WO2007088831A1 - 熱転写記録装置及び画像形成方法 - Google Patents

熱転写記録装置及び画像形成方法 Download PDF

Info

Publication number
WO2007088831A1
WO2007088831A1 PCT/JP2007/051440 JP2007051440W WO2007088831A1 WO 2007088831 A1 WO2007088831 A1 WO 2007088831A1 JP 2007051440 W JP2007051440 W JP 2007051440W WO 2007088831 A1 WO2007088831 A1 WO 2007088831A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
image
processing
contour
pixel
Prior art date
Application number
PCT/JP2007/051440
Other languages
English (en)
French (fr)
Inventor
Takayuki Ohkubo
Original Assignee
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Priority to US12/162,797 priority Critical patent/US8164787B2/en
Priority to EP07707671.9A priority patent/EP1980404B1/en
Publication of WO2007088831A1 publication Critical patent/WO2007088831A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/325Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads by selective transfer of ink from ink carrier, e.g. from ink ribbon or sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection
    • B41J2/36Print density control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/58Edge or detail enhancement; Noise or error suppression, e.g. colour misregistration correction

Definitions

  • the present invention relates to a thermal transfer recording apparatus and an image forming method, and more particularly to a thermal transfer recording apparatus and an image forming method for improving the print quality of thermal transfer recording of a black concealed image on a polycarbonate film.
  • thermal heads that are heating elements are arranged one-dimensionally (in the main scanning line direction), and recording paper and film are printed in the printing direction (sub-scanning lines) against this thermal head. (Direction).
  • the back of the ink ribbon stacked on the recording paper or film is heated with a thermal head, and the ink (coloring material) of the ink ribbon is sublimated or melted on the recording paper or film for printing.
  • a thermal head includes a plurality of heating resistors formed in a line on a substrate.
  • the thermal transfer printer is equipped with multiple ink ribbons. By transferring the ink of multiple colors (for example, yellow Y, magenta ⁇ , cyan C, black K) on the same position on the recording paper, the ink is transferred. Color printing can be performed.
  • a plurality of ink ribbons are installed in a rotating manner, and the ink ribbon for thermal transfer can be moved to the position of the thermal head.
  • Each thermal head is capable of controlling the amount of heating in stages.
  • it is affected by the density of dots and adjacent dots, and immediately controls the gradation for each pixel.
  • the printing process is controlled by two values: transfer / not transfer.
  • gradation expression is performed by area modulation by drawing dots of a certain size.
  • a halftone dot generation method using a rational tangent matrix or a supercell method halftone dot generation method in which the number of gradations is artificially increased using a plurality of matrices based on this method is used.
  • an image signal is processed by an image signal processing correction circuit including a gradation correction table, and the processed image signal and an image signal of an external device are selectively switched and switched.
  • an image signal processing correction circuit including a gradation correction table
  • the processed image signal and an image signal of an external device are selectively switched and switched.
  • the input image data is divided into a spatial matrix, and the growth start floor is determined according to the priority determined in order from the pixel located at the center of the divided matrix toward the pixels located at the outer edge of the matrix.
  • Patent Document 1 Japanese Patent Document 2
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 177826
  • Patent Document 2 Japanese Patent Application No. 2005-096406
  • thermal heads with higher resolutions for example, 300dp and 600dpi and higher
  • have an adverse effect on thermal head thermal storage contrary to the improvement in image resolution, and are smooth due to dot crushing. Tone expression is becoming difficult.
  • the intermediate transfer film 61 thus produced is transferred to a polycarbonate film 75 as shown in FIG.
  • a white spot 77 occurs due to a positional shift at the time of printing the boundary between the halftone dot images (65, 67, 69) of C, Y, and ⁇ and the black concealment image 73. That is, as shown in FIG. 15 (b), the boundary between the black background and the color image is white.
  • the intermediate transfer film force where the ink of the white backing ⁇ 63, black concealment ⁇ 73, C65, Y67, ⁇ 69 overlaps is also transferred to the polycarbonate 'film 75 due to the overlap of the ink. Due to the step, poor adhesion 79 occurs in the concealed part (Fig. 15 (c)).
  • the present invention has been made in view of such problems, and the object of the present invention is a black background.
  • the object of the present invention is a black background.
  • the present invention provides a thermal transfer recording apparatus and an image forming method capable of printing an image.
  • the present invention for solving the above-described problems is a thermal transfer recording apparatus having a thermal head, which is acquired by an image data acquisition unit that acquires RGB original image data, and the image data acquisition unit. After the gradation conversion is performed on the RGB original image data, the color separation means for color separation to CMY K and the image data that is separated by the color separation means are expanded by different pixels.
  • the dot conversion means, the print data generation means for generating print data by superimposing the image data processed by the dot conversion means, and the print data generated by the print data generation means are printed. Printing means for printing as a printed material;
  • a thermal transfer recording apparatus A thermal transfer recording apparatus.
  • contour expanding means may be performed after the shifting means.
  • the contour expansion means replaces the value of each pixel of each separated image data with the minimum value of the brightness of the surrounding pixels of each pixel, and this process is performed for each separated image. By repeating a predetermined number of times for each data, the number of pixels is expanded.
  • a second invention provides a process of acquiring RGB original image data, and the RGB original image data After gradation conversion is performed, the process of separating the color into CMYK, the process of expanding each of the separated image data by different pixels, and the expanded image data with different pixel components.
  • a halftone dot conversion process on each shifted image data, a step of superimposing the halftone dot converted image data to generate print data, and the print data An image forming method comprising: a printing unit that prints as a printed material.
  • FIG. 1 is a diagram showing a configuration example of a thermal transfer recording apparatus S according to the present embodiment.
  • FIG. 3 is a flowchart showing the flow of processing of the image data generation device 1
  • FIG. 4 is a diagram showing details of the storage unit 12 of the image data generation device 1
  • FIG. 5 is a flowchart showing a flow of contour expansion processing
  • FIG. 11 is a flowchart showing the flow of image processing of the second embodiment.
  • FIG. 12 is a diagram showing an example of contour expansion processing parameters in the second embodiment.
  • FIG. 13 is a flowchart showing a flow of contour expansion processing according to the third embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of the thermal transfer recording apparatus S according to the present embodiment.
  • the thermal transfer recording device S includes an image data generating device 1 and a printing unit 2.
  • a general-purpose computer or the like can be applied to the image data generation device 1, and the control unit 1
  • the storage unit 12 is, for example, a hard disk device or the like, and stores image data, various programs for image processing (to be described later) executed by the control unit 11, various parameters for image processing, and the like.
  • the input unit 13 is, for example, a keyboard, a mouse, and the like, and is used for inputting user instructions and the like.
  • a display part is a display, for example, and displays various data.
  • the communication unit 15 is a communication port or a communication control device, and connects to a network or another device.
  • the printer port 16 is connected to the printing unit 2 by a connection cable 3 such as a USB cable. These components are connected to each other via a bus 17.
  • the control unit 1511 includes a CPU (central processing unit), a RAM (random access memory), a ROM (read only memory), and the like.
  • the control unit 1511 stores the image of the present invention stored in the storage unit 12.
  • the processing program is read and executed to control each of the above components, and also functions as image data acquisition means, color separation means, contour expansion means, shift means, halftone dot conversion means, and print data generation means of the present invention. Each of these means will be described later.
  • the printing unit 2 drives the buffer memory 21, the printer control unit 22, the thermal head 23, the thermal head drive unit 24 that drives the thermal head 23, the ink ribbon feed motor 25, and the ink ribbon feed motor 25. It consists of a motor drive unit 26, and each component is interconnected via a nose 27.
  • the noffer memory 21 temporarily stores image data transferred from the image data generation device 1 via the connection cable 3.
  • the printer control unit 22 controls to transfer the image data temporarily stored in the nother memory 21 to the thermal head 23, and controls the thermal head driving unit 24 and the motor driving unit 26 to perform recording. It functions as a printing means for printing an image on a sheet.
  • the printer controller 22 sets the energy (for example, changes from 0 to 100%) applied to the thermal head 23 according to the image data, and prints the image.
  • the thermal power S is applied to the ink ribbon according to the energy set from the thermal head 23, whereby the applied portion of the ink melts or sublimates and adheres to the recording sheet.
  • the recording sheet is, for example, a sheet of paper, an intermediate transfer film, polycarbonate, or the like.
  • ink ribbons There are four types of ink ribbons: C (cyan), M (magenta), Y (yellow), and K (black), and color printing is performed by transferring these inks in layers.
  • FIG. 2 is a diagram showing a functional configuration of the thermal transfer recording apparatus S of FIG.
  • the image data generation device 1 of the thermal transfer recording device S has functions of an image reading 31 for executing processing at the input unit 13 and an image processing 35 for executing processing at the control unit 11, and the storage unit 12 stores image data. Stores processing parameters 37 used in the image memory 33 and image processing 35.
  • the printing unit 2 has the function of image printing 39.
  • the input unit 13 performs an image reading process 31 for the image data 5, stores the read image data in the image memory 33 of the storage unit 12, and sends it to the control unit 11 at the same time.
  • the control unit 11 performs image processing 35 on the image data 5.
  • the image processing 35 includes processing steps such as resolution conversion processing, gradation conversion processing, CMYK separation processing, contour expansion processing, image shift processing, halftone processing, image reverse shift processing, and the like.
  • the final image data is obtained by performing image processing on the image data using processing parameters 37 defined for each processing step.
  • the image data being processed is also stored in the image memory 33 of the storage unit 12.
  • the control unit 11 sends the finally obtained image data to the printing unit 2.
  • the printer control unit 22 controls the thermal head 23 and the ink ribbon feed motor 25 and executes the image printing 39 using the received image data finally obtained as printing data.
  • FIG. 3 is a flowchart showing a flow of processing of the image data generation device 1
  • FIG. 4 is a diagram showing details of the storage unit 12 of the image data generation device 1.
  • the input unit 13 of the image data generation device 1 reads the image data 5 (step 101), and the control unit 11 stores the acquired image data G (41-1) in the image memory 33 of the storage unit 12. (Step 102).
  • control unit 11 executes image processing 35, and first, performs resolution conversion processing of the image data G (41-1) in accordance with the resolution of the printing unit 2, and the image data G (41— 2) generate
  • Step 103 the image is stored in the image memory 33 of the storage unit 12.
  • the resolution of the printing unit 2 is, for example, 600 dpi (dots per inch), and is stored in the processing parameter 37 of the storage unit 12 as the resolution conversion parameter 43 in advance.
  • control unit 11 performs gradation conversion of the image data G (41-2), and the image data G (4
  • the gradation conversion parameter 45 may be stored in advance in the processing parameter 37 of the storage unit 12.
  • control unit 11 converts the image data G (41-3) after the gradation conversion into CMYK data.
  • image data G (41-4) is generated (step 105), and storage unit 12
  • Image data G (41-4) is cyan G, magenta G,
  • control unit 11 performs contour expansion on the image data G (41-4) after the CMYK separation processing.
  • Image data G (41-5: cyan G, magenta G, yellow G,
  • the tension processing is a core part of the image data generation processing of the present embodiment, and will be described in detail later.
  • the contour expansion process is a process suitable for an image in which a fine color image is concealed with a black background as shown in FIG. 15, for example, and is optimal when used to print such an image.
  • the contour expansion processing parameter 47 used for the contour expansion processing is also stored in advance in the processing parameter 37 of the storage unit 12 like each processing parameter.
  • control unit 11 performs image data for each color of the image data G (41-5) after the contour expansion processing.
  • Image shift processing is performed on the data (cyan G, magenta G, yellow G, black G).
  • Image data G (41—6: G, G, G, G) and image data G (41—6: G
  • G 1, G 2, G 3) are generated (step 107) and stored in the image memory 33 of the storage unit 12.
  • the image shift process a shift process for shifting with a double tone or a simultaneous process of a shift process for each color and a shift process for shifting with a double tone is applied.
  • the image data represents CMYK with the same angle.
  • the line type is 90 °.
  • the image data G (41-7: G, G, G, G) is generated (step 107). Generation
  • G 1, G 2, G 3) are stored in the image memory 33 of the storage unit 12.
  • L1 and L2 which are the number of pixels shifted in the right and down directions, differ depending on the resolution and the number of lines of the thermal head 23.
  • the predetermined shift pixel numbers L1 and L2 are stored in the processing parameter 37 of the storage unit 12 as the shift processing parameter 49.
  • image data G (41-6: G, G, G, G) is converted to L1 pixel.
  • the image data G 7 (41 ⁇ 7: G 1, G 2, G 3, G 4) is generated by shifting rightward by the amount and further by L2 pixels downward (step 107).
  • Generated image data G (41 ⁇ 7: G 1, G 2, G 3, G 4) is generated by shifting rightward by the amount and further by L2 pixels downward (step 107).
  • the number of pixels L3 (L3, L3, L3, L3) to be shifted in the shift processing for each color is determined by the service.
  • the number of shift pixels different for each color is for flattening so that the colors do not overlap as much as possible.
  • shift processing is performed around M (magenta). Since K (black) has a large level difference, try to keep other color power as far as possible. Since C (cyan) and M (magenta) have a large color difference, they should be separated as much as possible.
  • control unit 11 reads the image data G (41-6: G, G, G, G) and
  • image data G (41—7: G, G, G, G) are subjected to halftone processing, and image data G
  • the matrix size of the halftone dot depends on the resolution of the thermal head 23 and the number of lines of the image.For example, when the resolution is 600 dpi, the number of lines is 601pi, 10X 10 pixels, 751pi 8X8 pixels, 1 OOlpi 6X6 pixels, 1201pi 5X5 pixels As such, it is determined in advance and stored in the processing parameter 37 of the storage unit 12 as a halftone processing parameter.
  • control unit 11 performs image data G (41-8: G, G, G, G) after halftone processing.
  • the image data G (41—10: G, G, G, G) is generated by superimposing them.
  • Image data G (41-10: G, G, G, G) is the buffer memory of the printing unit 2
  • the image is temporarily stored in 21, and the printer controller 22 controls the thermal head driver 24 and the motor driver 26 to print an image (step 111).
  • Step 101 to Step 111 From the above series of processing (Step 101 to Step 111), it is possible to print a good image without the white spots and poor adhesion shown in FIG. It becomes possible.
  • FIGS. Fig. 5 is a flowchart showing the flow of the contour expansion processing
  • Fig. 6 is a diagram illustrating the contour expansion processing
  • Fig. 7 is a diagram illustrating examples of the contour expansion processing parameters
  • Figs. 8, 9, and 10 are the contour expansion processing. It is a figure explaining.
  • control unit 11 of the image data generation device 1 performs image data G after CMYK separation processing.
  • control unit 11 performs contour processing on the image data G of color X to be processed from now on.
  • the extended processing parameter I (47) is read from the processing parameter 37 of the storage unit 12 (step 202).
  • the contour expansion processing parameter 47 is a parameter that determines the number of pixels for contour expansion for each color. For example, as shown in FIG. 7, C (cyan) is 4 pixels, M (magenta) is 2 pixels, and Y (yellow). ) Is 3 pixels, K (black) is 5 pixels, etc., and are stored in the processing parameter 37 of the storage unit 12 in advance.
  • processing coefficients i and j are set to 1 (steps 203 and 204).
  • the coefficient i is a coefficient for counting the number of pixels for contour processing
  • j is a coefficient indicating the pixel number to be processed
  • i is 1 to I
  • j is 1 to J (all pixels of image data G) Number).
  • the contour expansion process refers to the pixel values of the surrounding pixels (peripheral pixels 55: for example 55-1 to 55-8) for the pixel to be processed (target pixel 53). This is a process of replacing the pixel value of the target pixel 53 with the pixel value of the peripheral pixel having the lowest brightness among the peripheral pixels 55 (step 205).
  • the pixel value of the target pixel 53 is replaced with the pixel value of the peripheral pixel 55-5 having the lowest brightness among the peripheral pixels 55-1 to 55-8.
  • step 205 to step 207 is repeated for the number of times of the contour expansion processing parameter I defined for each color.
  • the contour of the color is expanded by the number of pixels of the contour expansion processing parameter I defined for each color.
  • step 210 the above processing (step 201 to step 209) is repeatedly executed for all colors (C, M, Y, ⁇ ).
  • the K (black) contour expansion processing is not performed for an image concealed with a black background, but only for C (cyan), M (magenta), and Y (yellow).
  • FIG. 8 is a diagram for explaining the contour expansion process for an actual image.
  • FIG. 4A shows original image data. Although shown here as a black-and-white image, it is actually an image in which the tachometer, water temperature data, remaining fuel data, and other marks are shown in color on a black background.
  • FIG. 5B shows an image obtained by deleting K (black) from the original image data.
  • the thermal transfer recording apparatus of the present embodiment adopts the contour expansion process and changes the amount of contour expansion of each color of CMYK, as shown in FIG.
  • the level difference can be reduced, and the adhesion failure of the black concealment portion can be reduced.
  • FIG. 10 shows an image having a color pattern on a black background as shown in FIG. It is a figure explaining the thermal transfer recording process of this Embodiment in the case of printing on a rum.
  • the intermediate transfer film 61 is concealed with black 73, and then the image data obtained by the processing flow of FIG. 5 image data G (41-10: G, G, G , G , G
  • FIG. 11 is a flowchart showing the flow of processing of the image processing 35 according to the second embodiment of the present invention
  • FIG. 12 is a diagram showing processing parameters in the contour expansion processing. This embodiment is different from the first embodiment in that a contour expansion process is performed on image data after image shift.
  • control unit 11 first performs resolution conversion processing of the input image data 5 (G) to obtain an image Data G is obtained (step 301), gradation conversion processing of image data G is performed, and image data G
  • Step 302 CMYK separation processing of image data G is performed, and image data G (
  • control unit 11 subsequently performs the contour expansion process. In the second embodiment, however, the control unit 11 performs processing on the image data G (G 1, G 2, G 3, G 4).
  • image shift
  • image data G (G, G, G, G)
  • image data G (G, G, G, G)
  • the image shift process is performed in the same manner as the image shift process method described in the first embodiment.
  • shift processing for shifting with a double tone or shift processing for each color Apply simultaneous processing of shift processing for shifting with double tone.
  • control unit 11 performs image data G (G 1, G 2, G 3, G 4) and image data after the image shift process.
  • the contour expansion processing parameter I is set to a different value.
  • Figure 12 shows an example.
  • the contour expansion process performed on the image data G is C
  • contour expansion processing parameters By changing the contour expansion processing parameters, two pieces of image data G (G, G, G, G) having different expansion widths and image data G (G, G, G, G) are obtained.
  • control unit 11 obtains the image data G (G 1, G 2, G 3) obtained by the above contour expansion process.
  • the halftone processing is the same as that in the first embodiment.
  • control unit 11 performs image data G (G 1, G 2, G 3, G 4) and image data G (G
  • the image is shifted in the reverse direction by the same number of pixels as the number of pixels shifted by the image shift process described above. As a result, the image returns to the original pixel position.
  • the print image data G (G 1, G 2, G 3, G 4) is obtained and controlled.
  • the unit 11 sends this to the printing unit 2 via the cable 3, and the printing process is performed under the control of the printer control unit 22 of the printing unit 2.
  • FIG. 13 is a flowchart showing the flow of the contour expansion process according to the third embodiment of the present invention.
  • This processing is the contour expansion processing in the image processing 35 of the present invention described in the first embodiment (step 106 in FIG. 3) or the contour expansion processing in the image processing 35 described in the second embodiment (step 106). It can be executed as step 305) in FIG.
  • control unit 11 of the image data generation device 1 performs the image data G after CMYK separation processing.
  • control unit 11 reads the parameter P for designating the area to be subjected to the contour expansion process.
  • This parameter P is a parameter that specifies the color gamut to which the contour expansion process is applied.
  • This parameter is a specific gradation value.
  • This parameter is determined in advance and stored as the contour expansion processing parameter 47 of the storage unit 12.
  • FIG. 14 shows an example of the contour extension region designation parameter P.
  • the parameter p is not limited to this value, and may be set to a different value depending on the image.
  • control unit 11 relates to the image data G of color X to be subjected to contour expansion processing.
  • the 4X contour expansion processing parameter I (47) is read from the processing parameter 37 of the storage unit 12 (step 403).
  • the contour expansion processing parameter 47 may be the same as that described in the first embodiment (for example, FIG. 7).
  • the processing coefficients i and j are set to 1 (steps 404 and 405).
  • the coefficient i is a coefficient for counting the number of pixels for contour processing
  • j is a coefficient indicating the pixel number to be processed
  • i is 1 to I
  • j is 1 to J (all pixels of image data G) Number).
  • a pixel to be subjected to the contour expansion process is selected (step 406).
  • the contour expansion process (step 407) is executed only for.
  • G (j) pixel value is parameter P
  • step 406 If it is larger than 4X X (NO in step 406), the contour expansion processing (step 407) is not executed. [0071] In the case of the contour expansion region designation parameter P shown in FIG. value
  • contour expansion processing (step 407) is performed.
  • the contour expansion process is the same as that described with reference to FIG. 6 in the first embodiment.
  • step 411 the above processing (step 406 to step 409) is repeated for the number of times of the contour expansion processing parameter I defined for each color.
  • the contour of the color is expanded by the number of pixels of the contour expansion processing parameter I defined for each color only for the contour expansion processing region and the selected pixel.
  • step 412 the above processing (step 401 to step 411) is repeatedly executed for all colors (C, M, Y, ⁇ ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electronic Switches (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Record Information Processing For Printing (AREA)
  • Color, Gradation (AREA)

Abstract

 熱転写記録装置Sの画像データ生成装置1の制御部11は、入力され記憶部12の画像メモリ33に格納されている画像データ5に対して、解像度変換処理、階調変換処理、CMYK分版処理、輪郭拡張処理、画像シフト処理、網点処理、画像逆シフト処理を施し、生成された画像データを印画部2に送り、中間転写媒体に印画したうえ、ポリカーボネイト・フィルム等に転写する。輪郭拡張処理により、黒地で隠蔽されたカラー画像の輪郭を、色毎に異なる画素分拡張し、黒地で隠蔽する。

Description

明 細 書
熱転写記録装置及び画像形成方法
技術分野
[0001] 本発明は、熱転写記録装置および画像形成方法に関し、さらに詳しくは、ポリカー ボネイト'フィルム等への黒隠蔽画像の熱転写記録の印刷品質を向上する熱転写記 録装置および画像形成方法に関する。
背景技術
[0002] 従来の熱転写プリンタによる転写は、加熱要素であるサーマルヘッドが 1次元的に 並んでおり(主走査線方向)、このサーマルヘッドに対し、記録紙やフィルムが印刷方 向(副走査線方向)に順次送られるように構成されている。
そして、記録紙やフィルムに重ねたインクリボンの背後をサーマルヘッドで加熱し、 インクリボンのインク (色材)を記録紙またはフィルムに昇華あるいは溶融して印画す る。
[0003] サーマルヘッドは、基板上に一列に形成される複数の発熱抵抗体から成る。熱転 写プリンタには複数のインクリボンが備えられ、記録紙の同一位置に複数色のインクリ ボン(例えば、イェロー Y、マゼンダ Μ、シアン C、ブラック K)のインクを重ねて転写す ることで、カラー印刷を行うことができる。例えば、複数のインクリボンが回転式に設置 され、熱転写を行うインクリボンをサーマルヘッドの位置に移動できるようになつてい る。
[0004] 各サーマルヘッドは、段階的に加熱量の制御ができる力 色材を転写する際には、 ドットの密度や隣接ドットの影響を受けやすぐ各画素毎に階調をコントロールするこ とは難しいため、転写する/転写しない、の 2値で印画処理を制御する。この場合、一 定の大きさのドットを描画することで、面積変調により階調表現を行う。例えば、有理 正接マトリクスを用いた網点発生方法や、この手法を基とした複数のマトリクスを用い て、階調数を擬似的に増加させるスーパーセル方式の網点発生方法が用いられる。
[0005] さら〖こ、階調補正テーブルを含む画像信号処理用補正回路により画像信号を処理 し、処理した画像信号と外部装置力もの画像信号を択一的に切り替えて、切り替え出 力される画像信号を階調処理して出力する方法がある。また、入力画像データを空 間的マトリクスに区分し、区分されたマトリクスの中央に位置する画素から、マトリクス の外縁に位置する画素に向かって順に決定された優先順位に従って定められた成 長開始階調値に基づ ヽて階調変換を行う方法もある。
(例えば、特許文献 1、特許文献 2参照)
[0006] 特許文献 1 :特開平 11 177826号公報
特許文献 2:特願 2005— 096406号公報
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、近年、サーマルヘッドの高解像度化(例えば 300dp も 600dpi以 上)により、画像の解像度の向上に相反してサーマルヘッドの蓄熱の影響が大きくな り、網点のつぶれ等により滑らかな階調表現が難しくなつている。
[0008] さらに、中間転写フィルムに印画した画像をポリカーボネイト'フィルム等に転写する 場合には、印画抜け(白抜け)や密着不良が生じるという問題がある。
すなわち、図 15 (a)に示すような黒地にカラーの模様があるような原画像データを ポリカーボネイト'フィルム 75に印刷する場合には、図 16に示すように、まず、原画像 データを模様部分の C、 M, Y、 Κと黒地の Κ (黒隠蔽部)に分版し、中間転写フィル ム 61に C、 Y、 Μおよび黒隠蔽部 73 (Κ)を重ね印画し、その上に白色で裏打ちを行 う(白裏打ち部 63)。
このようにしてできた中間転写フィルム 61を、同図(b)に示すように、ポリカーボネィ ト ·フィルム 75に転写する。
[0009] このときに、 C、 Y、 Μの網点画像(65、 67、 69)と黒隠蔽画像 73の境界の印画時 の位置ずれにより、白抜け 77が生じてしまう。すなわち、図 15 (b)に示すように、黒地 とカラー画像の境界部が白く抜けてしまう。
また、図 16【こ示すよう【こ、白裏打ち咅 63、黒隠蔽咅 73、 C65、 Y67、 Μ69のインク が重なった中間転写フィルム力もポリカーボネイト'フィルム 75に転写を行う場合に、 インクの重なりによる段差で隠蔽部に密着不良 79が生じてしまう(図 15 (c) )。
[0010] 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、黒地 の画像をポリカーボネイト'フィルム等に転写する場合に、黒地の部分との境界部で の白抜けや、密着不良がなぐまた、サーマルヘッドに蓄積される熱の影響をうけな い滑らかな階調画像を印画可能な熱転写記録装置および画像形成方法を提供する ことである。
課題を解決するための手段
[0011] 前述した課題を解決するための本発明は、サーマルヘッドを有する熱転写記録装 置であって、 RGBの原画像データを取得する画像データ取得手段と、前記画像デ ータ取得手段により取得された RGBの原画像データに階調変換を施した後、 CMY Kに分版する分版手段と、前記分版手段により分版された各画像データを、夫々異 なる画素分だけ拡張させる輪郭拡張手段と、前記輪郭拡張手段により拡張された各 画像データを、夫々異なる画素分だけシフトさせるシフト手段と、前記シフト手段によ りシフトされた各画像データに対して網点変換処理を行う網点変換手段と、前記網点 変換手段により処理された各画像データを重ね合わせ、印画データを生成する印画 データ生成手段と、前記印画データ生成手段により生成された印画データを印刷物 として印画する印画手段と、
を具備することを特徴とする熱転写記録装置である。
また、輪郭拡張手段を、シフト手段後に行ってもよい。
[0012] 前記輪郭拡張手段は、前記分版された各画像データの各画素の値を、前記各画 素の周囲画素の明るさの最小値に置き換え、この処理を前記分版された各画像デー タ毎に定めた回数だけ繰り返すことにより、前記回数の画素分だけ拡張させる。
[0013] 入力された原画像データを階調変換した後、 C (シアン)、 M (マゼンダ)、 Y (イエロ 一)、 K (ブラック)に色分解し、それぞれの画像データの輪郭部分を輪郭拡張手段に より拡張する。これにより、例えば、黒地の画像において、その輪郭部における白抜 けのない品質の高い印画が可能になる。また、 C (シアン)、 M (マゼンダ)、 Y (イエロ 一)、 K (ブラック)のそれぞれの画像データ毎に輪郭拡張の画素数を変えて処理す ることにより、カラーインキの重ね印画による厚みが起因となる密着不良を起こりにくく することが可能である。
[0014] 第 2の発明は、 RGBの原画像データを取得する工程と、前記 RGBの原画像データ に階調変換を施した後、 CMYKに分版する工程と、分版された各画像データを、夫 々異なる画素分だけ拡張させる工程と、拡張された各画像データを、夫々異なる画 素分だけシフトさせる工程と、シフトされた各画像データに対して網点変換処理を行 う工程と、前記網点変換された各画像データを重ね合わせ、印画データを生成する 工程と、前記印画データを印刷物として印画する印画手段と、を具備することを特徴 とする画像形成方法である。
発明の効果
[0015] 本発明によれば、白の裏打ちや黒地の画像をポリカーボネイト'フィルム等に転写 する場合に、黒地の部分との境界部での白抜けや、密着不良がなぐまた、サーマル ヘッドに蓄積される熱の影響をうけない滑らかな階調画像を印画可能な熱転写装置 を提供することが可能になる。
図面の簡単な説明
[0016] [図 1]本実施形態に係る熱転写記録装置 Sの構成例を示す図
[図 2]熱転写記録装置 Sの機能構成を示す図
[図 3]画像データ生成装置 1の処理の流れを示すフローチャート
[図 4]画像データ生成装置 1の記憶部 12の詳細を示す図
[図 5]輪郭拡張処理の流れを示すフローチャート
[図 6]輪郭拡張処理を説明する図
[図 7]輪郭拡張処理パラメータの例を示す図
[図 8]輪郭拡張処理を説明する図
[図 9]輪郭拡張処理を説明する図
[図 10]輪郭拡張処理を説明する図
[図 11]第 2の実施例の画像処理の流れを示すフローチャート
[図 12]第 2の実施例の輪郭拡張処理パラメータの例を示す図
[図 13]第 3の実施形態に係る輪郭拡張処理の流れを示すフローチャート
[図 14]輪郭拡張領域指定パラメータの例を示す図
[図 15]従来の印画例
[図 16]従来の印画方法 符号の説明
[0017] S 熱転写記録装置
1 画像データ生成装置
2 印画部
5 画像データ
11 制御部
12 記憶部
23 サーマルヘッド
33 画像メモリ
37 処理パラメータ
35 画像処理
発明を実施するための最良の形態
[0018] 以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。
[0019] 熱転写記録装置の構成'機能)
まず、図 1および図 2に沿って、本発明の第 1の実施形態に係る熱転写記録装置の 構成と機能について説明する。
[0020] 図 1は、本実施形態に係る熱転写記録装置 Sの構成例を示す図である。熱転写記 録装置 Sは、画像データ生成装置 1と、印画部 2から成る。
[0021] 画像データ生成装置 1は、例えば、汎用コンピュータ等を適用可能であり、制御部 1
1、記憶部 12、入力部 13、表示部 14、プリンタポート 16、通信部 15等力もなる。記憶 部 12は、例えばノ、ードディスク装置等であり、画像データや、制御部 11で処理を実 行する後述する画像処理用の各種プログラムや、画像処理用の各種パラメータ等を 格納する。
入力部 13は、例えばキーボード、マウス等であり、ユーザの指示等の入力に使用 する。また、表示部は、例えばディスプレイであり、各種データを表示する。通信部 15 は、通信ポートや通信制御装置であり、ネットワークや他の装置との接続を行う。プリ ンタポート 16は、 USBケーブル等の接続ケーブル 3等により印画部 2を接続する。こ れらの構成要素は、バス 17を介して相互に接続されて ヽる。 [0022] 制御咅 1511は、 CPU (central processing unit)、 RAM(random access memory), RO M(read only memory)等カゝら構成されており、例えば記憶部 12に格納された本発明 の画像処理用プログラムを読出し実行し、上記の各構成要素を制御するとともに、本 発明の画像データ取得手段、分版手段、輪郭拡張手段、シフト手段、網点変換手段 、印画データ生成手段として機能する。これらの各手段については後述する。
[0023] 印画部 2は、バッファメモリ 21とプリンタ制御部 22、サーマルヘッド 23、サーマルへ ッド 23を駆動するサーマルヘッド駆動部 24と、インクリボン送りモータ 25、インクリボ ン送りモータ 25を駆動するモータ駆動部 26で構成され、各構成要素はノ ス 27を介 して相互接続されている。
[0024] ノッファメモリ 21は、画像データ生成装置 1から接続ケーブル 3を介して転送される 画像データを一時的に格納する。
[0025] プリンタ制御部 22は、ノッファメモリ 21に一時的に格納されている画像データをサ 一マルヘッド 23へ転送する制御を行うとともに、サーマルヘッド駆動部 24およびモー タ駆動部 26を制御して記録シートに画像を印画する印画手段として機能する。
記録シートに画像を印画するためには、プリンタ制御部 22により、画像データに応 じてサーマルヘッド 23に印加されるエネルギー(例えば、 0〜100%まで変ィ匕)が設 定され、画像印画の際に、サーマルヘッド 23から設定されたエネルギーに応じた熱 力 Sインクリボンに印加され、これにより、印加部分のインクが溶融あるいは昇華して記 録シートに付着する。記録シートは、例えば、紙や中間転写フィルム、ポリカーボネー ト等のシートである。
また、インクリボンには、 C (シアン)、 M (マゼンダ)、 Y (イェロー)、 K (ブラック)の 4 種類があり、これらのインクを重ねて転写することによりカラー印画が行われる。
[0026] 図 2は、図 1の熱転写記録装置 Sの機能構成を示す図である。
熱転写記録装置 Sの画像データ生成装置 1は、入力部 13で処理を実行する画像 読み取り 31、制御部 11で処理を実行する画像処理 35の機能を持ち、記憶部 12は、 画像データを格納する画像メモリ 33と画像処理 35で使用する処理パラメータ 37の 格納機能を持つ。
また、印画部 2は、画像印画 39の機能を持つ。 [0027] 入力部 13は画像データ 5の画像読み取り処理 31を行い、読み取った画像データ を記憶部 12の画像メモリ 33に格納すると同時に、制御部 11に送る。制御部 11は、 画像データ 5に対して画像処理 35を行う。
画像処理 35は、解像度変換処理、階調変換処理、 CMYK分版処理、輪郭拡張処 理、画像シフト処理、網点処理、画像逆シフト処理等の処理工程より成り、記憶部 12 の画像メモリ 33内の画像データをそれぞれの処理工程用に定めた処理パラメータ 3 7を用いて画像処理し、最終的な画像データを得る。処理途中の画像データも記憶 部 12の画像メモリ 33内に記憶される。制御部 11は、最終的に得られた画像データを 印画部 2に送る。
印画部 2は、受信した最終的に得られた画像データを印画データとして、プリンタ制 御部 22がサーマルヘッド 23やインクリボン送りモータ 25を制御し、画像印画 39を実 行する。
[0028] 画像データ生成処理の流れ)
次に、図 3、図 4を用いて、本実施の形態による画像データ生成処理の流れを説明 する。図 3は、画像データ生成装置 1の処理の流れを示すフローチャート、図 4は、画 像データ生成装置 1の記憶部 12の詳細を示す図である。
[0029] 画像データ生成装置 1の入力部 13は、画像データ 5を読み込み (ステップ 101)、 制御部 11は、取得した画像データ G (41— 1)を記憶部 12の画像メモリ 33に保存す る(ステップ 102)。
[0030] 次に、制御部 11は、画像処理 35を実行し、まず、印画部 2の解像度に合わせて、 画像データ G (41— 1)の解像度変換処理を行い、画像データ G (41— 2)を生成し
1 2
(ステップ 103)、記憶部 12の画像メモリ 33に保存する。印画部 2の解像度は、例え ば 600dpi (dots per inch)であり、予め、解像度変換パラメータ 43として記憶部 12の 処理パラメータ 37に格納しておく。
[0031] 次に、制御部 11は、画像データ G (41— 2)の階調変換を行い、画像データ G (4
2 3
1 - 3)を生成し (ステップ 104)、記憶部 12の画像メモリ 33に保存する。
同一色を 2つに分解し、ずらし、重ね印画するダブルトーンの場合、理想的には 50 %の階調変換をすればよいが、実際には、 50%では重ね印画したときに隙間ができ てしまうため、 60〜65%の階調変換を行う。最適な階調変換は、印画部 2の解像度 、印画画像の線数等により異なるので、階調変換パラメータ 45として記憶部 12の処 理パラメータ 37に予め格納しておくとよい。
例えば、解像度 600dpiで線数 601pi (lines per inch)および 751piの場合は 60%、 lOOlpiおよび 1201piの場合は 65%というように予め定めて、記憶部 12の処理パラメ ータ 37に格納しておき、処理時に適する階調変換パラメータを検索して使用する。
[0032] 次に、制御部 11は、階調変換後の画像データ G (41— 3)を CMYKデータに変換
3
し (CMYK分版処理)、画像データ G (41— 4)を生成し (ステップ 105)、記憶部 12
4
の画像メモリ 33に格納する。画像データ G (41— 4)は、シアン G 、マゼンダ G 、
4 4C 4M イェロー G 、ブラック G の 4個の画像データから構成される。
4Y 4K
[0033] 次に、制御部 11は、 CMYK分版処理後の画像データ G (41—4)に対して輪郭拡
4
張処理を行い、画像データ G (41— 5 :シアン G 、マゼンダ G 、イェロー G 、ブラ
5 5C M 5Y ック G )を生成し (ステップ 106)、記憶部 12の画像メモリ 33に格納する。この輪郭拡
5K
張処理は、本実施の形態の画像データ生成処理の中核を成す部分であり、後で詳 述する。
輪郭拡張処理は、例えば、図 15に示したような、細かいカラー画像を黒地で隠蔽し たような画像に適した処理であり、このような画像を印画する際に用いると最適である 。輪郭拡張処理に使用する輪郭拡張処理パラメータ 47も、各処理パラメータと同様 に記憶部 12の処理パラメータ 37に予め格納しておく。
[0034] 次に、制御部 11は、輪郭拡張処理後の画像データ G (41— 5)の各色の画像デー
5
タ(シアン G 、マゼンダ G 、イェロー G 、ブラック G )に対して画像シフト処理を行
5C M 5Y 5K
い、画像データ G (41— 6 : G 、G 、G 、G )および画像データ G (41— 6 : G
6 6C 6M 6Y 6Κ 7 7C
、G 、G 、G )を生成し (ステップ 107)、記憶部 12の画像メモリ 33に格納する。
7M 7Y 7K
[0035] 画像シフト処理としては、ダブルトーンでずらすためのシフト処理、あるいは、色ごと のシフト処理とダブルトーンでずらすためのシフト処理の同時処理等を適用する。こ のとき、画像データは、 CMYKを同角で表現していることを前提とする。例えば、万 線タイプの 90° 等である。
[0036] ダブルトーンでずらすためのシフト処理を行う場合には、輪郭拡張処理後の画像デ ータ G (41— 5:G 、G 、G 、G )の画素をそれぞれ予め定めた LI画素分だけ
5 5C 5M 5Y 5K
右へシフトし、画像データ G (41— 6: G 、G 、G 、G )を生成し、さらに、画像
6 6C 6M 6Y 6K
データ G (41— 6:G 、G 、G 、G )を下方向に予め定めた L2画素分だけシフ
6 6C 6M 6Y 6K
トし、画像データ G (41— 7:G 、G 、G 、G )を生成する(ステップ 107)。生成
7 7C 7M 7Y 7K
した画像データ G (41— 6: G 、G 、G 、G )および画像データ G (41— 7:G
6 6C 6M 6Y 6Κ 7 7C
、G 、G 、G )は記憶部 12の画像メモリ 33に格納する。
7M 7Y 7K
[0037] ここで、右および下方向にシフトする画素数である L1および L2は、サーマルヘッド 23の解像度および線数により異なる。予め定めたシフト画素数 L1および L2をシフト 処理パラメータ 49として記憶部 12の処理パラメータ 37に記憶しておく。
例えば、サーマルヘッド 23の解像度が 600dpiのとき、線数力 ^Olpiならば Ll = 5( 右へ 5画素)、 L2 = 5(下へ 5画素)、 751p iならば Ll=4(右へ 4画素)、 L2=4( 下へ 4画素)、 lOOlpiならば Ll = 3(右へ 3画素)、 L2 = 3(下へ 3画素)、 1201piなら ば L1 = 2 (右へ 2画素)、 L2 = 2 (下へ 2画素) t\、うように予め定めて処理パラメータ 37にシフト処理パラメータ 49として格納しておく。
[0038] 一方、色毎のシフト処理とダブルトーンでずらすためのシフト処理を同時に行う場合 には、輪郭拡張処理後の画像データ G (41— 5 :G 、G 、G 、G )に対して、各
5 5C 5M 5Y 5Κ
色ごとに定めた画素数 L3(L3 、L3 、L3 、L3 )だけ右へシフトし、画像データ G (
C M Y K 6
41-6:G 、G 、G 、G )を生成し、さらに、ダブルトーンでずらすためのシフト
6C 6M 6Y 6K
処理を実行する。すなわち、画像データ G (41— 6: G 、G 、G 、G )を L1画素
6 6C 6M 6Y 6Κ
分だけ右方向にシフトし、さらに下方向に L2画素分だけシフトし、画像データ G7 (41 -7:G 、G 、G 、G )を生成する(ステップ 107)。生成した画像データ G (41
7C 7M 7Y 7K 6
-6:G 、G 、G 、G )および画像データ G (41— 7:G 、G 、G 、G )は記
6C 6M 6Y 6K 7 7C 7M 7Y 7K 憶部 12の画像メモリ 33に格納する。
[0039] ここで、色ごとのシフト処理でシフトする画素数 L3(L3 、L3 、L3 、L3 )は、サー
C M Y K
マルヘッド 23の解像度や印画画像の線数により異なる。これらの値は、予め定めて 記憶部 12の処理パラメータ 37にシフト処理パラメータ 49として格納しておく。例えば 、サーマルヘッド 23の解像度が 600dpiの場合、線数 601piでは C (シアン)は右へ 2( L3 =2)、 M (マゼンダ)は 0(L3 =0)、 Y (イェロー)は右へ 1(L3 =1)、K (ブラッ
C M Y ク)は右へ 3(L3 =3)とし、線数 751piでは、 L3 =2、L3 =0、 L3 =1、L3 =3、
K C M Y K
線数 lOOlpiでは、 L3 =1、L3 =0、 L3 =1、L3 =2等にする。
C M Y K
[0040] この色ごとに異なるシフト画素数は、できるだけ色が重ならないように平らにするた めのものである。基本的には M (マゼンダ)を中心としてシフト処理を行う。 K (ブラック )は段差が大き 、ため他の色力もできるだけ離すようにする。また C (シアン)と M (マ ゼンダ)は色差が大きいため、できるだけ離すようにする。
[0041] 画像シフト処理後、制御部 11は、画像データ G (41— 6:G 、G 、G 、G )お
6 6C 6M 6Y 6K よび画像データ G (41— 7:G 、G 、G 、G )に網点処理を施し、画像データ G
7 7C 7M 7Y 7K 8
(41-8:G 、G 、G 、G )および画像データ G (41— 9 :G 、G 、G 、G )
8C 8M 8Y 8K 9 9C 9M 9Y 9K を生成し (ステップ 108)、記憶部 12の画像メモリ 33に格納する。
網点のマトリクスサイズはサーマルヘッド 23の解像度や画像の線数により異なるが 、例えば、解像度 600dpiの場合、線数 601piで 10X 10画素、 751piで 8X8画素、 1 OOlpiで 6X6画素、 1201piで 5X5画素というように予め定めておき、記憶部 12の処 理パラメータ 37に網点処理パラメータとして格納しておく。
[0042] 次に、制御部 11は、網点処理後の画像データ G (41— 8:G 、G 、G 、G )
8 8C 8M 8Y 8K および画像データ G (41— 9 :G 、G 、G 、G )に対して画像逆シフト処理を行
9 9C 9M 9Y 9K
い、それらを重ね合わせて画像データ G (41— 10:G 、G 、G 、G )を生
10 IOC 10M 10 Y 10K 成し (ステップ 109)、画像データ G (41— 10:G 、G 、G 、G )を記憶部 1
10 IOC 10M 10Y 10K
2の画像メモリ 33に格納する。
[0043] 以上により画像処理 35を終了し、制御部 11は、結果として得られた画像データ G
10
(41-10:G 、 G 、 G 、 G )をケーブル 3を介して印画部 2に送る(ステップ 1
IOC 10M 10Y 10K
10)。画像データ G (41-10:G 、 G 、 G 、 G )は印画部 2のバッファメモリ
10 IOC 10M 10Y 10K
21に一時的に格納され、プリンタ制御部 22がサーマルヘッド駆動部 24およびモー タ駆動部 26を制御することにより画像が印画される (ステップ 111)。
以上の一連の処理 (ステップ 101〜ステップ 111)〖こより、サーマルヘッド 23の蓄熱 によるつぶれやざらつき感がなく、図 15に示した白抜けや密着不良のな 、良好な画 像を印画することが可能になる。
[0044] (3.輪郭拡張処理の詳細) 次に、ステップ 106の輪郭拡張処理について図 5〜図 10に沿って詳しく説明する。 図 5は輪郭拡張処理の流れを示すフローチャート、図 6は、輪郭拡張処理を説明する 図、図 7は輪郭拡張処理パラメータの例を示す図、図 8、図 9、図 10は輪郭拡張処理 を説明する図である。
[0045] まず、画像データ生成装置 1の制御部 11は、 CMYK分版処理後の画像データ G
4
(41 -4 :X=C (シアン)、 M (マゼンダ)、 Y (イェロー)、 K (ブラック) )を記憶部 12の
X
画像メモリ 33から読み込む (ステップ 201)。
さらに、制御部 11は、これから処理を実行する色 Xの画像データ G に関する輪郭
4X
拡張処理パラメータ I (47)を、記憶部 12の処理パラメータ 37から読み込む (ステップ 202)。輪郭拡張処理パラメータ 47は、各色について、輪郭拡張する画素数を定め たパラメータであり、例えば、図 7に示すように、 C (シアン)は 4画素、 M (マゼンダ)は 2画素、 Y (イェロー)は 3画素、 K (ブラック)は 5画素というように予め定めて記憶部 1 2の処理パラメータ 37に格納しておく。
[0046] 次に処理用の係数 iおよび jを 1に設定する(ステップ 203、 204)。係数 iは、輪郭処 理する画素数を計数するための係数、 jは処理を実行する画素番号を示す係数であ り、 iは 1〜I、 jは 1〜J (画像データ Gの全画素数)で変化する。
[0047] 輪郭拡張処理は、図 6に示すように、処理対象の画素(対象画素 53)についての周 囲の画素(周辺画素 55 :例えば 55— 1〜55— 8)の画素値を参照し、対象画素 53の 画素値を、周辺画素 55の中で最も明るさの低い周辺画素の画素値に置き換える処 理である(ステップ 205)。
図 6に示すように、対象画素 53の画素値を、周辺画素 55— 1〜55— 8のなかで最 も明るさの低 、周辺画素 55— 5の画素値に置き換える。
[0048] ステップ 206およびステップ 207により、全画素 (j = 1〜J)につ!/、て処理 (ステップ 2 05)を実施する。
そして、ステップ 208およびステップ 209〖こより、以上の処理 (ステップ 205〜ステツ プ 207)を、各色で定めた輪郭拡張処理パラメータ Iの回数分繰り返す。これにより、 各色で定めた輪郭拡張処理パラメータ Iの画素数分だけ、当該色の輪郭が拡張され る。 [0049] さらに、ステップ 210により、以上の処理 (ステップ 201〜ステップ 209)をすベての 色 (C、 M、 Y、 Κ)について繰り返し実行する。
全色の輪郭拡張処理が完了したら (ステップ 210の YES)、輪郭拡張処理を終える
[0050] 以上の輪郭拡張処理において、 K (ブラック)の輪郭拡張処理は、黒地で隠蔽され た画像の場合は実施せず、 C (シアン)、 M (マゼンダ)、 Y (イェロー)についてのみ行
[0051] 図 8は、輪郭拡張処理を実際の画像について説明する図である。
同図(a)は原画像データである。ここでは白黒画像として示してあるが、実際には、 黒地に、タコメータ、水温データ、燃料残量データ、その他のマークをカラーで示した 画像である。
この画像を中間転写フィルムを介してポリカーボネイト ·フィルムに印画する場合を 考える。
[0052] 同図(b)は、原画像データから K (ブラック)を削除した画像である。
従来は、 CMYK分版により C、 M、 Y、 Κを分版して、同図(b)の C、 M、 Yの画像と 黒地の Κの分版画像をそのまま重ねて印画したため、印画のずれ等により図 15に示 すような白抜け部分が生じたが、本実施の形態の熱転写記録装置においては、輪郭 拡張処理を実施し、 C、 M、 Yの分版後の画像を同図(c)に示すように輪郭拡張した 。同図(c)と分版処理後の Κの画像を重ねて印画することにより、白抜けをなくすこと が可能になる。
[0053] 図 9に示すように、従来は、輪郭拡張処理を行わな力 たため、同図(a)に示すよう に、 CMYKの網点画像と黒画像の境界の印画時の位置ずれが元で白抜けが起こつ たり、各色の重なりによる CMYKの網点の段差が大きぐ黒地の隠蔽部に密着不良 が起こることがあった。
しかし、本実施の形態の熱転写記録装置は輪郭拡張処理を取り入れ、 CMYKの 各色の輪郭拡張量を変えることにより、同図(b)に示すように、 C、 M、 Y、 Κの網点の 段差を小さくでき、黒隠蔽部の密着不良を軽減することが可能になった。
[0054] 図 10は、図 8に示すような黒地にカラーの模様のある画像をポリカーボネイト 'フィ ルムに印画する場合の本実施の形態の熱転写記録工程を説明する図である。
同図(a)に示すように、まず、中間転写フィルム 61に、黒色 73で隠蔽し、次に、図 5 の処理フローにより得た画像データ画像データ G (41 - 10 : G 、G 、G 、G
10 IOC 10M 10Y 1
)を、輪郭拡張処理画素数の大きな色力も順に (例えば C65、 Y67、 Μ69の順)に
ΟΚ
印画し、その後さらに白色の裏打ちを行う(白裏打ち部 63)。
そして、このようにして得た中間転写フィルム 61の印画画像をポリカーボネイト ·フィ ルム 75に転写する(同図(b) )。
[0055] 輪郭拡張が施されているために、黒隠蔽部 73との間に白抜けが生じることはなぐ また、各色で輪郭拡張の画素数を変化させていることにより、印画部が階段状になり 、ポリカーボネイト'フィルムに転写する際の段差が少なぐ密着不良が起こりにくくな る。
[0056] (4.第 2の実施形態)
図 11は、本発明の第 2の実施形態の画像処理 35の処理の流れを示すフローチヤ ート、図 12は、輪郭拡張処理における処理パラメータを示す図である。本実施の形 態では、画像シフト後の画像データに輪郭拡張処理を施す点が第 1の実施の形態と 異なる。
[0057] 本実施の形態の画像処理 35においては、第 1の実施の形態の画像処理 35と同様 に、制御部 11は、まず、入力画像データ 5 (G )の解像度変換処理を行い、画像デ ータ Gを求め(ステップ 301)、画像データ Gの階調変換処理を行い、画像データ G
2 2
を求め(ステップ 302)、画像データ Gの CMYK分版処理を行い、画像データ G (
3 3 4
G 、G 、G 、G )を求める(ステップ 303)。ここまでの処理は、図 3に示した第 1
4C 4M 4Y 4K
のフローチャートのステップ 103〜105と同様である。
[0058] 第 1の実施の形態では、制御部 11は、この後に輪郭拡張処理を行ったが、第 2の 実施の形態では、画像データ G (G 、 G 、 G 、 G )に対して、まず、画像シフト
4 4C 4M 4Y 4K
処理を実施し、画像データ G (G 、 G 、 G 、 G ) ,画像データ G (G 、 G 、 G
5 5C 5M 5Y 5K 6 6C 6M 6
、G )を求める(ステップ 304)。
Υ 6K
画像シフト処理は、第 1の実施の形態で説明した画像シフト処理方法と同様に行う
。すなわち、ダブルトーンでずらすためのシフト処理、あるいは、色ごとのシフト処理と ダブルトーンでずらすためのシフト処理の同時処理等を適用する。
[0059] 次に、制御部 11は、画像シフト処理後の画像データ G (G 、G 、G 、G )及
5 5C 5M 5Y 5Κ び画像データ G (G 、 G 、 G 、 G )に、それぞれ輪郭拡張処理を施す。
6 6C 6M 6Y 6K
各画像データ G及び Gに施す輪郭拡張処理の詳細は図 5に示した通りである力
5 6
輪郭拡張処理パラメータ Iをそれぞれ異なる値にする。図 12にその 1例を示す。
例えば、画像データ G (G 、G 、G 、G )対して実施する輪郭拡張処理は、 C
5 5C 5M 5Y 5K
(シアン)は 7回、 M (マゼンダ)は 3回、 Y (イェロー)は 5回、 K (ブラック)は 10回とし、 画像データ G (G 、G 、G 、G )対して実施する輪郭拡張処理は、 Cは 8回、 M
6 6C 6M 6Y 6K
は 4回、 Yは 6回、 Kは 9回とする。
輪郭拡張処理パラメータを変えることにより、拡張幅の異なる 2つの画像データ G ( G 、G 、G 、G )及び画像データ G (G 、G 、G 、G )が得られる。
7C 7M 7Y 7K 8 8C 8Μ 8Υ 8Κ
[0060] 次に、制御部 11は、以上の輪郭拡張処理で求めた画像データ G (G 、G 、G
7 7C 7M 7Y
、G )及び画像データ G (G 、G 、G 、G )に対して網点処理を実施し、画像
7K 8 8C 8M 8Y 8K
データ G (G 、G 、G 、G )及び画像データ G (G 、G 、G 、G )を求
9 9C 9M 9Y 9Κ 10 IOC ΙΟΜ ΙΟΥ ΙΟΚ める。
網点処理も、第 1の実施の形態と同様である。
[0061] 次に、制御部 11は、画像データ G (G 、G 、G 、G )及び画像データ G (G
9 9C 9M 9Y 9K 10 1
、G 、G 、G )の画像逆シフト処理を行い、画像データ G (G 、G 、G
OC 10M 10Y 10K 11 11C 11M 11
、G )を得る。
Y UK
画像逆シフト処理では、前述した画像シフト処理でシフトした画素数と同じ画素数 だけ逆方向にシフトする。これにより、元の画素位置に画像が戻ることになる。
[0062] 以上の処理により、印画画像データ G (G 、G 、G 、G )が求まり、制御
11 11C 11M 11Y 11K
部 11は、これをケーブル 3を介して印画部 2に送り、印画部 2のプリンタ制御部 22の 制御により、印画処理が行われる。
[0063] 以上のように、輪郭拡張処理を画像シフト処理の後に実行した場合も、輪郭が拡張 されることにより白抜けのない印画画像が得られるとともに、輪郭拡張幅を各色 (C、 M、 Y、 Κ)によって変えることにより、インキの重なりの段差が少なくなり、密着不良の ない印画画像が得られる。 [0064] (5.第 3の実施形態)
図 13は、本発明の第 3の実施形態の輪郭拡張処理の流れを示すフローチャートで ある。
この処理は、第 1の実施形態で説明した本発明の画像処理 35における輪郭拡張 処理(図 3のステップ 106)、あるいは、第 2の実施形態で説明した画像処理 35にお ける輪郭拡張処理(図 11のステップ 305)として実行することが可能である。
[0065] この輪郭拡張処理は、図 5で説明した輪郭拡張処理に、輪郭拡張処理を施す画素 を階調値により選択する処理を加え、選択された画素にのみ輪郭拡張処理を施すも のである。
[0066] まず、画像データ生成装置 1の制御部 11は、 CMYK分版処理後の画像データ G
4
(41 -4 :X=C (シアン)、 M (マゼンダ)、 Y (イェロー)、 K (ブラック) )を記憶部 12の
X
画像メモリ 33から読み込む (ステップ 401)。
次に、制御部 11は、輪郭拡張処理を施す領域を指定するためのパラメータ Pを読
X
み込む(ステップ 402)。
このパラメータ Pは、輪郭拡張処理を施す色域を指定するパラメータであり、例え
X
ば特定の階調値である。このパラメータを予め定め、記憶部 12の輪郭拡張処理パラ メータ 47として記憶させておく。
[0067] 図 14は、この輪郭拡張領域指定パラメータ Pの例である。
X
この例に示すように、 X=C (シアン)、 M (マゼンダ)、 Y (イェロー)、 K (ブラック)の すべてについて、階調値 0をパラメータ Pとしている。
X
このパラメータ pはこの値に限ることなぐ画像によって異なる値を指定してもよい。
X
[0068] さらに、制御部 11は、これから輪郭拡張処理を実行する色 Xの画像データ G に関
4X する輪郭拡張処理パラメータ I (47)を、記憶部 12の処理パラメータ 37から読み込む( ステップ 403)。輪郭拡張処理パラメータ 47は、第 1の実施形態で説明したものと同 様でよい (例えば、図 7)。
[0069] 次に処理用の係数 iおよび jを 1に設定する(ステップ 404、 405)。係数 iは、輪郭処 理する画素数を計数するための係数、 jは処理を実行する画素番号を示す係数であ り、 iは 1〜I、 jは 1〜J (画像データ Gの全画素数)で変化する。 [0070] 次に、輪郭拡張処理を施す画素を選択する (ステップ 406)。
これから処理を施す画素 G (j)の画素値と、輪郭拡張領域指定パラメータ Pとを
4X X 比較し、 G (j)の画素値がパラメータ Pよりも大きくな 、場合 (ステップ 406の YES)
4X X
にのみ輪郭拡張処理 (ステップ 407)を実行する。 G (j)の画素値がパラメータ Pよ
4X X りも大きい場合 (ステップ 406の NO)には輪郭拡張処理 (ステップ 407)は実行しない [0071] 図 14に示した輪郭拡張領域指定パラメータ Pの場合、対象画素 G (j)の階調値
X 4X
力 SOの場合に輪郭拡張処理 (ステップ 407)を施すことになる。
輪郭拡張処理は、第 1の実施形態において図 6で説明したものと同様である。
[0072] ステップ 408およびステップ 409により、全画素 (j = l〜J)について、輪郭拡張処理 実行画素の選択処理 (ステップ 406)および輪郭拡張処理 (ステップ 407)を実施する そして、ステップ 410およびステップ 411により、以上の処理 (ステップ 406〜ステツ プ 409)を、各色で定めた輪郭拡張処理パラメータ Iの回数分繰り返す。これにより、 輪郭拡張処理領域と選択された画素についてのみ、各色で定めた輪郭拡張処理パ ラメータ Iの画素数分だけ、当該色の輪郭が拡張される。
[0073] さらに、ステップ 412により、以上の処理 (ステップ 401〜ステップ 411)をすベての 色 (C、 M、 Y、 Κ)について繰り返し実行する。
全色の輪郭拡張処理が完了したら (ステップ 412の YES)、輪郭拡張処理を終える
[0074] 以上の処理により、予め指定した色域の画素のみについて輪郭拡張処理を施すこ とが可能になり、指定以外の色域の画像を保護することが可能になる。また、画像デ ータの微小な白領域のみを輪郭拡張処理を施す色域に指定することにより、画像の エッジ部と微小な白領域での段差の影響を軽減することが可能になり、白裏打ちをし た場合の密着不良を防ぐことが可能になる。
[0075] 尚、本発明は、前述した実施の形態に限定されるものではなぐ種々の改変が可能 であり、それらも、本発明の技術範囲に含まれる。

Claims

請求の範囲
[1] サーマルヘッドを有する熱転写記録装置であって、
RGBの原画像データを取得する画像データ取得手段と、
前記画像データ取得手段により取得された RGBの原画像データに階調変換を施 した後、 CMYKに分版する分版手段と、
前記分版手段により分版された各画像データを、夫々異なる画素分だけ拡張させ る輪郭拡張手段と、
前記輪郭拡張手段により拡張された各画像データを、夫々異なる画素分だけシフト させるシフト手段と、
前記シフト手段によりシフトされた各画像データに対して網点変換処理を行う網点 変換手段と、
前記網点変換手段により処理された各画像データを重ね合わせ、印画データを生 成する印画データ生成手段と、
前記印画データ生成手段により生成された印画データを印刷物として印画する印 画手段と、
を具備することを特徴とする熱転写記録装置。
[2] サーマルヘッドを有する熱転写記録装置であって、
RGBの原画像データを取得する画像データ取得手段と、
前記画像データ取得手段により取得された RGBの原画像データに階調変換を施 した後、 CMYKに分版する分版手段と、
前記分版手段により分版された各画像データを、夫々異なる画素分だけシフトさせ るシフト手段と、
前記シフト手段によりシフトされた各画像データに対して、夫々異なる画素分だけ 拡張させる輪郭拡張手段と、
前記輪郭拡張手段により拡張された各画像データに対して、網点変換処理を行う 網点変換手段と、
前記網点変換手段により処理された各画像データを重ね合わせ、印画データを生 成する印画データ生成手段と、 前記印画データ生成手段により生成された印画データを印刷物として印画する印 画手段と、
を具備することを特徴とする熱転写記録装置。
[3] 前記輪郭拡張手段は、前記分版された各画像データの各画素の値を、前記各画 素の周囲画素の明るさの最小値に置き換え、この処理を前記分版された各画像デー タ毎に定めた回数だけ繰り返すことにより、前記回数の画素分だけ拡張させることを 特徴とする請求項 1または 2記載の熱転写記録装置。
[4] 前記輪郭拡張手段は、拡張処理を施す画素を、予め定めた色域により選択する輪 郭拡張画素選択手段を更に有することを特徴とする請求項 1または 2記載の熱転写 記録装置。
[5] 前記色域は、階調値 0%の領域であることを特徴とする請求項 4記載の熱転写記録 装置。
[6] RGBの原画像データを取得する工程と、
前記 RGBの原画像データに階調変換を施した後、 CMYKに分版する工程と、 分版された各画像データを、夫々異なる画素分だけ拡張させる工程と、 拡張された各画像データを、夫々異なる画素分だけシフトさせる工程と、 シフトされた各画像データに対して網点変換処理を行う工程と、
前記網点変換された各画像データを重ね合わせ、印画データを生成する工程と、 前記印画データを印刷物として印画する印画手段と、
を具備することを特徴とする画像形成方法。
[7] RGBの原画像データを取得する工程と、
前記 RGBの原画像データに階調変換を施した後、 CMYKに分版する工程と、 分版された各画像データを、夫々異なる画素分だけシフトさせる工程と、 シフトされた各画像データを、夫々異なる画素分だけ拡張させる工程と、 拡張された各画像データに対して網点変換処理を行う工程と、
前記網点変換された各画像データを重ね合わせ、印画データを生成する工程と、 前記印画データを印刷物として印画する印画手段と、
を具備することを特徴とする画像形成方法。
[8] 前記拡張させる工程は、前記分版された各画像データの各画素の値を、前記各画 素の周囲画素の明るさの最小値に置き換え、この処理を前記分版された各画像デー タ毎に定めた回数だけ繰り返すことにより、前記回数の画素分だけ拡張させることを 特徴とする請求項 6または 7記載の画像形成方法。
[9] 前記拡張させる工程は、拡張処理を施す画素を、予め定めた色域により選択する 輪郭拡張画素選択工程を更に有することを特徴とする請求項 8記載の画像形成方 法。
[10] 前記色域は、階調値 0%の領域であることを特徴とする請求項 9記載の画像形成方 法。
PCT/JP2007/051440 2006-01-31 2007-01-30 熱転写記録装置及び画像形成方法 WO2007088831A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/162,797 US8164787B2 (en) 2006-01-31 2007-01-30 Thermal transfer recording device and image formation method
EP07707671.9A EP1980404B1 (en) 2006-01-31 2007-01-30 Thermal transfer recording device and image formation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006021881 2006-01-31
JP2006-021881 2006-01-31
JP2006266388A JP5087895B2 (ja) 2006-01-31 2006-09-29 熱転写記録装置及び画像形成方法
JP2006-266388 2006-09-29

Publications (1)

Publication Number Publication Date
WO2007088831A1 true WO2007088831A1 (ja) 2007-08-09

Family

ID=38327404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051440 WO2007088831A1 (ja) 2006-01-31 2007-01-30 熱転写記録装置及び画像形成方法

Country Status (5)

Country Link
US (1) US8164787B2 (ja)
EP (1) EP1980404B1 (ja)
JP (1) JP5087895B2 (ja)
KR (1) KR20080090401A (ja)
WO (1) WO2007088831A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090066776A1 (en) * 2005-11-02 2009-03-12 Dai Nippon Printing Co., Ltd. Thermal recording apparatus, image forming method, and printed object
JP5380361B2 (ja) * 2010-05-11 2014-01-08 京セラドキュメントソリューションズ株式会社 画像形成装置及び画像形成方法
US11386530B2 (en) * 2020-02-26 2022-07-12 Flir Systems Ab Digital filter for turbulence reduction and gas detection in thermal images

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477826A (en) 1987-09-18 1989-03-23 Hitachi Ltd Frame locating mechanism
EP0322680A2 (en) 1987-12-25 1989-07-05 Dainippon Screen Mfg. Co., Ltd. Method of and apparatus for correcting color pattern in multicolor process
US5341228A (en) 1990-12-04 1994-08-23 Research Corporation Technologies Method and apparatus for halftone rendering of a gray scale image using a blue noise mask
US5519426A (en) 1993-11-01 1996-05-21 Lasermaster Corporation Method for controlling a thermal printer to increase resolution
JPH11177826A (ja) 1997-12-08 1999-07-02 Ricoh Co Ltd 画像形成装置
US5963714A (en) 1996-11-15 1999-10-05 Seiko Epson Corporation Multicolor and mixed-mode halftoning
JP3595603B2 (ja) * 1995-05-01 2004-12-02 富士写真フイルム株式会社 カラービデオプリンタの輪郭強調処理方法
JP2005096406A (ja) 2003-09-05 2005-04-14 Kosuke Nagaya 自己修復機能を有する流体封入構造体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1091792A (ja) * 1996-07-12 1998-04-10 Seiko Epson Corp 文書セグメント化方法、装置、カラー印刷システムおよびコンピュータプログラム製品
JPH11317876A (ja) * 1998-03-04 1999-11-16 Riso Kagaku Corp ダブルトーン印刷装置およびダブルトーン印刷用濃度補正曲線作成方法
JP4124994B2 (ja) * 2001-10-30 2008-07-23 キヤノン株式会社 色分解合成光学系、画像表示光学系、投射型画像表示装置および偏光分離光学系
JP2004287685A (ja) * 2003-03-20 2004-10-14 Ricoh Co Ltd 画像処理装置、画像形成装置、コンピュータプログラム及び記録媒体
JP4460482B2 (ja) 2005-03-29 2010-05-12 大日本印刷株式会社 画像データ生成装置、画像データ生成処理プログラム、及び溶融型熱転写記録装置等
US20090066776A1 (en) * 2005-11-02 2009-03-12 Dai Nippon Printing Co., Ltd. Thermal recording apparatus, image forming method, and printed object

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477826A (en) 1987-09-18 1989-03-23 Hitachi Ltd Frame locating mechanism
EP0322680A2 (en) 1987-12-25 1989-07-05 Dainippon Screen Mfg. Co., Ltd. Method of and apparatus for correcting color pattern in multicolor process
US5341228A (en) 1990-12-04 1994-08-23 Research Corporation Technologies Method and apparatus for halftone rendering of a gray scale image using a blue noise mask
US5519426A (en) 1993-11-01 1996-05-21 Lasermaster Corporation Method for controlling a thermal printer to increase resolution
JP3595603B2 (ja) * 1995-05-01 2004-12-02 富士写真フイルム株式会社 カラービデオプリンタの輪郭強調処理方法
US5963714A (en) 1996-11-15 1999-10-05 Seiko Epson Corporation Multicolor and mixed-mode halftoning
JPH11177826A (ja) 1997-12-08 1999-07-02 Ricoh Co Ltd 画像形成装置
JP2005096406A (ja) 2003-09-05 2005-04-14 Kosuke Nagaya 自己修復機能を有する流体封入構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1980404A4

Also Published As

Publication number Publication date
US8164787B2 (en) 2012-04-24
KR20080090401A (ko) 2008-10-08
JP5087895B2 (ja) 2012-12-05
EP1980404A1 (en) 2008-10-15
US20090147277A1 (en) 2009-06-11
JP2007230209A (ja) 2007-09-13
EP1980404A4 (en) 2009-09-30
EP1980404B1 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
EP0824244B1 (en) Two-dimensional color code, preparing and restoring method for the code and apparatus therefor
US8272712B2 (en) Image forming apparatus and control method thereof
JP5395361B2 (ja) 情報処理方法及び情報処理装置
EP2556961B1 (en) Thermal transfer printer
US8508797B2 (en) Image processing device and image processing method
WO2007088831A1 (ja) 熱転写記録装置及び画像形成方法
US20090066776A1 (en) Thermal recording apparatus, image forming method, and printed object
EP1865705A1 (en) Image data generation device, image data generation program, thermal transfer/recording device, and others
US20010013941A1 (en) Image forming method used for color printer
JP4837937B2 (ja) インクジェットプリンタ及びプリンタドライバ
JP5483951B2 (ja) 画像処理装置、および、画像処理方法
JP4259254B2 (ja) 画像データ処理装置およびそれを備えた印刷データ作成装置、インクジェット記録装置、画像データ処理プログラム及び画像データ処理方法
CN100572080C (zh) 热复制记录装置及图像形成方法
US12083805B2 (en) Recording apparatus
JP2012183788A (ja) 印刷装置および印刷方法
US8031374B2 (en) Thermal recording device, image forming method and printed matter
JP5171321B2 (ja) 画像処理装置および画像処理方法
JP6515628B2 (ja) 画像処理装置、画像処理方法、及び、プログラム
JP2007313815A (ja) 熱転写記録装置、画像形成方法及び印画物
JP2007125768A (ja) 感熱記録装置、画像形成方法及び中間転写媒体
JP2007268730A (ja) 感熱記録装置、画像形成方法及び印画物
JPH06106734A (ja) 印刷方法および印刷装置
JP2008080755A (ja) 感熱記録装置及び画像形成方法
JP2007253607A (ja) 感熱記録装置、画像形成方法及び印画物
JPH10112807A (ja) 画像処理装置およびその方法と、コンピュータ可読メモリ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087014979

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780004135.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007707671

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12162797

Country of ref document: US