WO2007091342A1 - 硝酸溶液を経由した酸化チタン合成法 - Google Patents

硝酸溶液を経由した酸化チタン合成法 Download PDF

Info

Publication number
WO2007091342A1
WO2007091342A1 PCT/JP2006/316919 JP2006316919W WO2007091342A1 WO 2007091342 A1 WO2007091342 A1 WO 2007091342A1 JP 2006316919 W JP2006316919 W JP 2006316919W WO 2007091342 A1 WO2007091342 A1 WO 2007091342A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
nitric acid
alkali metal
acid solution
ilmenite
Prior art date
Application number
PCT/JP2006/316919
Other languages
English (en)
French (fr)
Inventor
Kenji Toda
Toshihiko Tanaka
Hirokazu Fukuwaka
Yoshiomi Yamanaka
Original Assignee
Niigata University
Santec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University, Santec Co., Ltd. filed Critical Niigata University
Publication of WO2007091342A1 publication Critical patent/WO2007091342A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Definitions

  • the present invention relates to a method for synthesizing titanium oxide via a nitric acid solution.
  • Titanium oxide is widely used for papermaking, paints, pigments, cosmetics, and dielectrics!
  • the function as a photocatalyst has attracted attention.
  • it has been applied to a wider range of applications such as deodorization, antibacterial, and antifouling.
  • the sulfuric acid method in which titanium sulfate is hydrolyzed and calcined is known as the most general method, and still occupies the majority of the production method.
  • the chlorine method in which tetrasalt titanium is acidified at a high temperature is also known as a general method.
  • these methods use reducing gas or acid gas in a high temperature range, so there is a problem with the danger and the environmental load, and a large amount of money is spent on treatment equipment such as waste acid and waste gas. I have a problem that I need.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-095618
  • an object of the present invention is to provide a method for synthesizing titanium oxide that has a high safety without using a high-temperature gas and a low environmental load.
  • ilmenite and an alkali metal compound are mixed at a molar ratio of titanium and alkali metal of 1: 2.5 to 3.5.
  • the mixture is fired at 800 to 1000 ° C for 0.5 to 2 hours.
  • the fired product is an alkali metal titanate.
  • the baked product is pulverized and then dissolved in nitric acid, and the insoluble matter is further removed.
  • the method further includes a cleaning step of cleaning the titanium oxide obtained in the precipitation step.
  • the titanium oxide is washed with water and nitric acid.
  • FIG. 1 is a powder XRD pattern of a fired product obtained by the method for synthesizing titanium oxide according to the present invention.
  • FIG. 2 The above is the powder XRD pattern of the obtained titanium oxide titanium.
  • the method for synthesizing titanium oxide via the nitric acid solution of the present invention comprises a mixing step of mixing an alkali metal compound with ilmenite to obtain a mixture, and a baking step of firing the mixture to obtain a fired product. And a dissolution step of dissolving the calcined product in nitric acid to obtain a solution, and a precipitation step of filtering the solution and heating the filtrate to precipitate acid titanium.
  • an alkali metal compound is mixed with ilmenite.
  • Natural ilmenite ore can be used as the ilmenite.
  • the alkali metal compound is not limited to a specific one, but sodium carbonate (Na 2 CO 3)
  • alkali metal compounds such as potassium carbonate can be used.
  • X is an alkali metal, a, b, c, d
  • the number of 0 to 1) is estimated to be an alkali metal-containing titanate, and the final yield of titanium oxide is maximized. Therefore, in order to obtain titanium oxide in a high yield, the molar ratio of titanium to alkali metal is preferably 1: 2.5 to 3.5. Further, when the alkali metal compound is mixed with the ilmenite, it may be mixed using a conventional method such as acetone wet mixing.
  • the mixture obtained in the mixing step is fired at 800 to 1000 ° C for 0.5 to 2 hours, so that a composition of X Fe Ti O ( X is abc 2-d alkali metal, and a, b, c, and d are each a number from 0 to 1).
  • the fired product obtained in the firing step is pulverized and then dissolved in nitric acid.
  • Concentrated nitric acid is preferably used as nitric acid, and the pulverized fired product is stirred in nitric acid.
  • the insoluble matter is removed. By removing the insoluble matter, the purity of the finally obtained titanium oxide is increased.
  • the insoluble matter contains residual ilmenite and XFeTiO (X is an alkali metal) type.
  • nitric acid used here may have been added with an acid other than nitric acid such as sulfuric acid or hydrochloric acid.
  • the solution obtained in the dissolution step is heated to precipitate titanium oxide.
  • the solution is heated to about 80 to 100 ° C. to evaporate and dry the water to precipitate crystalline titanium oxide powder.
  • crystalline titanium oxide did not precipitate at such a low temperature range.
  • the titanium oxide can be precipitated by other heating methods such as a hydrothermal method.
  • the titanium oxide is preferably washed in a washing step. In this case, it may be washed several times with water and nitric acid.
  • titanium oxide can be obtained under mild conditions in which the solution is heated at a low temperature to precipitate titanium oxide. Therefore, it is possible to provide a method for synthesizing titanium oxide with low environmental impact.
  • the titanium oxide synthesis method of the present invention is expected to design a safe industrial plant with a small environmental load.
  • the fired product containing the precursor was pulverized, and the pulverized fired product was stirred in concentrated nitric acid for 24 hours.
  • 200 ml of concentrated nitric acid was used for the fired product lg.
  • the solution was allowed to stand for 24 hours, and the insoluble matter was removed as a residue by suction filtration.
  • the remaining solution as a filtrate was heated at 90 ° C. and evaporated to dryness to obtain a crystalline powder. This powder was washed with water and dried to obtain 5.98 g of a reddish brown powder.
  • the surface of the titanium oxide powder was washed with nitric acid for 24 hours.
  • nitric acid a light brown colored titanium oxide powder was obtained.
  • the color of the powder became lighter and the purity was improved by washing with nitric acid.
  • the nitric acid after washing was colored yellow, it was estimated that the iron contained as impurities in the powder before washing eluted into the nitric acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

高温のガスを用いることなく、安全性が高く、環境負荷が小さい酸化チタン合成法を提供する。イルメナイトにアルカリ金属化合物を混合して混合物を得る混合工程と、混合物を焼成して焼成物を得る焼成工程と、焼成物を酸で溶解して溶液を得る溶解工程と、溶液を加熱して酸化チタンを析出させる析出工程とを備えた。好ましくは混合工程において、イルメナイトとアルカリ金属化合物とをチタンとアルカリ金属のモル比を1:2.5~3.5として混合し、焼成工程において、混合物を800~1000°Cで0.5~2時間焼成する。

Description

明 細 書
硝酸溶液を経由した酸ィ匕チタン合成法
技術分野
[0001] 本発明は、硝酸溶液を経由した酸ィ匕チタン合成法に関する。
背景技術
[0002] 酸化チタンは、製紙、塗料、顔料、化粧品、誘電体などへの従来の幅広!ヽ需要に 加え、光触媒としての機能が注目されており、近年の環境に対する関心の高まりとも に、脱臭、抗菌、防汚など、さらに幅広い用途に応用されるようになってきている。
[0003] 従来の酸ィ匕チタン合成法としては、硫酸チタンを加水分解して焼成する硫酸法が 最も一般的な方法として知られており、現在も製造法の過半を占めいている。また、 四塩ィ匕チタンを高温で酸ィ匕する塩素法も一般的な方法として知られて 、る。しかし、 これらの方法は、高温域での還元性ガス又は酸性ガスを用いるため、危険性、環境 負荷の大きさが問題となっており、廃酸、廃ガスなどの処理設備に多額の費用を要 するという問題を抱えて 、た。
特許文献 1:特開平 10-095618号公報
発明の開示
発明が解決しょうとする課題
[0004] そこで、本発明は上記問題点に鑑み、高温のガスを用いることなぐ安全性が高ぐ 環境負荷が小さ ヽ酸化チタン合成法を提供することを目的とする。
課題を解決するための手段
[0005] 上記課題を達成するため種々検討した結果、ィルメナイトに炭酸ナトリウムを混合し て焼成した後、硝酸に溶解させ濾液を蒸発乾固させることにより酸ィ匕チタンが得られ ることを見出し、本発明を完成させた。
[0006] すなわち、本発明の硝酸溶液を経由した酸ィ匕チタン合成法は、ィルメナイトにアル カリ金属化合物を混合して混合物を得る混合工程と、前記混合物を焼成して焼成物 を得る焼成工程と、前記焼成物を硝酸で溶解して溶液を得る溶解工程と、前記溶液 を加熱し酸ィ匕チタンを析出させる析出工程とを備えたことを特徴とする。 [0007] また、前記混合工程にお!、て、ィルメナイトとアルカリ金属化合物とをチタンとアル カリ金属のモル比を 1 : 2. 5〜3. 5として混合することを特徴とする。
[0008] また、前記焼成工程において、前記混合物を 800〜1000°Cで 0. 5〜2時間焼成 することを特徴とする。
[0009] また、前記焼成物はアルカリ金属チタン酸塩であることを特徴とする。
[0010] また、前記溶解工程において、前記焼成物を粉砕後、硝酸に溶解させ、さらに不溶 分を除去することを特徴とする。
[0011] また、前記析出工程で得られた酸ィ匕チタンを洗浄する洗浄工程をさらに備えたこと を特徴とする。
[0012] さらに、前記洗浄工程において、酸化チタンを水及び硝酸で洗浄することを特徴と する。
発明の効果
[0013] 本発明によれば、高温のガスを用いることなぐ安全性が高ぐ環境負荷が小さい酸 化チタン合成法を提供することができる。
図面の簡単な説明
[0014] [図 1]本発明の酸ィ匕チタン合成法において得られた焼成物の粉末 XRDパターンであ る。
[図 2]同上、得られた酸ィ匕チタンの粉末 XRDパターンである。
発明を実施するための最良の形態
[0015] 本発明の硝酸溶液を経由した酸ィ匕チタン合成法は、ィルメナイトにアルカリ金属化 合物を混合して混合物を得る混合工程と、前記混合物を焼成して焼成物を得る焼成 工程と、前記焼成物を硝酸に溶解させて溶液を得る溶解工程と、前記溶液を濾過し 濾液を加熱して酸ィ匕チタンを析出させる析出工程とを備えたことを特徴とする。
[0016] はじめの混合工程においては、ィルメナイトにアルカリ金属化合物を混合する。ィル メナイトとしては、天然ィルメナイト鉱石を使用することができる。また、アルカリ金属化 合物としては、特定のものに限定されるものではないが、炭酸ナトリウム (Na CO )が
2 3 好適に用いられる。このほか、炭酸カリウムなどのアルカリ金属化合物を使用すること ができる。ィルメナイトとアルカリ金属化合物を混合する場合の混合比については、 化学量論的には、チタンとアルカリ金属のモル比を 1 : 3とすることによって、焼成工程 で得られる焼成物は組成が X Fe Ti O (Xはアルカリ金属、 a, b, c, dはそれぞれ a b c 2-d
、 0から 1までの数)と推定されるアルカリ金属含有チタン酸塩となり、最終的に得られ る酸ィ匕チタンの収率が最大となる。したがって、酸化チタンを高収率で得るために、 チタンとアルカリ金属のモル比は 1 : 2. 5〜3. 5とするのが好ましい。また、ィルメナイ トにアルカリ金属化合物を混合する際は、アセトン湿式混合などの常法を用いて混合 すればよい。
[0017] つぎの焼成工程において、混合工程で得られた混合物を 800〜1000°Cで 0. 5〜 2時間焼成することによって、酸ィ匕チタンの前駆体として、組成が X Fe Ti O (Xは a b c 2-d アルカリ金属、 a, b, c, dはそれぞれ、 0から 1までの数)と推定されるアルカリ金属含 有チタン酸塩を主成分として含む焼成物が得られる。
[0018] 溶解工程においては、焼成工程で得られた焼成物を粉砕した後、硝酸に溶解する 。硝酸としては、好ましくは濃硝酸が用いられ、粉砕した焼成物を硝酸中で撹拌する 。この場合、可溶分を十分に溶解させるため、室温で 1〜2日程度撹拌するのが好ま しい。または、例えば、 1日撹拌した後、 1日放置してもよい。そして、不溶分を除去す る。不溶分を除去することによって、最終的に得られる酸ィ匕チタンの純度が高まる。な お、不溶分には残留した原料としてのィルメナイトと、 XFeTiO (Xはアルカリ金属)型
4
構造を持つ副生成物が含まれる。不溶分の除去方法としては、濾過、デカンテーショ ンなどの常法を用いることができる力 溶液中に浮遊している微粒子を完全に取り除 き、得られる酸ィ匕チタンの純度を高めるためには濾過が好ましい。なお、ここで用いる 硝酸は、硫酸や塩酸などの硝酸以外の酸が添加されたものであってもょ 、。
[0019] その後、溶解工程で得られた溶液を加熱して酸化チタンを析出させる。具体的には 、溶液を 80〜100°C程度に加熱して水分を蒸発乾固させ、結晶性の酸化チタン粉 末を析出させる。なお、既存の方法では、このような低温域では結晶性の酸ィ匕チタン は析出しなかった。あるいは、上記の水分を蒸発乾固させる方法のほか、水熱法など の他の加熱方法によっても酸ィ匕チタンを析出させることができる。
[0020] 得られた酸ィ匕チタンの純度を高めるために、好ましくは酸化チタンを洗浄工程で洗 浄する。この場合、水と硝酸で何度か洗浄すればよい。 [0021] 以上の本発明の酸ィ匕チタン合成法によれば、低温で溶液を加熱して酸化チタンを 析出させるという、穏ゃ力な条件で酸ィ匕チタンを得ることができ、安全性が高ぐ環境 負荷が小さい酸ィ匕チタン合成法を提供することができる。また、本発明の酸化チタン 合成法により、環境負荷が小さく安全な工業プラントの設計が期待させる。
[0022] なお、本発明は上記実施形態に限定されるものではなぐ本発明の思想を逸脱し な!、範囲で種々の変形実施が可能である。
実施例 1
[0023] 酸化チタン含有率 52. 7%のィルメナイト 11. 92gと炭酸ナトリウムをモル比 1: 3で 混合し、 900°Cで 1時間焼成した。得られた焼成物について粉末 X線回折分析 (XR D)を行ったところ、図 1に示すように、酸化チタンの前駆体である Na Fe Ti O (a a b c 2-d
, b, c, dはそれぞれ、 0から 1までの数)が主成分として含まれていることが確認され た。なお、ィルメナイトと炭酸ナトリウムをモル比 1: 1で混合して焼成した場合には、前 駆体は生成せず、 NaFeTiO型構造の副生成物が得られた。
4
[0024] つぎに、前駆体を含む焼成物を粉砕し、粉砕した焼成物を濃硝酸中で 24時間撹 拌した。このとき、焼成物 lgについて 200mlの濃硝酸を用いた。その後、 24時間溶 液を静置し、吸引濾過により不溶分を残渣として除去した。そして、濾液として残った 溶液を 90°Cで加熱して蒸発乾固させると結晶性の粉末が得られ、この粉末を水で洗 浄して乾燥すると赤褐色の粉末が 5. 98g得られた。
[0025] この粉末について粉末 X線回折分析 (XRD)を行ったところ、図 2に示すように、ル チル型酸ィ匕チタンが得られたことが確認された。また、この粉末について蛍光 X線に よる元素分析を行ったところ、 Ti:Fe = 74. 2 : 25. 8であり、得られた粉末中の酸ィ匕 チタンの含有量は約 75%であった。したがって、原料のィルメナイトを基準とした酸 化チタンの収率は 71. 4%であった。
[0026] また、残渣につ 、て粉末 X線回折分析 (XRD)を行ったところ、 NaFeTiO型構造
4 の副生成物であった。
[0027] 続、て、酸ィ匕チタン粉末の表面を硝酸で 24時間洗浄した。そして、水で洗浄して 乾燥すると、薄い褐色に着色した酸化チタン粉末が得られた。蛍光 X線による元素分 析を行ったところ、 Ti:Fe = 87. 6 : 12. 4であり、得られた酸化チタンの純度は約 88 %であった。このように、硝酸で洗浄することによって、粉末の色が薄くなり、純度が 向上することが確認された。また、洗浄後の硝酸は黄色に着色していたことから、洗 浄前の粉末に不純物として含まれていた鉄分が硝酸中に溶出したものと推定された

Claims

請求の範囲
[1] ィルメナイトにアルカリ金属化合物を混合して混合物を得る混合工程と、前記混合物 を焼成して焼成物を得る焼成工程と、前記焼成物を硝酸で溶解して溶液を得る溶解 工程と、前記溶液を加熱して酸ィ匕チタンを析出させる析出工程とを備えたことを特徴 とする硝酸溶液を経由した酸化チタン合成法。
[2] 前記混合工程において、ィルメナイトとアルカリ金属化合物とをチタンとアルカリ金属 のモル比を 1 : 2. 5〜3. 5として混合することを特徴とする請求の範囲第 1項に記載 の硝酸溶液を経由した酸化チタン合成法。
[3] 前記焼成工程において、前記混合物を 800〜1000°Cで 0. 5〜2時間焼成すること を特徴とする請求の範囲第 1項に記載の硝酸溶液を経由した酸化チタン合成法。
[4] 前記焼成物はアルカリ金属含有チタン酸塩であることを特徴とする請求の範囲第 1項 に記載の硝酸溶液を経由した酸化チタン合成法。
[5] 前記溶解工程において、前記焼成物を粉砕後、硝酸に溶解させ、さらに濾過により 不溶分を除去することを特徴とする請求の範囲第 1項に記載の硝酸溶液を経由した 酸化チタン合成法。
[6] 前記析出工程で得られた酸ィ匕チタンを洗浄する洗浄工程をさらに備えたことを特徴 とする請求の範囲第 1項に記載の硝酸溶液を経由した酸化チタン合成法。
[7] 前記洗浄工程において、酸化チタンを水及び硝酸で洗浄することを特徴とする請求 の範囲第 6項に記載の硝酸溶液を経由した酸ィ匕チタン合成法。
PCT/JP2006/316919 2006-02-08 2006-08-29 硝酸溶液を経由した酸化チタン合成法 WO2007091342A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006031523 2006-02-08
JP2006-031523 2006-02-08

Publications (1)

Publication Number Publication Date
WO2007091342A1 true WO2007091342A1 (ja) 2007-08-16

Family

ID=38344949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316919 WO2007091342A1 (ja) 2006-02-08 2006-08-29 硝酸溶液を経由した酸化チタン合成法

Country Status (1)

Country Link
WO (1) WO2007091342A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116199268A (zh) * 2023-04-06 2023-06-02 攀枝花学院 钛酸铁钠粉体的制备方法
WO2024204101A1 (ja) * 2023-03-28 2024-10-03 一般財団法人カーボンフロンティア機構 酸素キャリアの製造方法、水素製造方法、および水素製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192727A (ja) * 1983-04-11 1989-08-02 Dow Chem Co:The 二酸化チタン顔料調製方法
JPH1095618A (ja) * 1996-04-13 1998-04-14 Tioxide Group Services Ltd 酸化チタンの製造方法
US6007617A (en) * 1996-10-08 1999-12-28 Tourangeau; Paulette System of colored mineral powders and its application in modern architectural materials
US6375923B1 (en) * 1999-06-24 2002-04-23 Altair Nanomaterials Inc. Processing titaniferous ore to titanium dioxide pigment
WO2005028369A1 (en) * 2003-09-18 2005-03-31 The University Of Leeds Process for the recovery of titanium dioxide from titanium-containing compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192727A (ja) * 1983-04-11 1989-08-02 Dow Chem Co:The 二酸化チタン顔料調製方法
JPH1095618A (ja) * 1996-04-13 1998-04-14 Tioxide Group Services Ltd 酸化チタンの製造方法
US6007617A (en) * 1996-10-08 1999-12-28 Tourangeau; Paulette System of colored mineral powders and its application in modern architectural materials
US6375923B1 (en) * 1999-06-24 2002-04-23 Altair Nanomaterials Inc. Processing titaniferous ore to titanium dioxide pigment
WO2005028369A1 (en) * 2003-09-18 2005-03-31 The University Of Leeds Process for the recovery of titanium dioxide from titanium-containing compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024204101A1 (ja) * 2023-03-28 2024-10-03 一般財団法人カーボンフロンティア機構 酸素キャリアの製造方法、水素製造方法、および水素製造装置
CN116199268A (zh) * 2023-04-06 2023-06-02 攀枝花学院 钛酸铁钠粉体的制备方法

Similar Documents

Publication Publication Date Title
US8206681B2 (en) Process for producing red iron oxide
JP2002507633A (ja) 二酸化チタン製造から生じる廃棄酸からの酸化鉄顔料の製造方法
BRPI0609681A2 (pt) processo de sulfato para a produção de titánia a partir de um material titanìfero
DE2707229C2 (de) Herstellung von Zink- und Erdalkalititanaten
BRPI0608611A2 (pt) processo de sulfato para a produÇço de titÂnia a partir de um material titanÍfero
RU2038300C1 (ru) Способ получения пигмента диоксида титана
RU2568112C2 (ru) Способ получения оксида хрома (iii)
Meng et al. Recovery of titanium from undissolved residue (tionite) in titanium oxide industry via NaOH hydrothermal conversion and H2SO4 leaching
AU605965B2 (en) Process for the manufacture of zirconium oxide hydrate from granular crystallized zirconium oxide
US3202524A (en) Manufacture of titanium dioxide
AU2002354885B2 (en) Recovery of titanium from titanium bearing materials
WO2007091342A1 (ja) 硝酸溶液を経由した酸化チタン合成法
US1932087A (en) Making titanium dioxide
CN101602581A (zh) 一种采用合金炉渣制造铝酸钙水泥的方法
AU2007342420B2 (en) Processes for the flux calcination production of titanium dioxide
JP2008143763A (ja) 二酸化チタンの製造の過程で生成する廃棄酸からの二酸化チタン、硫酸カルシウム及び酸化鉄の製造方法
NO121396B (ja)
CZ291224B6 (cs) Způsob výroby oxidu titaničitého
CA1071839A (en) Process for the treatment of acidic waste liquid containing dissolved ferrous salts
US3976761A (en) Preparation of TiO2 and artificial rutile from sodium titanate
JP2022510772A (ja) チタン担持材料からの生成物の抽出方法
CN105110380B (zh) 一种利用含钙镁氯化亚铁溶液制备颜料级Fe2O3的方法
KR100536261B1 (ko) 하수 슬러지 용융 소각 슬래그로부터 황산 침출법에 의한 알루미나의 회수방법
RU2281913C2 (ru) Способ получения диоксида титана
DE2107844B2 (de) Verfahren zur großtechnischen Herstellung von Magnesiumoxyd hoher Reinheit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP