WO2007088808A1 - Magnet structure for magnetron sputtering apparatus, cathode electrode unit, magnetron sputtering apparatus and method for using magnet structure - Google Patents

Magnet structure for magnetron sputtering apparatus, cathode electrode unit, magnetron sputtering apparatus and method for using magnet structure Download PDF

Info

Publication number
WO2007088808A1
WO2007088808A1 PCT/JP2007/051383 JP2007051383W WO2007088808A1 WO 2007088808 A1 WO2007088808 A1 WO 2007088808A1 JP 2007051383 W JP2007051383 W JP 2007051383W WO 2007088808 A1 WO2007088808 A1 WO 2007088808A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
magnet
rotating body
magnetic
magnet structure
Prior art date
Application number
PCT/JP2007/051383
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiko Kondo
Takanobu Hori
Original Assignee
Shinmaywa Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinmaywa Industries, Ltd. filed Critical Shinmaywa Industries, Ltd.
Publication of WO2007088808A1 publication Critical patent/WO2007088808A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets

Definitions

  • the present invention relates to a magnet structure for a magnetron sputtering apparatus, a force sword electrode unit, a magnetron sputtering apparatus, and a method of using the magnet structure (hereinafter referred to as “magnet structure etc.”). More specifically, the present invention relates to an improved technology for magnetron sputtering magnet structures and the like for the purpose of increasing target utilization efficiency.
  • Sputtering in which ions (for example, Ar ions) collide with a target material in a vacuum to cause the target atoms to jump out and attach these atoms to a substrate placed opposite to the target material.
  • ions for example, Ar ions
  • a film formation method based on the phenomenon has been well known.
  • a tunnel-like leakage magnetic field having a predetermined magnetic flux density or higher is formed on the target surface (front surface facing the substrate).
  • the frequency of ionization collisions with Ar gas can be increased by capturing the secondary electrons generated in the process of the sputtering phenomenon by the mouth-to-lentz force and making it move in a cycloidal motion.
  • a high-density plasma can be formed to increase the deposition rate.
  • the force of moving the magnet in the surface direction along the back surface of the target changes the magnetic field line distribution on the surface of the target in conjunction with the movement of the magnet.
  • the erosion promoting region on the target surface changes periodically, and uniform erosion of the target surface during sputtering can be achieved.
  • Patent Document 1 Japanese Patent Laid-Open No. 329874 (Fig. 3)
  • the present invention has been made in view of such circumstances, and the distribution of magnetic lines of force on the surface of the target is changed at predetermined intervals by a simple drive mechanism that does not oscillate the entire magnet structure.
  • An object of the present invention is to provide a magnet structure and the like that can achieve wide erosion.
  • the magnet structure for a magnetron sputtering apparatus includes first and second magnets arranged on the back surface side of the target such that the same kind of magnetic poles face the back surface of the target.
  • the magnetic field correction means may include a plurality of magnets having both end surfaces functioning as magnetic poles, and the magnets may be configured to be able to rotate the both end surfaces in the plane.
  • the magnetic force distribution on the surface of the target is changed at predetermined intervals by a simple drive mechanism that does not swing the entire magnet structure, so that the target has a wide erosion.
  • a magnet structure or the like is obtained.
  • the magnetic field correction means includes a first rotating body that includes the magnet adjacent to the first fixed magnet and is rotatable around an axis perpendicular to the plane, and the second A second rotation rotatable about an axis perpendicular to the plane including the magnet adjacent to the fixed magnet And a body.
  • the first and second rotating bodies are substantially circular around the axis by the magnet and members joined to both side surfaces of the magnet sandwiched between the both end surfaces. It may be shaped like a column.
  • first and second rotating bodies have a substantially columnar shape because the rotational torque when rotating these rotating bodies is well balanced.
  • the magnetic pole of the first rotating body which is different from the magnetic pole of the same type, is rotated by the rotation of the first rotating body around the axis.
  • the magnetic field lines formed between the second fixed magnet and the first rotating body are offset by the rotation of the second rotating body around the axis and facing the back surface of the target.
  • the second rotation different from the magnetic pole of the same kind by the usage pattern in which the magnetic moment of the second rotating body is oriented in the width direction of the target and the rotation of the second rotating body around the axis.
  • a body magnetic pole is formed between the first fixed magnet and the second rotating body by rotating around the central axis of the first rotating body while facing the back surface of the target.
  • the magnetic moment of the first rotating body is increased in the width direction of the target so as to cancel the magnetic field lines.
  • Ku and use form may be a method of including.
  • the vertical zero crossing is performed. Since the (magnetic field line distribution in the neighboring area) moves in the width direction of the target, target erosion between the two is alternately superimposed, and as a result, the portion of the part that swells perpendicularly to the surface of the target The region in which the plasma confinement function due to the magnetic field lines cannot be exhibited disappears, and the target is suitable for being scraped over almost the entire region.
  • a force sword electrode unit for a magnetron sputtering apparatus includes a target made of a non-magnetic metal, the magnet structure disposed on the back side of the target, and a predetermined power supply to the target. And a power source.
  • a magnetron sputtering apparatus includes the above-described force sword electrode unit, and a vacuum chamber capable of depressurizing the inside storing the force sword electrode unit and a substrate facing the target of the force sword electrode unit. ing.
  • the magnetic field distribution on the target surface is changed at predetermined intervals by a simple drive mechanism that does not cause the entire magnet structure to oscillate, thereby achieving wide erosion of the target.
  • a magnet structure or the like is obtained.
  • FIG. 1 is a plan view of a force sword electrode unit including a magnet structure according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a force sword electrode unit in a portion along the ⁇ _ ⁇ section line of FIG.
  • FIG. 3 is a diagram showing an example of an analysis result of the magnet structure according to the present embodiment by a static magnetic field simulation technique.
  • FIG. 4 is a diagram showing an example of the analysis result of the magnet structure according to the present embodiment by the static magnetic field simulation technique.
  • FIG. 5 is a schematic diagram showing a sputtering operation of a target using the magnet structure according to the present embodiment.
  • FIG. 1 is a plan view of a force sword electrode unit including a magnet structure (magnetic field forming means) according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the force sword electrode unit at a portion along the cross-sectional line of FIG.
  • the width direction of the target 20 is “X direction”
  • the thickness direction of the target 20 is “Y direction”
  • the X direction and the heel direction are
  • the “vertical direction” being the “heel direction”
  • one of the both sides of the target 20 in the width direction being “right” and the other being “left”.
  • each constituent member of the magnet structure 110 in FIG. 2 is shown in a cut form in the middle, but these constituent members are actually the same cross-sectional shape. It can be easily understood by referring to Fig. 1.
  • the force sword electrode unit 100 is mainly made of aluminum as shown in FIG.
  • a rectangular target 20 made of a nonmagnetic metal such as (Al) and a magnet structure 110 having a plurality of magnets arranged on the back surface 20B side of the target 20 are provided.
  • the target 20 is a thin film base material to be coated on a substrate (not shown) disposed opposite to the target 20 and is used for the purpose of drawing Ar ions (positive ions) in the plasma by the cathode (power sword) by the power source VI. )
  • a vacuum chamber (not shown) for a magnetron sputtering apparatus, in which a force sword electrode unit 100 and a substrate are housed and whose inside can be decompressed, is grounded as an anode.
  • the magnet structure 110 has a base 21 made of, for example, ferromagnetic stainless steel.
  • This base 21 has a rectangular plate-shaped outer shape that is slightly larger than the outer dimension of the target 20 in a plan view (FIG. 1), and a tunnel-like leak for trapping the plasma in the upper space near the surface 20A of the target 20.
  • fixing means here, such fixing means
  • the inner side of the target 20 from the left end in the width direction (X direction) of the target 20 The left side magnet 10 (permanent magnet) having a substantially rectangular shape at a position slightly below (hereinafter referred to as “the vicinity of the left end”) is located on the long side of the target 20 in the plan view. It is arranged in the form of a bar that matches the direction and is arranged on the upper surface of the rectangular first base piece 22 mounted on the base 21 shown in FIG.
  • the left magnet 10 has a Y-direction orientation as shown in FIG.
  • the direction of the magnetic moment in the left magnet 10 is generated from 20B to the front surface 20A).
  • the N pole and the S pole are provided.
  • the N pole side of the left magnet 10 is in contact with the upper surface of the first base piece 22 made of a magnetic material (for example, ferromagnetic stainless steel or iron). It faces the vicinity of the left end of the base 21 through 22.
  • the right-side magnet 13 (permanent magnet) having a substantially rectangular shape at a position slightly below (hereinafter referred to as the “right end vicinity”) is positioned on the long side of the target 20 in the longitudinal direction of the magnet 13 in plan view. It is arranged in the shape of a rod that matches the direction (Z direction) and is disposed on the upper surface of the rectangular second base piece 23 mounted on the base 21 shown in FIG.
  • the right magnet 13 generates the direction of the magnetic moment in the right magnet 13 in the Y direction as shown in Fig. 2 (direction of force from the back surface 20B to the front surface 20A of the target 20).
  • N-pole and S-pole, and the right-side magnet 13 has the south-pole side facing the right end of the back surface 20B of the target 20, and the right-side magnet 13 has the north-pole side made of a magnetic material (e.g., ferromagnetic stainless steel or
  • the second base piece 23 made of iron is in contact with the upper surface of the second base piece 23, and is directed to the vicinity of the right end of the base 21 through the second base piece 23.
  • a substantially cylindrical left rotating body 11 located on the back surface 20B side of the target 20 and adjacent to the left magnet 10 between the left and right magnets 10 and 13 is shown in FIG.
  • Fig. 2 perpendicular to this XY plane so that the direction of the magnetic moment can be changed in the plane (in the XY plane) along the thickness direction (Y direction) and the width direction (X direction) of the target 20 It is configured to be rotatable around a central axis P in the Z direction.
  • An example of the left rotating body 11 is a plate-shaped magnet 1 la (permanent) having one end surface (N extreme surface 11N) functioning as an N pole and the other end surface (S extreme surface 11S) functioning as an S pole. Magnet) and the S extreme surface 11S and N extreme surface 11 N of the plate magnet 11a, and the ferromagnetic member l lc, l joined to both side surfaces 11F of the plate magnet 11a By id, it is formed in a substantially cylindrical shape with the central axis P as the center.
  • the left rotating body 11 is rotationally driven by an actuator 14 such as a motor as shown in Fig. 1 around the central axis P of the plate magnet 11a. And can rotate over a predetermined rotation angle range around the central axis P.
  • left rotating body 1 1 (plate magnet 11a) is configured such that both end faces 11S, 11N including the S extreme face 11S and the N extreme face 11N rotate around the central axis P in the XY plane.
  • the magnetic pole (S pole) of the left magnet 10 and the different magnetic pole (N pole) are directed to the back surface 20B of the target 20 by rotation around the central axis P. Examples of usage are shown.
  • a substantially cylindrical right rotating body 12 located on the back surface 20B side of the target 20 and adjacent to the right magnet 13 between the left and right magnets 10, 13 is shown in FIG.
  • the direction of the magnetic moment can be changed in a plane (in the XY plane) along the thickness direction (Y direction) and the width direction (X direction) of the target 20 as shown in Fig. 2. It is configured to be rotatable around the central axis P in the Z direction.
  • An example of the right rotating body 12 is a plate-like magnet 12a (permanent magnet) having one end surface (N extreme surface 12N) functioning as an N pole and the other end surface (S extreme surface 12S) functioning as an S pole. ) And the ferromagnetic members 12c and 12d joined to both side surfaces 12F of the plate magnet 12a sandwiched between the S extreme surface 12S and the N extreme surface 12N of the plate magnet 12a by the central axis P It is shaped like a substantially circular column centered on
  • the right rotating body 12 is rotationally driven by an actuator 14 such as a motor as shown in FIG. 1 around the central axis P of the plate magnet 12a, whereby the right rotating body 12 is And can rotate over a predetermined rotation angle range around the central axis P.
  • the right-hand rotating body 1 2 (plate magnet 12a) is configured such that both end faces 12S and 12N consisting of the S extreme face 12S and the N extreme face 12N rotate around the central axis P in the XY plane. Has been.
  • the left and right side rotators 11 and 12 have a substantially cylindrical shape, so that the balance of the rotational torque of these rotators 11 and 12 can be appropriately maintained.
  • the magnets 10, l la, 12a, and 13 described above can be configured using various known magnet materials, and these magnets 10, l la, 12a, and 13 are formed on the back surface of the target 20.
  • the magnet surface should be protected against rust and It is desirable to select a magnet material (for example, a ferrite magnet).
  • the left and right side rotating bodies 11, 12 are arranged so that the surfaces of the left and right side rotating bodies 11, 12 are as close as possible to the back surface 20B of the target 20 (however, a gap that allows smooth rotation is essential).
  • the left and right rotating bodies 11 and 12 may be arranged so that a certain distance is provided between these front surfaces and the rear surface 20B of the target 20.
  • the distance between the left and right rotating bodies 11 and 12 and the target 20 is minimized, contributing to the formation of a plasma confinement magnetic field caused by the left and right rotating bodies 11 and 12 In some cases, it is beneficial to effectively exert magnetic energy.
  • cooling water can be allowed to flow through this gap to And heat exchange between the target 20 and the rear surface 20B of the target 20 is performed efficiently.
  • a cooling structure in which a backing plate (not shown) having a hollow portion for allowing cooling water to flow is brought into contact with the rear surface 20B of the target 20, this is used as a knocking plate insertion space. Important intervals become essential
  • the left and right rotating bodies 11 and 12 are made to correspond to the sputtering state of the target 20.
  • the rotation can be performed while controlling the rotation angular velocity at appropriate intervals for a predetermined rotation angle range around the central axis P.
  • An analysis model having substantially the same shape as the cross-sectional shape shown in FIG. Mesh area corresponding to the target 20 and mesh area corresponding to the target 20 and their boundary Appropriate material property data and boundary condition data are input to each of the cache regions.
  • magN et manufactured by INFOLYTICA
  • FIG. 3 and FIG. 4 are diagrams showing an example of the analysis result of the magnet structure according to the present embodiment by the static magnetic field simulation technique.
  • FIG. 3 shows the magnetic flux density distribution (contour surface) and magnetic flux density vector (arrow) in the analysis model.
  • the analysis results of the two-dimensional cross section along the line I ⁇ II in Fig. 1 are shown.
  • FIG. 1 shows the analysis results of the two-dimensional cross section along the line I ⁇ II in Fig. 1 .
  • FIG. 4 (a) the horizontal axis represents the position of the target surface in the X direction, and the vertical axis represents the X direction component of the magnetic flux density on the target surface.
  • Figure 4 (b) is a plot using numerical data. The horizontal axis shows the X-direction position of the target surface, and the vertical axis shows the Y-direction component of the magnetic flux density on the target surface. It is the figure which plotted the relationship using the numerical value data obtained from the analysis result force.
  • contour diagram (contour map) of the magnetic flux density displayed in gray scale in FIG. 3 is the height distribution (magnetic flux density distribution) of the total (absolute value) of the magnetic flux density vector components. This indicates that the magnetic flux density increases as it moves from the light gray area to the dark gray area (however, the upper limit of the magnetic flux density is 500G).
  • magnetic field lines can be understood as curves in which the tangential direction at each point coincides with the direction of the magnetic field at that point.
  • the first upper magnetic field line 25A and the lower magnetic field line 26 are arranged inside the target 20 so as to cancel the X-direction vector component of the magnetic flux density (the width direction component of the target 20).
  • the inner intermediate magnetic field line 27 and the outer intermediate magnetic field line 28 are formed so as to cancel the Y direction vector component of the magnetic flux density (the thickness direction component of the target 20).
  • the first upper magnetic field line 25A exits from the north pole of the plate magnet 11a of the left rotating body 11 and reaches the surface 20A of the target 20, and the Y direction vector and the X direction vector components of the magnetic flux density are approximately. Near the surface 20A of the target 20 immediately above the zero point 29 that becomes zero, it extends substantially in the X direction and enters the S pole of the right magnet 13 while bending this part in an arch shape.
  • the second upper magnetic field line 25B exits from the north pole of the plate magnet 11a of the left rotating body 11 and reaches the surface 20A of the target 20 and is substantially parallel to the X direction in the vicinity of the surface 20A of the target 20.
  • the left magnet 10 enters the south pole of the left magnet 10 while bending in an arch shape.
  • the lower magnetic field lines 26 extend from the vicinity of the top of the ferromagnetic member 12d of the right rotator 12 and extend substantially parallel to the vicinity of the back surface 20B of the target 20 immediately below the zero point 29 in the opposite direction of the X direction. Enter the south pole of the plate magnet 12a of the right rotating body 12.
  • the inner intermediate magnetic field line 27 extends from the N pole of the plate magnet 11a of the left-side rotating body 11 to the middle of the thickness direction of the target 20, and extends inside the target 20 so as to bend in an arch shape. Pass the zero point 29 (the position on the minus side in the X direction from the zero point 29) in a substantially parallel direction opposite to the Y direction and enter the south pole of the plate magnet 12a of the right rotating body 12.
  • the outer intermediate magnetic field line 28 passes from the vicinity of the top of the ferromagnetic member 12d of the right rotator 12 to the side of the zero point 29 (position from the zero point 29 to the X direction plus side) substantially parallel to the Y direction.
  • the target 20 reaches the middle in the thickness direction, extends in an arch shape inside the target 20, and enters the S pole of the right magnet 13.
  • Such magnetic force H25A, 25B, 26, 27, 28 [Surface and target tattering phenomenon of the target 20, surface that leaks to the surface 20A of the target 20 of the leakage magnetic field in the vicinity of 20A, surface Based on the magnetic flux density component parallel to 20A (X direction) (hereinafter referred to as “parallel magnetic flux density”) and the magnetic flux density component perpendicular to the surface 20A (Y direction) (hereinafter referred to as “vertical magnetic flux density”).
  • parallel magnetic flux density parallel to 20A
  • Y direction vertical magnetic flux density
  • the parallel magnetic flux density in the leakage magnetic field functions as a leakage magnetic field for confining the plasma, and the degree of erosion of the target 20 is supported by the absolute value of the parallel magnetic flux density. It is considered to be arranged.
  • the X-direction position where the vertical magnetic flux density is substantially zero includes the first vertical zero cross VB1 near the left end in the X direction and a little to the right from the center in the X direction. There is a second vertical zero cross VB2.
  • the first vertical zero cross VB1 is formed by a vectoro parallel to the X direction opposite to the target 20 of the second upper magnetic field line 25B as shown in FIG. 3 and FIG. 4 (b).
  • the target 20 can be sharply cut in a narrow range in the X direction by the sputtering. Is done.
  • this second vertical zero cross VB2 is a left-side rotation that creates this first upper magnetic field line 25A in a situation where it is formed by a vectorore parallel to the X direction of the target 20 of the first upper magnetic field line 25A.
  • the plate magnet 1 la and the right magnet 13 of the body 11 are adjacent to each other.
  • the range of the X direction of the second vertical zero cross VB2 is thought to increase, which is supported by the slow change in the vertical magnetic flux density near the second vertical zero cross VB2 shown in Fig. 4 (b). It has been.
  • the zero point 29 exists below the second vertical zero cross VB2 (in other words, the lower magnetic field line 26 that cancels the X-direction component of the magnetic flux density of the first upper magnetic field line 25A exists). Therefore, the parallel magnetic flux density in the vicinity of the second vertical zero cross VB2 is not so high. This indicates that the parallel magnetic flux density (absolute value) in the X direction corresponding to the second vertical zero cross VB2 shown in Fig. 4 (a) ) Maximum value (scale: approx. 5).
  • FIG. 5 is a schematic diagram showing a sputtering operation of a target using the magnet structure 110 according to the present embodiment.
  • FIG. 5 The upper magnet structure in FIG. 5 is arranged in the same manner as the magnet structure 110 shown in FIG.
  • the magnetic poles (S) facing the back surface 20B of the target 20 of the left and right magnets 10 and 13 are rotated by rotation around the central axis P of the plate magnet 11a of the left rotating body 11.
  • the magnetic pole (N pole) of the plate magnet 11a of the left rotating body 11 that is different from the pole) is directed to the back surface 20B of the target 20 and rotated around the central axis P of the plate magnet 12a of the right rotating body 12 ,
  • the magnetic field lines formed in the width direction (X direction) of the target 20 between the right magnet 13 (S pole) and the plate magnet 11a (N pole) of the left rotating body 11 (first upper magnetic field line 25A in FIG. 3)
  • the magnetic structure 110 is used in such a manner that the magnetic moment of the right rotating body 12 is directed in the width direction of the target 20 so as to cancel out the above.
  • the target 20 as shown in the upper part of FIG. Faster in a narrow range in the width direction (X direction) of the target 20 between 11 Scraps and gently cuts in the X direction between the left rotating body 11 and the right magnet 13 in a wide range.
  • the middle magnet structure in FIG. 5 rotates the left rotating body 11 counterclockwise by 90 ° and the right rotating body 12 counterclockwise with respect to the magnet structure 110 shown in FIG. ° Arranged to rotate.
  • the magnetic poles (S) facing the back surface 20B of the target 20 of the left and right magnets 10 and 13 by rotation around the central axis P of the plate magnet 12a of the right rotating body 12 are shown.
  • the magnetic pole (N pole) of the plate magnet 12a of the right rotating body 12 that is different from the pole) is directed to the back surface 20B of the target 20 and rotated around the central axis P of the plate magnet 11a of the left rotating body 11
  • the usage pattern of the magnet structure 110 in which the magnetic moment is directed in the width direction of the target 20 is illustrated.
  • the target 20 shown in the middle of FIG. The target 20 is sharply cut in a narrow range in the width direction (X direction) of the target 20, and is slowly cut in a wide range in the X direction between the right rotating body 12 and the left magnet 10.
  • the left and right rotating bodies 11 and 12 of the magnet structure 110 are moved at predetermined intervals according to the sputtering state of the target 20 in the upper part of FIG.
  • the first and second vertical zero crossings VB1 and VB2 (the magnetic field line distribution in the vicinity) are rotated by rotating around the central axis P so that it becomes the middle usage pattern in Fig. 5 and the usage pattern.
  • the target 20 erodes alternately between the two, resulting in a perpendicular to the surface 20B of the target 20 as shown in the lower part of FIG.
  • the region where the plasma confinement function due to the magnetic field lines cannot be exhibited disappears, and the target 20 is suitable for cutting over substantially the entire region.
  • the distribution of the magnetic lines of force on the surface of the target 20 can be appropriately changed at predetermined intervals. Wide erosion with reduced local spatter can be realized, the efficiency of using the target can be increased, and the replacement period of the target 20 can be extended. This will contribute to an improvement in the operating rate of the Rena type magnetron sputtering apparatus.
  • the magnet structure 110 of this embodiment and the method of using the magnet structure 110 only the left and right rotating bodies 11, 12 that are only one member of the magnet structure 110 that does not swing the entire magnet structure 110 are used. It is preferable that the magnetic force line distribution on the surface of the target 20 can be appropriately changed at predetermined intervals by a simple drive mechanism that rotates around the central axis P.
  • the magnet structure according to the present invention is useful, for example, as a magnetic field forming means for a magnetron sputtering apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A magnet structure (110) for a magnetron sputtering apparatus is provided with first and second stationary magnets (10, 13) arranged on the rear plane side of a target (20) with the same magnetic polarity facing the rear plane of the target. The magnet structure is also provided with magnetic field correcting means (11, 12), which are arranged on the rear plane side of the target (20) between the first and the second stationary magnets (10, 13) and can vary the direction of magnetic moment within a flat plane along the thickness direction and the width direction of the target (20).

Description

明 細 書  Specification
マグネトロンスパッタリング装置用の磁石構造体および力ソード電極ュニッ ト並びにマグネトロンスパッタリング装置並びに磁石構造体の使用方法  Magnet structure and force sword electrode unit for magnetron sputtering apparatus, magnetron sputtering apparatus, and method of using magnet structure
技術分野  Technical field
[0001] 本発明は、マグネトロンスパッタリング装置用の磁石構造体および力ソード電極ュニ ット並びにマグネトロンスパッタリング装置並びに磁石構造体の使用方法(以下、「磁 石構造体等」という)に係り、更に詳しくは、ターゲット利用効率を高めることを目的とし た、マグネトロンスパッタリングの磁石構造体等の改良技術に関する。  The present invention relates to a magnet structure for a magnetron sputtering apparatus, a force sword electrode unit, a magnetron sputtering apparatus, and a method of using the magnet structure (hereinafter referred to as “magnet structure etc.”). More specifically, the present invention relates to an improved technology for magnetron sputtering magnet structures and the like for the purpose of increasing target utilization efficiency.
背景技術  Background art
[0002] ターゲット材料に真空中でイオン (例えば、 Arイオン)が衝突することにより、ターグ ットの原子を飛び出させ、ターゲット材料に対向して配置された基板に、この原子を 付着させるというスパッタリング現象による成膜手法は、従来から良く知られている。  Sputtering in which ions (for example, Ar ions) collide with a target material in a vacuum to cause the target atoms to jump out and attach these atoms to a substrate placed opposite to the target material. A film formation method based on the phenomenon has been well known.
[0003] こうした成膜方法の一手法であるマグネトロンスパッタリング成膜法においては、タ 一ゲット表面(基板に対向するおもて面)上に、所定の磁束密度以上のトンネル状の 漏れ磁界を形成できることから、スパッタリング現象の過程で発生する二次電子を口 一レンツ力で捉えてこれをサイクロイド運動させることにより、 Arガスとのイオン化衝突 の頻度を増加でき、これにより、ターゲット表面付近の空間に高密度プラズマを形成 して成膜速度の高速化を可能にしてレ、る。  In the magnetron sputtering film forming method, which is one of these film forming methods, a tunnel-like leakage magnetic field having a predetermined magnetic flux density or higher is formed on the target surface (front surface facing the substrate). As a result, the frequency of ionization collisions with Ar gas can be increased by capturing the secondary electrons generated in the process of the sputtering phenomenon by the mouth-to-lentz force and making it move in a cycloidal motion. A high-density plasma can be formed to increase the deposition rate.
[0004] しかし、このようなマグネトロンスパッタリング成膜法は、磁界の強い領域のターゲッ ト材料がスパッタリングに基づいて局所的に早く削れることにより、ターゲットの面内に おけるスパッタ量にムラを招いてターゲットの使用効率に劣るといった欠点を有して おり、従来からこのような欠点を補うための各種の技術が開発されている。  [0004] However, such a magnetron sputtering film-forming method causes a target material in a region with a strong magnetic field to be locally and quickly scraped by sputtering, resulting in unevenness in the amount of sputtering in the target surface. In the past, various techniques have been developed to compensate for these disadvantages.
[0005] 例えば、上記漏れ磁界形成用の複数の磁石と、ヨークと、各種の連結部材と、を含 む磁気装置 (磁石構造体)全体を、ターゲット表面の面方向に揺動する磁石構造体 の駆動機構が提案されてレ、る (特許文献 1参照)。  [0005] For example, a magnet structure that swings the entire magnetic device (magnet structure) including the plurality of magnets for forming a leakage magnetic field, a yoke, and various connecting members in the surface direction of the target surface. This drive mechanism has been proposed (see Patent Document 1).
[0006] このような駆動機構によれば、ターゲット裏面内に沿って磁石を面方向に動かせる こと力ら、こうした磁石の動きに連動してターゲット表面上の磁力線分布を変えること ができ、その結果として、ターゲット表面上のエロージョン促進領域が時々刻々と周 期的に変化することになり、スパッタリングに際してのターゲット表面の均一なエロー ジョンが図れる。 [0006] According to such a drive mechanism, the force of moving the magnet in the surface direction along the back surface of the target changes the magnetic field line distribution on the surface of the target in conjunction with the movement of the magnet. As a result, the erosion promoting region on the target surface changes periodically, and uniform erosion of the target surface during sputtering can be achieved.
特許文献 1:特開平 4一 329874号公報(図 3)  Patent Document 1: Japanese Patent Laid-Open No. 329874 (Fig. 3)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかしながら、特許文献 1記載の磁石構造体の駆動機構は、磁気構造体全体を駆 動することを要し、これにより、駆動機構の複雑化かつ大型化を招くという欠点がある [0007] However, the drive mechanism for the magnet structure described in Patent Document 1 requires driving the entire magnetic structure, which has the disadvantage that the drive mechanism becomes complicated and large.
[0008] 本発明は、斯かる事情に鑑みてなされたものであり、磁石構造体全体を揺動させる ことなぐ簡易な駆動機構によりターゲット表面上の磁力線分布を所定の周期毎に変 え、ターゲットのワイドエロージョン化を図るようにした磁石構造体等を提供することを 目的とする。 [0008] The present invention has been made in view of such circumstances, and the distribution of magnetic lines of force on the surface of the target is changed at predetermined intervals by a simple drive mechanism that does not oscillate the entire magnet structure. An object of the present invention is to provide a magnet structure and the like that can achieve wide erosion.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するため、本発明に係るマグネトロンスパッタリング装置用の磁石 構造体は、互いに同種の磁極がターゲットの裏面に向くよう、前記ターゲットの裏面 側に配置された第 1および第 2の固定磁石と、前記第 1および第 2の固定磁石の間の 前記ターゲットの裏面側に配置され、前記ターゲットの厚み方向と幅方向とに沿った 平面内において磁気モーメントの向きを変更可能な磁界補正手段と、を備えて構成 されている。 In order to solve the above problems, the magnet structure for a magnetron sputtering apparatus according to the present invention includes first and second magnets arranged on the back surface side of the target such that the same kind of magnetic poles face the back surface of the target. A magnetic field that is disposed on the back side of the target between the fixed magnet and the first and second fixed magnets and can change the direction of the magnetic moment in a plane along the thickness direction and the width direction of the target And a correction means.
[0010] ここで前記磁界補正手段は、磁極として機能する両端面を有する複数の磁石を含 み、前記磁石は、前記平面内において前記両端面を回転可能に構成されても良い。  Here, the magnetic field correction means may include a plurality of magnets having both end surfaces functioning as magnetic poles, and the magnets may be configured to be able to rotate the both end surfaces in the plane.
[0011] 磁石構造体の上記構成により、磁石構造体全体を揺動させることなぐ簡易な駆動 機構によりターゲット表面上の磁力線分布を所定の周期毎に変え、ターゲットのワイド エロージョン化を図るようにした磁石構造体等が得られる。 [0011] With the above-described configuration of the magnet structure, the magnetic force distribution on the surface of the target is changed at predetermined intervals by a simple drive mechanism that does not swing the entire magnet structure, so that the target has a wide erosion. A magnet structure or the like is obtained.
[0012] より具体的には、前記磁界補正手段は、前記第 1の固定磁石に隣接する前記磁石 を含み前記平面に垂直な軸の周りに回転可能な第 1の回転体と、前記第 2の固定磁 石に隣接する前記磁石を含み前記平面に垂直な軸の周りに回転可能な第 2の回転 体と、を備えても良い。 More specifically, the magnetic field correction means includes a first rotating body that includes the magnet adjacent to the first fixed magnet and is rotatable around an axis perpendicular to the plane, and the second A second rotation rotatable about an axis perpendicular to the plane including the magnet adjacent to the fixed magnet And a body.
[0013] そして、前記第 1および第 2の回転体は、前記磁石と、前記両端面に挟まれた前記 磁石の両側面の各々に接合された部材とによって、前記軸を中心とした略円柱状に 形作られても良い。  [0013] Then, the first and second rotating bodies are substantially circular around the axis by the magnet and members joined to both side surfaces of the magnet sandwiched between the both end surfaces. It may be shaped like a column.
[0014] 第 1および第 2の回転体を略円柱状にすれば、これらの回転体を回転する際の回 転トルクがバランス良くなり好適である。  [0014] It is preferable that the first and second rotating bodies have a substantially columnar shape because the rotational torque when rotating these rotating bodies is well balanced.
[0015] ここで、本発明に係る磁石構造体の使用方法は、前記第 1の回転体の前記軸の周 りの回転により、前記同種の磁極と異なった前記第 1の回転体の磁極が前記ターゲッ トの裏面に向き、かつ、前記第 2の回転体の前記軸周りの回転により、前記第 2の固 定磁石と前記第 1の回転体との間に形成される磁力線を相殺するよう、前記第 2の回 転体の磁気モーメントが前記ターゲットの幅方向に向く使用形態と、前記第 2の回転 体の前記軸の周りの回転により、前記同種の磁極と異なった前記第 2の回転体の磁 極が前記ターゲットの裏面に向き、かつ、前記第 1の回転体の中心軸周りの回転によ り、前記第 1の固定磁石と前記第 2の回転体との間に形成される磁力線を相殺するよ う、前記第 1の回転体の磁気モーメントが前記ターゲットの幅方向に向く使用形態と、 含む方法であっても良い。  [0015] Here, in the method of using the magnet structure according to the present invention, the magnetic pole of the first rotating body, which is different from the magnetic pole of the same type, is rotated by the rotation of the first rotating body around the axis. The magnetic field lines formed between the second fixed magnet and the first rotating body are offset by the rotation of the second rotating body around the axis and facing the back surface of the target. The second rotation different from the magnetic pole of the same kind by the usage pattern in which the magnetic moment of the second rotating body is oriented in the width direction of the target and the rotation of the second rotating body around the axis. A body magnetic pole is formed between the first fixed magnet and the second rotating body by rotating around the central axis of the first rotating body while facing the back surface of the target. The magnetic moment of the first rotating body is increased in the width direction of the target so as to cancel the magnetic field lines. Ku and use form, may be a method of including.
[0016] 磁石構造体の第 1および第 2の回転体を、ターゲットのスパッタリング状態に応じて 所定の周期毎に、軸の周りに回転させ上記 2種の使用形態を繰り返すことにより、垂 直ゼロクロス(その近傍の領域の磁力線分布)がターゲットの幅方向に移動することか ら、両者間のターゲットの侵食が交互に重畳的になされ、その結果として、ターゲット の表面に垂直に湧き出す部分の、磁力線によるプラズマ閉じ込め機能を発揮し得な い領域が消滅することになり、ターゲットは、その略全域に亘り削れて好適である。  [0016] By rotating the first and second rotating bodies of the magnet structure around the axis at predetermined intervals according to the sputtering state of the target and repeating the above two types of usage, the vertical zero crossing is performed. Since the (magnetic field line distribution in the neighboring area) moves in the width direction of the target, target erosion between the two is alternately superimposed, and as a result, the portion of the part that swells perpendicularly to the surface of the target The region in which the plasma confinement function due to the magnetic field lines cannot be exhibited disappears, and the target is suitable for being scraped over almost the entire region.
[0017] また、本発明に係るマグネトロンスパッタリング装置用の力ソード電極ユニットは、非 磁性金属からなるターゲットと、前記ターゲット裏面側に配置された上記磁石構造体 と、前記ターゲットに所定電力を給電する電力源と、を備えて構成されている。 [0017] A force sword electrode unit for a magnetron sputtering apparatus according to the present invention includes a target made of a non-magnetic metal, the magnet structure disposed on the back side of the target, and a predetermined power supply to the target. And a power source.
また、本発明に係るマグネトロンスパッタリング装置は、上記力ソード電極ユニットと、 前記力ソード電極ユニットの前記ターゲットに対向する基板と、を格納した内部を減 圧可能な真空槽と、を備えて構成されている。 [0018] 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。 A magnetron sputtering apparatus according to the present invention includes the above-described force sword electrode unit, and a vacuum chamber capable of depressurizing the inside storing the force sword electrode unit and a substrate facing the target of the force sword electrode unit. ing. [0018] The above objects, other objects, features, and advantages of the present invention will become apparent from the following detailed description of the preferred embodiments with reference to the accompanying drawings.
発明の効果  The invention's effect
[0019] 本発明によれば、磁石構造体全体を揺動させることなぐ簡易な駆動機構によりタ 一ゲット表面上の磁力線分布を所定の周期毎に変え、ターゲットのワイドエロージョン 化を図るようにした磁石構造体等が得られる。  [0019] According to the present invention, the magnetic field distribution on the target surface is changed at predetermined intervals by a simple drive mechanism that does not cause the entire magnet structure to oscillate, thereby achieving wide erosion of the target. A magnet structure or the like is obtained.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図 1は、本発明の実施の形態に係る磁石構造体を含む力ソード電極ユニットを 平面視した図である。  FIG. 1 is a plan view of a force sword electrode unit including a magnet structure according to an embodiment of the present invention.
[図 2]図 2は、図 1の Π_Π断面線に沿った部分の力ソード電極ユニットの斜視図である  FIG. 2 is a perspective view of a force sword electrode unit in a portion along the Π_Π section line of FIG.
[図 3]図 3は、静磁場シミュレーション技術による本実施の形態に係る磁石構造体の 解析結果の一例を示した図である。 FIG. 3 is a diagram showing an example of an analysis result of the magnet structure according to the present embodiment by a static magnetic field simulation technique.
[図 4]図 4は、静磁場シミュレーション技術による本実施の形態に係る磁石構造体の 解析結果の一例を示した図である。  FIG. 4 is a diagram showing an example of the analysis result of the magnet structure according to the present embodiment by the static magnetic field simulation technique.
[図 5]図 5は、本実施の形態による磁石構造体を使用したターゲットのスパッタリング 動作を示した模式図である。  FIG. 5 is a schematic diagram showing a sputtering operation of a target using the magnet structure according to the present embodiment.
符号の説明  Explanation of symbols
[0021] 10 左側磁石 [0021] 10 Left magnet
11 左側回転体  11 Left hand rotating body
12 右側回転体  12 Right side rotating body
13 右側磁石  13 Right magnet
14 ァクチユエータ  14 Actuator
20 ターゲット  20 targets
21 基台  21 base
22 第 1のベース片  22 First base piece
23 第 2のベース片  23 Second base piece
26 上側磁力線 25A 第 1の上側磁力線 26 Upper magnetic field line 25A 1st upper field line
25B 第 2の上側磁力線  25B Second upper field line
26 下側磁力線  26 Lower magnetic field lines
27 内側中間磁力線  27 Inner intermediate magnetic field lines
28 外側中間磁力線  28 Outer intermediate magnetic field lines
29 ゼロ点  29 Zero point
100 力ソード電極ユニット  100 force sword electrode unit
110 磁石構造体  110 Magnet structure
VI 電力源  VI Power source
VB1 第 1の垂直ゼロクロス  VB1 1st vertical zero cross
VB2 第 2の垂直ゼロクロス  VB2 Second vertical zero cross
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
図 1は、本発明の実施の形態に係る磁石構造体 (磁界形成手段)を含む力ソード電 極ユニットを平面視した図である。  FIG. 1 is a plan view of a force sword electrode unit including a magnet structure (magnetic field forming means) according to an embodiment of the present invention.
[0023] また、図 2は、図 1の Π— Π断面線に沿った部分の力ソード電極ユニットの斜視図で ある。  FIG. 2 is a perspective view of the force sword electrode unit at a portion along the cross-sectional line of FIG.
[0024] なお図 1では、図面の簡素化の観点から、磁石構造体 110の磁石のみを図示して いる。  In FIG. 1, only the magnet of the magnet structure 110 is shown from the viewpoint of simplifying the drawing.
[0025] また便宜上、図 1および図 2において(図 3も同じ)、ターゲット 20の幅方向を「X方 向」とし、ターゲット 20の厚み方向を「Y方向」とし、 X方向および Υ方向に垂直な方向 を「Ζ方向」とし、ターゲット 20の幅方向の両側の一方を「右」とし、その他方を「左」と して、力ソード電極ユニット 100の各構成部材を説明する。  For convenience, in FIGS. 1 and 2 (the same applies to FIG. 3), the width direction of the target 20 is “X direction”, the thickness direction of the target 20 is “Y direction”, and the X direction and the heel direction are Each component of the force sword electrode unit 100 will be described with the “vertical direction” being the “heel direction”, one of the both sides of the target 20 in the width direction being “right” and the other being “left”.
[0026] 更に、図 2の磁石構造体 110の各構成部材の奥行 (Ζ方向逆向き)は、途中で切断 した形態により示されているが、これらの構成部材は、実際には同一断面形状で奥 行の方向に延びて構成されており、このことは、図 1を参酌することにより容易に理解 され得る。  [0026] Further, the depth (reverse direction of the heel direction) of each constituent member of the magnet structure 110 in FIG. 2 is shown in a cut form in the middle, but these constituent members are actually the same cross-sectional shape. It can be easily understood by referring to Fig. 1.
[0027] 本実施の形態による力ソード電極ユニット 100は、図 2に示す如ぐ主として、アルミ (Al)等の非磁性金属からなる矩形状のターゲット 20と、このターゲット 20の裏面 20B 側に配置され、複数の磁石を有する磁石構造体 110と、を備えて構成されている。 [0027] The force sword electrode unit 100 according to the present embodiment is mainly made of aluminum as shown in FIG. A rectangular target 20 made of a nonmagnetic metal such as (Al) and a magnet structure 110 having a plurality of magnets arranged on the back surface 20B side of the target 20 are provided.
[0028] ターゲット 20は、これに対向配置させた基板(不図示)に被覆させる薄膜の母材で あり、プラズマ中の Arイオン (正イオン)を引き込む目的で、電力源 VIにより陰極 (力 ソード)になるように給電されている。 [0028] The target 20 is a thin film base material to be coated on a substrate (not shown) disposed opposite to the target 20 and is used for the purpose of drawing Ar ions (positive ions) in the plasma by the cathode (power sword) by the power source VI. )
[0029] またここでは、力ソード電極ユニット 100と、基板とを格納してなり、内部を減圧可能 なマグネトロンスパッタリング装置用の真空槽 (不図示)が、陽極 (アノード)として接地 されている。 [0029] Further, here, a vacuum chamber (not shown) for a magnetron sputtering apparatus, in which a force sword electrode unit 100 and a substrate are housed and whose inside can be decompressed, is grounded as an anode.
[0030] なお、スパッタリング現象の過程において、プラズマ閉じ込め用のトンネル状の漏れ 磁界によりターゲット 20の表面付近に Arイオンを含む高密度プラズマを形成する一 方、ターゲット 20の構成原子(ここではアルミ原子)が、この Arイオンの衝突エネルギ 一によりターゲット表面から叩き出され、叩き出された原子が上記基板に堆積される 力 こうした技術は周知であり、ここでは詳細な説明は省く。  [0030] In the course of the sputtering phenomenon, a high density plasma containing Ar ions is formed near the surface of the target 20 by a tunnel-like leakage magnetic field for confining the plasma. ), But the force by which the bombarded atoms are struck from the target surface by this Ar ion collision energy and the struck atoms are deposited on the substrate. Such a technique is well known and will not be described in detail here.
[0031] 磁石構造体 110は、図 2に示す如ぐ例えば、強磁性ステンレスにより製作された基 台 21を有している。この基台 21は、平面視(図 1)においてターゲット 20の外寸より若 干大きめの矩形板状の外形をなし、ターゲット 20の表面 20A近傍の上方空間にブラ ズマ閉じ込め用のトンネル状の漏れ磁界を作る磁石構造体 110の各構成部材 (後記 の磁石および磁性部材)やターゲット 20を適宜の固定手段を介して一体的に固定し 保持している力 S、ここでは、このような固定手段の図示および説明は省く。  As shown in FIG. 2, the magnet structure 110 has a base 21 made of, for example, ferromagnetic stainless steel. This base 21 has a rectangular plate-shaped outer shape that is slightly larger than the outer dimension of the target 20 in a plan view (FIG. 1), and a tunnel-like leak for trapping the plasma in the upper space near the surface 20A of the target 20. A force S for fixing and holding each component (magnet and magnetic member described later) of the magnetic structure 110 that generates a magnetic field and the target 20 integrally through appropriate fixing means, here, such fixing means The illustration and explanation are omitted.
[0032] 磁石構造体 110の第 1の固定磁石として、ターゲット 20の裏面 20B側には、図 1お よび図 2に示す如ぐターゲット 20の幅方向(X方向)の左端からターゲット 20の内側 に若干入った位置 (以下、この位置を「左端近傍部」という)にある、略長方形状の左 側磁石 10 (永久磁石)が、平面視においてこの磁石 10の長手方向をターゲット 20の 長辺方向に一致させた棒状の形態で、図 2に示した基台 21に載った長方形状の第 1 のベース片 22の上面に配置されてレ、る。  [0032] As the first fixed magnet of the magnet structure 110, on the back surface 20B side of the target 20, as shown in FIGS. 1 and 2, the inner side of the target 20 from the left end in the width direction (X direction) of the target 20 The left side magnet 10 (permanent magnet) having a substantially rectangular shape at a position slightly below (hereinafter referred to as “the vicinity of the left end”) is located on the long side of the target 20 in the plan view. It is arranged in the form of a bar that matches the direction and is arranged on the upper surface of the rectangular first base piece 22 mounted on the base 21 shown in FIG.
[0033] この左側磁石 10は、詳しくは、図 2に示す如ぐ Y方向の向き(ターゲット 20の裏面  [0033] Specifically, the left magnet 10 has a Y-direction orientation as shown in FIG.
20Bから表面 20Aに向力、う方向)に左側磁石 10内の磁気モーメントの方向を生じせ しめる N極と S極を有してなり、左側磁石 10の S極側がターゲット 20の裏面 20Bの左 端近傍部に向いて、左側磁石 10の N極側が、磁性材料 (例えば強磁性ステンレスや 鉄)により製作された第 1のベース片 22の上面に当接したうえで、この第 1のベース片 22を介して、上記基台 21の左端近傍部に向いている。 The direction of the magnetic moment in the left magnet 10 is generated from 20B to the front surface 20A). The N pole and the S pole are provided. The N pole side of the left magnet 10 is in contact with the upper surface of the first base piece 22 made of a magnetic material (for example, ferromagnetic stainless steel or iron). It faces the vicinity of the left end of the base 21 through 22.
[0034] 磁石構造体 110の第 2の固定磁石として、ターゲット 20の裏面 20B側には、図 1お よび図 2に示す如ぐターゲット 20の幅方向(X方向)の右端からターゲット 20の内側 に若干入った位置 (以下、この位置を「右端近傍部」という)にある、略長方形状の右 側磁石 13 (永久磁石)が、平面視においてこの磁石 13の長手方向をターゲット 20の 長辺方向(Z方向)に一致させた棒状の形態で、図 2に示した基台 21に載った長方 形状の第 2のベース片 23の上面に配置されてレ、る。  [0034] As the second fixed magnet of the magnet structure 110, on the back surface 20B side of the target 20, from the right end in the width direction (X direction) of the target 20 as shown in FIG. 1 and FIG. The right-side magnet 13 (permanent magnet) having a substantially rectangular shape at a position slightly below (hereinafter referred to as the “right end vicinity”) is positioned on the long side of the target 20 in the longitudinal direction of the magnet 13 in plan view. It is arranged in the shape of a rod that matches the direction (Z direction) and is disposed on the upper surface of the rectangular second base piece 23 mounted on the base 21 shown in FIG.
[0035] この右側磁石 13は、詳しくは、図 2に示す如ぐ Y方向の向き(ターゲット 20の裏面 20Bから表面 20Aに向力、う方向)に右側磁石 13内の磁気モーメントの方向を生じせ しめる N極と S極を有してなり、右側磁石 13の S極側がターゲット 20の裏面 20Bの右 端近傍部に向いて、右側磁石 13の N極側が、磁性材料 (例えば強磁性ステンレスや 鉄)により製作された第 2のベース片 23の上面に当接したうえで、この第 2のベース片 23を介して、上記基台 21の右端近傍部に向いている。  [0035] Specifically, the right magnet 13 generates the direction of the magnetic moment in the right magnet 13 in the Y direction as shown in Fig. 2 (direction of force from the back surface 20B to the front surface 20A of the target 20). N-pole and S-pole, and the right-side magnet 13 has the south-pole side facing the right end of the back surface 20B of the target 20, and the right-side magnet 13 has the north-pole side made of a magnetic material (e.g., ferromagnetic stainless steel or The second base piece 23 made of iron is in contact with the upper surface of the second base piece 23, and is directed to the vicinity of the right end of the base 21 through the second base piece 23.
[0036] また、ターゲット 20の裏面 20B側であって、左右側磁石 10、 13の間の左側磁石 10 に隣接した位置にある、略円柱状の左側回転体 11 (磁界補正手段)が、図 2に示す 如ぐターゲット 20の厚み方向(Y方向)と幅方向(X方向)とに沿った平面内(XY平 面内)において磁気モーメントの向きを変更可能なように、この XY平面に垂直な Z方 向の中心軸 Pの周りに回転可能に構成されている。  [0036] Further, a substantially cylindrical left rotating body 11 (magnetic field correcting means) located on the back surface 20B side of the target 20 and adjacent to the left magnet 10 between the left and right magnets 10 and 13 is shown in FIG. As shown in Fig. 2, perpendicular to this XY plane so that the direction of the magnetic moment can be changed in the plane (in the XY plane) along the thickness direction (Y direction) and the width direction (X direction) of the target 20 It is configured to be rotatable around a central axis P in the Z direction.
[0037] この左側回転体 11の一例は、 N極として機能する一端面(N極端面 11N)と S極と して機能する他端面(S極端面 11S)を有する板状磁石 1 la (永久磁石)と、板状磁石 11 aの S極端面 11Sと N極端面 11 Nとにより挟まれてレ、る板状磁石 11 aの両側面 11 Fに接合された、強磁性部材 l lc、 l idと、によって、中心軸 Pを中心とした略円柱状 に形作られている。  [0037] An example of the left rotating body 11 is a plate-shaped magnet 1 la (permanent) having one end surface (N extreme surface 11N) functioning as an N pole and the other end surface (S extreme surface 11S) functioning as an S pole. Magnet) and the S extreme surface 11S and N extreme surface 11 N of the plate magnet 11a, and the ferromagnetic member l lc, l joined to both side surfaces 11F of the plate magnet 11a By id, it is formed in a substantially cylindrical shape with the central axis P as the center.
[0038] そして、この左側回転体 11は、その板状磁石 11aの中心軸 Pを中心にして、図 1に 示す如ぐモータ等のァクチユエータ 14により回転駆動され、これにより、左側回転体 11は、中心軸 Pの周りの所定の回転角範囲に亘り回転できる。つまり、左側回転体 1 1 (板状磁石 11a)では、 XY平面内において、 S極端面 11Sおよび N極端面 11Nか らなる両端面 11S、 11Nが、中心軸 Pを中心として回転するように構成されている。 [0038] The left rotating body 11 is rotationally driven by an actuator 14 such as a motor as shown in Fig. 1 around the central axis P of the plate magnet 11a. And can rotate over a predetermined rotation angle range around the central axis P. In other words, left rotating body 1 1 (plate magnet 11a) is configured such that both end faces 11S, 11N including the S extreme face 11S and the N extreme face 11N rotate around the central axis P in the XY plane.
[0039] なお、図 2の左側回転体 11では、その中心軸 Pの周りの回転により、左側磁石 10の 磁極(S極)と異種の磁極(N極)がターゲット 20の裏面 20Bに向いた使用形態が例 示されている。 [0039] Note that in the left rotating body 11 of FIG. 2, the magnetic pole (S pole) of the left magnet 10 and the different magnetic pole (N pole) are directed to the back surface 20B of the target 20 by rotation around the central axis P. Examples of usage are shown.
[0040] また、ターゲット 20の裏面 20B側であって、左右側磁石 10、 13の間の右側磁石 13 に隣接した位置にある、略円柱状の右側回転体 12 (磁界補正手段)が、図 2に示す 如ぐターゲット 20の厚み方向(Y方向)と幅方向(X方向)とに沿った平面内(XY平 面内)において磁気モーメントの向きを変更可能なように、この平面に垂直な Z方向 の中心軸 Pの周りに回転可能に構成されてレ、る。  [0040] Further, a substantially cylindrical right rotating body 12 (magnetic field correcting means) located on the back surface 20B side of the target 20 and adjacent to the right magnet 13 between the left and right magnets 10, 13 is shown in FIG. As shown in Fig. 2, the direction of the magnetic moment can be changed in a plane (in the XY plane) along the thickness direction (Y direction) and the width direction (X direction) of the target 20 as shown in Fig. 2. It is configured to be rotatable around the central axis P in the Z direction.
[0041] この右側回転体 12の一例は、 N極として機能する一端面(N極端面 12N)と S極と して機能する他端面(S極端面 12S)を有する板状磁石 12a (永久磁石)と、この板状 磁石 12aの S極端面 12Sと N極端面 12Nとにより挟まれている板状磁石 12aの両側 面 12Fに接合された、強磁性部材 12c、 12dと、によって、中心軸 Pを中心とした略円 柱状に形作られている。  [0041] An example of the right rotating body 12 is a plate-like magnet 12a (permanent magnet) having one end surface (N extreme surface 12N) functioning as an N pole and the other end surface (S extreme surface 12S) functioning as an S pole. ) And the ferromagnetic members 12c and 12d joined to both side surfaces 12F of the plate magnet 12a sandwiched between the S extreme surface 12S and the N extreme surface 12N of the plate magnet 12a by the central axis P It is shaped like a substantially circular column centered on
[0042] そして、この右側回転体 12は、その板状磁石 12aの中心軸 Pを中心にして、図 1に 示す如ぐモータ等のァクチユエータ 14により回転駆動され、これにより、右側回転体 12は、中心軸 Pの周りの所定の回転角範囲に亘り回転できる。つまり、右側回転体 1 2 (板状磁石 12a)では、 XY平面内において、 S極端面 12Sおよび N極端面 12Nか らなる両端面 12S、 12Nが、中心軸 Pを中心として回転するように構成されている。  [0042] Then, the right rotating body 12 is rotationally driven by an actuator 14 such as a motor as shown in FIG. 1 around the central axis P of the plate magnet 12a, whereby the right rotating body 12 is And can rotate over a predetermined rotation angle range around the central axis P. In other words, the right-hand rotating body 1 2 (plate magnet 12a) is configured such that both end faces 12S and 12N consisting of the S extreme face 12S and the N extreme face 12N rotate around the central axis P in the XY plane. Has been.
[0043] なお、図 2の右側回転体 12では、その中心軸 Pの周りの回転により、左側を S極、右 側を N極とした磁気モーメントが、ターゲット 20の幅方向(X方向)に向いた使用形態 が例示されている。  [0043] In the right-hand rotating body 12 in FIG. 2, the magnetic moment with the S pole on the left side and the N pole on the right side in the width direction (X direction) of the target 20 is caused by the rotation around the central axis P. A suitable usage pattern is illustrated.
[0044] なお、ここで、左右側回転体 11、 12を略円柱形状にしたことにより、これらの回転体 11、 12の回転トルクのバランスを適切に保つことができ好適である。  Here, it is preferable that the left and right side rotators 11 and 12 have a substantially cylindrical shape, so that the balance of the rotational torque of these rotators 11 and 12 can be appropriately maintained.
[0045] また、以上に述べた磁石 10、 l la、 12a, 13は、公知の各種磁石材料を用いて構 成できるが、これらの磁石 10、 l la、 12a、 13を、ターゲット 20の裏面 20Bを冷却す る冷却水中に浸けて使用する場合には、磁石表面に防鲭加工を施すことや、鲭び難 レ、磁石材料 (例えば、フェライト磁石)を選択することが望ましレ、。 [0045] The magnets 10, l la, 12a, and 13 described above can be configured using various known magnet materials, and these magnets 10, l la, 12a, and 13 are formed on the back surface of the target 20. When the 20B is immersed in the cooling water used for cooling, the magnet surface should be protected against rust and It is desirable to select a magnet material (for example, a ferrite magnet).
[0046] 更に、左右側回転体 11、 12の表面をターゲット 20の裏面 20Bに可能な限り近接さ せるよう(但しスムーズに回転できる隙間は必須)、左右側回転体 11、 12を配置して も良ぐこれらの表面とターゲット 20の裏面 20Bとの間に一定の間隔を設けるよう、左 右側回転体 11、 12を配置しても良い。  [0046] Further, the left and right side rotating bodies 11, 12 are arranged so that the surfaces of the left and right side rotating bodies 11, 12 are as close as possible to the back surface 20B of the target 20 (however, a gap that allows smooth rotation is essential). Alternatively, the left and right rotating bodies 11 and 12 may be arranged so that a certain distance is provided between these front surfaces and the rear surface 20B of the target 20.
[0047] 両者を可能な限り近接させることにより、左右側回転体 11、 12とターゲット 20との距 離が最短になって、左右側回転体 11、 12によりもたらされる、プラズマ閉じ込め磁界 形成に寄与する磁気エネルギーを効果的に発揮させ得て有益な場合がある。  [0047] By bringing them as close as possible, the distance between the left and right rotating bodies 11 and 12 and the target 20 is minimized, contributing to the formation of a plasma confinement magnetic field caused by the left and right rotating bodies 11 and 12 In some cases, it is beneficial to effectively exert magnetic energy.
[0048] なお、このような左右側回転体 11、 12の表面とターゲット 20の裏面 20Bとを近接さ せる際には、適宜の嵩上げ部材 (不図示)により左右側回転体 11、 12を持ち上げて も良い。  [0048] When the front surfaces of the left and right rotating bodies 11 and 12 and the back surface 20B of the target 20 are brought close to each other, the left and right rotating bodies 11 and 12 are lifted by an appropriate raising member (not shown). It's okay.
[0049] また、両者間に一定の間隔を確保することにより、ターゲット 20の裏面 20Bを冷却 水により冷却するに際して有益な場合がある。例えば、冷却水を溜めた冷却水容器( 不図示)の中に磁石構造体 110の全体を浸けるような形態の冷却構造を採用する場 合には、この隙間に冷却水を流せて、冷却水とターゲット 20の裏面 20Bとの間の熱 交換が効率良く実行され好適である。また、冷却水を通水させる中空部を有するバッ キングプレート(不図示)をターゲット 20の裏面 20Bに当接させる形態の冷却構造を 採用するには、ノくッキングプレート挿入用空間としてこのような間隔は、不可欠になる  [0049] In addition, there may be a case where it is beneficial to cool the back surface 20B of the target 20 with cooling water by securing a certain distance between them. For example, in the case of adopting a cooling structure in which the entire magnet structure 110 is immersed in a cooling water container (not shown) in which cooling water is stored, cooling water can be allowed to flow through this gap to And heat exchange between the target 20 and the rear surface 20B of the target 20 is performed efficiently. In addition, in order to employ a cooling structure in which a backing plate (not shown) having a hollow portion for allowing cooling water to flow is brought into contact with the rear surface 20B of the target 20, this is used as a knocking plate insertion space. Important intervals become essential
[0050] 更に、適宜の制御手段(マイクロプロセッサ等;不図示)の制御に基づいたァクチュ エータ 14の動作により、このような左右側回転体 11、 12を、ターゲット 20のスパッタリ ング状態に応じて、中心軸 Pの周りの所定の回転角度範囲について適切な周期毎に 、その回転角速度を制御しつつ回転することができる。 [0050] Further, by the operation of the actuator 14 based on the control of an appropriate control means (microprocessor or the like; not shown), the left and right rotating bodies 11 and 12 are made to correspond to the sputtering state of the target 20. In addition, the rotation can be performed while controlling the rotation angular velocity at appropriate intervals for a predetermined rotation angle range around the central axis P.
[0051] 次に、静磁場シミュレーション技術を活用することにより、以上に述べたターゲット 2 0に帯磁された磁束密度分布の検証結果を説明する。  [0051] Next, the verification result of the magnetic flux density distribution magnetized on the target 20 described above by utilizing the static magnetic field simulation technique will be described.
[0052] 図 2に示した断面形状と略同一形の解析モデルが、数値計算のための単位解析領 域にメッシュ分割してコンピュータ上に生成され、磁石構造体 110の各構成部材に相 当するメッシュ領域およびターゲット 20に相当するメッシュ領域およびこれらの境界メ ッシュ領域には、各々適宜の材料物性データや境界条件データが入力されている。 [0052] An analysis model having substantially the same shape as the cross-sectional shape shown in FIG. Mesh area corresponding to the target 20 and mesh area corresponding to the target 20 and their boundary Appropriate material property data and boundary condition data are input to each of the cache regions.
[0053] なお、解析ソルバーとして、汎用の磁場解析ソフト(INFOLYTICA社製の「MagN et」)を使用した。 [0053] As the analysis solver, general-purpose magnetic field analysis software ("MagN et" manufactured by INFOLYTICA) was used.
[0054] 図 3および図 4は何れも、静磁場シミュレーション技術による本実施の形態に係る磁 石構造体の解析結果の一例を示した図である。  FIG. 3 and FIG. 4 are diagrams showing an example of the analysis result of the magnet structure according to the present embodiment by the static magnetic field simulation technique.
[0055] 図 3は、解析モデル中の磁束密度分布(等高面)および磁束密度ベクトル (矢印)を 示した図であり、図 1の I卜 II線に沿った二次元断面の解析結果を示す図である。  [0055] Fig. 3 shows the magnetic flux density distribution (contour surface) and magnetic flux density vector (arrow) in the analysis model. The analysis results of the two-dimensional cross section along the line I 卜 II in Fig. 1 are shown. FIG.
[0056] 図 4 (a)は、横軸にターゲット表面の X方向の位置をとり、縦軸にターゲット表面上の 磁束密度の X方向成分をとつて、両者の関係を解析結果から得られた数値データを 使ってプロットした図であり、図 4 (b)は、横軸にターゲット表面の X方向の位置をとり、 縦軸にターゲット表面上の磁束密度の Y方向成分をとつて、両者の関係を解析結果 力、ら得られた数値データを使ってプロットした図である。  [0056] In Fig. 4 (a), the horizontal axis represents the position of the target surface in the X direction, and the vertical axis represents the X direction component of the magnetic flux density on the target surface. Figure 4 (b) is a plot using numerical data.The horizontal axis shows the X-direction position of the target surface, and the vertical axis shows the Y-direction component of the magnetic flux density on the target surface. It is the figure which plotted the relationship using the numerical value data obtained from the analysis result force.
[0057] なお、ここで、図 3中にグレイスケールにより表示した磁束密度のコンター図(等高 図)は、磁束密度のベクトル成分の合計(絶対値)の高低分布 (磁束密度分布)であり 、淡いグレイ領域から濃いグレイ領域に移行するに連れて、磁束密度が高まることを 表してレ、る(但し、この磁束密度の上限を 500Gにしてレ、る)。  Here, the contour diagram (contour map) of the magnetic flux density displayed in gray scale in FIG. 3 is the height distribution (magnetic flux density distribution) of the total (absolute value) of the magnetic flux density vector components. This indicates that the magnetic flux density increases as it moves from the light gray area to the dark gray area (however, the upper limit of the magnetic flux density is 500G).
[0058] このような磁束密度のコンター図やベクトル図を参照すれば、各点における接線方 向がその点の磁界の方向と一致する曲線としての磁力線が理解され得る。  With reference to such contour diagrams and vector diagrams of magnetic flux density, magnetic field lines can be understood as curves in which the tangential direction at each point coincides with the direction of the magnetic field at that point.
[0059] 但し、図 3では、解析用コンピュータから出力された磁束密度のコンター図およびべ タトル図に可能な限り忠実に模写している力 S、これらの内容を理解し易くする目的で、 コンピュータにより出力された磁束密度分布を簡略化して示しているとともに、上側磁 力線 25 (第 1の上側磁力線 25A、第 2の上側磁力線 25B)、下側磁力線 26、内側中 間磁力線 27および外側中間磁力線 28の各々を代表して仮想的に引レ、た太レ、2点 鎖線を加筆している。  [0059] However, in FIG. 3, the force S reproduced as faithfully as possible in the contour and vector diagrams of the magnetic flux density output from the computer for analysis, and for the purpose of facilitating understanding of these contents, In addition to the magnetic flux density distribution output by, the upper magnetic field line 25 (first upper magnetic field line 25A, second upper magnetic field line 25B), lower magnetic field line 26, inner intermediate magnetic field line 27, and outer intermediate line are shown. Representing each of the magnetic lines of force 28, a dragging, thickening, and two-dot chain line are added.
[0060] 図 3によれば、ターゲット 20の内部には、磁束密度の X方向ベクトル成分(ターゲッ ト 20の幅方向成分)を互いに打ち消すように第 1の上側磁力線 25Aおよび下側磁力 線 26が形成され、磁束密度の Y方向ベクトル成分(ターゲット 20の厚み方向成分)を 互レ、に打ち消すように内側中間磁力線 27および外側中間磁力線 28が形成されて いる。 According to FIG. 3, the first upper magnetic field line 25A and the lower magnetic field line 26 are arranged inside the target 20 so as to cancel the X-direction vector component of the magnetic flux density (the width direction component of the target 20). The inner intermediate magnetic field line 27 and the outer intermediate magnetic field line 28 are formed so as to cancel the Y direction vector component of the magnetic flux density (the thickness direction component of the target 20). Yes.
[0061] 第 1の上側磁力線 25Aは、左側回転体 11の板状磁石 11aの N極から出てターゲッ ト 20の表面 20Aに至り、磁束密度の Y方向べクトノレ成分および X方向ベクトル成分が 略ゼロとなるゼロ点 29の直上のターゲット 20の表面 20A付近において X方向に略平 行に延び、この部分をアーチ状に曲がりつつ、右側磁石 13の S極に入る。  [0061] The first upper magnetic field line 25A exits from the north pole of the plate magnet 11a of the left rotating body 11 and reaches the surface 20A of the target 20, and the Y direction vector and the X direction vector components of the magnetic flux density are approximately. Near the surface 20A of the target 20 immediately above the zero point 29 that becomes zero, it extends substantially in the X direction and enters the S pole of the right magnet 13 while bending this part in an arch shape.
[0062] 第 2の上側磁力線 25Bは、左側回転体 11の板状磁石 11aの N極から出てターゲッ ト 20の表面 20Aに至り、ターゲット 20の表面 20A付近において X方向逆向きに略平 行に延び、この部分をアーチ状に曲がりつつ、左側磁石 10の S極に入る。  [0062] The second upper magnetic field line 25B exits from the north pole of the plate magnet 11a of the left rotating body 11 and reaches the surface 20A of the target 20 and is substantially parallel to the X direction in the vicinity of the surface 20A of the target 20. The left magnet 10 enters the south pole of the left magnet 10 while bending in an arch shape.
[0063] また、下側磁力線 26は、右側回転体 12の強磁性部材 12dの頂上部近傍から出て 、ゼロ点 29の直下のターゲット 20の裏面 20B近傍を X方向逆向きに略平行に延び、 右側回転体 12の板状磁石 12aの S極に入る。  [0063] Further, the lower magnetic field lines 26 extend from the vicinity of the top of the ferromagnetic member 12d of the right rotator 12 and extend substantially parallel to the vicinity of the back surface 20B of the target 20 immediately below the zero point 29 in the opposite direction of the X direction. Enter the south pole of the plate magnet 12a of the right rotating body 12.
[0064] また、内側中間磁力線 27は、左側回転体 11の板状磁石 11aの N極から出てター ゲット 20の厚み方向の途中まで至り、ターゲット 20の内部をアーチ状に曲がるように 延び、ゼロ点 29の横(ゼロ点 29から X方向マイナス側の位置)を Y方向逆向きに略平 行に通って右側回転体 12の板状磁石 12aの S極に入る。  [0064] Further, the inner intermediate magnetic field line 27 extends from the N pole of the plate magnet 11a of the left-side rotating body 11 to the middle of the thickness direction of the target 20, and extends inside the target 20 so as to bend in an arch shape. Pass the zero point 29 (the position on the minus side in the X direction from the zero point 29) in a substantially parallel direction opposite to the Y direction and enter the south pole of the plate magnet 12a of the right rotating body 12.
[0065] また、外側中間磁力線 28は、右側回転体 12の強磁性部材 12dの頂上部近傍から ゼロ点 29の横(ゼロ点 29から X方向プラス側の位置)を Y方向に略平行に通り、ター ゲット 20の厚み方向の途中まで至り、その内部をアーチ状に曲がるように延び、右側 磁石 13の S極に入る。  [0065] Further, the outer intermediate magnetic field line 28 passes from the vicinity of the top of the ferromagnetic member 12d of the right rotator 12 to the side of the zero point 29 (position from the zero point 29 to the X direction plus side) substantially parallel to the Y direction. The target 20 reaches the middle in the thickness direction, extends in an arch shape inside the target 20, and enters the S pole of the right magnet 13.
[0066] このような磁力 H25A、 25B、 26、 27、 28【こ基づくターゲッ卜 20のスノ、°ッタリング現 象について、ターゲット 20の表面 20Aに漏洩する表面 20A近傍の漏れ磁界のうちの 、表面 20Aに平行 (X方向)な磁束密度成分 (以下、「平行磁束密度」という)および 表面 20Aに垂直 (Y方向)な磁束密度成分(以下、「垂直磁束密度」とレ、う)を基にし て、図 3および図 4を参照しつつ検討する。  [0066] Such magnetic force H25A, 25B, 26, 27, 28 [Surface and target tattering phenomenon of the target 20, surface that leaks to the surface 20A of the target 20 of the leakage magnetic field in the vicinity of 20A, surface Based on the magnetic flux density component parallel to 20A (X direction) (hereinafter referred to as “parallel magnetic flux density”) and the magnetic flux density component perpendicular to the surface 20A (Y direction) (hereinafter referred to as “vertical magnetic flux density”). Thus, the discussion will be made with reference to FIG. 3 and FIG.
[0067] 漏れ磁界のうちの Y方向の垂直磁束密度がゼロ付近になるターゲット部分 (垂直ゼ 口クロス)力 スパッタリングにより早く削れることが経験上知られている。  [0067] It is known from experience that the target magnetic flux density in the Y-direction of the leakage magnetic field becomes near zero (vertical cross-point) force.
[0068] また、漏れ磁界のうちの平行磁束密度は、プラズマ閉じ込め用の漏れ磁界として機 能して、この平行磁束密度の絶対値の多寡により、ターゲット 20の侵食度合いが支 配されると考えられている。 [0068] Further, the parallel magnetic flux density in the leakage magnetic field functions as a leakage magnetic field for confining the plasma, and the degree of erosion of the target 20 is supported by the absolute value of the parallel magnetic flux density. It is considered to be arranged.
[0069] 図 4 (b)から理解されるとおり、上記垂直磁束密度が略ゼロになる X方向の位置に は、 X方向左端付近の第 1の垂直ゼロクロス VB1と、 X方向中央から若干右寄りの第 2の垂直ゼロクロス VB2と、がある。  [0069] As can be understood from FIG. 4 (b), the X-direction position where the vertical magnetic flux density is substantially zero includes the first vertical zero cross VB1 near the left end in the X direction and a little to the right from the center in the X direction. There is a second vertical zero cross VB2.
[0070] そこで、先ずは、第 1の垂直ゼロクロス VB1におけるターゲット 20のスパッタリング現 象について吟味する。  [0070] Therefore, first, the sputtering phenomenon of the target 20 in the first vertical zero cross VB1 will be examined.
[0071] 第 1の垂直ゼロクロス VB1は、図 3および図 4 (b)に示す如ぐ第 2の上側磁力線 25 Bのターゲット 20の X方向逆向きに平行なベクトノレにより形成される。  [0071] The first vertical zero cross VB1 is formed by a vector notre parallel to the X direction opposite to the target 20 of the second upper magnetic field line 25B as shown in FIG. 3 and FIG. 4 (b).
[0072] そして、この第 2の上側磁力線 25Bを作る左側回転体 11の板状磁石 11aと左側磁 石 10とが互いに隣接していることから、第 1の垂直ゼロクロス VB1の X方向の範囲は 狭くなると考えられ、このことは、図 4 (b)に示した第 1の垂直ゼロクロス VB1近傍の急 峻な垂直磁束密度の変化により裏付けられている。  [0072] Since the plate magnet 11a of the left rotating body 11 and the left magnet 10 that make the second upper magnetic field line 25B are adjacent to each other, the range of the first vertical zero cross VB1 in the X direction is This is thought to be narrower, and this is supported by the steep vertical magnetic flux density change in the vicinity of the first vertical zero cross VB1 shown in Fig. 4 (b).
[0073] また、図 3に示す如ぐ第 2の上側磁力線 25Bの磁束密度の X方向成分を相殺する 、所謂下側磁力線が存在しないことから、第 1の垂直ゼロクロス VB1近傍の平行磁束 密度が高い傾向を示すものと考えられ、このことは、図 4 (a)に示した第 1の垂直ゼロ クロス VB1に対応する X方向位置の平行磁束密度(絶対値)の最大数値(目盛:約 1 1)により裏付けられている。  Further, as shown in FIG. 3, the X-direction component of the magnetic flux density of the second upper magnetic field line 25B cancels out, so that there is no so-called lower magnetic field line, so the parallel magnetic flux density in the vicinity of the first vertical zero cross VB1 is The maximum value of the parallel magnetic flux density (absolute value) in the X direction corresponding to the first vertical zero cross VB1 shown in Fig. 4 (a) (scale: approx. 1) Supported by 1).
[0074] 以上に述べた垂直磁束密度および水平磁束密度の評価によれば、第 1の垂直ゼロ クロス VB1においては、ターゲット 20は、そのスパッタリングにより、 X方向の狭い範 囲で急速に削れると推定される。  [0074] According to the evaluation of the vertical magnetic flux density and the horizontal magnetic flux density described above, in the first vertical zero cross VB1, it is estimated that the target 20 can be sharply cut in a narrow range in the X direction by the sputtering. Is done.
[0075] 次に、第 2の垂直ゼロクロス VB2におけるターゲット 20のスパッタリング現象にっレヽ て吟味する。  [0075] Next, the sputtering phenomenon of the target 20 in the second vertical zero cross VB2 will be examined.
[0076] 第 2の垂直ゼロクロス VB2の下方近傍には、図 3および図 4 (b)に示す如ぐ第 1の 上側磁力線 25A、下側磁力線 26、内側中間磁力線 27および外側中間磁力線 28に 囲まれた領域内にゼロ点 29が形成されている。  [0076] In the vicinity of the lower part of the second vertical zero cross VB2, the first upper magnetic field line 25A, the lower magnetic field line 26, the inner intermediate magnetic field line 27, and the outer intermediate magnetic field line 28 as shown in FIG. 3 and FIG. 4B are surrounded. A zero point 29 is formed in the region.
[0077] 要するに、この第 2の垂直ゼロクロス VB2は、第 1の上側磁力線 25Aのターゲット 2 0の X方向に平行なベクトノレにより形成される状況において、この第 1の上側磁力線 2 5Aを作る左側回転体 11の板状磁石 1 laと右側磁石 13とが互いに隣接してレ、なレ、こ と力ら、第 2の垂直ゼロクロス VB2の X方向の範囲は広がると考えられ、このことは、 図 4 (b)に示した第 2の垂直ゼロクロス VB2近傍の緩慢な垂直磁束密度の変化により 裏付けられている。 [0077] In short, this second vertical zero cross VB2 is a left-side rotation that creates this first upper magnetic field line 25A in a situation where it is formed by a vectorore parallel to the X direction of the target 20 of the first upper magnetic field line 25A. The plate magnet 1 la and the right magnet 13 of the body 11 are adjacent to each other. The range of the X direction of the second vertical zero cross VB2 is thought to increase, which is supported by the slow change in the vertical magnetic flux density near the second vertical zero cross VB2 shown in Fig. 4 (b). It has been.
[0078] また、第 2の垂直ゼロクロス VB2の下方にゼロ点 29が存在すること(言い換えれば、 第 1の上側磁力線 25Aの磁束密度の X方向成分を相殺する下側磁力線 26が存在 すること)から、第 2の垂直ゼロクロス VB2近傍の平行磁束密度がそれ程高くならず、 このことは、図 4 (a)に示した第 2の垂直ゼロクロス VB2に対応する X方向位置の平行 磁束密度(絶対値)の最大数値(目盛:約 5)により裏付けられている。  [0078] In addition, the zero point 29 exists below the second vertical zero cross VB2 (in other words, the lower magnetic field line 26 that cancels the X-direction component of the magnetic flux density of the first upper magnetic field line 25A exists). Therefore, the parallel magnetic flux density in the vicinity of the second vertical zero cross VB2 is not so high. This indicates that the parallel magnetic flux density (absolute value) in the X direction corresponding to the second vertical zero cross VB2 shown in Fig. 4 (a) ) Maximum value (scale: approx. 5).
[0079] 以上に述べた垂直磁束密度および水平磁束密度の評価によれば、第 2の垂直ゼロ クロス VB2においては、ターゲット 20は、そのスパッタリングにより、 X方向の広い範 囲で緩やかに削れると推定される。  [0079] According to the evaluation of the vertical magnetic flux density and the horizontal magnetic flux density described above, in the second vertical zero cross VB2, it is estimated that the target 20 is gently scraped over a wide range in the X direction by the sputtering. Is done.
[0080] 次に、このような磁石構造体 110を使用したターゲット 20のスパッタリング動作につ いて説明する。  [0080] Next, the sputtering operation of the target 20 using such a magnet structure 110 will be described.
[0081] 図 5は、本実施の形態による磁石構造体 110を使用したターゲットのスパッタリング 動作を示した模式図である。  FIG. 5 is a schematic diagram showing a sputtering operation of a target using the magnet structure 110 according to the present embodiment.
[0082] 図 5の上段の磁石構造体は、図 2に示した磁石構造体 110と同様に配置されてい る。 [0082] The upper magnet structure in FIG. 5 is arranged in the same manner as the magnet structure 110 shown in FIG.
[0083] すなわち、図 5の上段には、左側回転体 11の板状磁石 11aの中心軸 Pの周りの回 転により、左右側磁石 10、 13のターゲット 20の裏面 20Bに向いた磁極(S極)と異種 の、左側回転体 11の板状磁石 11aの磁極(N極)がターゲット 20の裏面 20Bに向き、 かつ、右側回転体 12の板状磁石 12aの中心軸 Pの周りの回転により、右側磁石 13 ( S極)と左側回転体 11の板状磁石 11a (N極)との間にターゲット 20の幅方向(X方向 )に形成される磁力線(図 3の第 1の上側磁力線 25A)を相殺するよう、右側回転体 1 2の磁気モーメントがターゲット 20の幅方向に向くという磁石構造体 110の使用形態 が図示されている。  That is, in the upper part of FIG. 5, the magnetic poles (S) facing the back surface 20B of the target 20 of the left and right magnets 10 and 13 are rotated by rotation around the central axis P of the plate magnet 11a of the left rotating body 11. The magnetic pole (N pole) of the plate magnet 11a of the left rotating body 11 that is different from the pole) is directed to the back surface 20B of the target 20 and rotated around the central axis P of the plate magnet 12a of the right rotating body 12 , The magnetic field lines formed in the width direction (X direction) of the target 20 between the right magnet 13 (S pole) and the plate magnet 11a (N pole) of the left rotating body 11 (first upper magnetic field line 25A in FIG. 3) The magnetic structure 110 is used in such a manner that the magnetic moment of the right rotating body 12 is directed in the width direction of the target 20 so as to cancel out the above.
[0084] この場合には、磁石構造体 110により形成される垂直磁束密度および水平磁束密 度に基づき、図 5の上段に示す如ぐターゲット 20は、そのスパッタリングにより、左側 磁石 10と左側回転体 11との間のターゲット 20の幅方向(X方向)の狭い範囲で早く 削れ、左側回転体 11と右側磁石 13との間の X方向の広レ、範囲で緩やかに削れる。 [0084] In this case, based on the vertical magnetic flux density and horizontal magnetic flux density formed by the magnet structure 110, the target 20 as shown in the upper part of FIG. Faster in a narrow range in the width direction (X direction) of the target 20 between 11 Scraps and gently cuts in the X direction between the left rotating body 11 and the right magnet 13 in a wide range.
[0085] 図 5の中段の磁石構造体は、図 2に示した磁石構造体 110に対し、左側回転体 11 を反時計回りに 90° 回転させ、かつ右側回転体 12を反時計回りに 90° 回転させて 配置されている。 [0085] The middle magnet structure in FIG. 5 rotates the left rotating body 11 counterclockwise by 90 ° and the right rotating body 12 counterclockwise with respect to the magnet structure 110 shown in FIG. ° Arranged to rotate.
[0086] すなわち、図 5の中段には、右側回転体 12の板状磁石 12aの中心軸 Pの周りの回 転により、左右側磁石 10、 13のターゲット 20の裏面 20Bに向いた磁極(S極)と異種 の、右側回転体 12の板状磁石 12aの磁極(N極)がターゲット 20の裏面 20Bに向き、 かつ、左側回転体 11の板状磁石 11aの中心軸 Pの周りの回転により、左側磁石 10 ( S極)と右側回転体 12の板状磁石 12a (N極)との間にターゲット 20の幅方向(X方向 )に形成される磁力線を相殺するよう、左側回転体 11の磁気モーメントがターゲット 2 0の幅方向に向くという磁石構造体 110の使用形態が図示されている。  That is, in the middle part of FIG. 5, the magnetic poles (S) facing the back surface 20B of the target 20 of the left and right magnets 10 and 13 by rotation around the central axis P of the plate magnet 12a of the right rotating body 12 are shown. The magnetic pole (N pole) of the plate magnet 12a of the right rotating body 12 that is different from the pole) is directed to the back surface 20B of the target 20 and rotated around the central axis P of the plate magnet 11a of the left rotating body 11 In order to cancel out the magnetic field lines formed in the width direction (X direction) of the target 20 between the left magnet 10 (S pole) and the plate magnet 12a (N pole) of the right rotating body 12, The usage pattern of the magnet structure 110 in which the magnetic moment is directed in the width direction of the target 20 is illustrated.
[0087] この場合には、磁石構造体 110により形成される垂直磁束密度および水平磁束密 度に基づき、図 5の中段に示す如ぐターゲット 20は、そのスパッタリングにより、右側 磁石 13と右側回転体 12との間のターゲット 20の幅方向(X方向)の狭い範囲で早く 削れ、右側回転体 12と左側磁石 10との間の X方向の広い範囲で緩やかに削れる。  [0087] In this case, based on the vertical magnetic flux density and horizontal magnetic flux density formed by the magnet structure 110, the target 20 shown in the middle of FIG. The target 20 is sharply cut in a narrow range in the width direction (X direction) of the target 20, and is slowly cut in a wide range in the X direction between the right rotating body 12 and the left magnet 10.
[0088] そこで、ァクチユエータ 14 (図 1)の動作に基づき、磁石構造体 110の左右側回転 体 11、 12を、ターゲット 20のスパッタリング状態に応じて所定の周期毎に、図 5の上 段の使用形態と図 5の中段の使用形態になるように、中心軸 Pの周りに回転させるこ とにより、第 1および第 2の垂直ゼロクロス VB1、 VB2 (その近傍の領域の磁力線分布 )がターゲット 20の幅方向に移動することから、両者間のターゲット 20の侵食が交互 に重畳的になされ、その結果として、図 5の下段に示したターゲット 20の侵食状態の 如ぐターゲット 20の表面 20Bに垂直に湧き出す部分の、磁力線によるプラズマ閉じ 込め機能を発揮し得ない領域が消滅することになり、ターゲット 20は、その略全域に 亘り削れて好適である。  Therefore, based on the operation of the actuator 14 (FIG. 1), the left and right rotating bodies 11 and 12 of the magnet structure 110 are moved at predetermined intervals according to the sputtering state of the target 20 in the upper part of FIG. The first and second vertical zero crossings VB1 and VB2 (the magnetic field line distribution in the vicinity) are rotated by rotating around the central axis P so that it becomes the middle usage pattern in Fig. 5 and the usage pattern. As a result, the target 20 erodes alternately between the two, resulting in a perpendicular to the surface 20B of the target 20 as shown in the lower part of FIG. Thus, the region where the plasma confinement function due to the magnetic field lines cannot be exhibited disappears, and the target 20 is suitable for cutting over substantially the entire region.
[0089] よって、本実施の形態の磁石構造体 110およびその使用方法によれば、ターゲット 20の表面上の磁力線分布を適宜、所定の周期毎に変更可能であることから、ターグ ット 20の局所的なスパッタが抑えられたワイドエロージョンを実現可能であり、ターグ ット使用効率を高めることができ、延いては、ターゲット 20の交換期間を延ばせて、プ レーナ型マグネトロンスパッタリング装置の稼働率向上に資することになる。 Therefore, according to the magnet structure 110 and the method of using the magnet structure 110 of the present embodiment, the distribution of the magnetic lines of force on the surface of the target 20 can be appropriately changed at predetermined intervals. Wide erosion with reduced local spatter can be realized, the efficiency of using the target can be increased, and the replacement period of the target 20 can be extended. This will contribute to an improvement in the operating rate of the Rena type magnetron sputtering apparatus.
また、本実施の形態の磁石構造体 110およびその使用方法によれば、磁石構造体 110の全体を揺動させることなぐ磁石構造体 110の一部材に過ぎない左右側回転 体 11、 12のみを、それらの中心軸 Pを中心に回転させるという簡易な駆動機構により 、ターゲット 20の表面上の磁力線分布を適宜、所定の周期毎に変更でき好適である  Further, according to the magnet structure 110 of this embodiment and the method of using the magnet structure 110, only the left and right rotating bodies 11, 12 that are only one member of the magnet structure 110 that does not swing the entire magnet structure 110 are used. It is preferable that the magnetic force line distribution on the surface of the target 20 can be appropriately changed at predetermined intervals by a simple drive mechanism that rotates around the central axis P.
[0090] 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らか である。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行 する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を 逸脱することなぐその構造及び Z又は機能の詳細を実質的に変更できる。 [0090] From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Details of the structure and Z or function thereof can be substantially changed without departing from the spirit of the invention.
産業上の利用可能性  Industrial applicability
[0091] 本発明による磁石構造体は、例えば、マグネトロンスパッタリング装置用の磁界形 成手段として有用である。  [0091] The magnet structure according to the present invention is useful, for example, as a magnetic field forming means for a magnetron sputtering apparatus.

Claims

請求の範囲 The scope of the claims
[1] 互いに同種の磁極がターゲットの裏面に向くよう、前記ターゲットの裏面側に配置さ れた第 1および第 2の固定磁石と、  [1] First and second fixed magnets arranged on the back side of the target so that the same type of magnetic poles face each other on the back side of the target;
前記第 1および第 2の固定磁石の間の前記ターゲットの裏面側に配置され、前記タ 一ゲットの厚み方向と幅方向とに沿った平面内において磁気モーメントの向きを変更 可能な磁界補正手段と、  A magnetic field correcting means disposed on the back side of the target between the first and second fixed magnets and capable of changing the direction of the magnetic moment in a plane along the thickness direction and the width direction of the target; ,
を備えたマグネトロンスパッタリング装置用の磁石構造体。  A magnet structure for a magnetron sputtering apparatus.
[2] 前記磁界補正手段は、磁極として機能する両端面を有する複数の磁石を含み、前 記磁石は、前記平面内にぉレ、て前記両端面を回転可能に構成されてレ、る請求項 1 記載の磁石構造体。 [2] The magnetic field correction means includes a plurality of magnets having both end surfaces that function as magnetic poles, and the magnets are configured to be able to rotate in the plane and to rotate the both end surfaces. Item 1. The magnet structure according to Item 1.
[3] 前記磁界補正手段は、前記第 1の固定磁石に隣接する前記磁石を含み前記平面 に垂直な軸の周りに回転可能な第 1の回転体と、前記第 2の固定磁石に隣接する前 記磁石を含み前記平面に垂直な軸の周りに回転可能な第 2の回転体と、を備えた請 求項 2記載の磁石構造体。  [3] The magnetic field correcting means includes the first rotating body including the magnet adjacent to the first fixed magnet and rotatable about an axis perpendicular to the plane, and is adjacent to the second fixed magnet. A magnet structure according to claim 2, further comprising a second rotating body including the magnet and rotatable about an axis perpendicular to the plane.
[4] 前記第 1および第 2の回転体は、前記磁石と、前記両端面に挟まれた前記磁石の 両側面の各々に接合された部材と、によって、前記軸を中心とした略円柱状に形作 られてレ、る請求項 3記載の磁石構造体。  [4] The first and second rotating bodies each have a substantially cylindrical shape centered on the axis by the magnet and members joined to both side surfaces of the magnet sandwiched between the both end surfaces. The magnet structure according to claim 3, wherein the magnet structure is formed into a shape.
[5] 前記第 1の回転体の前記軸の周りの回転により、前記同種の磁極と異なった前記 第 1の回転体の磁極が前記ターゲットの裏面に向き、かつ、前記第 2の回転体の前 記軸周りの回転により、前記第 2の固定磁石と前記第 1の回転体との間に形成される 磁力線を相殺するよう、前記第 2の回転体の磁気モーメントが前記ターゲットの幅方 向に向く使用形態と、  [5] Due to the rotation of the first rotating body around the axis, the magnetic pole of the first rotating body, which is different from the same type of magnetic pole, faces the back surface of the target, and the second rotating body The magnetic moment of the second rotating body is offset in the width direction of the target so as to cancel out the lines of magnetic force formed between the second fixed magnet and the first rotating body by the rotation around the axis. Use form suitable for,
前記第 2の回転体の前記軸の周りの回転により、前記同種の磁極と異なった前記 第 2の回転体の磁極が前記ターゲットの裏面に向き、かつ、前記第 1の回転体の中 心軸周りの回転により、前記第 1の固定磁石と前記第 2の回転体との間に形成される 磁力線を相殺するよう、前記第 1の回転体の磁気モーメントが前記ターゲットの幅方 向に向く使用形態と、含む、請求項 3または 4記載の磁石構造体の使用方法。  Due to the rotation of the second rotating body around the axis, the magnetic pole of the second rotating body, which is different from the magnetic pole of the same kind, faces the back surface of the target, and the central axis of the first rotating body Use in which the magnetic moment of the first rotating body is directed in the width direction of the target so as to cancel out the lines of magnetic force formed between the first fixed magnet and the second rotating body by rotation around The method of using the magnet structure according to claim 3 or 4, comprising a shape.
[6] 非磁性金属からなるターゲットと、前記ターゲット裏面側に配置された請求項 1乃至 4の何れかに記載の磁石構造体と、前記ターゲットに所定電力を給電する電力源と、 を備えたマグネトロンスパッタリング装置用の力ソード電極ユニット。 [6] The target made of a nonmagnetic metal and disposed on the back side of the target 5. A force sword electrode unit for a magnetron sputtering apparatus, comprising: the magnet structure according to claim 4; and a power source that supplies a predetermined power to the target.
請求項 6記載の力ソード電極ユニットと、前記力ソード電極ユニットの前記ターゲット に対向する基板と、を格納した内部を減圧可能な真空槽と、を備えたマグネトロンス パッタリング装置。  7. A magnetron sputtering apparatus comprising: a force sword electrode unit according to claim 6; and a vacuum chamber capable of depressurizing an inside storing the force sword electrode unit and a substrate facing the target of the force sword electrode unit.
PCT/JP2007/051383 2006-02-01 2007-01-29 Magnet structure for magnetron sputtering apparatus, cathode electrode unit, magnetron sputtering apparatus and method for using magnet structure WO2007088808A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006024709A JP2007204811A (en) 2006-02-01 2006-02-01 Magnet structure for magnetron sputtering apparatus and cathode electrode unit, and magnetron sputtering apparatus, and method for using magnet structure
JP2006-024709 2006-02-01

Publications (1)

Publication Number Publication Date
WO2007088808A1 true WO2007088808A1 (en) 2007-08-09

Family

ID=38327382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051383 WO2007088808A1 (en) 2006-02-01 2007-01-29 Magnet structure for magnetron sputtering apparatus, cathode electrode unit, magnetron sputtering apparatus and method for using magnet structure

Country Status (3)

Country Link
JP (1) JP2007204811A (en)
TW (1) TW200732492A (en)
WO (1) WO2007088808A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894518A (en) * 2014-03-06 2015-09-09 上海福宜真空设备有限公司 Planar cathode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009642B1 (en) 2008-07-09 2011-01-19 삼성모바일디스플레이주식회사 Apparatus for adjusting magnetization distance and magnetron sputtering equipment having the same
JP5386329B2 (en) * 2009-12-09 2014-01-15 株式会社アルバック Magnet unit and sputtering apparatus for magnetron sputtering electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148642A (en) * 1991-11-28 1993-06-15 Hitachi Ltd Magnetron sputtering device
JPH06228749A (en) * 1992-12-23 1994-08-16 Balzers Ag Plasma generator
JP2000309867A (en) * 1999-02-22 2000-11-07 Tadahiro Omi Magnet rotating sputtering system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148642A (en) * 1991-11-28 1993-06-15 Hitachi Ltd Magnetron sputtering device
JPH06228749A (en) * 1992-12-23 1994-08-16 Balzers Ag Plasma generator
JP2000309867A (en) * 1999-02-22 2000-11-07 Tadahiro Omi Magnet rotating sputtering system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894518A (en) * 2014-03-06 2015-09-09 上海福宜真空设备有限公司 Planar cathode

Also Published As

Publication number Publication date
JP2007204811A (en) 2007-08-16
TW200732492A (en) 2007-09-01

Similar Documents

Publication Publication Date Title
US4892633A (en) Magnetron sputtering cathode
WO2007052737A1 (en) Magnet structure for magnetron sputtering system, cathode electrode unit and magnetron sputtering system
JP5078889B2 (en) Magnet apparatus for magnetron sputtering, magnetron sputtering apparatus and magnetron sputtering method
JP5555848B2 (en) Sputtering apparatus for thin film production and thin film production method
JP2009299184A (en) Magnetic field generating apparatus, magnetic field generating method, sputtering apparatus, and method of manufacturing device
JP5873557B2 (en) Sputtering apparatus and magnet unit
JP2006291357A (en) Magnet apparatus for a planar magnetron
JP2007092136A (en) Magnet structure for magnetron sputtering, cathode electrode unit, and magnetron sputtering apparatus
WO2007088808A1 (en) Magnet structure for magnetron sputtering apparatus, cathode electrode unit, magnetron sputtering apparatus and method for using magnet structure
KR100599922B1 (en) Sputter arrangement with a magnetron and a target
CN101553594A (en) Magnet assembly capable of generating magnetic field whose direction is uniform and changeable and sputtering device using same
KR20090078827A (en) Magnetron sputter electrode, and sputtering device having the magnetron sputter electrode
KR20190055219A (en) Magnetic arrangement for a sputter deposition source, and a magnetron sputter deposition source, and a method for depositing a film on a substrate with a magnetron sputter deposition source
JPH11158625A (en) Magnetron sputtering film forming device
JPH02194171A (en) Magnetron sputtering source
JP4999602B2 (en) Deposition equipment
US8852412B2 (en) Magnetron source and method of manufacturing
CN101203935A (en) Sputtering magnetron
KR100963413B1 (en) Magnetron sputtering apparatus
JP2005068468A (en) Target for magnetron sputtering, and magnetron sputtering system
JPH03260067A (en) Sputtering device
JP5089962B2 (en) Magnetron sputtering electrode and sputtering apparatus provided with magnetron sputtering electrode
JPS63157866A (en) Magnetron sputtering apparatus
JP2009057616A (en) Magnetron sputtering apparatus
KR20190080127A (en) Angle adjustable sputter gun

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707614

Country of ref document: EP

Kind code of ref document: A1