WO2007091534A1 - 油圧駆動式産業機械 - Google Patents

油圧駆動式産業機械 Download PDF

Info

Publication number
WO2007091534A1
WO2007091534A1 PCT/JP2007/051967 JP2007051967W WO2007091534A1 WO 2007091534 A1 WO2007091534 A1 WO 2007091534A1 JP 2007051967 W JP2007051967 W JP 2007051967W WO 2007091534 A1 WO2007091534 A1 WO 2007091534A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
oil
cooling
industrial machine
cooling rate
Prior art date
Application number
PCT/JP2007/051967
Other languages
English (en)
French (fr)
Inventor
Mitsuhiro Yoshimoto
Genroku Sugiyama
Original Assignee
Hitachi Construction Machinery Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd filed Critical Hitachi Construction Machinery Co., Ltd
Priority to US12/278,404 priority Critical patent/US8051649B2/en
Priority to EP07708085A priority patent/EP1985869B1/en
Priority to CN2007800047010A priority patent/CN101379302B/zh
Publication of WO2007091534A1 publication Critical patent/WO2007091534A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • F15B21/0423Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/62Cooling or heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6343Electronic controllers using input signals representing a temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a hydraulically driven industrial machine including a construction machine such as a hydraulic shovel, for example.
  • a construction machine such as a hydraulic shovel
  • the present invention effectively controls the temperature of hydraulic fluid in its hydraulic circuit system, thereby achieving energy-saving operation. Relates to a hydraulically driven industrial machine that makes it possible to
  • a hydraulically driven industrial machine for example, there is a construction machine such as a hydraulic shovel equipped with working means for performing work such as digging.
  • the hydraulic circuit of this type of construction machine is equipped with a variable displacement hydraulic pump driven by an engine, and this hydraulic pump sucks in hydraulic oil from the working oil tank and pressurizes it.
  • the discharge oil of the hydraulic pump is supplied to the hydraulic cylinder and hydraulic actuator that forms the hydraulic motor via the control valve, and these hydraulic actuators are driven.
  • the required work is performed by running, turning and working means of the vehicle.
  • Return oil from the hydraulic actuator is returned to the hydraulic oil tank via the control valve.
  • the hydraulic oil tank and the hydraulic pump are connected by suction piping, and the hydraulic pump and the control valve are connected by discharge piping.
  • the control valve and each hydraulic pressure actuator are connected by a supply and discharge pipe that also has a pair of forces.
  • the control knob and the hydraulic oil tank are connected by return piping.
  • a hydraulic circuit is formed as a whole as a closed circuit.
  • the hydraulic oil cooling means provided in a construction machine usually has a cooler with a plurality of thin tubes for circulating the hydraulic oil inside.
  • the oil cooler is configured to supply cooling air from the cooling fan to this oil cooler!
  • Patent Document 1 discloses a configuration in which the cooling fan is driven by an independent hydraulic motor so as not to be affected by fluctuations in engine rotational speed. And in this patent document 1, the hydraulic motor which drives a cooling fan is comprised with a variable displacement type hydraulic motor, a hydraulic fluid temperature is detected, and a cooling fan is driven by the number of rotations according to this hydraulic fluid temperature. Control to achieve the target hydraulic oil temperature.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-130164
  • the viscosity of the hydraulic oil be as low as possible.
  • the viscosity of the hydraulic oil must be rather increased. Therefore, if the viscosity of the hydraulic fluid flowing in the hydraulic circuit is reduced due to the relationship between the discharge pressure and the discharge flow rate of the hydraulic pump, the power transmission efficiency may be improved. From the viewpoint of energy saving, Conversely, it may be better to increase the viscosity of the hydraulic fluid.
  • the work load acting on the industrial machine is constant, and the amount of hydraulic oil flowing in the hydraulic circuit If the flow rate is constant, the hydraulic pump can be operated efficiently, and the pressure loss of the hydraulic fluid flowing through the hydraulic circuit and the amount of leaked oil in the control valve can be minimized to operate the machine efficiently. Since the optimum hydraulic oil temperature is constant, it should be managed so that the hydraulic oil temperature becomes a predetermined set temperature. However, for example, in the case of hydraulic shovels and the like, as in the case of excavating the ground where a large amount of hard ground, rock, etc. is contained, there is heavy excavation work where a high load acts on the work means. The load varies greatly depending on the type of work, as there is a light work such as drilling where only relatively small loads act. Therefore, if the hydraulic oil temperature is controlled to be constant, the efficiency of the entire hydraulic circuit system may not be good depending on the type of work.
  • the problem to be solved by the present invention is to change the cooling rate of the return oil according to the change of the work load in the industrial machine, thereby making the efficiency of the hydraulic circuit system favorable and save energy
  • the problem to be solved by the present invention is to change the cooling rate of the return oil according to the change of the work load in the industrial machine, thereby making the efficiency of the hydraulic circuit system favorable and save energy
  • the present invention provides a variable displacement hydraulic pump that pressurizes hydraulic fluid from a hydraulic fluid tank and supplying the hydraulic fluid from the hydraulic pump via a control valve.
  • a hydraulically driven industrial machine having a hydraulic actuator that is driven and controlled to perform a predetermined operation, the cooling rate of the returned oil being changed in order to cool the hydraulic oil of the hydraulic actuator.
  • the cooling rate variable type hydraulic oil cooling means is configured to branch a return oil pipe line into a cooling path via a cooler and a non-cooling path not via a cooler. It can consist of variable distribution means that changes the distribution ratio of the return oil to both of these paths in the part.
  • the return oil pipe may be branched into a flow path through the cooler and a flow path bypassing the cooler, and a distribution valve such as an electromagnetic proportional valve may be provided in the flow branch portion. it can.
  • the cooler may be air cooled or water cooled. When an air-cooled cooler is provided, the cooling fan is driven to rotate by a driving means such as a hydraulic motor.
  • a rotational speed control means for controlling the rotational speed of the cooling fan is provided, and the cooling rate variable type hydraulic fluid is controlled by controlling the rotational speed of the cooling fan by the rotational speed control means based on a control signal from the control means. It is a means of cooling.
  • the discharge pressure or the discharge flow rate of the hydraulic pump is detected. This makes it possible to detect the load easily and surely.
  • the control means the cooling rate variable hydraulic oil cooling is performed so that the cooling rate of return oil is low during low load operation when the return oil cooling rate is high during high load operation according to the workload detected in this manner.
  • the rate of cooling by means is varied, the variation of the rate of cooling is controlled to at least two stages of a high load state and a low load state, and may be configured to be controlled in multiple stages. It can also be configured to control continuously, not stepwise.
  • the control of the cooling rate of return oil by the control means is performed based on the work load measured by the load detection means, but the work load of the machine always fluctuates. If the cooling rate is set to constantly change in accordance with this fluctuation, the burden on the hydraulic oil cooling means etc. becomes significant.
  • a predetermined unit time is set, and the average value of the workload per unit time (for example, the average oil temperature or the average pressure, etc.)
  • the history can be set to find the optimum return oil cooling rate as this history of workload history.
  • the unit time may be, for example, 1 hour, 2 hours, 3 hours, etc., which can be 1 hour or more, and 1 day may be set as the unit time.
  • the control means when operating in a predetermined work mode at a work site, the load factor is often maintained while substantially constant operating conditions are maintained Is generally fixed. Therefore, in the control means, it is possible to calculate the work load history for a predetermined period of time every time the work site changes or the work state changes, and to review the cooling rate of the return oil. And, in this case, as long as the work site or the work condition does not change, the control is performed so that the cooling rate is constant I will control. Review of the cooling rate of return oil by the control means is performed by the operation of the control means by the operator who operates the machine or detecting that the work site has moved, and calculating the work load history based on this detection signal etc.
  • the workload history is calculated for each unit with a predetermined time as one unit, and the cooling rate of the return oil in the next one unit of time is determined, and for each unit time It is also possible to review the return oil cooling rate. Furthermore, a moving average of a plurality of units of workload histories may be obtained, and the cooling rate of the return oil in the next one unit of time may be determined based on the moving average.
  • Figure 1 shows the schematic configuration of the hydraulic circuit in an industrial machine.
  • a hydraulically driven industrial machine a hydraulic shovel as a construction machine whose work load fluctuates greatly is exemplified.
  • the industrial machine on which the hydraulic circuit system of the present invention is mounted is not limited to this.
  • 1 is a variable displacement hydraulic pressure pump having, for example, a slanted shaft type or a swash plate type equal force, and this hydraulic pump 1 is sucked from a hydraulic oil tank 3 by a suction pipe 2
  • the hydraulic fluid is pressurized and discharged, and the discharge piping 4 of the hydraulic pump 1 is connected to the control valve 5!,.
  • the control valve 5 and the hydraulic actuator 6 which also has, for example, a hydraulic cylinder (or hydraulic motor) force
  • supply Z discharge pipes 7 and 7 which have a pair of forces are connected.
  • a return pipe 8 is connected to the control valve 5, and the other end of the return pipe 8 is connected to the hydraulic oil tank 3, but an oil cooler 9 as a means for cooling the return oil It is provided.
  • FIG. 1 in order to simplify the configuration, one hydraulic pump 1 and one hydraulic actuator 6 are shown.
  • a plurality of hydraulic actuators 6 are usually provided.
  • a plurality of hydraulic pumps 1 are also provided.
  • the hydraulic shovel has a large load fluctuation depending on the type and type of work.
  • the discharge pressure of the hydraulic pump 1 is low, the discharge flow rate is large.
  • the discharge flow rate tends to decrease. Therefore, when the work load is large and a high discharge pressure is required, the discharge flow rate increases when the discharge pressure from the hydraulic pump 1 is low in order to perform a light operation with a small discharge flow rate.
  • M) is the hydraulic pump 1 Is the ratio of the output pressure to the set pressure (theoretical value), and the efficiency of the control knob 5 and the piping is the ratio of the pressure on the output side to the pressure on the input side, that is, the degree of pressure loss.
  • FIG. 3 (a) shows the relationship between the volumetric efficiency and the mechanical efficiency of the hydraulic pump 1 with respect to the hydraulic oil viscosity
  • the volumetric efficiency of the operating state a is curve (r? Va)
  • the operating state b The volumetric efficiency becomes a curve (r? V 'b).
  • the mechanical efficiency of the operating state a is curve (7? M 'a)
  • the mechanical efficiency of the operating state b is curve (7? Mb). Therefore, according to this diagram, the volumetric efficiency becomes higher as the viscosity of the hydraulic fluid becomes higher, and conversely, the mechanical efficiency becomes higher as the viscosity of the hydraulic fluid becomes lower.
  • the overall efficiency (r? T) of the hydraulic pump 1 is a curve (r?
  • the relationship between the volumetric efficiency and the mechanical efficiency of the control valve 5 with respect to the hydraulic fluid viscosity also shows the same tendency as the hydraulic pump 1 described above.
  • the volumetric efficiency is a curve (7? ⁇ ⁇ A)
  • the volumetric efficiency of the operating condition b is a curve (7? V 'b)
  • the mechanical efficiency of the operating condition a is a curve (7? M' a)
  • the efficiency is a curve (r? Mb).
  • the total efficiency (r? T) of the control knob 5 is a curve (7? Fa) in the operating state a and a curve (r? Fb) in the operating state b.
  • the total efficiency characteristic in the operating state a is the curve aT
  • the total efficiency characteristic in the operating state b is the curve bT . Accordingly, in the operating state a, the highest working efficiency is exhibited when the dynamic viscosity of the hydraulic oil is the value A (cSt), and in the operating state b, the dynamic viscosity of the hydraulic oil is lower than the value A (cSt) The best working efficiency is shown in cSt).
  • the hydraulic pump 1 Since the viscosity of the hydraulic oil is substantially proportional to the temperature of the hydraulic oil, the hydraulic pump 1 operates at a low pressure * large flow rate, and the operating state in which the machine performs light work a Increase the temperature of the hydraulic fluid to A (cSt). On the other hand, the hydraulic pump 1 is driven at a high pressure and a low flow rate, and in the operation state b in which heavy work is performed, the temperature of the hydraulic fluid is lowered so that the viscosity of the hydraulic fluid becomes the value B (cSt). Let's do it. As a result, the efficiency of the entire hydraulic circuit system is improved, and energy saving operation of the hydraulic shovel can be achieved.
  • FIG. 5 shows a specific configuration example for changing the temperature of the hydraulic fluid according to the work load.
  • reference numeral 10 denotes a variable displacement hydraulic pump driven by the engine 11, which pressurizes the hydraulic oil supplied from a suction pipe 13 connecting the hydraulic pump 10 and the hydraulic oil tank 12.
  • the discharge pipe 14 is connected to a control valve unit 15 composed of a plurality of directional control valves 15a, and a plurality of supply Z discharge pipes 16 are connected to the control valve unit 15.
  • These respective supply Z discharge pipes 16 Is connected to the hydraulic cylinder 17C, the hydraulic motor 17M, and the hydraulic actuator 17.
  • the return pipe 18 in the control valve 15 cools the return oil through the cooling means 19 and is returned to the hydraulic oil tank 12.
  • the cooling means 19 has an oil cooler 20, which drives the hydraulic actuator 17 to cool the heated return oil.
  • the total amount of return oil returned to the working oil tank 12 from the return pipe 18 is not necessarily cooled by the oil cooler 20.
  • a distribution valve 21 is attached to the front stage of the oil cooler 20.
  • the distribution valve 21 is branched into a cooling return pipe 22a that is returned to the hydraulic oil tank 12 via the oil cooler 20, and an uncooled return pipe 22b that is returned to the hydraulic oil tank 12 without the oil cooler. Ru. Therefore, the temperature of the oil in the hydraulic oil tank 12 can be changed by controlling the flow ratio of the amount of return oil flowing through the cooling return pipe 22a to the flow rate of the uncooled return pipe 22b. Therefore, they constitute the cooling rate variable type hydraulic oil cooling means.
  • the hydraulic oil tank 12 is provided with a temperature sensor 23 for measuring the temperature of the hydraulic oil, and the hydraulic oil temperature signal detected by the temperature sensor 23 is taken into the control circuit 24. . Further, a pressure sensor 25 for detecting the pressure is connected to the discharge pipe 14 (or the hydraulic pump 10), and the pressure sensor 25 functions as a work load detection means, and the detection signal is also detected. It is incorporated into the control circuit 24.
  • the control circuit 24 includes a storage unit 24a and a calculation unit 24b.
  • the storage unit 24a is set to the temperature of the hydraulic fluid that is most suitable for driving the machine with the highest efficiency according to the discharge pressure of the hydraulic pump 10.
  • the calculation unit 24b reads out the data on the optimum hydraulic fluid temperature stored in the storage unit 24a, and compares it with the hydraulic fluid temperature detected by the temperature sensor 23.
  • the flow ratio between the pipe 22a and the uncooled return pipe 22b is determined.
  • Data on the operating oil temperature by the temperature sensor 23 is an average oil temperature within a predetermined time, for example, within an hour.
  • the average oil temperature calculated in this manner becomes the workload history, and this is compared with the data stored in the storage unit 24a to calculate the optimum oil temperature at the load factor.
  • the control circuit 24 controls the distribution valve 21 to distribute the flow rate to the return line for the cooled return pipe 22a and the uncooled return pipe 22b at a target flow ratio.
  • the hydraulic shovel performs light work
  • the hydraulic pump 10 in the operating state a, the hydraulic pump 10 is driven at a low pressure and a large flow rate, so The set temperature is set to a high temperature so that the viscosity of the hydraulic oil becomes the value A (cSt) in the figure.
  • the setting temperature of the working oil in the operation state b where the hydraulic pump 10 is driven at a high pressure and a small flow rate and performing heavy work b, the setting temperature of the working oil is low and the viscosity of the working oil is Set to cSt). That is, the set temperature of the hydraulic oil is controlled in two stages of the high temperature state and the low temperature state.
  • Step 1 When the hydraulic pump 10 is operated and the operation of the hydraulic shovel is started, the discharge pressure of the hydraulic pump 10 is measured, and the oil temperature of the hydraulic oil tank 12 is measured.
  • Step 1 This discharge pressure measurement is performed continuously while the machine is operating.
  • an area serving as a certain dead zone is set, and the difference ⁇ is compared with a set value ⁇ ′ in consideration of the dead zone. .
  • step 3 if the difference ⁇ is smaller than the set value ⁇ '(step 3), it is assumed that there is no change in the property of the work, and the set oil temperature is not changed (step 4). Do not change the distribution ratio of (step 5).
  • step 6 if the difference ⁇ is larger than the set value ⁇ ', Step 6 is set, and the nature of the work changes, and the set oil temperature is changed from heavy work to light work or light work to heavy work. Change (step 7).
  • the distribution ratio of return oil in the distribution valve 21 is changed (step 8).
  • the oil temperature of the return oil is controlled in step 9 so that the temperature of the hydraulic oil in the hydraulic oil tank 12 becomes the target value. Be done. That is, if the operating oil temperature measured by the temperature sensor 23 is lower than the target operating oil temperature, the flow ratio of the distribution valve 21 in the cooling means 19 makes the uncooled return pipe 22b a larger flow rate, so that the return oil Lower the cooling rate of On the other hand, if the measured hydraulic oil temperature is higher than the target value, the flow rate of the cooling return pipe 22a in the distribution valve 21 is increased to increase the cooling rate of the return oil.
  • the above-mentioned one hour is the unit time for acquiring the workload history, and by acquiring this workload history, the force by which the distribution ratio of return oil is reviewed will be distributed. The review of the ratio is conducted every hour, which is the unit time.
  • the above control is set so that the temperature of the hydraulic oil in the hydraulic oil tank 12 measured by the temperature sensor 23 has a predetermined hysteresis which is more than a setting temperature. Therefore, when the hydraulic oil temperature falls within the predetermined set range, that temperature state is maintained. As a result, when the hydraulic shovel operates, the efficiency of the entire system constituting the hydraulic circuit becomes good, and energy can be saved.
  • the temperature control of the return oil is performed according to the work load acting on the hydraulic shovel, but the work load is divided into two stages of high load work and low load work.
  • control can be performed in multiple stages, and can be configured to be controlled continuously. That is, hydraulic excavators can perform various types of work, Depending on the type of work, intermediate work between high load work and low load work may be continued. For example, in FIG.
  • the temperature is adjusted to an intermediate temperature (one or more operating oil temperatures) between the temperature of the optimum operating oil at the time of light work in the operating state a and the temperature of the optimum operating oil at the heavy If it is possible to increase the efficiency, it is necessary to make the distribution ratio between the cooling return pipe 22a and the noncooling return pipe 22b by the distributing valve 21 corresponding to the control signal from the control circuit 24. Can also be controlled.
  • an intermediate temperature one or more operating oil temperatures
  • FIG. 7 shows another example of the mechanism for controlling the temperature of hydraulic oil.
  • a flow rate sensor 30 for detecting the discharge flow rate of the hydraulic pump 10 is configured.
  • the workload can also be detected by detecting the discharge flow rate of the hydraulic pump 10 from the P-Q characteristic of FIG.
  • the oil cooler 20 the return oil is cooled by the cooling air from the cooling fan 31.
  • the cooling fan 31 is driven by a fan drive hydraulic motor 32.
  • the fan drive hydraulic motor 32 is a fan drive driven by the engine 11 together with the hydraulic pump 10 as a main pump for driving the hydraulic actuator 17. It is connected to the hydraulic pump 33.
  • a rotation speed control unit 34 for controlling the rotation speed of the fan drive hydraulic motor 32 is provided between the fan drive hydraulic pump 33 and the fan drive hydraulic motor 32.
  • the rotational speed of the cooling fan 31 is controlled, whereby a variable cooling rate type hydraulic oil cooling means having a variable cooling rate of the oil cooler 20 is configured.
  • the rotation speed control unit 34 uses the work load detected by the flow rate sensor 30 and the temperature of the operating oil in the hydraulic oil tank 12 detected by the temperature sensor 23. It is controlled based on the control signal from the control circuit 24 provided with the storage unit 24a and the operation unit 24b.
  • the hydraulic oil flowing through the hydraulic circuit can be adjusted to an optimum temperature according to the work load. Energy saving can be achieved.
  • FIG. 1 is a hydraulic circuit diagram showing a configuration example of a hydraulic circuit in a hydraulic drive type industrial machine.
  • FIG. 2 is a diagram showing the relationship between the discharge pressure and the discharge flow rate of the hydraulic pump.
  • FIG. 3 A diagram showing changes in the efficiency of a hydraulic pump, the efficiency of a control valve, and the efficiency of piping due to changes in the dynamic viscosity of hydraulic fluid.
  • FIG. 6 A flow chart for performing temperature control of return oil by the control circuit in the hydraulic circuit of FIG. 5.
  • FIG. (7) A configuration explanatory view of a hydraulic circuit of a hydraulic shovel showing a second embodiment according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

 作動油タンクからの作動油を加圧する可変容量式の油圧ポンプと、この油圧ポンプの吐出油を、コントロールバルブを介して供給することにより駆動制御されて、所定の作業を実行する油圧アクチュエータとを備え、油圧アクチュエータからの戻り油を冷却するために、この戻り油の冷却率を変化させる冷却率可変式作動油冷却手段と、油圧アクチュエータによる作業負荷を検出する負荷検出手段と、負荷検出手段により検出される作業負荷に応じて戻り油の冷却率を変化させる制御手段とから構成される。

Description

明 細 書
油圧駆動式産業機械
技術分野
[0001] 本発明は、例えば油圧ショベル等の建設機械を含む油圧駆動式産業機械に関す るものであり、特にその油圧回路システムにおける作動油の温度を有効に制御し、も つて省エネルギ的稼働を可能にするようにした油圧駆動式産業機械に関するもので ある。
背景技術
[0002] 油圧駆動式産業機械として、例えば掘削等の作業を行う作業手段を備えた油圧シ ョベル等の建設機械がある。この種の建設機械の油圧回路としては、エンジンにより 駆動される可変容量式の油圧ポンプを備え、この油圧ポンプは作動油タンク力 作 動油を吸い込んで加圧するものである。油圧ポンプの吐出油はコントロールバルブを 介して油圧シリンダや油圧モータ力 なる油圧ァクチユエータに供給されて、これら 油圧ァクチユエータが駆動される。その結果、車両の走行,旋回及び作業手段による 所要の作業がなされる。油圧ァクチユエータからの戻り油はコントロールバルブを経 て作動油タンクに還流される。従って、作動油タンクと油圧ポンプとの間は吸い込み 配管で接続され、油圧ポンプとコントロールバルブとの間は吐出配管により接続され る。コントロールバルブと各油圧ァクチユエ一タとはそれぞれ一対力もなる供給 z排 出用配管で接続される。さらに、コントロールノ レブと作動油タンクとが戻り配管により 接続される。これによつて、全体として閉回路カゝらなる油圧回路が構成される。
[0003] 油圧ァクチユエータを駆動する際には熱が発生する。従って、閉回路を構成してい る油圧回路内を流れる作動油が加熱されるので、油圧ァクチユエ一タカ の戻り油を 冷却する。このために、前述した戻り配管に作動油冷却手段が設けられるが、建設機 械に設けられる作動油冷却手段は、通常、内部に作動油を流通させる多数の細管に フィンを装着した冷却器力 なるオイルクーラ力 構成され、このオイルクーラに冷却 ファンからの冷却風を供給するようにして!/、る。
[0004] 冷却ファンはエンジンにより駆動されることから、エンジン回転数に応じて冷却ファ ンの回転数が変動することになり、この冷却ファンの回転数によりオイルクーラによる 戻り油の冷却率も変動することになる。このために、冷却ファンを独立した油圧モータ により駆動することによりエンジン回転数の変動に影響を受けない構成としたものが、 例えば特許文献 1に開示されている。そして、この特許文献 1では、冷却ファンを駆 動する油圧モータを可変容量式の油圧モータで構成し、作動油温を検出して、この 作動油温に応じた回転数で冷却ファンを駆動するようになし、もって目標とする作動 油温となるように制御している。
特許文献 1 :特開 2000— 130164号公報
発明の開示
発明が解決しょうとする課題
[0005] 前述した建設機械の省エネルギ的稼動のために、油圧回路におけるエネルギを効 率的に伝達し、無駄に消費されるエネルギロスを最小限に抑制しなければならな 、。 エネルギの伝達効率を高くするには、油圧ポンプの機械効率及び容積効率を向上さ せ、かつコントロールバルブ及び油圧配管等における圧力損失及び漏れ量を抑制 する必要がある。後述するように、これら各要素は油圧回路内を流れる作動油の粘度 に応じて変動する。作動油の温度と粘度とは概略比例するものであり、作動油の温 度が低いときには、粘度が高ぐ作動油の温度が高くなればなるほど、粘度が低下す る。従って、前述した特許文献 1に示されているように、目標とする作動油温を設定し て、この目標とする作動油温に応じた回転数で冷却ファンを回転させるように制御す ることは重要である。
[0006] ところで、油圧ポンプの機械効率を向上させ、また油圧配管等における圧力損失を 最小限に抑制するには、作動油の粘度はある程度低い方が良い。一方、油圧ポンプ の容積効率を向上させ、またコントロールバルブ等の漏れ量を最小限に抑制するた めには、むしろ作動油の粘度を高くしなければならない。従って、油圧ポンプの吐出 圧と吐出流量との関係で、油圧回路内を流れる作動油の粘度を低下させた方が動 力の伝達効率が良くなる場合があり、省エネルギの観点からは、これとは逆に作動油 の粘度を高くした方が良い場合もある。
[0007] 産業機械に作用する作業負荷が一定であり、かつ油圧回路内を流れる作動油の 流量が一定であれば、油圧ポンプを効率的に作動させ、かつ油圧回路を流れる作動 油の圧力損失及びコントロールバルブにおける漏れ油量を最小限に抑制し、もって 機械を効率的に稼働させるのに最適な作動油温は一定になるので、作動油温が所 定の設定温度となるように管理すれば良い。しかしながら、例えば油圧ショベル等に あっては、固い地盤や岩石等が多量に含まれる地面を掘削する場合のように、作業 手段に高い負荷が作用する重掘削作業があり、また整地作業や軟弱地の掘削等の ように比較的小さな負荷のみが作用する軽作業があるというように、作業の種類に応 じて負荷が大きく変化する。従って、作動油温が一定となるように制御した場合、作 業の種類によっては、油圧回路の全システムにおける効率が良好とはならない。
[0008] そこで、本発明の解決すべき課題は、産業機械において、作業負荷の変動に応じ て戻り油の冷却率を変化させ、もって油圧回路システムの効率を良好なものとなし、 省エネルギ化を図ることにある。 課題を解決するための手段
[0009] 前述した目的を達成するために、本発明は、作動油タンクからの作動油を加圧する 可変容量式の油圧ポンプと、この油圧ポンプの吐出油を、コントロールバルブを介し て供給することにより駆動制御されて、所定の作業を実行する油圧ァクチユエータと を備えた油圧駆動式産業機械であって、前記油圧ァクチユエ一タカ の戻り油を冷 却するために、この戻り油の冷却率を変化させる冷却率可変式作動油冷却手段と、 前記油圧ァクチユエータによる作業負荷を検出する負荷検出手段と、前記負荷検出 手段により検出される作業負荷に応じて前記戻り油の冷却率を変化させる制御手段 とを備える構成としたことをその特徴とするものである。
[0010] ここで、冷却率可変式作動油冷却手段は、戻り油の管路を、冷却器を介する冷却 経路と、冷却器を介さない非冷却経路とに分岐させる構成とし、この流路分岐部にこ れら両経路への戻り油の分配比率を変化させる可変分配手段で構成することができ る。例えば、戻り油の管路を、冷却器を介する流路と冷却器をバイパスする流路と〖こ 分岐させ、この流路分岐部に電磁比例弁等力 なる分配弁を設ける構成とすることが できる。この場合、冷却器は空冷式または水冷式とすることができる。空冷式の冷却 器を設ける場合には、冷却ファンを油圧モータ等の駆動手段で回転駆動するように なし、この冷却ファンの回転数を制御する回転数制御手段を設けて、制御手段から の制御信号に基づいて回転数制御手段による冷却ファンの回転数を制御することに よって冷却率可変式作動油冷却手段とする。
[0011] また、油圧ァクチユエータによる作業負荷を検出する負荷検出手段としては、油圧 ポンプの吐出圧または吐出流量を検出する構成とする。これによつて、容易に、しか も確実に負荷の検出を行うことができる。ここで、作業時には、必ずしも一定の負荷が 作用するものではなぐ常に変動するため、ある一定の時間における圧力(または流 量)の平均値を作業負荷として検出するように構成する。制御手段では、このようにし て検出される作業負荷に応じて、高負荷作業時には戻り油の冷却率が高ぐ低負荷 作業時には戻り油の冷却率が低くなるように冷却率可変制式作動油冷却手段による 冷却率を変化させるが、この冷却率の変化は少なくとも高負荷状態と低負荷状態と の 2段階に制御するようになし、また複数段階に制御するように構成しても良ぐさら に段階的ではなぐ連続的に制御する構成とすることもできる。
[0012] 制御手段による戻り油の冷却率の制御は、負荷検出手段で測定される作業負荷に 基づいて行われるが、機械の作業負荷は常に変動する。この変動に応じて冷却率を 常時変動させるように設定すると、作動油冷却手段等の負担が著しいものとなる。こ の作動油冷却手段の作動の安定性を確保するには、所定の単位時間を設定して、 この単位時間当たりの作業負荷の平均値 (例えば平均油温または平均圧力等)を作 業負荷履歴とし、この作業負荷履歴カゝら最適な戻り油の冷却率を割り出すように設定 することができる。ここで、単位時間は、 1時間乃至それ以上が望ましぐ例えば、 1時 間若しくは 2時間, 3時間等を単位時間とすることができ、また 1日を単位時間として 設定することちできる。
[0013] 油圧駆動式産業機械のうち、例えば油圧ショベル等の建設機械においては、ある 作業現場で所定の作業態様で稼働させる場合、ほぼ一定の稼働条件を継続させる ことが多ぐこの間は負荷率が概略一定となるのが一般的である。そこで、制御手段 では、作業現場が変わる毎に、または作業状態が変わる毎に、所定時間の作業負荷 履歴を算定して、戻り油の冷却率を見直すように設定することができる。そして、この 場合には、作業現場乃至作業状態が変化しない限り、一定の冷却率となるように制 御する。制御手段による戻り油の冷却率の見直しは、機械を操作するオペレータによ る制御手段の操作により、または作業現場が移動したことを検出して、この検出信号 等に基づいて作業負荷履歴を算定することもできる。より微細に制御するには、所定 の時間を 1つの単位として、 1単位毎に作業負荷履歴を算出して、次の 1単位の時間 分における戻り油の冷却率を決定し、単位時間毎に戻り油の冷却率を見直すように することもできる。さらに、複数単位の作業負荷履歴の移動平均を求め、この移動平 均に基づいて次の 1単位の時間分における前記戻り油の冷却率を決定するようにし ても良い。
発明の効果
[0014] 以上のように、作業負荷に応じて戻り油の冷却率を変化させることによって、作業負 荷の変動に応じて油圧ポンプ力 油圧ァクチユエータへのエネルギの伝達効率を向 上させることができ、機械の省エネルギ的な運転が可能になる。
発明を実施するための最良の形態
[0015] 以下、図面に基づいて本発明の実施の形態について説明する。まず、図 1に産 業機械における油圧回路の概略構成を示す。ここで、油圧駆動式産業機械の一例と して、作業負荷が大きく変動する建設機械としての油圧ショベルを例示する。ただし、 本発明の油圧回路システムが搭載される産業機械はこれに限定されない。
[0016] 而して、図 1において、 1は例えば斜軸式または斜板式等力 なる可変容量式の油 圧ポンプであり、この油圧ポンプ 1は吸い込み配管 2によって作動油タンク 3から吸い 込んだ作動油を加圧して吐出するものであり、この油圧ポンプ 1の吐出配管 4はコント ロールバルブ 5に接続されて!、る。コントロールバルブ 5と例えば油圧シリンダ(または 油圧モータ)力もなる油圧ァクチユエータ 6との間には一対力もなる供給 Z排出用配 管 7, 7が接続されている。さらに、コントロールバルブ 5には戻り配管 8が接続されて おり、この戻り配管 8の他端は作動油タンク 3に接続されるが、その途中位置には戻り 油の冷却手段としてのオイルクーラ 9が設けられている。なお、図 1では、構成の簡略 化のために、 1個の油圧ポンプ 1と、 1個の油圧ァクチユエータ 6とを示した力 油圧シ ョベルその他の産業機械においては、油圧ァクチユエータ 6は通常複数備えており、 また油圧ポンプ 1も複数設ける構成とするのが一般的である。 [0017] 油圧ショベルは作業の態様や種類に応じて負荷が大きく変動する。油圧ポンプ 1か らの出力圧 (P)と出力流量 (Q)との関係、所謂 P— Q特性は図 2に示したように、油 圧ポンプ 1の吐出圧が低いときには、吐出流量が多くなり、油圧ポンプ 1からの吐出 圧が高くなると、吐出流量が少なくなるという傾向を示す。従って、作業負荷が大きく 、高い吐出圧が必要なときには、吐出流量が少なぐ軽い作業を実行するために、油 圧ポンプ 1からの吐出圧が低いときには、その吐出流量が多くなる。
[0018] この図 2の P— Q特性線図において、低負荷作業を行っている状態を作動状態 aと し、また高負荷作業を行っている状態を作動状態 bとしたときにおいて、作動油の動 粘度(cSt)の変化と、油圧ポンプ 1の効率,コントロールバルブ 5の効率及び配管、 特に高圧となる吐出配管 4及び一方の供給 Z排出配管 7の効率との関係を図 3 (a) 〜(c)に示す。ここで、これらの図において、容積効率( r? V)は全流量に対する実際 に油圧ァクチユエータ 6を駆動するために使用される流量の比、機械効率( 7? m)は 油圧ポンプ 1にあっては、設定圧 (理論値)に対する出力圧の比、コントロールノ レブ 5及び配管の効率については、入力側の圧力に対する出力側の圧力の比、つまり圧 損の程度である。
[0019] 図 3 (a)には、作動油粘度に対する油圧ポンプ 1の容積効率及び機械効率の関係 が示されており、作動状態 aの容積効率は曲線( r? v a) ,作動状態 bの容積効率は 曲線(r? v'b)となる。また、作動状態 aの機械効率は曲線(7? m' a) ,作動状態 bの機 械効率は曲線( 7? m-b)となる。従って、この線図からは、容積効率は作動油の粘度 が高くなればなるほど高効率になり、これとは逆に機械効率は作動油の粘度が低い 方が高効率となる。その結果、油圧ポンプ 1の全効率( r? t)は、作動状態 aでは曲線( r? t ' a)、作動状態 bでは曲線( 7? t'b)となる。また、図 3 (b)に示したように、作動油粘 度に対するコントロールバルブ 5の容積効率及び機械効率の関係も前述した油圧ポ ンプ 1とほぼ同様の傾向を示しており、作動状態 aの容積効率は曲線(7? ν· a) ,作動 状態 bの容積効率は曲線( 7? v'b)となり、作動状態 aの機械効率は曲線( 7? m' a) , 作動状態 bの機械効率は曲線( r? m-b)となる。そして、コントロールノ レブ 5の全効 率( r? t)は、作動状態 aでは曲線( 7? f a)、作動状態 bでは曲線( r? f b)となる。さら に、配管内では圧損が生じるものの、実質的に作動油の漏れがないことから、図 3 (c )に示したように、作動状態 aの機械効率は曲線( r? m- a) ,作動状態 bの機械効率は 曲線(rj m'b)となる。
[0020] 以上の点から、油圧回路全体の効率としては、図 4に示したように、作動状態 aでの 全効率特性は曲線 aTとなり、また作動状態 bの全効率特性は曲線 bTとなる。従って 、作動状態 aでは、作動油の動粘度が値 A (cSt)のときが最も高い作業効率を発揮し 、作動状態 bでは、作動油の動粘度が値 A (cSt)より低い値 B (cSt)で最高の作業効 率を発揮することがわかる。
[0021] 作動油の粘度は作動油温度と実質的に比例するので、油圧ポンプ 1が低圧 *大流 量で作動し、機械が軽作業を行っている作動状態 aでは作動油の粘度が値 A (cSt) となるように作動油の温度を高くする。これに対して、油圧ポンプ 1が高圧'小流量で 駆動されて、重作業を行っている作動状態 bでは、作動油の粘度が値 B (cSt)となる ように作動油の温度を低下させるようにする。これによつて、油圧回路システム全体の 効率が向上し、油圧ショベルの省エネルギ的稼働を図ることができる。
[0022] そこで、作業負荷に応じて作動油の温度を変化させるための具体的な一構成例を 図 5に示す。この図 5において、 10はエンジン 11により駆動される可変容量式の油圧 ポンプであり、この油圧ポンプ 10と作動油タンク 12との間を接続する吸い込み配管 1 3から供給される作動油を加圧して吐出配管 14に供給する。吐出配管 14は複数の 方向切換弁 15aからなるコントロールバルブユニット 15に接続されており、このコント ロールバルブユニット 15には複数の供給 Z排出配管 16が接続されており、これら各 供給 Z排出配管 16は油圧シリンダ 17Cや油圧モータ 17Mと 、つた油圧ァクチユエ ータ 17に接続されている。そして、コントロールバルブ 15における戻り配管 18は冷却 手段 19を介して戻り油を冷却して作動油タンク 12に還流される。
[0023] 冷却手段 19はオイルクーラ 20を有し、このオイルクーラ 20により油圧ァクチユエ一 タ 17を駆動することにより加熱された戻り油が冷却される。ただし、戻り配管 18から作 動油タンク 12に還流される戻り油の全量がオイルクーラ 20により必ず冷却されるので はない。オイルクーラ 20の前段には分配弁 21が装着されている。この分配弁 21には 、オイルクーラ 20を介して作動油タンク 12に還流させる冷却戻り配管 22aと、オイル クーラを介さないで作動油タンク 12に還流させる非冷却戻り配管 22bとに分岐してい る。従って、冷却戻り配管 22aに流す戻り油量と非冷却戻り配管 22bとの流量比を制 御することによって、作動油タンク 12内の油温を変化させることができる。従って、こ れらによって冷却率可変式作動油冷却手段が構成される。
[0024] 作動油タンク 12には作動油の温度を測定する温度センサ 23が装着されており、こ の温度センサ 23により検出される作動油温信号が制御回路 24に取り込まれるように なっている。また、吐出配管 14 (または油圧ポンプ 10)には、その圧力を検出する圧 力センサ 25が接続されており、この圧力センサ 25は作業負荷検出手段として機能す るものであり、その検出信号も制御回路 24に取り込まれるようになつている。制御回 路 24は記憶部 24aと演算部 24bとを備えており、記憶部 24aには油圧ポンプ 10の吐 出圧に応じて最も高い効率で機械を駆動するのに最適な作動油の温度を記憶し、 演算部 24bでは、記憶部 24aに記憶されている最適な作動油温に関するデータを読 み出して、温度センサ 23により検出した作動油温と比較して、分配弁 21における冷 却戻り配管 22aと非冷却戻り配管 22bとの流量比が求められる。温度センサ 23による 作動油温に関するデータは、所定時間内、例えば 1時間内での平均油温とする。こ のようにして演算した平均油温が作業負荷履歴となり、これが記憶部 24aに記憶され ているデータと比較されて、当該負荷率での最適油温が算出されることになる。そし て、この演算結果に基づいて、制御回路 24から分配弁 21に対して目標とする流量 比で戻り油の冷却戻り配管 22a及び非冷却戻り配管 22bに流量の分配を行うように 制御する。
[0025] ここで、図 4に示したように、油圧ショベルが軽作業を行って 、る作動状態 aでは、油 圧ポンプ 10が低圧 '大流量で駆動されることになるので、作動油の設定温度は高い 温度として、作動油の粘度が同図の値 A (cSt)となるように設定する。これに対して、 油圧ポンプ 10が高圧 '小流量で駆動されて、重作業を行っている作動状態 bでは作 動油の設定温度は低い温度として、作動油の粘度を同図の値 B (cSt)となるように設 定する。即ち、作動油の設定温度を高温状態と低温状態との 2段階に制御される。
[0026] 即ち、図 6にあるように、油圧ポンプ 10が作動して、油圧ショベルの作動が開始する と、油圧ポンプ 10の吐出圧が測定され、かつ作動油タンク 12の油温が測定される( ステップ 1)。この吐出圧の測定は機械が作動している間は継続的に行われるもので あり、制御回路 24においては、直前 15分間の圧力平均値 Prefとそれより前 1時間分 の圧力平均値 Pmeanとの差(Pref—Pmean ) = Δ Ρを求める(ステップ 2)。なお、この 平均値の差分 Δ Pには所定のヒステリシス特性を持たせるために、ある不感帯となる 領域を設定しておき、差 Δ Ρはこの不感帯を勘案した設定値 Δ Ρ'と比較される。そし て、差 Δ Ρが設定値 Δ Ρ'より小さい場合には (ステップ 3)、作業の性質に変化がない として、設定油温を変更することなく (ステップ 4)、分配弁 21における戻り油の分配比 を変化させない (ステップ 5)。一方、差 Δ Ρが設定値 Δ Ρ'より大きい場合にはステツ プ 6になり、作業の性質が変化し、重作業から軽作業に、または軽作業から重作業に 変化したとして、設定油温を変更する (ステップ 7)。ここで、設定温度が変更されたと きには、分配弁 21における戻り油の分配比を変化させる (ステップ 8)。
[0027] 以上のようにして、目標となる油温が決定されると、ステップ 9において、作動油タン ク 12内の作動油の温度が目標値となるように、戻り油の油温が制御される。即ち、温 度センサ 23により測定した作動油温が目標となる作動油温より低いと、冷却手段 19 における分配弁 21の流量比が非冷却戻り配管 22bの方を大流量となし、もって戻り 油の冷却率を低下させる。一方、測定作動油温が目標値より高いと、分配弁 21にお ける冷却戻り配管 22aの方の流量を多くして、戻り油の冷却率を高くする。前述した 1 時間は作業負荷履歴を取得する上での単位時間となるものであり、この作業負荷履 歴を取得することによって、戻り油の分配比の見直しが行われる力 この戻り油の分 配比の見直しは単位時間である 1時間毎に行われる。
[0028] 以上の制御は、温度センサ 23で測定される作動油タンク 12内の作動油温が正確 に設定温度とするのではなぐ所定のヒステリシスを持たせるように設定しておく。従つ て、作動油温が所定の設定範囲内となると、その温度状態が維持される。これによつ て、油圧ショベルが稼働する際に、油圧回路を構成する全システムの効率が良好と なり、省エネルギを図ることができる。
[0029] ここで、油圧ショベルに作用する作業負荷に応じて戻り油の温度制御がなされるが 、作業負荷を高負荷作業と低負荷作業との 2段階に分けるようにしている。ただし、作 業の種類によっては、さらに多段に制御することができ、さらに連続的に制御するよう に構成することもできる。つまり、油圧ショベルは様々な種類の作業を行うことができ、 作業の種類によっては、高負荷作業と低負荷作業との中間の作業が継続して行われ る場合もある。例えば、図 4において、作動状態 aの軽作業時に最適な作動油の温度 と、作動状態 bの重作業時に最適な作動油の温度との中間の温度(1または複数の 作動油温)に調整する方が効率を高くすることができる場合には、制御回路 24からの 制御信号に基づいてそれに見合った分配弁 21による冷却戻り配管 22aと非冷却戻り 配管 22bとの分配比率となるように微細に制御することもできる。
[0030] 次に、図 7に作動油の温度制御を行う機構の他の例を示す。同図、前述した図 5と 同一または均等な部材については、それと同一の符号を付すものとする。この図 7で は、負荷検出手段として、油圧ポンプ 10の吐出流量を検出する流量センサ 30で構 成している。図 2の P— Q特性から、油圧ポンプ 10の吐出流量を検出することによつ ても、作業負荷を検出することはできる。また、オイルクーラ 20において、戻り油を冷 却ファン 31からの冷却風により冷却する構成としている。冷却ファン 31はファン駆動 用油圧モータ 32により駆動されるものであり、このファン駆動用油圧モータ 32は、油 圧ァクチユエータ 17を駆動するメインポンプとしての油圧ポンプ 10と共にエンジン 11 により駆動されるファン駆動用油圧ポンプ 33に接続されている。そして、ファン駆動 用油圧ポンプ 33とファン駆動用油圧モータ 32との間には、このファン駆動用油圧モ ータ 32の回転数を制御するための回転数制御部 34が設けられている。これによつて 、冷却ファン 31の回転数が制御され、もってオイルクーラ 20の冷却率が可変な冷却 率可変式作動油冷却手段を構成する。この回転数制御部 34は、前述した第 1の実 施の形態と同様、流量センサ 30により検出される作業負荷と、温度センサ 23により検 出される作動油タンク 12内の作動油温とから、記憶部 24a及び演算部 24bを備えた 制御回路 24からの制御信号に基づいて制御される。
[0031] 以上のように構成することによつても、前述した第 1の実施の形態と同様、作業負荷 に応じて油圧回路を流れる作動油が最適な温度となるように調整することができ、も つて省エネルギ化を図ることができる。 図面の簡単な説明
[0032] [図 1]油圧駆動式産業機械における油圧回路の構成例を示す油圧回路図である。
[図 2]油圧ポンプの吐出圧と吐出流量との関係を示す線図である。 [図 3]作動油の動粘度の変化による油圧ポンプの効率,コントロールバルブの効率及 び配管の効率の変化を示す線図である。
圆 4]作動油の動粘度の変化による油圧回路の全効率の変化を示す線図である。 圆 5]本発明における第 1の実施の形態を示す油圧ショベルの油圧回路の構成説明 図である。
[図 6]図 5の油圧回路における制御回路による戻り油の温度制御を実行するためのフ ローチャート図である。 圆 7]本発明における第 2の実施の形態を示す油圧ショベルの油圧回路の構成説明 図である。
符号の説明
10 油圧ポンプ 11
12 作動油タンク 13 吸い込み配管
14 吐出配管 15 コントローノレバノレブュニ
16 供給 Z排出配管 17 油圧ァクチユエータ
18 戻り配管 19 冷却手段
20 オイルクーラ 21 分配弁
22a 冷却戻り配管 22b 非冷却戻り配管
23 温度センサ 24 制御回路
24a 記憶部 24b 演算部
30 流量センサ 31 冷却ファン
32 ファン駆動用油圧モータ
33 ファン駆動用油圧ポンプ

Claims

請求の範囲
[1] 作動油タンクからの作動油を加圧する可変容量式の油圧ポンプと、この油圧ポンプ の吐出油を、コントロールバルブを介して供給することにより駆動制御されて、所定の 作業を実行する油圧ァクチユエ一タとを備えた油圧駆動式産業機械において、 前記油圧ァクチユエ一タカ の戻り油を冷却するために、この戻り油の冷却率を変 化させる冷却率可変式作動油冷却手段と、
前記油圧ァクチユエータによる作業負荷を検出する負荷検出手段と、
前記負荷検出手段により検出される作業負荷に応じて前記戻り油の冷却率を変化 させる制御手段と
を備える構成としたことを特徴とする油圧駆動式産業機械。
[2] 前記冷却率可変式作動油冷却手段は、前記戻り油の管路を、冷却器を介する冷却 経路と、冷却器を介さない非冷却経路とに分岐させ、この分岐部にこれら両経路へ の戻り油の分配比率を変化させる分配手段を備える構成としたことを特徴とする請求 項 1記載の油圧駆動式産業機械。
[3] 前記冷却率可変式作動油冷却手段は、冷却ファンからの冷却風が供給される冷却 器力もなり、この冷却ファンの回転数を制御する回転数制御手段を備える構成とした ことを特徴とする請求項 1記載の油圧駆動式産業機械。
[4] 前記負荷検出手段は、前記油圧ァクチユエータへの供給圧力及び供給流量のうち、 少なくとも 1種類のデータを検出するものであることを特徴とする請求項 1記載の油圧 駆動式産業機械。
[5] 前記制御手段は、高負荷作業時には前記戻り油の冷却率が高ぐ低負荷作業時に は前記戻り油の冷却率が低くなるように少なくとも 2段階で制御する構成としたことを 特徴とする請求項 1記載の油圧駆動式産業機械。
[6] 前記制御手段は、高負荷作業時には前記戻り油の冷却率が高ぐ低負荷作業時に は前記戻り油の冷却率が低くなるように連続的に制御する構成としたことを特徴とす る請求項 1記載の油圧駆動式産業機械。
[7] 前記制御手段は、前記負荷検出手段で少なくとも 1時間の間に測定される負荷率を
1単位として、この 1単位の負荷率の平均値を作業負荷履歴とし、この作業負荷履歴 に基づいて前記戻り油の冷却率を割り出す構成としたことを特徴とする請求項 1記載 の油圧駆動式産業機械。
[8] 前記制御手段は、作業状態が変化する毎に前記 1単位の作業負荷履歴を算出可能 とし、この作業状態が変化しない限り一定の冷却率で前記戻り油を冷却する構成とし たことを特徴とする請求項 7記載の油圧駆動式産業機械。
[9] 前記制御手段は、前記 1単位毎に作業負荷履歴を算出して、次の 1単位の時間分に おける前記戻り油の冷却率を決定する構成としたことを特徴とする請求項 7記載の油 圧駆動式産業機械。
[10] 前記制御手段は、複数単位の前記作業負荷履歴の移動平均を求め、この移動平均 に基づいて次の 1単位の時間分における前記戻り油の冷却率を決定する構成とした ことを特徴とする請求項 7記載の油圧駆動式産業機械。
[11] 前記制御手段による前記戻り油の冷却率を決定する際に、前記 1単位の負荷率の平 均値に所定の不感帯を持たせて設定値を演算し、前記次の 1単位の時間分の測定 値が前記不感帯を含む設定値と比較することを特徴とする請求項 10記載の油圧駆 動式産業機械。
[12] 前記産業機械は油圧ショベルを含む建設機械であることを特徴とする請求項 1記載 の油圧駆動式産業機械。
13 前記制御手段は作業現場を変える毎に前記戻り油の冷却率を決定することを特 徴とする請求項 11記載の油圧駆動式産業機械。
PCT/JP2007/051967 2006-02-08 2007-02-06 油圧駆動式産業機械 WO2007091534A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/278,404 US8051649B2 (en) 2006-02-08 2007-02-06 Hydraulically driven industrial machine
EP07708085A EP1985869B1 (en) 2006-02-08 2007-02-06 Hydraulically driven industrial machine
CN2007800047010A CN101379302B (zh) 2006-02-08 2007-02-06 液压驱动式工业机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006030749A JP4725345B2 (ja) 2006-02-08 2006-02-08 油圧駆動式産業機械
JP2006-030749 2006-02-08

Publications (1)

Publication Number Publication Date
WO2007091534A1 true WO2007091534A1 (ja) 2007-08-16

Family

ID=38345131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051967 WO2007091534A1 (ja) 2006-02-08 2007-02-06 油圧駆動式産業機械

Country Status (6)

Country Link
US (1) US8051649B2 (ja)
EP (1) EP1985869B1 (ja)
JP (1) JP4725345B2 (ja)
KR (1) KR101073531B1 (ja)
CN (1) CN101379302B (ja)
WO (1) WO2007091534A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000737A1 (en) * 2008-06-30 2010-01-07 Agco Gmbh Flow control
CN104061201A (zh) * 2013-03-22 2014-09-24 住友重机械工业株式会社 液压回路、液压缸及具备该液压缸的加工机以及液压回路的控制方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472303B (zh) * 2009-08-17 2014-11-05 日立建机株式会社 液压驱动装置的工作油温控制装置
JP4990333B2 (ja) * 2009-09-03 2012-08-01 株式会社小松製作所 作業車両
JP5689531B2 (ja) * 2010-06-24 2015-03-25 ボルボ コンストラクション イクイップメント アーベー 建設機械の油圧ポンプ制御システム
CN101893020A (zh) * 2010-07-29 2010-11-24 三一重机有限公司 一种液压系统的预热结构
JP2013124693A (ja) * 2011-12-13 2013-06-24 Yanmar Co Ltd 油圧装置
US9115736B2 (en) * 2011-12-30 2015-08-25 Cnh Industrial America Llc Work vehicle fluid heating system
CN104039683B (zh) * 2012-01-13 2016-06-29 克朗设备公司 用于物料搬运车辆的暖机循环
US9726056B2 (en) * 2012-05-21 2017-08-08 Fca Us Llc High efficiency oil circuit
JP5825682B2 (ja) * 2012-07-03 2015-12-02 キャタピラー エス エー アール エル アキュムレータを備えた作業機械の油圧回路
KR101920089B1 (ko) * 2013-09-25 2018-11-19 현대건설기계 주식회사 건설기계의 유압제어시스템
JP6009480B2 (ja) * 2014-03-06 2016-10-19 日立建機株式会社 建設機械の冷却ファン制御装置
JP5954360B2 (ja) * 2014-06-09 2016-07-20 コベルコ建機株式会社 建設機械
CN104848694B (zh) * 2015-05-23 2016-08-24 锦州天晟重工有限公司 硅铁及工业硅电炉专用加料捣炉机
CN105604998B (zh) * 2016-03-02 2018-10-02 安徽皖南电机股份有限公司 一种大型刨床的液压站
DE102016215229A1 (de) * 2016-08-16 2018-02-22 Zf Friedrichshafen Ag Verfahren zum Betätigen einer Ventileinrichtung in Abhängigkeit einer Kennlinie
CN112469868B (zh) 2018-07-25 2023-05-23 克拉克设备公司 用于动力机械的液压油温度管理
EP3657028B1 (en) 2018-11-21 2023-08-16 Danfoss Power Solutions Aps Method for controlling a hydraulic actuator
DE102018133098A1 (de) * 2018-12-20 2020-06-25 Still Gmbh Verfahren zum Betreiben einer Hydraulikanlage eines Flurförderzeugs
CN109798283A (zh) * 2019-01-21 2019-05-24 江苏大学 一种远程控制多保护逻辑功能集中泵站
CN109882475A (zh) * 2019-04-12 2019-06-14 枣庄矿业集团新安煤业有限公司 掘进机液压油箱降温装置
US10859203B1 (en) * 2020-03-12 2020-12-08 American Jereh International Corporation High-low pressure lubrication system for high-horsepower plunger pump

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169440A (ja) * 1996-12-10 1998-06-23 Komatsu Ltd 建設機械の冷却装置
JP2000161060A (ja) * 1998-12-01 2000-06-13 Komatsu Ltd 冷却用ファンの駆動装置
JP2001132710A (ja) * 1999-11-08 2001-05-18 Kato Works Co Ltd 自走式作業機械
JP2002130216A (ja) * 2000-10-31 2002-05-09 Hitachi Constr Mach Co Ltd 建設機械の油圧回路
JP2004162860A (ja) * 2002-11-15 2004-06-10 Daikin Ind Ltd 自律型インバータ駆動油圧ユニットの昇温制御方法およびその装置
JP2004239389A (ja) * 2003-02-07 2004-08-26 Shin Caterpillar Mitsubishi Ltd オイルクーラ制御方法およびオイルクーラ制御装置
JP2005036881A (ja) * 2003-07-14 2005-02-10 Shin Caterpillar Mitsubishi Ltd 油圧回路の油温制御方法
JP2005155698A (ja) * 2003-11-21 2005-06-16 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 油圧作業機械の油圧回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195959B1 (en) * 1998-06-02 2001-03-06 Tisma Machinery Corporation Automatic packaging machine for cardboard box with latching flip top
JP2000130164A (ja) 1998-10-26 2000-05-09 Komatsu Ltd 冷却用ファンの駆動装置
US6311488B1 (en) 1998-10-26 2001-11-06 Komatsu Ltd. Cooling fan drive apparatus
JP4285866B2 (ja) * 1999-12-22 2009-06-24 株式会社小松製作所 油圧駆動冷却ファン
GB0111918D0 (en) * 2001-05-16 2001-07-04 Ford New Holland Nv Control arrangement and method for a hydraulic system
JP2003004005A (ja) * 2001-06-22 2003-01-08 Kobelco Contstruction Machinery Ltd 建設機械の油圧制御回路
JP2004347040A (ja) * 2003-05-22 2004-12-09 Kobelco Contstruction Machinery Ltd 作業機械の制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169440A (ja) * 1996-12-10 1998-06-23 Komatsu Ltd 建設機械の冷却装置
JP2000161060A (ja) * 1998-12-01 2000-06-13 Komatsu Ltd 冷却用ファンの駆動装置
JP2001132710A (ja) * 1999-11-08 2001-05-18 Kato Works Co Ltd 自走式作業機械
JP2002130216A (ja) * 2000-10-31 2002-05-09 Hitachi Constr Mach Co Ltd 建設機械の油圧回路
JP2004162860A (ja) * 2002-11-15 2004-06-10 Daikin Ind Ltd 自律型インバータ駆動油圧ユニットの昇温制御方法およびその装置
JP2004239389A (ja) * 2003-02-07 2004-08-26 Shin Caterpillar Mitsubishi Ltd オイルクーラ制御方法およびオイルクーラ制御装置
JP2005036881A (ja) * 2003-07-14 2005-02-10 Shin Caterpillar Mitsubishi Ltd 油圧回路の油温制御方法
JP2005155698A (ja) * 2003-11-21 2005-06-16 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 油圧作業機械の油圧回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1985869A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000737A1 (en) * 2008-06-30 2010-01-07 Agco Gmbh Flow control
CN104061201A (zh) * 2013-03-22 2014-09-24 住友重机械工业株式会社 液压回路、液压缸及具备该液压缸的加工机以及液压回路的控制方法

Also Published As

Publication number Publication date
CN101379302A (zh) 2009-03-04
JP2007211843A (ja) 2007-08-23
KR101073531B1 (ko) 2011-10-17
EP1985869A4 (en) 2011-10-26
KR20080091847A (ko) 2008-10-14
EP1985869A1 (en) 2008-10-29
CN101379302B (zh) 2012-06-27
JP4725345B2 (ja) 2011-07-13
EP1985869B1 (en) 2013-03-27
US8051649B2 (en) 2011-11-08
US20090217656A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
WO2007091534A1 (ja) 油圧駆動式産業機械
US20110056194A1 (en) Hydraulic system for heavy equipment
JP5220917B2 (ja) 建設機械の異常検出装置
US20110056192A1 (en) Technique for controlling pumps in a hydraulic system
CN105518270B (zh) 工程机械的冷却风扇控制装置
JP6429856B2 (ja) 複数のポンプを備えた油圧トランスフォーマシステムにおいて流量分担するための方法とシステム
US9091040B2 (en) Hydraulic circuit control
KR20100116664A (ko) 유압 작업 기계용 흐름 관리 시스템
KR20080057246A (ko) 건설기계의 작동유체 냉각제어시스템
US11118328B2 (en) Construction machine
WO2017115493A1 (ja) 作業機械
US20120304944A1 (en) Engine system with reversible fan
US11781288B2 (en) Shovel
JP4945299B2 (ja) 油圧アクチュエータ駆動制御装置および建設機械
KR102288976B1 (ko) 전기적 효율성이 개선된 전기유압시스템
WO2011111338A1 (ja) 冷却ファンの駆動回路
WO2021070736A1 (ja) 建設機械
PANDEY et al. Steady-state and sensitivity analysis of a closedcircuit hydrostatic transmission used in side discharge loader, a typical mining equipment.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12278404

Country of ref document: US

Ref document number: 200780004701.0

Country of ref document: CN

Ref document number: 4133/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007708085

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: KR