관(34)으로 흐르는 가스량을 조절하는 제 1조절밸브(35)가 마련된다. 상기 반응실(30) 좌측에는 액체소스와 상기 액체소스를 일정하게 기화시켜 가스를 발생시키는 항온실(38)과 상기 가스가 흐르는 제 2가스공급관(36)과 상기 제 2가스공급관(36)으로 흐르는 가스량을 조절하는 제 2조절밸브(37)가 마련된다.FIG. 3 is a schematic view of a CVD apparatus for explaining a thin film forming method by the thermal CVD method according to the first embodiment of the present invention, which includes a reaction chamber 30 and a reaction chamber 30 horizontally A wafer 32 is provided on the susceptor 31, the showerhead 33, and the susceptor 31, A first gas supply pipe 34 connected to the shower head 33 and a first control valve 35 for regulating an amount of gas flowing to the first gas supply pipe 34 are provided at an upper portion of the reaction chamber 30 do. A reaction chamber 30 is provided at the left side with a reaction chamber 38 for evacuating the liquid source and the liquid source to generate a gas, a second gas supply pipe 36 through which the gas flows, and a second gas supply pipe 36 A second control valve 37 is provided to control the amount of gas flowing.
상기한 본 발명에 따른 CVD 장치를 이용한 ZrN막 형성방법은 CVD 장치의 반응실(30) 하부에 히팅(heating) 기능을 갖는 서셉터(susceptor)(31)에 웨이퍼(32)를 올려놓는다. 이어 제 2조절밸브(37)를 열어 He, Ar, H2, N2및 혼합가스 등이 캐리어 가스를 이용하여 항온실(38) 내의 Zr[N(CH3)2]4, Zr[N(C2H5)2]4및 Zr[N(CH3)(C2H5)]4중에서 어느 하나의 소오스를 반응실 내부의 샤워헤드(33)로 공급한다. 이때, 상기 소오스는 약 40~200℃ 온도로 가열하여 기체상태로 증발시킨 후, N2, H2, NH3, He 및 혼합가스 등의 반응가스와 함께 반응실 내부의 샤워헤드(43)에 유입하는 것이 바람직하다. 또한, 제 1조절밸브(35)를 열어 N2, H2, NH3, He 및 혼합가스 등의 반응가스를 반응실 내부의 샤워헤드(33)에 유입시켜 CVD공정을 실시한다. 이때, ZrN막은 실리콘(Si)과 GaAs 등의 화합물 반도체 등의 반도체, SiO2, SiN4, 폴리머 등의 유전체, Ti, Cu Al, W, Mo 등의 금속, Ta2O5, BST, PZT 등의 고유전체막 상에 증착된다.In the method of forming a ZrN film using the CVD apparatus according to the present invention, the wafer 32 is placed on a susceptor 31 having a heating function below the reaction chamber 30 of the CVD apparatus. Next, the second regulating valve 37 is opened, and He, Ar, H 2 , N 2 , mixed gas and the like are supplied to the Zr [N (CH 3 ) 2 ] 4 and Zr [N C 2 H 5 ) 2 ] 4 and Zr [N (CH 3 ) (C 2 H 5 )] 4 is supplied to the showerhead 33 inside the reaction chamber. At this time, the source is heated to a temperature of about 40 to 200 ° C. to evaporate in a gaseous state, and then the reaction gas such as N 2 , H 2 , NH 3 , He and mixed gas is supplied to the showerhead 43 Is preferable. In addition, the first control valve 35 is opened to introduce a reaction gas such as N 2 , H 2 , NH 3 , He, and a mixed gas into the showerhead 33 in the reaction chamber to perform the CVD process. At this time, ZrN film silicon semiconductor, SiO, such as a compound semiconductor, such as (Si) and GaAs 2, SiN 4, the metal of the dielectric, such as Ti, Cu Al, W, Mo of polymers, Ta 2 O 5, BST, PZT, etc. Lt; / RTI >
또한, ZrN막 위에 Ta2O5, BST 등의 유전체가 증착되고 다시 ZrN막으로 형성된 캐패시터 전극으로서도 이용가능하다.Further, a dielectric such as Ta 2 O 5 or BST may be deposited on the ZrN film and used as a capacitor electrode formed of a ZrN film.
ZrN막 형성시 반응실 내부의 증착온도는 25~450℃이고 압력은 10-3~760Torr이다.The deposition temperature in the reaction chamber during the ZrN film formation is 25 to 450 ° C. and the pressure is 10 -3 to 760 Torr.
소오스의 온도는 40~200℃이다.The temperature of the source is 40 to 200 ° C.
또한, ZrN막 형성후, 카본(carbon) 같은 불순물의 감소 및, 막의 밀도를 증가시키기 위해서 N2/H2, 또는 NH3, 또는 N2/H2/NH3분위기(ambient) 속에서 500℃ 이상으로 어닐링(annealing) 실시하는 것이 바람직하다.Further, after forming ZrN film, in order to increase the reduction, and a film density of the carbon (carbon) impurity N 2 / H 2, or NH 3, or N 2 / H 2 / NH 3 atmosphere (ambient) in at 500 ℃ It is preferable to perform annealing in the above-mentioned manner.
도 4는 본 발명의 제 2실시예에 따른 플라즈마 화학기상증착(PECVD)법에 의한 박막형성방법을 설명하기 위한 CVD 장치의 구성도로서, 반응실(40)과 상기 반응실(40) 내에 수평으로 위치하는 서셉터(susceptor)(41)와 샤워헤드(43)와 상기 서셉터(41) 상에 웨이퍼(42)가 마련된다. 또한 반응실(40)의 상부에는 상기 샤워헤드(43)와 연결되는 제 1가스공급관(44)과 상기 제 1가스공급관(44)으로 흐르는 가스량을 조절하는 제 1조절밸브(45)와 상기 제 1조절밸브(45)에 의해 흐르는 가스를 활성화 시키는 RF 제너레이터(49)가 마련된다. 상기 반응실(40) 좌측에는 액체소스와 상기 액체소스를 일정하게 기화시켜 가스를 발생시키는 항온실(48)과 상기 가스가 흐르는 제 2가스공급관(46)과 상기 제 2가스공급관(46)으로 흐르는 가스량을 조절하는 제 2조절밸브(47)가 마련된다.FIG. 4 is a schematic view of a CVD apparatus for explaining a thin film forming method by a plasma chemical vapor deposition (PECVD) method according to a second embodiment of the present invention, which includes a reaction chamber 40 and a horizontal A wafer 42 is provided on the susceptor 41, the showerhead 43, and the susceptor 41, which are located in the susceptor 41. A first gas supply pipe 44 connected to the shower head 43 and a first control valve 45 for controlling an amount of gas flowing to the first gas supply pipe 44 are provided in the upper part of the reaction chamber 40, There is provided a RF generator 49 for activating the gas flowing by the first control valve 45. A reaction chamber 40 is provided at the left side with a thermostatic chamber 48 for generating a gas by uniformly vaporizing the liquid source and the liquid source, a second gas supply pipe 46 through which the gas flows, and a second gas supply pipe 46 A second control valve 47 for controlling the amount of gas flowing is provided.
상기한 본 발명에 따른 CVD 장치를 이용한 ZrN막 형성방법은 반응실(40) 하부에 히팅(heating) 기능을 갖는 서셉터(41)에 웨이퍼(42)를 올려놓고 제 2조절밸브(47)를 열여 He, Ar, H2, N2및, 혼합가스 등의 캐리어 가스를 이용하여 항온실(48) 내의 Zr[N(CH3)2]4, Zr[N(C2H5)2]4및 Zr[N(CH3)(C2H5)]4중에서 어느 하나의 소오스를 반응실 내부의 샤워헤드(43)로 유입시킨다.The method of forming a ZrN film using the CVD apparatus according to the present invention is characterized in that a wafer 42 is placed on a susceptor 41 having a heating function below the reaction chamber 40 and a second control valve 47 N (CH 3 ) 2 ] 4 and Zr [N (C 2 H 5 ) 2 ] 4 in the reaction chamber 48 using a carrier gas such as He, Ar, H 2 , N 2 , and then flows into the Zr [N (CH 3) ( C 2 H 5)] the showerhead 43 in the reaction chamber either from the source 4.
이때, 상기 소오스는 약 40~200℃ 온도로 가열하여 기체상태로 증발시킨후, N2, H2, NH3, He 및 혼합가스 등의 반응가스와 함께 반응실 내부의 샤워헤드(43)에 유입하는 것이 바람직하다. 또한, 제 1조절밸브(45)를 열어 반응가스를 RF 제너레이터(49)에 10~500KW의 파워를 가하여 활성화 시킨 후, 반응실(40) 내부의 샤워헤드(43)에 유입시켜 상기 웨이퍼(43) 상에 ZrN막을 증착시킨다.At this time, the source is heated to a temperature of about 40 to 200 ° C. to evaporate in a gaseous state, and then the reaction gas such as N 2 , H 2 , NH 3 , He and mixed gas is supplied to the showerhead 43 Is preferable. The first control valve 45 is opened to activate the reactant gas by applying a power of 10 to 500 KW to the RF generator 49 and then flows into the showerhead 43 inside the reaction chamber 40 to cool the wafer 43 ). ≪ / RTI >
이때, ZrN막은 실리콘(Si)과 GaAs 등의 화합물 반도체 등의 반도체, SiO2, SiN4, 폴리머 등의 유전체, Ti, Cu Al, W, Mo 등의 금속, Ta2O5, BST, PZT 등의 고유전체막 상에 증착된다.At this time, ZrN film silicon semiconductor, SiO, such as a compound semiconductor, such as (Si) and GaAs 2, SiN 4, the metal of the dielectric, such as Ti, Cu Al, W, Mo of polymers, Ta 2 O 5, BST, PZT, etc. Lt; / RTI >
또한, ZrN막 위에 Ta2,O5, BST 등의 유전체가 증착되고 다시 ZrN막으로 형성된 캐패시터 전극으로서도 이용가능하다.Further, a dielectric such as Ta 2 , O 5 , BST or the like is deposited on the ZrN film and is also usable as a capacitor electrode formed of a ZrN film.
ZrN막 형성시 반응실 내부의 증착온도는 25~450℃이고 압력은 10-3~760Torr이다.The deposition temperature in the reaction chamber during the ZrN film formation is 25 to 450 ° C. and the pressure is 10 -3 to 760 Torr.
또한 , ZrN막 형성후, 카본(carbon) 같은 불순물의 감소 및, 막의 밀도를 증가시키기 위해서 N2/H2, 또는 NH3, 또는 N2/H2/NH3분위기(ambient) 속에서 500℃ 이상으로 어닐링(annealing) 실시하는 것이 바람직하다.Further, after forming ZrN film, in order to increase the reduction, and a film density of the carbon (carbon) impurity N 2 / H 2, or NH 3, or N 2 / H 2 / NH 3 atmosphere (ambient) in at 500 ℃ It is preferable to perform annealing in the above-mentioned manner.
본 발명의 실시예에 따른 CVD 장치를 이용한 ZrN막 형성방법에 의하면 ZrN막은 TiN막 보다 안정하고 저항율(resistivity)도 적으며 확산막의두께를 감소하게 하고 기생저항을 감소시킨다. 또한, RC 시정수의 감소로 인한 소자의 동작속도도 증가시키는 효과가 있다.According to the ZrN film forming method using the CVD apparatus according to the embodiment of the present invention, the ZrN film is more stable and less resistive than the TiN film, reducing the thickness of the diffusion film and reducing the parasitic resistance. In addition, there is an effect of increasing the operation speed of the device due to the reduction of the RC time constant.
본 발명이 상기 실시예에 한정되지 않으며, 많은 변형이 본 발명의 기술적 사상내에서 당 분야의 통상의 지식을 가진 자에 의하여 가능함은 명백하다.It is apparent that the present invention is not limited to the above embodiments, and many modifications are possible within the technical scope of the present invention by those skilled in the art.
Claims (12)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960034656A KR100226764B1 (en) | 1996-08-21 | 1996-08-21 | Thin film forming method using chemical vapor deposition system |
JP9214509A JPH1088353A (en) | 1996-08-21 | 1997-08-08 | Formation of zrn coating using cvd system |
DE19735990A DE19735990C2 (en) | 1996-08-21 | 1997-08-19 | A method of forming a ZrN film using a CVD device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960034656A KR100226764B1 (en) | 1996-08-21 | 1996-08-21 | Thin film forming method using chemical vapor deposition system |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980015361A true KR19980015361A (en) | 1998-05-25 |
KR100226764B1 KR100226764B1 (en) | 1999-10-15 |
Family
ID=19470261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960034656A KR100226764B1 (en) | 1996-08-21 | 1996-08-21 | Thin film forming method using chemical vapor deposition system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH1088353A (en) |
KR (1) | KR100226764B1 (en) |
DE (1) | DE19735990C2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101481540B1 (en) * | 2012-10-11 | 2015-01-13 | 전북대학교산학협력단 | Apparatus for chemical vapor deposition apparatus |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002037558A1 (en) | 2000-11-02 | 2002-05-10 | Fujitsu Limited | Semiconductor device and its manufacturing method |
WO2007094044A1 (en) * | 2006-02-14 | 2007-08-23 | Fujitsu Limited | Semiconductor device manufacturing method and semiconductor manufacturing apparatus |
US20150225874A1 (en) * | 2012-08-21 | 2015-08-13 | Sm Technology | Method for growing zirconium nitride crystal |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5139825A (en) * | 1989-11-30 | 1992-08-18 | President And Fellows Of Harvard College | Process for chemical vapor deposition of transition metal nitrides |
KR0153878B1 (en) * | 1994-06-07 | 1998-10-15 | 쿠미하시 요시유키 | Silicon carbide semiconductor device and method of producing the same |
JPH08181075A (en) * | 1994-12-26 | 1996-07-12 | Nec Corp | Thin film depositing method |
KR0164149B1 (en) * | 1995-03-28 | 1999-02-01 | 김주용 | Method of improving ticn layer |
KR100226763B1 (en) * | 1996-07-31 | 1999-10-15 | 김영환 | Thin film forming method using chemical vapor deposition system |
-
1996
- 1996-08-21 KR KR1019960034656A patent/KR100226764B1/en not_active IP Right Cessation
-
1997
- 1997-08-08 JP JP9214509A patent/JPH1088353A/en active Pending
- 1997-08-19 DE DE19735990A patent/DE19735990C2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101481540B1 (en) * | 2012-10-11 | 2015-01-13 | 전북대학교산학협력단 | Apparatus for chemical vapor deposition apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH1088353A (en) | 1998-04-07 |
DE19735990C2 (en) | 2000-01-05 |
DE19735990A1 (en) | 1998-02-26 |
KR100226764B1 (en) | 1999-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6656282B2 (en) | Atomic layer deposition apparatus and process using remote plasma | |
US7674728B2 (en) | Deposition from liquid sources | |
US5780360A (en) | Purge in silicide deposition processes dichlorosilane | |
JP5005170B2 (en) | Method for forming ultra-high quality silicon-containing compound layer | |
JP5252417B2 (en) | Process sequence of deep trench doped silicon filling | |
US5567483A (en) | Process for plasma enhanced anneal of titanium nitride | |
US6312526B1 (en) | Chemical vapor deposition apparatus and a method of manufacturing a semiconductor device | |
US20080246101A1 (en) | Method of poly-silicon grain structure formation | |
US20060228888A1 (en) | Atomic layer deposition of high k metal silicates | |
US20020052124A1 (en) | In situ dielectric stacks | |
JPH05211127A (en) | Method for plasma-reinforced chemical vapor growth | |
KR20030051873A (en) | Surface Preparation Prior To Deposition | |
US6207489B1 (en) | Method for manufacturing capacitor of semiconductor memory device having tantalum oxide film | |
US6177305B1 (en) | Fabrication of metal-insulator-metal capacitive structures | |
US20070287271A1 (en) | Deposition of nano-crystal silicon using a single wafer chamber | |
US20080132080A1 (en) | Method of avoiding haze formation on surfaces of silicon-containing PECVD-deposited thin films | |
KR100226764B1 (en) | Thin film forming method using chemical vapor deposition system | |
US6726955B1 (en) | Method of controlling the crystal structure of polycrystalline silicon | |
JPH06283453A (en) | Manufacture of semiconductor device | |
Chiou et al. | Copper chemical vapor deposition from Cu (hexafluoroacetylacetonate) trimethylvinylsilane | |
KR100226763B1 (en) | Thin film forming method using chemical vapor deposition system | |
JP3100702B2 (en) | Reduced pressure chemical reaction method and apparatus | |
JPH04277627A (en) | Leaf type plasma chemical vapor growth apparatus | |
KR20060012703A (en) | Thermal oxide formation apparatus and the method by chemical vapor deposition in wafer | |
WO2009082840A1 (en) | Method for forming a polysilicon film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20080619 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |