WO2007092103A2 - Methods and systems for aneurysm treatment using filling structures - Google Patents
Methods and systems for aneurysm treatment using filling structures Download PDFInfo
- Publication number
- WO2007092103A2 WO2007092103A2 PCT/US2006/062257 US2006062257W WO2007092103A2 WO 2007092103 A2 WO2007092103 A2 WO 2007092103A2 US 2006062257 W US2006062257 W US 2006062257W WO 2007092103 A2 WO2007092103 A2 WO 2007092103A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scaffold
- expandable
- aneurysm
- aneurysmal
- expandable structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12099—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
- A61B17/12109—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
- A61B17/12113—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
- A61B17/12118—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm for positioning in conjunction with a stent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12136—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/954—Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00831—Material properties
- A61B2017/00893—Material properties pharmaceutically effective
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B2017/1205—Introduction devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/065—Y-shaped blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/077—Stent-grafts having means to fill the space between stent-graft and aneurysm wall, e.g. a sleeve
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0073—Quadric-shaped
- A61F2230/0078—Quadric-shaped hyperboloidal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
Definitions
- the present invention relates generally to medical apparatus and methods for treatment. More particularly, the present invention relates to methods and systems for crossing and filling abdominal and other aneurysms.
- Aneurysms are enlargements or "bulges” in blood vessels which are often prone to rupture and which therefore present a serious risk to the patient. Aneurysms may occur in any blood vessel but are of particular concern when they occur in the cerebral vasculature or the patient's aorta.
- the present invention is particularly concerned with aneurysms occurring in the aorta, particularly those referred to as aortic aneurysms.
- Abdominal aortic aneurysms (AAA's) are classified based on their location within the aorta as well as their shape and complexity.
- Aneurysms which are found below the renal arteries are referred to as infrarenal abdominal aortic aneurysms.
- Suprarenal abdominal aortic aneurysms occur above the renal arteries, while thoracic aortic aneurysms (TAA's) occur in the ascending, transverse, or descending part of the upper aorta.
- TAA's thoracic aortic aneurysms
- Infrarenal aneurysms are the most common, representing about eighty percent (80%) of all aortic aneurysms. Suprarenal aneurysms are less common, representing about 20% of the aortic aneurysms. Thoracic aortic aneurysms are the least common and often the most difficult to treat. Most or all present endovascular systems are also too large (above 12F) for percutaneous introduction.
- aneurysm The most common form of aneurysm is "fusiform," where the enlargement extends about the entire aortic circumference. Less commonly, the aneurysms may be characterized by a bulge on one side of the blood vessel attached at a narrow neck. Thoracic aortic aneurysms are often dissecting aneurysms caused by hemorrhagic separation in the aortic wall, usually within the medial layer. The most common treatment for each of these types and forms of aneurysm is open surgical repair. Open surgical repair is quite successful in patients who are otherwise reasonably healthy and free from significant co-morbidities. Such open surgical procedures are problematic, however, since access to the abdominal and thoracic aortas is difficult to obtain and because the aorta must be clamped off, placing significant strain on the patient's heart.
- endoluminal grafts have come into widespread use for the treatment of aortic aneurysm in patients who cannot undergo open surgical procedures.
- endoluminal repairs access the aneurysm "endoluminally" through either or both iliac arteries in the groin.
- the grafts which typically have been fabric or membrane tubes supported and attached by various stent structures, are then implanted, typically requiring several pieces or modules to be assembled in situ.
- Successful endoluminal procedures have a much shorter recovery period than open surgical procedures.
- the present invention provides methods and systems for the treatment of aneurysms, particularly aortic aneurysms including both abdominal aortic aneurysms (AAA's) and thoracic aortic aneurysms (TAA's). Treatments are particularly useful in endoluminal protocols where vascular catheters may be used to advance and manipulate the various system components. In some instances, however, the systems and methods will also be useful for the percutaneous, minimally invasive treatment of aneurysms where the aneurysm may be accessed from the outside through a controlled penetration in the aneurysmal wall.
- AAA's abdominal aortic aneurysms
- TAA's thoracic aortic aneurysms
- Systems according to the present invention comprise a scaffold which is adapted to be placed across the aneurysm to provide one or more blood flow lumens thereacross.
- the scaffold may be any type of conventional aneurysmal treatment scaffold, including bare stents, grafts, stent-reinforced grafts, double-walled filling structures (as described in detail in copending application no. 11/413,460, the full disclosure of which has been previously incorporated herein by reference), and the like.
- the scaffold will be coated with, impregnated with, or otherwise adapted to carry a medicament which will be released in the aneurysmal sac after the scaffold is implanted therein.
- the present invention will primarily rely on stents and grafts which are endoluminally placed to provide the desired blood flow lumen(s) across the aneurysm and to define an aneurysmal space between an outside surface of the scaffold and an inside surface of all or a portion of the aneurysmal wall.
- the aneurysmal space which remains around an aneurysmal scaffold is subject to leakage and in some cases allows for migration of the scaffold from the originally implanted location. Both outcomes are undesirable, and the methods and systems of the present invention will help both seal the aneurysmal space in order to reduce the risk of leakage and help anchor the aneurysmal scaffold in place to reduce the risk of migration.
- the present invention provides for the deployment of one or more expandable structures, such as inflatable balloons or bladders, within the aneurysmal space.
- the expandable structures are usually placed after deployment of the aneurysmal scaffold and more usually are deployed through the wall of the scaffold into the aneurysmal space.
- the space-filling expandable structures may be deployed prior to placement of the aneurysmal scaffold, where such pre-deployed expandable structures may be expanded either before or after deployment of the aneurysmal scaffold.
- the expandable structures of the present invention may be deployed days, weeks, or even longer after an initial endoluminal or other aneurysmal repair.
- the expandable structures are useful for developing voids which may open around a previously implanted scaffold over time.
- the expandable structures may be placed through the aneurysmal scaffold or may be percutaneously placed through the wall of the aneurysm.
- the present invention provides different protocols for controlling pressurization within the aneurysmal space as the expandable structure is being expanded.
- excess expansion medium being fed to one or more of the expandable structures may be selectively bled from the structure if the pressure within the aneurysmal space is excessive.
- a drain tube or lumen may be connected to the expandable structure while it is being expanded in order to bleed the excess expansion medium.
- selective bleeding could be controlled by a pressure relief valve, a feedback pressure control system, or the like.
- excessive pressurization within the aneurysmal sac can be controlled by bleeding fluid from the aneurysmal space as the expandable structure is being expanded.
- control could be provided by one or more drain catheters deployed directly into the aneurysmal space and connected to pressure relief valves or active pressure control systems.
- methods for treating an aneurysm in a blood vessel by placing a scaffold across the aneurysm to define an aneurysmal space between an outside surface of the scaffold and an inside surface of the aneurysmal wall. At least one expandable structure is expanded using an expansion medium which passes by or through the scaffold or through the aneurysmal wall to fill at least a portion of the aneurysmal space.
- the scaffold may comprise any conventional vascular scaffold of a type which may be positioned across an aneurysm.
- the scaffold could comprise a conventional bare metal stent having sufficient length and suitable diameter to be implanted across the aneurysm with a first end anchored in healthy vasculature on one side of the aneurysm and a second end anchored in healthy vasculature on the other side of the aneurysm.
- Such bare metal stents may be balloon expandable, self-expanding, provide for a ratcheting expansion, or the like.
- fabric, braid, or other vascular grafts may be anchored in healthy vasculature on either side of the aneurysm, often using barbs, staples, or the like.
- the graft structures will typically comprise a blood-impermeable wall, and thus the expandable structures will typically be delivered before graft deployment, around a partially deployed graft, or through the aneurysmal wall, as described generally below.
- the present invention can use stent-reinforced graft structures which are typically expanded and anchored within the target blood vessel.
- Such stent-grafts may also be balloon expandable, self-expanding, or a combination thereof.
- the systems and methods of the present invention may be used to treat aneurysms having a variety of geometries. While the systems and methods are particularly useful for treating aneurysms wherein the enlargement circumscribes the blood vessel (fusiform), such as most aortic aneurysms, they will also be useful for treating various asymmetric aneurysms where the bulge is present over only a portion of the periphery of the blood vessel wall. In all cases, it is generally desirable that the expandable structures occupy at least most and preferably all of the void in the aneurysmal space in order to most effectively inhibit leakage and migration of the scaffold.
- the methods and systems of the present invention are compatible with the use of both single scaffolds and multiple scaffold systems.
- two or more stents, grafts, or other scaffolds may be placed in series in order to span the entire length of the aneurysm.
- bifurcated aneurysms such as abdominal aortic aneurysms
- a pair of parallel scaffolds may be placed in the aneurysm and extend from the aorta into each of the iliac branch vessels.
- bifurcated scaffolds having branch ends may be placed from the aorta into the iliac arteries.
- the expandable structures will typically be balloons or other structures which are inflatable with a fluid inflation medium.
- Such inflatable structures will typically have a fluid impermeable wall which is sufficiently flexible to conform to the aneurysmal wall, the scaffold, and other expandable structure(s) which may be or have been placed in the aneurysmal space.
- the inflatable structures may be elastic or non-elastic, typically being formed from parylene, polyester (e.g., Dacron ® ), PET, PTFE, and/or a compliant material, such as silicone, polyurethane, latex, or combinations thereof.
- the walls of the expandable structures may consist of a single layer or may comprise multiple layers which are laminated, glued, heat bonded, ultrasonically bonded, or otherwise formed together. Different layers may comprise different materials, including both compliant and/or non-compliant materials.
- the structure walls may also be reinforced in various ways, including braid reinforcement layers, filament reinforcement layers, and the like.
- the expandable structures of the present invention may also be expanded with non- fluid expansion medium, such as powders, pellets, coils, foams, and the like.
- non- fluid expansion medium such as powders, pellets, coils, foams, and the like.
- the expandable structure will not necessarily be formed from an impermeable material, but instead could be formed from lattices, braids, nets, or other permeable or foramenous structures which contain the expansion medium but might permit blood and fluid permeation.
- the expandable structure will be extruded in situ, typically at the same time that it is being expanded or inflated with a separate expansion material.
- Various extrudable polymers exist which can be delivered from a delivery catheter.
- Expanding the expandable structure will usually be performed at least in part using a delivery catheter which both positions and fills the expansion structure within the aneurysmal space.
- the delivery catheter will be positioned inside of the scaffold and will deliver the expansion medium through the catheter wall.
- the delivery catheter may be positioned around one end of the scaffold to pen-nit positioning and filling of the expandable structure before or after the scaffold has been placed.
- the delivery catheter may be passed through a penetration in the aneurysmal wall to access a void in the aneurysmal space which requires filling.
- the delivery catheter will be used to deliver and position the expandable structure through the scaffold wall after the scaffold has been placed in the aneurysm.
- the delivery catheter may be passed through a discrete window or opening formed in the scaffold wall which is enlarged relative to other openings and intended particularly for delivering the expandable structure. More typically, however, the delivery catheter will be passed through openings or interstices which are inherently part of the cellular construction of the scaffold. By passing through the cellular openings which are already present, multiple expandable structures may be placed at locations which may be determined during the course of the procedure.
- the delivery catheter may be used to place the expandable structure prior to delivery of the scaffold.
- the scaffold may then be placed so that at least one end of the scaffold is deployed and anchored over the delivery catheter(s).
- the expandable structures will usually be inflated or otherwise expanded after the scaffold is deployed.
- the expandable structures may be expanded at least partly prior to deployment of the scaffold so long as care is taken not to over pressurize the aneurysmal sac when the scaffold is expanded and implanted.
- the delivery catheter may be introduced into the aneurysmal space by passing a cannula or other delivery tube through a penetration in the aneurysmal wall.
- the cannula may be positioned using thoracoscopic or other minimally invasive techniques in order to access the outside wall of the aneurysm.
- Such percutaneous deployment of the expandable structures will be particularly suitable for treating patients where a void or expansion of the aneurysmal sac has occurred sometime after a primary treatment.
- at least two expandable structures will be delivered to substantially fill the aneurysmal space. Often, three, four, five, or even more expandable structures may be delivered.
- the treating physician will sequentially deliver multiple expandable structures through the wall of the aneurysmal scaffold while visualizing the aneurysmal space fluoroscopically. A sufficient number of expansion members can then be delivered in order to substantially fill the void within the aneurysmal space, as confirmed by the fluoroscopic visualization.
- two or more expandable structures may be expanded simultaneously, in mixed protocols where expandable structures are sometimes delivered simultaneously and other times delivered sequentially may also be employed.
- systems for treating an aneurysm in a blood vessel comprise a scaffold, and expandable structure, and a delivery catheter.
- the scaffold may comprise any of the scaffolds generally described above in connection with the methods of the present invention.
- the delivery catheters will typically comprise a flexible elongate tubular member having at least one lumen therethrough for delivering expansion medium to the expandable structure.
- the expandable structure may be initially attached at a distal end of a delivery catheter and the lumen of the delivery catheter used only for delivering the expansion medium to the expandable structure.
- the expandable structure will be detachable from the delivery catheter after it has been filled and will usually include a self-sealing valve or other attachment port which closes and retains the expansion medium within the structure after detachment of the delivery catheter.
- the delivery catheter may be adapted to deliver both the expandable structure and the expansion medium to the expandable structure. In such instances, the delivery catheter can be used for sequentially delivering two or more expansion structures together with filling of those structures. In still other instances, separate delivery catheters or delivery catheter components may be used for delivering an expandable structure and for filling the expandable structure.
- the systems of the present invention may further comprise a cannula for positioning a delivery catheter and expandable structure percutaneously through the wall of an aneurysm.
- the cannula will have an axial lumen for containing the expandable structure and/or delivery catheter can be used to access the aneurysm in a conventional manner.
- Fig. 1 illustrates a single scaffold placed across an abdominal aortic aneurysm and creating an aneurysmal space around the scaffold.
- FIGs. 2 A and 2B illustrate use of a delivery catheter in accordance with the principles of the present invention for positioning and expanding an expandable structure in accordance with the principles of the present invention.
- FIGs. 3 and 4 illustrate use of a single delivery catheter for delivering multiple expandable structures in accordance with the principles of the present invention.
- Fig. 5 illustrates the use of a pair of delivery catheters for delivering multiple expandable structures in accordance with the principles of the present invention.
- Fig. 6 illustrates the use of a pair of delivery catheters for delivering expandable structures through separate parallel scaffolds.
- Fig. 7 illustrates the use of a pair of delivery catheters for delivering multiple expandable structures through a single bifurcated scaffold.
- FIG. 8 illustrates positioning of a valve in an exemplary expandable structure in accordance with the principles of the present invention.
- Fig. 9 illustrates and expandable structure having an axial channel or groove for receiving a deployed scaffold in accordance with the principles of the present invention.
- FIGs. 1OA - 1OE illustrate use of a delivery catheter for extruding pairs of expandable structures in accordance with the principles of the invention.
- Figs. 1 IA - 1 ID illustrate delivery of expandable structures where the delivery catheter is placed past one end of a scaffold in accordance with the principles of the present invention.
- Fig. 12 illustrates use of an expandable structure for filling a void region around a double- walled f ⁇ llable scaffold in accordance with the principles of the present invention.
- Fig. 13 illustrates a cannula which may be used for deploying an expandable structure percutaneously through an aneurysmal wall in accordance with the principles of the present invention.
- a scaffold 10 is placed within an aneurysm to span the length of the aneurysm between regions of relatively healthy vasculature.
- Scaffold 10 is illustrated in an abdominal aortic aneurysm AAA and extends from the renal arteries RA to the iliac arteries IA.
- the scaffold 10 is shown as a bare metal stent which may be balloon expandable or self- expanding within the aneurysm. It will be appreciated, that the scaffold could comprise a more conventional graft structure, a stent-graft structure, and could comprise barbs, hooks, staples, or other elements for anchoring the scaffold within the regions of healthy vasculature.
- annular aneurysmal space AS circumferential Iy surrounds the scaffold 10.
- the method and systems of the present invention are intended for at least partially and preferably substantially completely filling the aneurysmal space to reduce the risk of endoleaks and to anchor the scaffold to inhibit migration.
- delivery catheters 12 may be used to both deliver expandable structures 16 and to fill the expandable structures with an expansion medium, for example by using a syringe 20 to deliver the medium through a lumen of the catheter 12.
- the distal end 14 of the delivery catheter 12 will be positioned through openings in the cellular structure of the scaffold 10, as shown in Fig. 2A.
- a window 18 may be formed within a wall of the scaffold 10 to permit positioning of the distal end 14 of the delivery catheter 12 therethrough.
- Use of such a window will usually be compatible only with the delivery of single expandable structure 16 which can occupy substantially the entire aneurysmal space AS.
- delivery through the normal opening in the cellular structure of a stent or other scaffold 10 will normally be preferred since it allows the physician to deliver and position multiple expandable structures 16 as needed in order to fully occupy the void region of the aneurysmal space AS.
- FIG. 3 Use of a single delivery catheter 12 for sequentially positioning a plurality of expandable structures 16a- 16c is illustrated in Fig. 3.
- a catheter 12 is used to deliver a first expandable structure 16a, moved and extended out through a different portion of the scaffold 10, and then used to deliver a second expandable structure 16b.
- a third expandable structure 16c is shown as being inflated and delivered in Fig. 3.
- the inflatable expansion member 16 can be delivered, inflated with the inflation tube, and then detached and left in place. After withdrawing one inflation tube, a second inflation tube can then be used to deliver a second inflatable expandable structure 16.
- Positioning of the expandable structure 16 can be effected by repositioning the delivery catheter 12 and/or extending the inflatable tube (not shown) from the delivery catheter 12 into different regions of the aneurysmal space AS as needed to fill different portions of the space.
- FIG. 4 the catheter 12 of Fig. 3 has been used to deliver additional expandable structures 16, with a fourth and a fifth expandable structure 16d and 16e shown as being deployed. Additional expandable structures 16 will be added until the entire aneurysmal space AS is filled, usually as confirmed under fluoroscopic. A single catheter 12 has been introduced to the aneurysmal space AS through the iliac artery IA.
- a pair of delivery catheters 12a and 12b can be used to simultaneously position two expandable structures 16.
- the delivery catheters 12a and 12b are introduced through the two iliac arteries IA, and they may be used to both simultaneously and sequentially deliver multiple expandable structures 16.
- a pair of delivery catheters 12a and 12b can be used simultaneously and/or sequentially deliver multiple expandable structures 16 through a pair of parallel scaffold 22 and 24.
- the upper ends of the scaffolds 22 and 24 are positioned in the aorta and anchored above the renal arteries RA, while the lower ends are respectively in the right and left iliac arteries IA.
- the delivery catheters are introduced through the iliac arteries into the lower ends of the scaffolds 22 and 24.
- a pair of delivery catheters 12a and 12b can be used to deliver multiple expandable structures 16 simultaneously or sequentially through a bifurcated lower end of a bifurcated stent 26, as shown in Fig. 7.
- the multiple expandable structures 16 are particularly adapted to conform around regions of thrombus T within the aneurysmal space AS.
- the expandable structure 16 can take a variety of forms. As shown in Fig. 8, expandable structure 16A comprises an outer wall formed from a flexible material, typically a polymer as described above. A valve structure 30 is provided to detachably secure to the distal end of a delivery catheter or inflation tube. The delivery catheter tube may deliver any one of the expandable media described above, and the valve 30 will usually be self-closing after the delivery catheter inflation tube is detached. As shown in Fig. 9, and expandable structure 16B can be shaped from semi-compliant or non-compliant materials to provide a particular filling geometry. The expandable structure 16B has a C-shaped cross-section which is particularly useful for filling an annular aneurysmal space surrounding a scaffold where the scaffold is received in an axial channel 32 in the expandable structure.
- expandable structures 40 may be extruded around the scaffold 10.
- a highly conformable bag may be pushed out from the delivery catheter 12 under pressure from the fill material.
- a first extrudable expandable structure 40a is delivered by a first delivery catheter 12a, so that it expands and conforms to the scaffold 10, as shown in Fig. 1OB.
- a second extrudable expandable structure 40b may be delivered using a second delivery catheter 12b, as shown in Fig. 1OC.
- the delivery of extrudable expandable structures may similarly be performed in parallel stents 22 and 24, as shown in Fig.
- the extrudable expandable structures 40 may be sealed, optionally with a heating element, a clip, an adhesive, or other techniques for terminating the extrusion. The delivery catheters can then be removed, leaving the extruded expandable structures in place.
- the expandable structures 16 have been delivered from a central lumen or passage of the scaffold into the aneurysmal space surrounding the scaffold.
- the expandable structures may also be delivered by positioning a delivery catheter on the outside of the scaffold, as illustrated generally in Figs. 1 IA-I ID.
- the delivery catheter 12 will be positioned so that the expandable structure 16 is located in the aneurysmal space AS prior to deployment of the scaffold 10.
- the expandable structure 16 may then be expanded or partially expanded before placement of the scaffold 10, but will more usually be expanded after the scaffold 10 has been fully expanded.
- a single delivery catheter is positioned to deliver a single expandable structure 16, where the expandable structure 16 is expanded after deployment of a single scaffold 10.
- a pair of expandable structures 16a and 16b delivered by delivery catheters 12a and 12b, respectively, are positioned prior to deployment of the single scaffold 10. Again, the expandable structure 16a and 16b will be expanded after expansion of the scaffold 10.
- the use of delivery catheters 12 for delivering single or pairs of expandable structures 16 may also be utilized with parallel scaffolds 22 and 24, as shown in Fig. 11C, and with bifurcated scaffolds 26 as shown in Fig. 1 ID. While delivery of only a single or pair of expandable structures 16 is illustrated, it will be appreciated that the delivery catheter 12, 12a, or 12b, could be utilized together with a separate inflation tube for delivering multiple expandable structures through the lumen of the delivery catheter which will remain in place. After the delivery of expandable structures is complete, the delivery catheters 12 may with drawn from the outside of the scaffold 12, 22, 24, or 26.
- a double- walled filling structure 50 may be deployed within the abdominal aortic aneurysm AAA, generally as described in prior application no. 11/413,460, the full disclosure of which has been previously incorporated herein by reference.
- the abdominal aortic aneurysm AAA shown in Fig. 12 is quite asymmetric, there may be sometimes be a void region left even after the filling structure 50 has been fully deployed.
- the present invention provides for percutaneous placement of an expandable structure 52 which is introduced through a penetration formed in the wall of the aneurysm. While shown in connection with the double-walled filling structure 50, it will be appreciated that such percutaneous introduction of expandable structures may be performed whenever there is a void left at the periphery of the aneurysmal space, or more commonly when such a void occurs sometime after an initial treatment of the aneurysm.
- the expandable structure 52 may be any of the inflatable or other members described previously, and will typically be introduced using a cannula 54 (Fig. 13) or other tubular introduction device. Cannula 54 carries the expandable structure 52 in a constrained configuration.
- the expandable structure 52 is connected to an inflation tube 56 or other device for delivering an expansion medium to the expandable structure. Penetration is formed in the wall of the aneurysm by conventional thoracoscopic or other techniques. Once the void is accessed, the cannula may be introduced through the penetration, and the expandable structure 52 advanced out a distal end of the cannula. After the expandable structure is in place, it may be inflated or otherwise expanded through inflation tube 56. After the expandable structure is fully expanded and/or the void is fully filled, the inflation member 56 may be detached and the expandable structure 52 sealed. Optionally, additional expandable structures may be introduced through the cannula until the entire void region is filled. [0052] While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Reproductive Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Neurosurgery (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008547709A JP2009521287A (ja) | 2005-12-22 | 2006-12-18 | 充填構造を使用して動脈瘤を治療するための方法及びシステム |
| ES06850439.8T ES2569932T3 (es) | 2005-12-22 | 2006-12-18 | Sistemas para el tratamiento de aneurisma usando estructuras de relleno |
| EP06850439.8A EP1962722B1 (en) | 2005-12-22 | 2006-12-18 | Systems for aneurysm treatment using filling structures |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US75332705P | 2005-12-22 | 2005-12-22 | |
| US60/753,327 | 2005-12-22 | ||
| US11/444,603 | 2006-05-31 | ||
| US11/444,603 US20070150041A1 (en) | 2005-12-22 | 2006-05-31 | Methods and systems for aneurysm treatment using filling structures |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2007092103A2 true WO2007092103A2 (en) | 2007-08-16 |
| WO2007092103A3 WO2007092103A3 (en) | 2009-04-09 |
Family
ID=38194929
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2006/062257 Ceased WO2007092103A2 (en) | 2005-12-22 | 2006-12-18 | Methods and systems for aneurysm treatment using filling structures |
Country Status (5)
| Country | Link |
|---|---|
| US (3) | US20070150041A1 (enExample) |
| EP (1) | EP1962722B1 (enExample) |
| JP (1) | JP2009521287A (enExample) |
| ES (1) | ES2569932T3 (enExample) |
| WO (1) | WO2007092103A2 (enExample) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9572698B2 (en) | 2011-01-17 | 2017-02-21 | Metactive Medical, Inc. | Ballstent device and methods of use |
| US11013516B2 (en) | 2011-01-17 | 2021-05-25 | Artio Medical, Inc. | Expandable body device and method of use |
| US11033275B2 (en) | 2014-09-17 | 2021-06-15 | Artio Medical, Inc. | Expandable body device and method of use |
| US11484318B2 (en) | 2011-01-17 | 2022-11-01 | Artio Medical, Inc. | Expandable body device and method of use |
| US12303135B2 (en) | 2017-03-24 | 2025-05-20 | Metactive Medical, Inc. | Medical devices comprising detachable balloons and methods of manufacturing and use |
Families Citing this family (61)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040116997A1 (en) | 2002-09-20 | 2004-06-17 | Taylor Charles S. | Stent-graft with positioning anchor |
| US8048145B2 (en) | 2004-07-22 | 2011-11-01 | Endologix, Inc. | Graft systems having filling structures supported by scaffolds and methods for their use |
| WO2006012567A2 (en) * | 2004-07-22 | 2006-02-02 | Nellix, Inc. | Methods and systems for endovascular aneurysm treatment |
| EP1903985A4 (en) | 2005-07-07 | 2010-04-28 | Nellix Inc | SYSTEMS AND METHODS FOR TREATING ENDOVASCULAR ANEVISM |
| US7790273B2 (en) * | 2006-05-24 | 2010-09-07 | Nellix, Inc. | Material for creating multi-layered films and methods for making the same |
| US20080188923A1 (en) * | 2007-02-01 | 2008-08-07 | Jack Fa-De Chu | Endovascular devices to protect aneurysmal wall |
| US20080228259A1 (en) * | 2007-03-16 | 2008-09-18 | Jack Fa-De Chu | Endovascular devices and methods to protect aneurysmal wall |
| WO2008136999A1 (en) * | 2007-04-30 | 2008-11-13 | The Board Of Trustees Of The Leland Stanford Junior University | Prevention of displacement of prosthetic devices within aneurysms |
| US20090082803A1 (en) * | 2007-09-26 | 2009-03-26 | Aga Medical Corporation | Braided vascular devices having no end clamps |
| AU2009214507A1 (en) * | 2008-02-13 | 2009-08-20 | Nellix, Inc. | Graft endoframe having axially variable characteristics |
| CA2721950A1 (en) | 2008-04-25 | 2009-10-29 | Nellix, Inc. | Stent graft delivery system |
| US10716573B2 (en) | 2008-05-01 | 2020-07-21 | Aneuclose | Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm |
| WO2009134337A1 (en) * | 2008-05-01 | 2009-11-05 | Aneuclose Llc | Aneurysm occlusion device |
| US10028747B2 (en) | 2008-05-01 | 2018-07-24 | Aneuclose Llc | Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm |
| CA2726596A1 (en) | 2008-06-04 | 2009-12-10 | Nellix, Inc. | Sealing apparatus and methods of use |
| JP2011522614A (ja) * | 2008-06-04 | 2011-08-04 | ネリックス・インコーポレーテッド | ドッキング装置および使用方法 |
| US20100016833A1 (en) * | 2008-07-15 | 2010-01-21 | Ogle Matthew F | Devices for the Treatment of Vascular Aneurysm |
| US20100131002A1 (en) * | 2008-11-24 | 2010-05-27 | Connor Robert A | Stent with a net layer to embolize and aneurysm |
| US9579103B2 (en) | 2009-05-01 | 2017-02-28 | Endologix, Inc. | Percutaneous method and device to treat dissections |
| US10772717B2 (en) | 2009-05-01 | 2020-09-15 | Endologix, Inc. | Percutaneous method and device to treat dissections |
| US8118856B2 (en) | 2009-07-27 | 2012-02-21 | Endologix, Inc. | Stent graft |
| US8444624B2 (en) * | 2009-10-19 | 2013-05-21 | Vatrix Medical, Inc. | Vascular medical devices with sealing elements and procedures for the treatment of isolated vessel sections |
| US9358140B1 (en) | 2009-11-18 | 2016-06-07 | Aneuclose Llc | Stent with outer member to embolize an aneurysm |
| WO2011068915A1 (en) | 2009-12-01 | 2011-06-09 | Altura Medical, Inc. | Modular endograft devices and associated systems and methods |
| US20110276078A1 (en) | 2009-12-30 | 2011-11-10 | Nellix, Inc. | Filling structure for a graft system and methods of use |
| US8906057B2 (en) * | 2010-01-04 | 2014-12-09 | Aneuclose Llc | Aneurysm embolization by rotational accumulation of mass |
| US8425548B2 (en) | 2010-07-01 | 2013-04-23 | Aneaclose LLC | Occluding member expansion and then stent expansion for aneurysm treatment |
| WO2012040240A1 (en) | 2010-09-20 | 2012-03-29 | Altura Medical, Inc. | Stent graft delivery systems and associated methods |
| US9393100B2 (en) * | 2010-11-17 | 2016-07-19 | Endologix, Inc. | Devices and methods to treat vascular dissections |
| US8801768B2 (en) | 2011-01-21 | 2014-08-12 | Endologix, Inc. | Graft systems having semi-permeable filling structures and methods for their use |
| US8911468B2 (en) | 2011-01-31 | 2014-12-16 | Vatrix Medical, Inc. | Devices, therapeutic compositions and corresponding percutaneous treatment methods for aortic dissection |
| EP2693980B1 (en) | 2011-04-06 | 2022-07-13 | Endologix LLC | System for endovascular aneurysm treatment |
| US9138232B2 (en) | 2011-05-24 | 2015-09-22 | Aneuclose Llc | Aneurysm occlusion by rotational dispensation of mass |
| EP2716263B1 (en) * | 2011-05-26 | 2016-12-14 | Dongguk University Industry-Academic Cooperation Foundation | Stent for the coil embolization of a cerebral aneurysm |
| KR20140050675A (ko) | 2011-08-12 | 2014-04-29 | 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 | 분지를 갖는 혈관계의 단면 프로파일을 개산하기 위한 장치 및 방법 |
| US20130204234A1 (en) * | 2011-08-12 | 2013-08-08 | Edward H. Cully | Systems for the reduction of leakage around medical devices at a treatment site |
| US9168162B2 (en) | 2011-11-17 | 2015-10-27 | Elgco, Llc | Methods and apparatus for treating a type 2 endoleak from within an endoluminal stent |
| JP6326648B2 (ja) | 2012-08-10 | 2018-05-23 | アルツラ メディカル インコーポレイテッド | ステントデリバリシステム及び関連方法 |
| US20140194973A1 (en) | 2013-01-10 | 2014-07-10 | Trivascular, Inc. | Sac liner for aneurysm repair |
| US20140214071A1 (en) * | 2013-01-28 | 2014-07-31 | Neurodynamics, Llc. | Embolic coil delivery system and method of using same |
| US20160030155A1 (en) * | 2013-03-14 | 2016-02-04 | Inceptus Medical LLC | Aneurysm Graft With Stabilization |
| WO2014159093A1 (en) | 2013-03-14 | 2014-10-02 | Endologix, Inc. | Method for forming materials in situ within a medical device |
| WO2014144809A1 (en) | 2013-03-15 | 2014-09-18 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
| US10470870B2 (en) * | 2014-05-30 | 2019-11-12 | Endologix, Inc. | Modular stent graft systems and methods with inflatable fill structures |
| US10548579B2 (en) * | 2015-07-29 | 2020-02-04 | Cardiac Pacemakers, Inc. | Left atrial appendage implant |
| CN109310494A (zh) * | 2016-05-13 | 2019-02-05 | 恩朵罗杰克斯股份有限公司 | 具有移植体、可膨胀填充通道和填充结构的系统和方法 |
| CN110520076B (zh) * | 2017-02-21 | 2022-06-03 | 丝路医疗公司 | 血管植入物 |
| EP4338689A3 (en) | 2017-12-21 | 2024-06-12 | The Texas A&M University System | Vascular prosthesis for leak prevention during endovascular aneurysm repair |
| WO2019224695A1 (en) * | 2018-05-23 | 2019-11-28 | Universita' Degli Studi Di Padova | A fenestrated endoprosthesis for the correction of aortic aneurysms |
| KR20210080349A (ko) | 2018-08-03 | 2021-06-30 | 넥테로 메디칼, 인크. | 정제된 펜타갈로일 글루코스 및 전달용 장치 |
| JP7609796B2 (ja) | 2019-03-20 | 2025-01-07 | インキュベート メディカル テクノロジーズ、 エルエルシー | 大動脈解離インプラント |
| EP4403118A3 (en) | 2019-07-17 | 2024-10-09 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with continuous covering |
| CN114340516B (zh) | 2019-08-30 | 2025-03-14 | 波士顿科学医学有限公司 | 带密封盘的左心房附件植入物 |
| EP4609806A3 (en) | 2020-03-24 | 2025-11-26 | Boston Scientific Scimed, Inc. | Medical system for treating a left atrial appendage |
| CN116685276A (zh) | 2020-11-30 | 2023-09-01 | 波士顿科学医学有限公司 | 植入式无源平均压力传感器 |
| JP7603169B2 (ja) | 2021-01-14 | 2024-12-19 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 左心耳を治療するための医療システム |
| US12383201B2 (en) | 2021-02-03 | 2025-08-12 | Boston Scientific Scimed, Inc. | Medical system for treating a left atrial appendage |
| US12318092B2 (en) | 2021-06-22 | 2025-06-03 | Boston Scientific Scimed, Inc. | Left atrial appendage implant |
| JP7690067B2 (ja) | 2021-07-08 | 2025-06-09 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 左心耳閉鎖デバイス |
| EP4398815A1 (en) | 2021-09-08 | 2024-07-17 | Boston Scientific Scimed, Inc. | Occlusive implant with multi-sharpness split tip soft tissue anchors |
| WO2023097225A1 (en) * | 2021-11-24 | 2023-06-01 | Nectero Medical, Inc. | Systems and methods for treating an aortic tear or dissection |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5693088A (en) | 1993-11-08 | 1997-12-02 | Lazarus; Harrison M. | Intraluminal vascular graft |
| WO2004045393A2 (en) | 2002-11-20 | 2004-06-03 | Fogarty, Thomas, J. | Devices and methods for treatment of vascular aneurysms |
Family Cites Families (112)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1980000007A1 (en) * | 1978-06-02 | 1980-01-10 | A Rockey | Medical sleeve |
| US4604762A (en) * | 1981-02-13 | 1986-08-12 | Thoratec Laboratories Corporation | Arterial graft prosthesis |
| US4545367A (en) * | 1982-07-16 | 1985-10-08 | Cordis Corporation | Detachable balloon catheter and method of use |
| US4638803A (en) * | 1982-09-30 | 1987-01-27 | Rand Robert W | Medical apparatus for inducing scar tissue formation in a body |
| GB8315001D0 (en) * | 1983-06-01 | 1983-07-06 | Ici Plc | Multiple-layer polyolefin films |
| US4728328A (en) * | 1984-10-19 | 1988-03-01 | Research Corporation | Cuffed tubular organic prostheses |
| US4733665C2 (en) * | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
| US5002532A (en) * | 1987-01-06 | 1991-03-26 | Advanced Cardiovascular Systems, Inc. | Tandem balloon dilatation catheter |
| US4892544A (en) * | 1988-03-07 | 1990-01-09 | Dow Corning Wright Corporation | Methods for forming hollow, porous-surfaced elastomeric bodies |
| CA1322628C (en) * | 1988-10-04 | 1993-10-05 | Richard A. Schatz | Expandable intraluminal graft |
| US5292331A (en) * | 1989-08-24 | 1994-03-08 | Applied Vascular Engineering, Inc. | Endovascular support device |
| US5221261A (en) * | 1990-04-12 | 1993-06-22 | Schneider (Usa) Inc. | Radially expandable fixation member |
| US5766151A (en) * | 1991-07-16 | 1998-06-16 | Heartport, Inc. | Endovascular system for arresting the heart |
| CA2079417C (en) * | 1991-10-28 | 2003-01-07 | Lilip Lau | Expandable stents and method of making same |
| FR2683449A1 (fr) * | 1991-11-08 | 1993-05-14 | Cardon Alain | Endoprothese pour implantation transluminale. |
| US5316023A (en) | 1992-01-08 | 1994-05-31 | Expandable Grafts Partnership | Method for bilateral intra-aortic bypass |
| WO1993022986A1 (en) * | 1992-05-08 | 1993-11-25 | Schneider (Usa) Inc. | Esophageal stent and delivery tool |
| US5342387A (en) * | 1992-06-18 | 1994-08-30 | American Biomed, Inc. | Artificial support for a blood vessel |
| US5494029A (en) * | 1992-09-29 | 1996-02-27 | Hood Laboratories | Laryngeal stents |
| US5383926A (en) * | 1992-11-23 | 1995-01-24 | Children's Medical Center Corporation | Re-expandable endoprosthesis |
| US5723004A (en) * | 1993-10-21 | 1998-03-03 | Corvita Corporation | Expandable supportive endoluminal grafts |
| US5507769A (en) * | 1994-10-18 | 1996-04-16 | Stentco, Inc. | Method and apparatus for forming an endoluminal bifurcated graft |
| US5485667A (en) * | 1994-03-03 | 1996-01-23 | Kleshinski; Stephen J. | Method for attaching a marker to a medical instrument |
| US5733303A (en) * | 1994-03-17 | 1998-03-31 | Medinol Ltd. | Flexible expandable stent |
| EP0679372B1 (en) * | 1994-04-25 | 1999-07-28 | Advanced Cardiovascular Systems, Inc. | Radiopaque stent markers |
| US5867762A (en) * | 1994-05-26 | 1999-02-02 | Rafferty; Kevin | Masking tape |
| US5728068A (en) * | 1994-06-14 | 1998-03-17 | Cordis Corporation | Multi-purpose balloon catheter |
| US6123715A (en) * | 1994-07-08 | 2000-09-26 | Amplatz; Curtis | Method of forming medical devices; intravascular occlusion devices |
| US5609605A (en) * | 1994-08-25 | 1997-03-11 | Ethicon, Inc. | Combination arterial stent |
| US5591230A (en) * | 1994-09-07 | 1997-01-07 | Global Therapeutics, Inc. | Radially expandable stent |
| US5534024A (en) * | 1994-11-04 | 1996-07-09 | Aeroquip Corporation | Intraluminal stenting graft |
| US5591226A (en) * | 1995-01-23 | 1997-01-07 | Schneider (Usa) Inc. | Percutaneous stent-graft and method for delivery thereof |
| US5605530A (en) * | 1995-03-23 | 1997-02-25 | Fischell; Robert E. | System for safe implantation of radioisotope stents |
| US5591228A (en) * | 1995-05-09 | 1997-01-07 | Edoga; John K. | Methods for treating abdominal aortic aneurysms |
| JPH11513903A (ja) * | 1995-06-08 | 1999-11-30 | バード ギャルウェイ リミティド | 分岐した導管内ステント |
| US5728131A (en) * | 1995-06-12 | 1998-03-17 | Endotex Interventional Systems, Inc. | Coupling device and method of use |
| US5725568A (en) * | 1995-06-27 | 1998-03-10 | Scimed Life Systems, Inc. | Method and device for recanalizing and grafting arteries |
| US5785679A (en) * | 1995-07-19 | 1998-07-28 | Endotex Interventional Systems, Inc. | Methods and apparatus for treating aneurysms and arterio-venous fistulas |
| US5601600A (en) * | 1995-09-08 | 1997-02-11 | Conceptus, Inc. | Endoluminal coil delivery system having a mechanical release mechanism |
| US6193745B1 (en) * | 1995-10-03 | 2001-02-27 | Medtronic, Inc. | Modular intraluminal prosteheses construction and methods |
| US5591195A (en) * | 1995-10-30 | 1997-01-07 | Taheri; Syde | Apparatus and method for engrafting a blood vessel |
| WO1997016119A1 (en) * | 1995-10-30 | 1997-05-09 | Children's Medical Center Corporation | Self-centering umbrella-type septal closure device |
| US5607442A (en) * | 1995-11-13 | 1997-03-04 | Isostent, Inc. | Stent with improved radiopacity and appearance characteristics |
| US5868685A (en) * | 1995-11-14 | 1999-02-09 | Devices For Vascular Intervention | Articulated guidewire |
| IT1276141B1 (it) * | 1995-11-16 | 1997-10-27 | Soten Srl | Film termoretraibile poliolefinico a piu' strati coestrusi avente una migliorata resistenza della saldatura |
| US5593417A (en) * | 1995-11-27 | 1997-01-14 | Rhodes; Valentine J. | Intravascular stent with secure mounting means |
| US5665117A (en) * | 1995-11-27 | 1997-09-09 | Rhodes; Valentine J. | Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use |
| US6576009B2 (en) * | 1995-12-01 | 2003-06-10 | Medtronic Ave, Inc. | Bifurcated intraluminal prostheses construction and methods |
| US6168622B1 (en) * | 1996-01-24 | 2001-01-02 | Microvena Corporation | Method and apparatus for occluding aneurysms |
| US5871537A (en) * | 1996-02-13 | 1999-02-16 | Scimed Life Systems, Inc. | Endovascular apparatus |
| DE69729137T2 (de) * | 1996-03-10 | 2005-05-12 | Terumo K.K. | Stent zur Implantation |
| US5843160A (en) | 1996-04-01 | 1998-12-01 | Rhodes; Valentine J. | Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen |
| US6190402B1 (en) * | 1996-06-21 | 2001-02-20 | Musc Foundation For Research Development | Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same |
| US5980514A (en) * | 1996-07-26 | 1999-11-09 | Target Therapeutics, Inc. | Aneurysm closure device assembly |
| US5860998A (en) * | 1996-11-25 | 1999-01-19 | C. R. Bard, Inc. | Deployment device for tubular expandable prosthesis |
| US6015431A (en) * | 1996-12-23 | 2000-01-18 | Prograft Medical, Inc. | Endolumenal stent-graft with leak-resistant seal |
| US5868782A (en) * | 1996-12-24 | 1999-02-09 | Global Therapeutics, Inc. | Radially expandable axially non-contracting surgical stent |
| EP0850607A1 (en) * | 1996-12-31 | 1998-07-01 | Cordis Corporation | Valve prosthesis for implantation in body channels |
| US5824054A (en) * | 1997-03-18 | 1998-10-20 | Endotex Interventional Systems, Inc. | Coiled sheet graft stent and methods of making and use |
| US5718713A (en) * | 1997-04-10 | 1998-02-17 | Global Therapeutics, Inc. | Surgical stent having a streamlined contour |
| US5868708A (en) * | 1997-05-07 | 1999-02-09 | Applied Medical Resources Corporation | Balloon catheter apparatus and method |
| US5863627A (en) * | 1997-08-26 | 1999-01-26 | Cardiotech International, Inc. | Hydrolytically-and proteolytically-stable polycarbonate polyurethane silicone copolymers |
| US6187033B1 (en) * | 1997-09-04 | 2001-02-13 | Meadox Medicals, Inc. | Aortic arch prosthetic graft |
| US6042606A (en) * | 1997-09-29 | 2000-03-28 | Cook Incorporated | Radially expandable non-axially contracting surgical stent |
| US6190406B1 (en) * | 1998-01-09 | 2001-02-20 | Nitinal Development Corporation | Intravascular stent having tapered struts |
| US5873907A (en) * | 1998-01-27 | 1999-02-23 | Endotex Interventional Systems, Inc. | Electrolytic stent delivery system and methods of use |
| US6676696B1 (en) | 1998-02-12 | 2004-01-13 | Thomas R. Marotta | Endovascular prosthesis |
| US6203732B1 (en) * | 1998-07-02 | 2001-03-20 | Intra Therapeutics, Inc. | Method for manufacturing intraluminal device |
| US6196230B1 (en) * | 1998-09-10 | 2001-03-06 | Percardia, Inc. | Stent delivery system and method of use |
| US6368345B1 (en) * | 1998-09-30 | 2002-04-09 | Edwards Lifesciences Corporation | Methods and apparatus for intraluminal placement of a bifurcated intraluminal garafat |
| US6293967B1 (en) * | 1998-10-29 | 2001-09-25 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
| US6022359A (en) * | 1999-01-13 | 2000-02-08 | Frantzen; John J. | Stent delivery system featuring a flexible balloon |
| US6187034B1 (en) * | 1999-01-13 | 2001-02-13 | John J. Frantzen | Segmented stent for flexible stent delivery system |
| US6428558B1 (en) * | 1999-03-10 | 2002-08-06 | Cordis Corporation | Aneurysm embolization device |
| US6613074B1 (en) * | 1999-03-10 | 2003-09-02 | Cordis Corporation | Endovascular aneurysm embolization device |
| US6344056B1 (en) * | 1999-12-29 | 2002-02-05 | Edwards Lifesciences Corp. | Vascular grafts for bridging a vessel side branch |
| US20020026217A1 (en) * | 2000-04-26 | 2002-02-28 | Steven Baker | Apparatus and method for repair of perigraft flow |
| US6729356B1 (en) * | 2000-04-27 | 2004-05-04 | Endovascular Technologies, Inc. | Endovascular graft for providing a seal with vasculature |
| US6692486B2 (en) * | 2000-05-10 | 2004-02-17 | Minnesota Medical Physics, Llc | Apparatus and method for treatment of cerebral aneurysms, arterial-vascular malformations and arterial fistulas |
| US6695833B1 (en) * | 2000-09-27 | 2004-02-24 | Nellix, Inc. | Vascular stent-graft apparatus and forming method |
| US6730119B1 (en) * | 2000-10-06 | 2004-05-04 | Board Of Regents Of The University Of Texas System | Percutaneous implantation of partially covered stents in aneurysmally dilated arterial segments with subsequent embolization and obliteration of the aneurysm cavity |
| US7314483B2 (en) * | 2000-11-16 | 2008-01-01 | Cordis Corp. | Stent graft with branch leg |
| US6761733B2 (en) * | 2001-04-11 | 2004-07-13 | Trivascular, Inc. | Delivery system and method for bifurcated endovascular graft |
| US7175651B2 (en) * | 2001-07-06 | 2007-02-13 | Andrew Kerr | Stent/graft assembly |
| US6969373B2 (en) * | 2001-04-13 | 2005-11-29 | Tricardia, Llc | Syringe system |
| GB0114918D0 (en) * | 2001-06-19 | 2001-08-08 | Vortex Innovation Ltd | Devices for repairing aneurysms |
| US20030014075A1 (en) * | 2001-07-16 | 2003-01-16 | Microvention, Inc. | Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implanation |
| EP1408847B1 (en) * | 2001-07-26 | 2005-05-04 | Oregon Health Sciences University | Vessel closure member and delivery apparatus |
| US20030028209A1 (en) * | 2001-07-31 | 2003-02-06 | Clifford Teoh | Expandable body cavity liner device |
| AU2002353807B2 (en) * | 2001-11-28 | 2008-08-14 | Aptus Endosystems, Inc. | Endovascular aneurysm repair system |
| FR2834199B1 (fr) * | 2001-12-27 | 2004-10-15 | Doron Carmi | Endoprothese adaptee au milieu endoluminal |
| US7326237B2 (en) * | 2002-01-08 | 2008-02-05 | Cordis Corporation | Supra-renal anchoring prosthesis |
| US6679300B1 (en) * | 2002-01-14 | 2004-01-20 | Thermogenesis Corp. | Biological adhesive loading station and method |
| US6780170B2 (en) * | 2002-05-15 | 2004-08-24 | Liebel-Flarsheim Company | Hydraulic remote for a medical fluid injector |
| US7314484B2 (en) * | 2002-07-02 | 2008-01-01 | The Foundry, Inc. | Methods and devices for treating aneurysms |
| JP2004063081A (ja) * | 2002-07-24 | 2004-02-26 | Renesas Technology Corp | 半導体パッケージ用ソケット |
| US7175652B2 (en) * | 2002-08-20 | 2007-02-13 | Cook Incorporated | Stent graft with improved proximal end |
| US20040116997A1 (en) * | 2002-09-20 | 2004-06-17 | Taylor Charles S. | Stent-graft with positioning anchor |
| US7625401B2 (en) * | 2003-05-06 | 2009-12-01 | Abbott Laboratories | Endoprosthesis having foot extensions |
| US20050028484A1 (en) * | 2003-06-20 | 2005-02-10 | Littlewood Richard W. | Method and apparatus for sleeving compressed bale materials |
| US20050020908A1 (en) * | 2003-07-07 | 2005-01-27 | Rainer Birkenbach | Method and device for navigating an object in a body to an aneurysm |
| US20050060017A1 (en) * | 2003-09-15 | 2005-03-17 | Fischell Robert E. | Means and method for the treatment of cerebral aneurysms |
| US20050065592A1 (en) * | 2003-09-23 | 2005-03-24 | Asher Holzer | System and method of aneurism monitoring and treatment |
| EP1689457A2 (en) * | 2003-11-10 | 2006-08-16 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
| WO2006012567A2 (en) * | 2004-07-22 | 2006-02-02 | Nellix, Inc. | Methods and systems for endovascular aneurysm treatment |
| US20070032850A1 (en) * | 2004-12-16 | 2007-02-08 | Carlos Ruiz | Separable sheath and method for insertion of a medical device into a bodily vessel using a separable sheath |
| AU2006239228A1 (en) * | 2005-04-28 | 2006-11-02 | Nellix, Inc. | Graft systems having filling structures supported by scaffolds and methods for their use |
| EP1903985A4 (en) | 2005-07-07 | 2010-04-28 | Nellix Inc | SYSTEMS AND METHODS FOR TREATING ENDOVASCULAR ANEVISM |
| US20070043420A1 (en) * | 2005-08-17 | 2007-02-22 | Medtronic Vascular, Inc. | Apparatus and method for stent-graft release using a cap |
| US7872068B2 (en) * | 2006-05-30 | 2011-01-18 | Incept Llc | Materials formable in situ within a medical device |
| AU2009214507A1 (en) * | 2008-02-13 | 2009-08-20 | Nellix, Inc. | Graft endoframe having axially variable characteristics |
| CA2721950A1 (en) * | 2008-04-25 | 2009-10-29 | Nellix, Inc. | Stent graft delivery system |
-
2006
- 2006-05-31 US US11/444,603 patent/US20070150041A1/en not_active Abandoned
- 2006-12-18 WO PCT/US2006/062257 patent/WO2007092103A2/en not_active Ceased
- 2006-12-18 EP EP06850439.8A patent/EP1962722B1/en not_active Not-in-force
- 2006-12-18 ES ES06850439.8T patent/ES2569932T3/es active Active
- 2006-12-18 JP JP2008547709A patent/JP2009521287A/ja active Pending
-
2017
- 2017-02-21 US US15/438,682 patent/US10682144B2/en not_active Expired - Fee Related
-
2020
- 2020-06-12 US US16/900,648 patent/US11596413B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5693088A (en) | 1993-11-08 | 1997-12-02 | Lazarus; Harrison M. | Intraluminal vascular graft |
| WO2004045393A2 (en) | 2002-11-20 | 2004-06-03 | Fogarty, Thomas, J. | Devices and methods for treatment of vascular aneurysms |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP1962722A4 |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9572698B2 (en) | 2011-01-17 | 2017-02-21 | Metactive Medical, Inc. | Ballstent device and methods of use |
| US9572697B2 (en) | 2011-01-17 | 2017-02-21 | Metactive Medical, Inc. | Blockstent device and methods of use |
| US10537451B2 (en) | 2011-01-17 | 2020-01-21 | Metactive Medical, Inc. | Ballstent device and methods of use |
| US10543115B2 (en) | 2011-01-17 | 2020-01-28 | Metactive Medical, Inc. | Blockstent device and methods of use |
| US11013516B2 (en) | 2011-01-17 | 2021-05-25 | Artio Medical, Inc. | Expandable body device and method of use |
| US11090176B2 (en) | 2011-01-17 | 2021-08-17 | Artio Medical, Inc. | Detachable metal balloon delivery device and method |
| US11484318B2 (en) | 2011-01-17 | 2022-11-01 | Artio Medical, Inc. | Expandable body device and method of use |
| US11033275B2 (en) | 2014-09-17 | 2021-06-15 | Artio Medical, Inc. | Expandable body device and method of use |
| US12303135B2 (en) | 2017-03-24 | 2025-05-20 | Metactive Medical, Inc. | Medical devices comprising detachable balloons and methods of manufacturing and use |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1962722A4 (en) | 2012-09-05 |
| ES2569932T3 (es) | 2016-05-13 |
| EP1962722B1 (en) | 2016-03-23 |
| JP2009521287A (ja) | 2009-06-04 |
| US20200297350A1 (en) | 2020-09-24 |
| US10682144B2 (en) | 2020-06-16 |
| WO2007092103A3 (en) | 2009-04-09 |
| US20170238937A1 (en) | 2017-08-24 |
| US20070150041A1 (en) | 2007-06-28 |
| EP1962722A2 (en) | 2008-09-03 |
| US11596413B2 (en) | 2023-03-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11596413B2 (en) | Methods and systems for aneurysm treatment using filling structures | |
| US11957608B2 (en) | Graft systems having filling structures supported by scaffolds and methods for their use | |
| EP2422745B1 (en) | Systems for endovascular aneurysm treatment | |
| EP2299931B1 (en) | Sealing apparatus | |
| EP1874231B1 (en) | Graft systems having filling structures supported by scaffolds | |
| WO2009140638A1 (en) | Devices and methods for treatment of abdominal aortic aneurysms | |
| JP2019514619A (ja) | 移植片本体、可膨張式充填チャネル、及び充填構造を有するシステム及び方法 | |
| US20190008631A1 (en) | Systems and methods with fenestrated graft and filling structure | |
| US11723668B2 (en) | Systems and methods with anchor device for fixation of filling structures in blood vessels |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006850439 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2008547709 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |