WO2007088723A1 - 変調パラメータ選択方法、変調パラメータ選択装置及び通信装置 - Google Patents
変調パラメータ選択方法、変調パラメータ選択装置及び通信装置 Download PDFInfo
- Publication number
- WO2007088723A1 WO2007088723A1 PCT/JP2007/050531 JP2007050531W WO2007088723A1 WO 2007088723 A1 WO2007088723 A1 WO 2007088723A1 JP 2007050531 W JP2007050531 W JP 2007050531W WO 2007088723 A1 WO2007088723 A1 WO 2007088723A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rate
- modulation
- channel
- modulation scheme
- selectable
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0015—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
- H04L1/0003—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
- H04L5/0046—Determination of how many bits are transmitted on different sub-channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0009—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0042—Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/006—Quality of the received signal, e.g. BER, SNR, water filling
Definitions
- Modulation parameter selection method Modulation parameter selection method, modulation parameter selection device, and communication device
- the present invention performs the data transmission using the plurality of channels to the first communication apparatus power the second communication apparatus, and the data is allocated to the data allocated over the plurality of channels.
- the present invention relates to a modulation method and a modulation parameter selection method including a code rate in a system in which the coding rate is the same in the plurality of channels and only the modulation method is allowed to be different.
- OFDM Orthogonal Frequency Division Multiplex
- the method of providing modulation parameters for each subcarrier or for each group including a plurality of subcarriers requires notification of the modulation parameters for each subcarrier or group between transmitters and receivers.
- the number of subcarriers or groups increases, so the amount of information that must be notified increases, so the ratio of control information to the limited communication capacity increases, and transmission efficiency decreases.
- a common code rate is used for a plurality of channels allocated to a certain terminal, and the modulation scheme is set to the channel.
- a system has been proposed in which the amount of information required to notify the modulation parameter is changed by changing each time (for example, see Non-Patent Document 1).
- Transmission data to a user is collectively channel-coded (2001) and subjected to rate matching processing (2002). That is, the code rate is constant regardless of the channel. After that, the coded transmission data is assigned to each channel (2003), and modulated by an individual modulation scheme for each channel (2004).
- a code rate of 1Z3 is selected for all channels, Is selected from QPSK, 16QAM, and 64QAM (2102).
- Non-patent literature 1 Adaptive Modulation and Channel Coding Rate Control for Frequenc y Domain Scheduling in Evolved UTRA Downlink ⁇ "3GPP, TSG RAN WG1 # 42 on LTE, Rl-050854, September 2005
- an object of the present invention is a system in which a coding rate is shared among a plurality of channels allocated to a predetermined terminal and a modulation scheme is changed for each channel.
- An object of the present invention is to realize a method for selecting a modulation parameter and an apparatus for selecting a modulation parameter that can efficiently realize a high transmission rate.
- a modulation parameter selection method performs data transmission from a first communication device to a second communication device using a plurality of channels, and a plurality of channels.
- a system that allows the data allocated over the channels to have the same coding rate and different modulation schemes in the plurality of channels to which the data is allocated.
- Step a second step of selecting a modulation scheme that satisfies the required quality in each channel and a predetermined transmission rate under the provisionally determined coding rate, and a provisional decision in the first step
- the third step to calculate the transmission rate from the coded rate and the modulation method for each channel selected in the second step, and the first step force up to the third step, other selectable coding
- a fourth step of determining a modulation scheme for each channel and a code rate that is a predetermined transmission rate.
- the second invention is the modulation parameter selection method according to the first invention, wherein the fifth step of ordering each channel based on the reception quality before the second step, and the selection A sixth step of ordering possible modulation schemes by the modulation multi-level number, and according to the order of the channels determined in the fifth step and the order of the modulation schemes determined in the sixth step. In this step, the modulation method is selected.
- the third invention is the modulation parameter selection method of the first or second invention, wherein the reception quality is received in a channel whose reception quality is included in a predetermined condition before the first step.
- the method further includes a seventh step of changing the selectable code rate from the quality, and from the selectable code rate determined in the seventh step, the provisional code rate is determined in the first step. It is characterized by determining.
- the fourth invention is the modulation parameter selection method according to the first or second invention, wherein the lowest transmission rate that can be selected in the channel having the worst reception quality before the first step.
- the eighth step of tentatively determining the modulation scheme to be used, and the modulation scheme tentatively determined in the eighth step the coding rate at which the channel satisfies the required quality and becomes the maximum transmission rate
- the fifth invention is the modulation parameter selection according to any one of the first to fourth inventions.
- the modulation scheme that provides the lowest selectable transmission rate for the channel with the worst reception quality among the channels that satisfy the predetermined reception quality is provisionally set.
- a selectable code rate determined in the tenth step further comprising: changing a selectable code rate based on the code rate determined in the ninth step.
- the provisional code rate is determined in the first step, and a channel that does not satisfy the predetermined reception quality is determined as a carrier hole.
- the first communication device power is transmitted to the second communication device using a plurality of channels, and the data is allocated to the data allocated over the plurality of channels.
- the coding rate is the same, and a modulation parameter selection device including a modulation scheme and a coding ratio in a system that allows only modulation schemes to be different, and can be selected in advance.
- the required quality is determined for each channel under the provisional coding rate determination unit that tentatively selects one coding rate from among the various coding rates and the provisionally determined coding rate.
- the provisional modulation scheme determining unit that selects a modulation scheme that satisfies the predetermined transmission rate, the coding rate that is provisionally determined by the provisional coding rate determination unit, and the provisional modulation scheme determination unit that is selected In each channel
- a modulation rate and a transmission rate calculation unit for calculating a transmission rate, and the processing from the provisional coding rate determination unit to the transmission rate calculation unit is repeatedly performed for a selectable coding rate to perform a predetermined transmission. It is characterized in that the code rate as a rate and the modulation scheme in each channel are determined.
- a seventh invention is a modulation parameter selection device according to the sixth invention, wherein a channel ordering unit that orders each channel based on reception quality, and a modulation scheme that can be selected are modulated by a multi-level number.
- a modulation scheme ordering section for ordering, and selecting a modulation scheme in the provisional modulation scheme determination section according to the order of channels determined in the channel ordering section and the order of modulation schemes determined in the modulation scheme ordering section It is characterized by [0017]
- the eighth invention is the modulation parameter selection device according to the sixth or seventh invention, wherein other selection is possible from the reception quality in the channel in which the reception quality is included in a predetermined condition.
- a code rate calculation unit for changing the code rate, and the provisional code rate determination unit determines the provisional code rate from the selectable code rate determined by the code rate calculation unit. It is characterized by determining the rate.
- a ninth invention is the modulation parameter selection device according to the sixth or seventh invention, wherein the modulation scheme is the lowest transmission rate that can be selected in a channel with the poorest reception quality.
- the maximum coding rate calculation unit further includes a maximum coding rate calculation unit that changes a selectable coding rate based on a coding rate at which the channel satisfies required quality and has a maximum transmission rate.
- the provisional coding rate determination unit determines the provisional code rate from the selectable coding rates changed by the unit.
- the tenth invention is the modulation parameter selection device according to the sixth or seventh invention, wherein the channel having the worst reception quality among the channels satisfying the predetermined reception quality, Under the modulation scheme that provides the lowest selectable transmission rate, the highest coding that changes the selectable coding rate based on the code rate that provides the required quality for the channel and the highest transmission rate.
- a provisional coding rate determination unit that determines a provisional coding rate from the selectable coding rates changed by the maximum coding rate computation unit, and does not satisfy the predetermined reception quality.
- the channel is determined as a carrier hole.
- An eleventh aspect of the invention includes the modulation parameter selection device according to any of the sixth to tenth aspects of the invention, and transmits information regarding the modulation parameter selected by the modulation parameter selection device to a communication partner. It is characterized by being a communication apparatus.
- the code rate and the modulation scheme for each channel satisfying the required quality and having a predetermined transmission rate are determined in a plurality of assigned channels. For example, by determining the coding rate that provides the maximum transmission rate as the predetermined transmission rate and the modulation scheme for each channel, the communication terminal can perform efficient communication.
- the order of reception quality and the number of modulation multi-values for each channel are determined in advance.
- the code rate and the modulation method for each channel are set so that the transmission rate becomes a predetermined transmission rate under the condition that the required quality is satisfied in all assigned channels. The amount of calculation at the time of selection can be reduced. Therefore, the code rate and the modulation method for each channel can be selected efficiently.
- FIG. 1 is a diagram for explaining a configuration of a wireless device according to a first embodiment.
- FIG. 2 is a diagram for explaining a configuration of a reception quality information generation unit in the first embodiment.
- FIG. 3 is a diagram for explaining a configuration of a scheduler unit in the first embodiment.
- FIG. 4 is a diagram for explaining a processing flow of an MCS selection unit in the first embodiment.
- FIG. 5 is a diagram for explaining a configuration of an MCS selection unit in the first embodiment.
- FIG. 6 is a diagram for explaining a processing flow of an MCS selection unit in the second embodiment.
- FIG. 7 is a diagram for explaining a configuration of an MCS selection unit in the second embodiment.
- FIG. 8 is a diagram for explaining a process flow of an MCS selection unit in the third embodiment.
- FIG. 9 is a diagram for explaining a relationship between a reception CNR value and a frequency.
- FIG. 10 is a diagram for explaining a relationship between a received CNR value and a frequency.
- FIG. 11 is a diagram for explaining a configuration of an MCS selection unit in the third embodiment.
- FIG. 12 is a diagram for explaining a configuration of a wireless device according to a fourth embodiment.
- FIG. 13 is a diagram for explaining a configuration of a reception quality information generation unit in the fourth embodiment.
- FIG. 14 is a diagram for explaining a configuration of a scheduler unit in the fourth embodiment.
- FIG. 15 is a diagram for explaining a conventional example.
- FIG. 16 is a diagram for explaining a conventional example.
- the present invention relates to MCS (Modulation and channel Coding Scheme) selection when multiple channels are assigned to one radio. On the selection method. Further, it is assumed that the coding rate is the same in the plurality of channels, and for example, as shown in FIG. 15, only a modulation scheme is allowed to be different.
- MCS Modulation and channel Coding Scheme
- Fig. 1 shows an example of the block configuration of the system according to this embodiment.
- FIG. 1 one each of the first radio device 100 and the second radio device 200 are shown, but the first radio device 100 and the plurality of second radio devices 200 use a plurality of channels. Are communicating.
- first radio apparatus 100 includes transmission frame generation section 110, mapping section 120, IFFT (Inverse Fast Fourier Transformation) section 130, transmission section 140, An antenna 150, a receiving unit 160, a determining unit 170, and a scheduler unit 180 are provided.
- the second radio 200 includes an antenna 210, a receiving unit 220, an FFT (Fast Fourier Transformation) unit 230, a determining unit 240, a reception quality information generating unit 250, a transmission frame generating unit 260, a mapping 280 and a transmission unit 290.
- FFT Fast Fourier Transformation
- Transmission frame generation section 110 performs code encoding and modulation processing based on scheduling control information and MCS information notified from scheduler section 180. Also, control information (and pilot signals) for notifying the second radio apparatus 200 of scheduling control information and MCS information is generated in the generated data symbol sequence and multiplexed on the data symbols. The generated transmission frame is output to mapping section 120.
- Mapping section 120 is a functional section that maps the modulation symbol sequence input from transmission frame generating section 110 in accordance with the scheduling control information notified from scheduler section 180.
- the mapped modulation symbol sequence is output to IFFT section 130, and an OFDM symbol sequence is generated by IF FT processing.
- the OFDM frame generated by the FFT unit 130 is transmitted from the antenna 150 to the second radio device 200 via the transmission unit 140.
- the symbol sequence is output by 230 FFT units.
- the FFT unit 230 converts the OFDM symbol sequence signal into a modulation symbol sequence signal by executing FFT processing, and outputs the signal to the determination unit 240.
- Determination unit 240 is a functional unit that demodulates and decodes an input modulation symbol sequence and extracts received data. At this time, the scheduling control information and MCS information notified from first radio apparatus 100 are also subjected to the determination process. Further, the pilot signal multiplexed in advance in the frame is output to reception quality information generation section 250. When performing determination feedback type interference power measurement, the data sequence and the determination result are output to reception quality information generation section 250.
- FIG. 2 shows a block configuration of reception quality information generation section 250.
- the reception quality generation unit 250 includes a reception quality measurement unit 251.
- Reception quality measurement section 251 also measures the reception quality of the pilot signal input from determination section 240 and generates reception quality information for outputting the reception quality to first radio apparatus 100.
- the generated reception quality information is output to transmission frame generation section 260, and a transmission frame is generated together with transmission data.
- Transmission frame section 260 generates a transmission frame from the received reception quality information and outputs it to mapping section 280. Then, mapping is performed in mapping section 280 and transmitted from antenna 210 to first radio apparatus 100 via transmission section 290.
- the signal received from antenna 150 is input to determination section 170 via reception section 160.
- Determination section 170 extracts reception data from the input reception signal, separates reception quality information multiplexed in advance in a frame, and outputs the separated reception quality information to scheduler section 180.
- Scheduler section 180 is a functional section that schedules transmission data based on reception quality information reported from second radio apparatus 200. In addition, based on the reception quality information, a process for determining a transmission data modulation scheme and coding rate is executed.
- FIG. 3 shows a block configuration of scheduler section 180.
- the scheduler unit 180 includes an allocation determination unit 181 and an MCS selection unit 182. Reception quality information input from determination section 170 is first output to allocation determination section 181.
- Allocation determining section 181 is notified from a plurality of second radio devices 200 in each channel.
- the reception quality information is compared, and each channel is assigned to transmission data with the second radio device 200 having good reception quality as the transmission destination.
- Information indicating to which second radio apparatus 200 transmission data is allocated to each channel is notified to transmission frame generation section 110 and mapping section 120 as scheduling information.
- the scheduling information is also output to the MCS selection unit 182.
- MCS selection section 182 scheduling information indicating to which channel transmission data destined for each second radio 200 is assigned, and the channel reported from each second radio 200 MCS for modulating and demodulating each transmission data is determined from the reception quality information in, and MCS information is notified to transmission frame generating section 110.
- FIG. 4 shows an example of a processing flow of the MCS selection unit 182 according to the present embodiment.
- the MCS selection unit 182 investigates a modulation scheme in which each channel satisfies a required PER (Packet Error or Rate) at each coding rate, and the transmission rate in all the allocated channels is determined to be a predetermined transmission rate. Select the MCS combination so that In the present embodiment, as an example, the maximum modulation method in which each channel satisfies the required PER is investigated, and the MCS combination that provides the highest transmission rate is selected.
- PER Packet Error or Rate
- CNR, R, and Q are CNR (Carrier—to) in the k-th channel, respectively.
- K, ⁇ , and ⁇ are the number of channels, coding rate, and modulation type, respectively, and k, n, and m are channel numbers. It is a counter which shows a code rate number and a modulation system number.
- the constant PER is the required PER
- L indicates the transmission rate per channel.
- variable n variable r total indicating the maximum transmission rate of all assigned channels for the target coding rate, counter k, and target for the target coding rate.
- step S 10 1 to step S103 which indicates the maximum transmission rate of the channel to be transmitted, and the counter m are initialized.
- PER is calculated when applying R and Q as MCS to the kth channel
- step S 105 Compare with n m tmp (step S 105). If the transmission rate is greater than r (S 105; Yes)
- step S106 is updated (step S106), and the counter m is incremented (step S107).
- step S104 force Step S107 is repeated until all the modulation schemes have been calculated (until m is greater than M) (step S108).
- the maximum transmission rate r total at the target coding rate is calculated by adding the maximum transmission rate of each channel at the target coding rate (from step S 109 to step S 111). And compare with r (step S112). For the target coding rate
- step S112 If the maximum transmission rate is greater than r (step S112; Yes), the maximum transmission rate
- Step SI 13 the counter n is incremented (Step tmp tmp
- Step SI 14 If the maximum transmission rate at the target coding rate is less than r (
- Step S112; No without going through Step S113, go to Step S114.
- Steps S102 to S114 are repeated until n is greater than N, that is, at all sign rate (step S115; Yes), and R (k) and
- FIG. 5 shows an example of a block diagram of the MCS selection unit 182 that implements the above processing.
- the MCS selection unit 182 includes a provisional coding rate determination unit 1821, a provisional modulation scheme determination unit 1822, a transmission rate calculation unit 1823, and a transmission rate determination unit 1824.
- Temporary code rate determining unit 1821 selects one code from among code rate rates selectable in advance. The coding rate is selected, determined as a provisional code rate, and notified to the provisional modulation scheme determination unit 1822. Temporary modulation scheme determining section 1822 receives scheduling control information including information indicating the allocated channel under the provisional code rate determined by provisional coding rate determining section 1821 and reception in each allocated channel. From the received quality information including information indicating the quality, the modulation method of the maximum rate that satisfies the required quality is determined for each allocated channel.
- the provisional code rate and the provisional modulation scheme in each assigned channel are output to the transmission rate calculation unit 1823, and the maximum transmission rate under the provisional code rate is calculated.
- the maximum transmission rate under the provisional coding rate, the provisional coding rate, and the provisional modulation scheme for each assigned channel are output to transmission rate determination section 1824.
- the transmission rate determination unit 1824 requests the provisional code rate determination unit 1821 to set another provisional code rate when the above processing has not been completed for all the code rate rates.
- the maximum transmission rate at each provisional coding rate is compared, and the code rate at which the transmission rate is maximum and the modulation at each assigned channel are compared.
- Output MCS information including method.
- the method for selecting the optimum MCS by examining the combinations that maximize the transmission rate under the condition that the required quality is satisfied has been described.
- a method of selecting an optimum MCS more efficiently by sorting the reception quality of each channel and the number of modulation levels in descending order in advance will be described.
- An example of the block configuration of the system according to the present embodiment is the same as that in FIGS. 1 to 3, but the processing in the MCS selection unit 182 is different from that in the first embodiment.
- FIG. 6 shows the flow of MCS selection processing in the second embodiment.
- the MCS selection method in this example focusing on the differences from the first embodiment Will be described.
- step S103 to step S108 it is calculated whether the required PER is satisfied for all modulation schemes or whether the transmission rate is maximum.
- the MCS selection process according to the present embodiment during the repetition from step S203 to step S207, only the judgment is made as to whether or not the required PER is satisfied. Migrate to This is because the modulation level is sorted in descending order in advance for the counter m, and it is obvious that the transmission rate decreases with each repetition. As a result, the amount of calculation of the modulation scheme repeater (step S103 to step S108) can be reduced as compared with the first embodiment.
- the counter m indicating the modulation scheme number is initialized to "1" in step S103.
- m is set to m in step S203.
- M is set to “1” during the first processing, and after the second processing,
- Is set to the modulation scheme number that achieves the maximum rate in the channel.
- M 3 types of 64QAM, 16QAM, and QPSK can be selected as modulation schemes
- the modulation scheme for the maximum transmission rate is 16QAM in the kth channel
- the selectable modulation methods are 16QAM and QPSK. This is because the kth channel and C + 1 k k + 1 with CNR ⁇ CNR when the coding rate is fixed
- FIG. 7 shows an example of a block diagram of the MCS selection unit 182 that implements the above processing.
- the MCS selection unit 182 performs channel ordering in addition to the provisional code rate determination unit 1821, the provisional modulation scheme determination unit 1822, the transmission rate calculation unit 1823, and the transmission rate determination unit 1824 shown in FIG.
- a unit 1825 and a modulation scheme ordering unit 1826 are provided.
- Channel ordering section 1825 converts a channel into reception quality from scheduling control information including information indicating the allocated channel and reception quality information including information indicating reception quality in each allocated channel. Order accordingly.
- Modulation scheme ordering section 1826 orders selectable modulation schemes according to the multi-level number. Alternatively, a selectable modulation scheme ordered by a multi-valued number is stored.
- Temporary modulation scheme determining section 1822 uses the scheduling control information and the received quality information for each allocated channel under the temporary coding rate determined by provisional coding rate determining section 1821. Thus, when determining the modulation scheme of the maximum rate that satisfies the required quality, the calculation is performed in the order of the channels ordered in the channel ordering unit 1825 and the order of the modulation schemes ordered in the modulation scheme ordering unit 1826.
- sorting the reception quality of each channel and the number of modulation multi-values in advance increases the amount of computation required for sorting, but all the allocated numbers are allocated.
- the required quality is met for the channel! It is possible to efficiently select a combination that maximizes the transmission rate under certain conditions.
- the reception quality and the modulation multilevel number are described as being sorted in descending order in advance. However, the reception quality and the modulation multilevel number are sorted in ascending order, Of course, the same effect can be obtained.
- the optimum MCS is selected by investigating the combination that maximizes the transmission rate under the condition that the required quality is satisfied in all the coding rate.
- a method for selecting an optimum MCS more efficiently by preliminarily limiting the code rate to satisfy the required quality in a channel whose reception quality is included in a predetermined condition. Will be described.
- the channel having the lowest value is selected from each channel as the condition of reception quality in the channel will be described.
- FIG. 8 shows the flow of MCS selection processing that is effective in the third embodiment, and the MCS selection method in this embodiment will be described focusing on the differences from the first embodiment.
- step S301 to step S303 A process (step S301 to step S303) for restricting the coding rate in advance so as to satisfy the required quality for the channel having the lowest reception quality will be described. It is assumed that the coding rate, the reception quality of each channel, and the modulation level are sorted in advance in descending order.
- a counter n indicating a coding rate number is initialized (step S301).
- the reception quality value CNR in the channel where the reception quality is the lowest value the lowest transmission rate is obtained.
- step S302 It is determined whether the required quality is satisfied with n (step S302).
- the counter n is set to the variable n indicating the highest coding rate number in the survey range (step S302).
- step S303 If the required quality is not satisfied at the coding rate R (step S302; No), the variable n is incremented by incrementing the variable n (step S304). The same determination is performed (step S305; No ⁇ step S302). When the variable n becomes larger than N ⁇ 1 (step S305; Yes), n is set to n as the lowest sign rate (step S303).
- the highest rate coding rate that satisfies the required quality is determined when the lowest rate modulation scheme is selected for the channel having the lowest received quality.
- the number indicating the coding rate is set to n.
- channel 4 has the lowest reception quality.
- QPSK which is the modulation scheme of the lowest transmission rate
- the code rate that satisfies the required quality and the maximum transmission rate is 1Z3.
- the code rate is set to a value larger than 1Z3, the required quality cannot be satisfied with this channel for any modulation scheme. In other words, the survey range of the sign rate can be narrowed to 1Z3 or less.
- n is set as an initial value of a counter n indicating a coding rate number, and step S307 is performed.
- step S307 As a repetitive process from step S307 to step S319, it is needless to say that a process similar to the process shown in FIG. 4 may be performed.
- FIG. 11 shows an example of a block diagram of the MCS selection unit 182 that implements the above processing.
- MCS selection section 182 includes provisional code rate determination section 1821, provisional modulation scheme determination section 1822, transmission rate calculation section 1823, transmission rate determination section 1824, and channel ordering section 1 825 shown in FIG.
- a maximum coding rate calculation unit 1827 is provided.
- Maximum code rate calculation unit 1827 applies the modulation method of the lowest rate notified from modulation method ordering unit to the channel with the lowest reception quality notified from channel ordering unit 1825. In this case, the highest coding rate that satisfies the reception quality is calculated and notified to the temporary coding rate determination unit 1821.
- Temporary coding rate determination unit 1821 determines a coding rate that is equal to or lower than the coding rate notified from highest coding rate calculation unit 1827 as the temporary coding rate.
- channel ordering section 1825 and modulation scheme ordering section 1826 notify the highest coding rate calculation section 1827 of the channel with the lowest received quality and the modulation scheme with the lowest rate, respectively. However, it may be replaced with another block that extracts the channel with the lowest reception quality and the modulation method with the lowest rate.
- the coding rate is limited in advance so as to satisfy the required quality in the channel having the lowest reception quality.
- the amount of computation for limiting the coding rate is increasing. Efficiently selects a combination that maximizes the transmission rate under the condition that the required quality is satisfied in all assigned channels. can do.
- ⁇ ⁇ is CIR (Carrier—to—Interference power Ratio), SNR (Signal—t o—Noise power Ratio), Es / N (Energy per symbol vs. noise power density)
- RSSI Receiveive Signal Strength Indication
- MCS Mobile Communications Service Set
- the force assuming PER as the required value is not necessarily limited to this. If the index indicates communication quality, such as BER (Bit Error Rate) or BLER (Block Error Rate), an indicator related to the success or failure of reception, it is of course possible to use other indicators! ⁇ .
- BER Bit Error Rate
- BLER Block Error Rate
- the reception quality and the modulation multi-level number are described as being sorted in descending order in advance. However, the reception quality and the modulation multi-level number are sorted in ascending order, Of course, the same effect can be obtained.
- the fourth embodiment is a case where the second radio device 200 uses the present invention to select an MCS in the system in which the second radio device 200 reports receivable MCS to the first radio device 100 as reception quality information. explain.
- FIG. 12 shows an example of a block configuration of the system according to the present embodiment.
- FIG. 12 has the same configuration as FIG. 1, but the processes of the scheduler unit 380 in the first radio unit 100 and the reception quality information generation unit 450 in the second radio unit 200 are different.
- FIG. 13 shows a block configuration of reception quality information generation section 380.
- the pilot signal separated by the determination unit is sent to the reception quality measurement unit 451, and the reception quality measurement unit 451 measures the reception quality of each channel.
- the reception quality measurement result in each channel is sent to the MCS selection unit 452.
- the MCS selection unit 452 selects the MCS for each channel from the reception quality measurement result for each channel, and notifies the transmission frame 260 of MCS information indicating the selected MCS. At this time, the MCS selection unit 452 can use the same selection method as described in the first to third embodiments. Further, when MCS is selected by second radio apparatus 200, a carrier hole may be set as one of the MCS levels.
- the combination of the coding rate and the modulation method that provide the lowest transmission rate for a given channel If the required quality cannot be met even if the channel is selected, the carrier hole is selected as the MCS for that channel.
- the same selection method as described in the first to third embodiments is used for the channels other than the channel.
- Transmission frame generating section 260 multiplexes a control signal with transmission data in order to report MCS information notified from reception quality information generating section 380 to first radio apparatus 100.
- FIG. 14 shows a block configuration of scheduler section 380.
- the MCS information reported from each second radio apparatus 200 is sent to allocation determination section 381, and the MCS in each channel is compared.
- the transmission rate in each channel is large.
- the MCS of the assigned transmission data is the MCS reported from the second radio 200 that is the transmission destination of the transmission data.
- the scheduling information determined by the allocation determination unit 381 is sent to the transmission frame generation unit 110 together with the MCS information of the allocated transmission data.
- the scheduling control information is also output to the mapping unit 120.
- the present invention can be used efficiently. MCS can be selected.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Communication Control (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Abstract
符号化率を暫定的に決定する暫定符号化率決定部と、暫定的に決定した符号化率の下で、各チャネルにおいて所要品質を満たし、かつ最大伝送レートとなる変調方式を選択する暫定変調方式決定部と、暫定符号化率決定部で暫定的に決定した符号化率と、暫定変調方式決定部で選択した各チャネルにおける変調方式とから伝送レートを算出する伝送レート演算部とをスケジューラ部として具備し、暫定符号化率決定部から伝送レート演算部まで処理を、選択可能な符号化率に対して繰り返し行い、最大伝送レートとなる符号化率と各チャネルにおける変調方式を決定することにより、所定の端末に割り当てられた複数のチャネルにおいて符号化率を共通にし、変調方式をチャネルごとに変えるシステムにおいて、効率的に高い伝送レートを実現することができる変調パラメータを選択する方法等を実現する。
Description
明 細 書
変調パラメータ選択方法、変調パラメータ選択装置及び通信装置 技術分野
[0001] 本発明は、第 1の通信装置力 第 2の通信装置へ複数のチャネルを用いてデータ 伝送を行い、複数のチャネルに渡って割り当てられたデータに対し、該データが割り 当てられた前記複数のチャネルにおいて、符号化率は同一であり、変調方式のみ異 なることを許すシステムにおける変調方式および符号ィ匕率を含む変調パラメータ選 択方法等に関する。
背景技術
[0002] 近年、無線通信システムの高速ィ匕が求められており、高速化'大容量化が実現可 能な方式のひとつとして、複数の搬送波に情報を乗せて通信を行うマルチキャリア伝 送方式が注目されている。マルチキャリア伝送方式の一種である直交周波数分割多 重 (OFDM ; Orthogonal Frequency Division Multiplex)方式は、互いに 直交するサブキャリアの間隔を狭くすることができるため周波数利用効率が高ぐシン ボル列の先頭に付加されるガードインターバルによりマルチパスフェージングに対す る耐性が強いことから、広帯域の無線通信システムにとって最も有力な変調方式の ひとつである。
[0003] し力し、サブキャリア毎、あるいは複数のサブキャリアを含むグループ毎に変調パラ メータを与える方法は、送受信機間でサブキャリアあるいはグループ毎の変調パラメ ータの通知が必要となる。サブキャリア数あるいはグループ数の増加にともない通知 しなければならない情報量も増加するため、限られた通信容量に対して制御情報が 占める割合が高くなり、伝送効率が低下するという問題があった。
[0004] この問題を解決する方法として、 3GPP (The 3rd Generation Partnership Project)において、図 15に示すように、ある端末に割り当てられた複数のチャネル において符号ィ匕率を共通にし、変調方式をチャネルごとに変えることにより、変調パ ラメータの通知に要する情報量を抑制するシステムが提案されている(例えば、非特 許文献 1参照)。
[0005] あるユーザへの送信データは、まとめてチャネル符号化(2001)され、レートマッチ ング処理(2002)が施される。すなわち、チャネルによらず符号ィ匕率は一定となる。そ の後、符号ィ匕された送信データは各チャネルに割り当てられ (2003)、チャネルごと に個別の変調方式で変調(2004)される。
[0006] 例えば、図 16に示すような伝搬路(2101)の場合、各チャネルにおける変調方式と 符号ィ匕率の組み合わせとしては、すべてのチャネルで符号ィ匕率が 1Z3が選択され、 チャネルごとに QPSK、 16QAM、 64QAMから選択される(2102)。
非特干文献 1: Adaptive Modulation and Channel Coding Rate Control for Frequenc y Domain Scheduling in Evolved UTRA Downlinkゝ " 3GPP、 TSG RAN WG1 #42 on LTE、 Rl-050854、 2005年 9月
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、上記の公知文献で提案されているシステムでは、符号化率を共通に するという制約があるため、従来力 用いられている変調パラメータの選択方法をそ のまま適用することは困難である。
[0008] また、上記の公知文献では、ある端末に割り当てられた複数のチャネルにお 、て符 号ィ匕率を共通にし、変調方式をチャネルごとに変えることにより、変調パラメータの通 知に要する情報量を抑制する通信システムの提案は為されているものの、このシステ ムにおける変調パラメータの選択方法に関する検討は行われていない。
[0009] 上記の課題に鑑み、本発明が目的とするところは、所定の端末に割り当てられた複 数のチャネルにお ヽて符号化率を共通にし、変調方式をチャネルごとに変えるシス テムにおいて、効率的に高い伝送レートを実現することができる変調パラメータを選 択する方法及び変調パラメータを選択する装置を実現することである。
課題を解決するための手段
[0010] 上記の課題を解決するために、第 1の発明の変調パラメータ選択方法は、第 1の通 信装置から第 2の通信装置へ複数のチャネルを用いてデータ伝送を行い、複数のチ ャネルに渡って割り当てられたデータに対し、該データが割り当てられた前記複数の チャネルにおいて、符号化率は同一であり、変調方式のみ異なることを許すシステム
における変調方式および符号ィ匕率に関する変調パラメータ選択方法であって、予め 定められた選択可能な符号ィヒ率の中から、一の符号ィヒ率を選択して暫定的に決定 する第 1のステップと、暫定的に決定した符号化率の下で、各チャネルにおいて所要 品質を満たし、かつ所定の伝送レートとなる変調方式を選択する第 2のステップと、第 1のステップで暫定的に決定した符号ィ匕率と、第 2のステップで選択した各チャネル における変調方式とから伝送レートを算出する第 3のステップと第 1のステップ力も第 3のステップまでを、他の選択可能な符号化率に対して繰り返し行い、所定の伝送レ ートとなる符号ィ匕率と各チャネルにおける変調方式を決定する第 4のステップと、を含 むことを特徴とする。
[0011] また、第 2の発明は、第 1の発明の変調パラメータ選択方法であって、第 2のステツ プの前に、各チャネルを受信品質に基づいて順序付けする第 5のステップと、選択可 能な変調方式を変調多値数により順序付けする第 6のステップと、をさらに含み、第 5 のステップで決定したチャネルの順序、および第 6のステップで決定した変調方式の 順序に従って、第 2のステップで変調方式を選択することを特徴とする。
[0012] また、第 3の発明は、第 1又は第 2の発明の変調パラメータ選択方法であって、第 1 のステップの前に、受信品質が予め定められた条件に含まれるチャネルにおける受 信品質から、選択可能な符号ィ匕率を変更する第 7のステップをさらに含み、第 7のス テツプで決定した選択可能な符号ィ匕率の中から、第 1のステップで暫定符号ィ匕率を 決定することを特徴とする。
[0013] また、第 4の発明は、第 1又は第 2の発明の変調パラメータ選択方法であって、第 1 のステップの前に、受信品質が最も劣悪なチャネルにおいて、選択可能な最低伝送 レートとなる変調方式を暫定的に決定する第 8のステップと、第 8のステップで暫定的 に決定した変調方式の下で、前記チャネルが所要品質を満たし、かつ最大伝送レー トとなる符号化率を決定する第 9のステップと、第 9のステップで決定した符号ィヒ率に 基づいて、選択可能な符号ィ匕率を変更する第 10のステップと、をさらに含み、第 10 のステップで決定した選択可能な符号ィ匕率の中から、第 1のステップで暫定符号ィ匕 率を決定することを特徴とする。
[0014] また、第 5の発明は、第 1から第 4のいずれかに記載の発明の変調パラメータ選択
方法であって、第 1のステップの前に、所定の受信品質を満たすチャネルの中で受 信品質が最も劣悪なチャネルにお 、て、選択可能な最低伝送レートとなる変調方式 を暫定的に決定する第 8のステップと、第 8のステップで暫定的に決定した変調方式 の下で、前記チャネルが所要品質を満たし、かつ最大伝送レートとなる符号ィ匕率を 決定する第 9のステップと、
第 9のステップで決定した符号ィ匕率に基づ 、て、選択可能な符号化率を変更する 第 10のステップと、をさらに含み、第 10のステップで決定した選択可能な符号ィ匕率 の中から、第 1のステップで暫定符号ィ匕率を決定し、前記所定の受信品質を満たさな いチャネルをキャリアホールと決定することを特徴とする。
[0015] 第 6の発明は、第 1の通信装置力 第 2の通信装置へ複数のチャネルを用いてデ ータ伝送を行い、複数のチャネルに渡って割り当てられるデータに対し、該データが 割り当てられる前記複数のチャネルにおいて、符号化率は同一であり、変調方式の み異なることを許すシステムにおける変調方式および符号ィヒ率を含む変調パラメ一 タ選択装置であって、予め定められた選択可能な符号ィ匕率の中から、一の符号化率 を選択して暫定的に決定する暫定符号化率決定部と、暫定的に決定した符号ィ匕率 の下で、各チャネルにおいて所要品質を満たし、かつ所定の伝送レートとなる変調方 式を選択する暫定変調方式決定部と、前記暫定符号化率決定部で暫定的に決定し た符号化率と、前記暫定変調方式決定部で選択した各チャネルにおける変調方式と 力 伝送レートを算出する伝送レート演算部とを具備し、前記暫定符号化率決定部 から伝送レート演算部まで処理を、選択可能な符号化率に対して繰り返し行い、所 定の伝送レートとなる符号ィ匕率と各チャネルにおける変調方式を決定することを特徴 とする。
[0016] 第 7の発明は、第 6の発明の変調パラメータ選択装置であって、各チャネルを受信 品質に基づ 、て順序付けするチャネル順序付け部と、選択可能な変調方式を変調 多値数により順序付けする変調方式順序付け部と、をさらに含み、前記チャネル順 序付け部で決定したチャネルの順序、および前記変調方式順序付け部で決定した 変調方式の順序に従って、暫定変調方式決定部で変調方式を選択することを特徴と する。
[0017] また、第 8の発明は、第 6又は第 7の発明の変調パラメータ選択装置であって、受信 品質が予め定められた条件に含まれるチャネルにおける受信品質から、他の選択可 能な符号ィ匕率を変更する符号ィ匕率演算部をさらに含み、前記符号化率演算部で決 定した選択可能な符号ィ匕率の中から、暫定符号ィ匕率決定部で暫定符号ィ匕率を決定 することを特徴とする。
[0018] また、第 9の発明は、第 6又は第 7の発明の変調パラメータ選択装置であって、受信 品質が最も劣悪なチャネルにお 、て、選択可能な最低伝送レートとなる変調方式の 下で、前記チャネルが所要品質を満たし、かつ最大伝送レートとなる符号化率に基 づいて、選択可能な符号化率を変更する最高符号化率演算部をさらに含み、前記 最高符号化率演算部で変更した選択可能な符号化率の中から、暫定符号化率決定 部で暫定符号ィ匕率を決定することを特徴とする。
[0019] また、第 10の発明は、第 6又は第 7の発明の変調パラメータ選択装置であって、所 定の受信品質を満たすチャネルの中で受信品質が最も劣悪なチャネルにお 、て、 選択可能な最低伝送レートとなる変調方式の下で、前記チャネルが所要品質を満た し、かつ最大伝送レートとなる符号ィ匕率に基づいて、選択可能な符号化率を変更す る最高符号化率演算部をさらに含み、最高符号化率演算部で変更した選択可能な 符号化率の中から、暫定符号化率決定部で暫定符号化率を決定し、前記所定の受 信品質を満たさないチャネルをキャリアホールと決定することを特徴とする。
[0020] 第 11の発明は、第 6から第 10のいずれかの発明の変調パラメータ選択装置を具備 し、通信相手に前記変調パラメータ選択装置で選択した変調パラメータに関する情 報を送信することを特徴とする通信装置であることを特徴とする。
発明の効果
[0021] 本発明を適用することにより、割り当てられた複数のチャネルにおいて、所要品質を 満たし、かつ所定の伝送レートとなる符号ィ匕率および各チャネルの変調方式が決定 されることとなる。例えば、所定の伝送レートとして最大の伝送レートとなる符号化率 及び各チャネルの変調方式が決定されることにより、通信端末は効率的な通信を行う ことが出来るようになる。
[0022] また、各チャネルの受信品質、変調多値数を予め順序付けしておくことにより、順序
付けに要する演算量は増加するが、割り当てられたすべてのチャネルにおいて、所 要品質を満たすという条件の下で伝送レートが所定の伝送レートとなるような符号ィ匕 率および各チャネルの変調方式を選択する際の演算量を低減することができる。した がって、効率的に符号ィ匕率および各チャネルの変調方式を選択することができるよう になる。
図面の簡単な説明
[0023] [図 1]第 1実施形態における無線機の構成を説明するための図である。
[図 2]第 1実施形態における受信品質情報生成部の構成を説明するための図である
[図 3]第 1実施形態におけるスケジューラ部の構成を説明するための図である。
[図 4]第 1実施形態における MCS選択部の処理の流れを説明するための図である。
[図 5]第 1実施形態における MCS選択部の構成を説明するための図である。
[図 6]第 2実施形態における MCS選択部の処理の流れを説明するための図である。
[図 7]第 2実施形態における MCS選択部の構成を説明するための図である。
[図 8]第 3実施形態における MCS選択部の処理の流れを説明するための図である。
[図 9]受信 CNR値と周波数との関係を説明するための図である。
[図 10]受信 CNR値と周波数との関係を説明するための図である。
[図 11]第 3実施形態における MCS選択部の構成を説明するための図である。
[図 12]第 4実施形態における無線機の構成を説明するための図である。
[図 13]第 4実施形態における受信品質情報生成部の構成を説明するための図である
[図 14]第 4実施形態におけるスケジューラ部の構成を説明するための図である。
[図 15]従来例について説明するための図である。
[図 16]従来例について説明するための図である。
符号の説明
[0024] 100 第 1無線機
110 送信フレーム生成部
120 マッピング §
130 IFFT咅
140 送信部
150 アンテナ
160 受信部
170 判定部
180 スケジューラ部
181 割り当て決定部
182 MCS選択部
1821 暫定符号化率決定部
1822 暫定変調方式決定部
1823 伝送レート演算部
1824 伝送レート判定部
1825 チャネル順序付け部
1826 変調方式順序付け部
1827 最高符号化率演算部
200 第 2無線機
210 アンテナ
220 受信部
230 FFT咅
240 判定部
250 受信品質情報生成部
251 受信品質情報生成部
260 送信フレーム生成部
280 マッピング部
290 送信部
発明を実施するための最良の形態
本発明は、一つの無線機に対して、複数のチャネルが割り当てられた場合の MCS (Modulation and channel Coding Scheme ;変調方式および符号化率)選
択方法に関する。また、前記複数のチャネルにおいて、符号化率は同一であり、例え ば図 15に示すように変調方式のみ異なることを許すシステムを想定して 、る。
[0026] 〔第 1実施形態〕
本実施形態では、第 1無線機 100から第 2無線機 200への送信データの MCSを、 第 1無線機 100が本発明を用いて選択する場合について説明する。図 1に本実施形 態に係るシステムのブロック構成の一例を示す。
[0027] 図 1では、第 1無線機 100と第 2無線機 200がそれぞれ一つずつ示されているが、 第 1無線機 100と複数の第 2無線機 200が、複数のチャネルを用 、て通信を行って いる。
[0028] ここで、第 1無線機 100は、図 1に示すように、送信フレーム生成部 110と、マツピン グ部 120と、 IFFT (Inverse Fast Fourier Transformation)部 130と、送信部 1 40と、アンテナ 150と、受信部 160と、判定部 170と、スケジューラ部 180とを備えて 構成されている。また、第 2無線機 200は、アンテナ 210と、受信部 220と、 FFT(Fas t Fourier Transformation)部 230と、判定部 240と、受信品質情報生成部 250 と、送信フレーム生成部 260と、マッピング 280と、送信部 290とを備えて構成されて いる。
[0029] 送信フレーム生成部 110は、スケジューラ部 180から通知されたスケジューリング制 御情報と MCS情報に基づいて符号ィ匕および変調処理を行う。また、生成したデータ シンボル系列に、スケジューリング制御情報および MCS情報を第 2無線機 200に通 知するための制御情報(およびパイロット信号)を生成し、データシンボルに多重する 。生成された送信フレームは、マッピング部 120に出力される。
[0030] マッピング部 120は、送信フレーム生成部 110から入力された変調シンボル系列を 、スケジューラ部 180から通知されたスケジューリング制御情報に従ってマッピングす る機能部である。マッピングされた変調シンボル系列は IFFT部 130に出力され、 IF FT処理により OFDMシンボル系列が生成される。
[0031] FFT部 130で生成された OFDMフレームは送信部 140を経て、アンテナ 150から 第 2無線機 200に送信される。
[0032] 第 2無線機 200において、アンテナ 210を介して受信部 220で受信された OFDM
シンボル系列は、 FFT部 230〖こ出力される。 FFT部 230は、 FFT処理を実行するこ とにより、 OFDMシンボル系列の信号が変調シンボル系列の信号に変換され、判定 部 240に出力される。
[0033] 判定部 240は、入力された変調シンボル系列を復調および復号し受信データを取 り出す機能部である。その際、第 1無線機 100から通知されたスケジューリング制御 情報および MCS情報も従って判定処理を行う。また、予めフレームに多重されたパ ィロット信号を受信品質情報生成部 250に出力する。なお、判定帰還型の干渉電力 測定を行う場合は、データ系列および判定結果を受信品質情報生成部 250に出力 する。
[0034] 図 2に受信品質情報生成部 250のブロック構成を示す。受信品質生成部 250には 、受信品質測定部 251が含まれている。受信品質測定部 251は、判定部 240から入 力されたパイロット信号力も受信品質を測定し、第 1無線機 100にその受信品質を出 力するための受信品質情報を生成する。そして、生成された受信品質情報は、送信 フレーム生成部 260に出力され、送信データと共に送信フレームが生成される。
[0035] 送信フレーム部 260は、入力された受信品質情報から、送信フレームを生成し、マ ッビング部 280に出力する。そして、マッピング部 280においてマッピングされ、送信 部 290を介してアンテナ 210から第 1無線機 100に送信される。
[0036] 第 1無線機 100において、アンテナ 150から受信された信号は、受信部 160を介し て判定部 170に入力される。判定部 170は、入力された受信信号から受信データを 抽出し、予めフレームに多重された受信品質情報を分離し、分離した受信品質情報 をスケジューラ部 180に出力する。
[0037] スケジューラ部 180は、第 2無線機 200から報告された受信品質情報に基づいて、 送信データのスケジューリングを行う機能部である。また、受信品質情報に基づいて 、送信データの変調方式および符号化率を決定する処理を実行する。
[0038] ここで、スケジューラ部 180のブロック構成を図 3に示す。スケジューラ部 180は、割 り当て判定部 181と、 MCS選択部 182とを備えて構成されている。判定部 170から 入力された受信品質情報は、まず割り当て決定部 181に出力される。
[0039] 割り当て決定部 181は、各チャネルにおける複数の第 2無線機 200から通知された
受信品質情報を比較し、それぞれのチャネルを受信品質が良好な第 2無線機 200を 送信先とする送信データに割り当てる。各チャネルにどの第 2無線機 200への送信 データを割り当てるかを示す情報は、スケジューリング情報として、送信フレーム生成 部 110およびマッピング部 120に通知される。また、当該スケジューリング情報は MC S選択部 182にも出力される。
[0040] MCS選択部 182では、各第 2無線機 200を送信先とする送信データが、どのチヤ ネルに割り当てられたかを示すスケジューリング情報と、各第 2無線機 200から報告さ れたそのチャネルにおける受信品質情報から、各送信データを変調および復調する 際の MCSを決定し、 MCS情報を送信フレーム生成部 110に通知する。
[0041] 続いて、本実施形態に係る MCS選択部 182の処理の流れを図 4に一例として示す 。 MCS選択部 182は、各符号化率において、各チャネルが所要 PER (Packet Err or Rate)を満たすような変調方式を調査し、割り当てられたすべてのチャネルにお ける伝送レートが所定の伝送レートとなるように MCSの組み合わせを選択する。本実 施形態にぉ 、ては、一例として各チャネルが所要 PERを満たすような最大の変調方 式を調査し、伝送レートが最も高くなるような MCSの組み合わせを選択することとして 説明する。
[0042] なお、 CNR、 R、 Q は,それぞれ k番目のチャネルにおける CNR (Carrier— to
k n m
-Noise power Ratio)測定値 (第 2無線機 200から報告された受信品質)、 n番 目の符号化率、 m番目の変調多値数 (ビット単位)を示す。 K、 Ν、 Μは、それぞれチ ャネル数、符号化率の種類、変調方式の種類であり、 k、 n、 mはそれぞれチャネル番 号。符号化率番号、変調方式番号を示すカウンタである。定数 PER は所要 PERを
req
示し、関数 PER (CNR、 R、 Q )および Rate (R、 Q )は、それぞれ CNRが CNR
k n m n m k の環境で MCSとして Rおよび Q を適用した場合の PER、Rおよび Q を適用した場
n m n m
合の lつのチャネルあたりの伝送レートを示す。
[0043] まず、割り当てられたすべてのチャネルの伝送レートの最大値を示す変数 r と力
max ゥンタ n、対象となる符号化率に対する、割り当てられたすべてのチャネルの伝送レ ートの最大値を示す変数 r totalとカウンタ k、対象となる符号化率に対する、対象とな
tmp
るチャネルの伝送レートの最大値を示す r とカウンタ mを初期化する(ステップ S 10
1からステップ S 103)。
[0044] 次に、 k番目のチャネルに、 MCSとして Rおよび Q を適用する場合の PERを算出
n m
し、 PERが所要値 PER を満たす力どうかを判定する (ステップ S 104)。所要値を満
req
たす場合 (S104 ;Yes)は、 Rおよび Q を適用する場合の伝送レートを算出し、 r
n m tmp と比較する (ステップ S 105)。伝送レートが r より大きい場合 (S 105 ; Yes)は、対象
tmp
となる符号化率に対する、対象となるチャネルの伝送レートを最大とする MCSの組 み合わせである R (k)および Q (k)と伝送レート r を、 Rおよび Q と Rate (R ,
tmp tmp tmp n m n
Q )に更新し (ステップ S 106)、カウンタ mをインクリメントする (ステップ S 107)。一方 、ステップ S104において PERが所要値を満たさない場合 (ステップ S104 ;No)、あ るいはステップ S 105にお 、て伝送レートが最大値とならな 、場合 (ステップ S 105 ;N o)は、ステップ S106を経ずにステップ S107に移行する。そして、ステップ S104力 ステップ S107を、すべての変調方式において演算し終わるまで (mが Mより大きくな るまで)繰り返す (ステップ S 108)。
[0045] つづいて、対象となる符号化率において、各チャネルの最大伝送レートを加算する ことにより(ステップ S 109からステップ S 111)、対象となる符号化率における最大伝 送レート r totalを算出し、 r と比較する (ステップ S112)。対象となる符号化率にお
tmp max
ける最大伝送レートが r より大きい場合 (ステップ S112 ;Yes)は、最大伝送レートと
max
なる MCSの組み合わせである R (k)および Q (k)と伝送レート r を、 R (k)
tmp および Q (k)と r totalに更新し (ステップ SI 13)、カウンタ nをインクリメントする (ス tmp tmp
テツプ SI 14)。対象となる符号化率における最大伝送レートが r より小さい場合は(
max
ステップ S 112; No)、ステップ S 113を経ず【こステップ S 114【こ移行する。
[0046] そして、 nが Nより大きくなるまで、すなわち、すべての符号ィ匕率においてステップ S 102からステップ S114を繰り返し (ステップ S115 ;Yes)、終了段階での R (k)およ
max び Q (k)が選択される MCSとなる。
max
[0047] 図 5に上記の処理を実現する MCS選択部 182のブロック図の一例を示す。 MCS 選択部 182は、暫定符号化率決定部 1821と、暫定変調方式決定部 1822と、伝送 レート演算部 1823と、伝送レート判定部 1824とを備えて構成される。
[0048] 暫定符号ィ匕率決定部 1821において予め選択可能な符号ィ匕率の中から、一の符
号化率を選択して、暫定的な符号率として決定し、暫定変調方式決定部 1822に通 知する。暫定変調方式決定部 1822では、暫定符号化率決定部 1821で決定された 暫定符号ィ匕率の下で、割り当てられたチャネルを示す情報を含むスケジューリング制 御情報と、割り当てられた各チャネルにおける受信品質を示す情報を含む受信品質 情報とから、割り当てられた各チャネルにおいて、所要品質を満たす最大レートの変 調方式を決定する。
[0049] 暫定符号ィヒ率と、割り当てられた各チャネルにおける暫定変調方式は伝送レート演 算部 1823に出力され、暫定符号ィ匕率の下での最大伝送レートが算出される。暫定 符号化率の下での最大伝送レートと、暫定符号化率および割り当てられた各チヤネ ルにおける暫定変調方式は、伝送レート判定部 1824に出力される。伝送レート判定 部 1824は、すべての符号ィ匕率について上記の処理が終了していない場合、暫定符 号ィ匕率決定部 1821に別の暫定符号ィ匕率を設定するように要求する。また、すべて の符号ィ匕率について上記の処理が終了した場合、各暫定符号化率における最大伝 送レートを比較し、伝送レートが最大となる符号ィ匕率および割り当てられた各チヤネ ルにおける変調方式を含む MCS情報を出力する。
[0050] 以上のように、本実施の形態によれば、割り当てられたすべてのチャネルにおいて 、所要品質を満たすという条件の下で伝送レートが最大となるような組み合わせを選 択することができる。したがって、所要品質を満たしつつ、効率的な通信が可能となる
[0051] 〔第 2実施形態〕
第 1実施形態では、所要品質を満たすという条件の下で伝送レートが最大となるよう な組み合わせを総当り的に調査することにより最適な MCSを選択する方法について 説明した。本実施形態では、各チャネルの受信品質、変調多値数を予め降順にソー トしておくことにより、さらに効率的に最適な MCSを選択する方法について説明する 。本実施の形態に係るシステムのブロック構成の一例は、図 1から図 3と同様であるが 、 MCS選択部 182における処理が第 1実施形態とは異なる。
[0052] この第 2実施形態における MCS選択処理の流れを示したのが図 6である。以下、 図 6を用いて、第 1実施形態と異なる点を中心に、本実施例における MCS選択方法
について説明する。
[0053] なお、上記にとおり、各チャネルの受信品質、変調多値数を予め降順にソートして いるものとする。すなわち、 CNR≥CNR≥ - ≥CNR、Q≥Q≥ - ≥Q である。
1 2 K 1 2 M
[0054] まず、第 1に、第 1実施形態では、ステップ S103からステップ S108で、すべての変 調方式に対して所要 PERを満たすか、あるいは伝送レートが最大かどうかを算出す る。一方、本実施形態における MCS選択処理においては、ステップ S203からステツ プ S207の繰り返し中に、所要 PERを満たすかどうかの判断のみを行い、所要 PER を満たした場合、繰り返しを中断して次のステップに移行する。これは、カウンタ mに 対して変調多値数が予め降順にソートされているので、繰り返しを重ねるたびに伝送 レートが低下することが自明であるためである。これにより、第 1実施形態と比較して 変調方式の繰り返し部 (ステップ S103からステップ S108)の演算量を軽減すること ができる。
[0055] 第 2に、第 1実施形態では、ステップ S103において、変調方式番号を示すカウンタ mを「1」に初期化していた。一方、本実施形態では、ステップ S203において、 mを m に設定する。ここで、ステップ S203からステップ S210の繰り返し処理において、 tmp
初回処理時に m は「1」に設定されており、 2回目処理時以降は、前回対象となつ tmp
たチャネルにおける最大レートを達成する変調方式番号に設定されている。
[0056] 例えば、変調方式として 64QAM、 16QAM、 QPSKの M = 3種類選択可能である 場合、 k番目のチャネルにおいて、最大伝送レートとなる変調方式が 16QAMであつ た場合、 k+ 1番目のチャネルで選択可能な変調方式は 16QAMと QPSKになる。こ れは、符号化率を固定した場合に、 CNR≥CNR となる k番目のチャネルと k+ 1 k k+ 1
番目のチャネルにおいて、 k番目のチャネルに 64QAMを適用した場合に所要品質 を満たさなければ、 k+ 1番目のチャネルにおいても 64QAMを適用した場合に所要 品質を満たさな 、ことは自明であるためである。
[0057] 図 7に上記の処理を実現する MCS選択部 182のブロック図の一例を示す。 MCS 選択部 182は、図 5に示した暫定符号ィ匕率決定部 1821と、暫定変調方式決定部 18 22と、伝送レート演算部 1823と、伝送レート判定部 1824とに加えて、チャネル順序 付け部 1825と、変調方式順序付け部 1826とを備えて構成されている。
[0058] チャネル順序付け部 1825では、割り当てられたチャネルを示す情報を含むスケジ ユーリング制御情報と、割り当てられた各チャネルにおける受信品質を示す情報を含 む受信品質情報とから、チャネルを受信品質に応じて順序付けする。
[0059] 変調方式順序付け部 1826では、選択可能な変調方式を、その多値数により順序 付けする。あるいは、多値数で順序付けられた選択可能な変調方式を記憶してある。
[0060] 暫定変調方式決定部 1822において、暫定符号化率決定部 1821で決定された暫 定符号化率の下で、スケジューリング制御情報と、受信品質情報とから、割り当てら れた各チャネルにお 、て、所要品質を満たす最大レートの変調方式を決定する際、 チャネル順序付け部 1825において順序付けされたチャネルの順番および変調方式 順序付け部 1826において順序付けされた変調方式の順番で演算される。
[0061] 以上のように、第 2実施形態によれば、各チャネルの受信品質、変調多値数を予め ソートしておくことにより、ソートに要する演算量は増加するが、割り当てられたすべて のチャネルにお ヽて、所要品質を満たすと!ヽぅ条件の下で伝送レートが最大となるよ うな組み合わせを効率的に選択することができる。
[0062] なお、上述した第 2実施形態において、受信品質及び変調多値数が予め降順にソ ートされているものとして説明したが、受信品質及び変調多値数が昇順にソートされ て 、る場合にぉ 、ても同様の効果が得られることは勿論である。
[0063] 〔第 3実施形態〕
続いて、第 3実施形態について説明する。第 1実施形態及び第 2実施形態では、す ベての符号ィ匕率において、所要品質を満たすという条件の下で伝送レートが最大と なるような組み合わせを調査することにより最適な MCSを選択する方法について説 明した。本実施形態では、受信品質が予め定められた条件に含まれるチャネルにお いて所要品質を満たすように符号ィ匕率を予め制限しておくことにより、さらに効率的 に最適な MCSを選択する方法について説明する。なお、本実施形態においては、 一例としてチャネルにおける受信品質の条件として、各チャネルの中から、最低値と なるチャネルを選択する場合にっ 、て説明する。
[0064] 本実施形態に係るシステムのブロック構成の一例は、図 1から図 3と同様であるが、 MCS選択部 182における処理が第 1実施形態あるいは第 2実施形態とは異なる。第
3実施形態に力かる MCS選択処理の流れを図 8に示し、第 1実施形態と異なる点を 中心に、本実施形態における MCS選択方法について説明する。
[0065] 受信品質が最低値であるチャネルにお!/、て所要品質を満たすように符号化率を予 め制限する過程 (ステップ S301からステップ S303)について説明する。なお、符号 化率、各チャネルの受信品質、変調多値数を予め降順にソートしているものとする。 すなわち、 R≥R≥- --≥R , CNR≥CNR≥ - ≥CNR、Q≥Q≥ - ≥Q であ
1 2 N 1 2 K 1 2 M る。
[0066] まず、符号化率の番号を示すカウンタ nが初期化される (ステップ S301)。次に、受 信品質が最低値であるチャネルにおける受信品質値 CNRにおいて、最低伝送レ
K
ートの変調方式 Q
Mを選択した場合に、符号化率 R
nで所要品質を満たすかどうかを 判定する (ステップ S302)。符号化率 Rで所要品質を満たす場合 (ステップ S302 ;Y es)は、調査範囲の最大の符号化率番号を示す変数 nにカウンタ nをセットする (ステ
0
ップ S303)。符号化率 Rで所要品質を満さない場合 (ステップ S302 ; No)は、変数 nをインクリメントすることにより低い符号ィ匕率を対象とし (ステップ S304)、変数 nが N — 1以下の間は同様の判定を行う(ステップ S305 ;No→ステップ S302)。また、変数 nが N— 1より大きくなつた場合には (ステップ S305; Yes)、 nが最低符号ィ匕率として n に設定される(ステップ S303)。
0
[0067] すなわち、ステップ S301からステップ S303では、受信品質が最低値であるチヤネ ルにおいて、最低レートの変調方式を選択した場合の、所要品質を満たすような最 大レートの符号化率を決定し、その符号化率を示す番号を nに設定する。
0
[0068] ここで、例えば、周波数(チャネル)と受信 CNR値の関係を図 9のグラフ及び図 10 の表に示す状態の場合について考える。この場合、図 9のグラフ及び図 10の表から 、受信品質が最低となるのは、チャネル 4である。ここで、変調方式として 64QAM、 1 6QAM、 QPSKの 3種類の変調方式が選択可能であるとき、最低伝送レートの変調 方式である QPSKを選択する。この場合、所要品質を満たし、かつ最大の伝送レート となる符号ィ匕率が 1Z3であったとする。このとき、符号ィ匕率を 1Z3より大きい値に設 定すると、どの変調方式に対しても、このチャネルで所要品質を満たすことができな い。すなわち、符号ィ匕率の調査範囲を 1Z3以下に絞り込むことができる。
[0069] 次に、符号化率の番号を示すカウンタ nの初期値として nを設定し、ステップ S307
0
からステップ S319の繰り返し処理を nより大きい nに対して行うことで、繰り返し処理
0
量を軽減することができる。図 8では、ステップ S307からステップ S319の繰り返し処 理として、図 6に示す処理と同様の処理を行う場合について示している力 図 4と同様 の処理を行っても良いことは勿論である。
[0070] 図 11に上記の処理を実現する MCS選択部 182のブロック図の一例を示す。 MCS 選択部 182は、図 7に示した暫定符号ィ匕率決定部 1821と、暫定変調方式決定部 18 22と、伝送レート演算部 1823と、伝送レート判定部 1824と、チャネル順序付け部 1 825と、変調方式順序付け部 1826とに加えて、最高符号化率演算部 1827を備えて 構成されている。
[0071] 最高符号ィ匕率演算部 1827では、チャネル順序付け部 1825から通知された受信 品質が最低であるチャネルにお 、て、変調方式順序付け部から通知された最低レー トの変調方式を適用する場合に、受信品質を満たす最高レートの符号化率を演算し 、暫定符号化率決定部 1821に通知する。
[0072] 暫定符号化率決定部 1821では、最高符号化率演算部 1827から通知された符号 化率以下となる符号化率を暫定符号化率として決定する。
[0073] なお、図 11では、チャネル順序付け部 1825と変調方式順序付け部 1826から、そ れぞれ受信品質が最低であるチャネルと最低レートの変調方式とを最高符号化率演 算部 1827に通知する構成をとつているが、受信品質が最低であるチャネルと最低レ ートの変調方式を抽出する他のブロックに置き換えてもよい。
[0074] 以上のように、本実施の形態によれば、受信品質が最低値であるチャネルにお 、 て所要品質を満たすように符号ィヒ率を予め制限しておく。これにより、符号化率を制 限するための演算量は増加する力 割り当てられたすべてのチャネルにおいて、所 要品質を満たすという条件の下で伝送レートが最大となるような組み合わせを効率的 に選択することができる。
[0075] なお、上記のいずれの実施例においても、第 2無線機 200から報告される受信品 質として CNRを用いた例を想定して 、るが、受信品質情報はこれに限るものではな い。 ί列えは、 CIR (Carrier— to— Interference power Ratio) , SNR (Signal— t
o— Noise power Ratio) , Es/N (シンボル当たりのエネルギー対雑音電力密
0
度比), RSSI (Receive Signal Strength Indication)などの受信電力に関連 する他の情報を用いることもできるし、所要品質を満たすような最大レートの MCS、 所要品質を満たすようなフレームあたりの最大情報ビット数などの伝送レートに関連 する情報を用いることもできる。
[0076] また、すべての実施例において、所要値として PERを想定している力 これに限定 する必要はない。 BER (Bit Error Rate)や BLER (Block Error Rate)といった 受信の成否に関連する指標など、通信品質を示す指標であれば、他の指標を用い ることち可會であることは勿!^である。
[0077] また、上述した第 3実施形態においても、受信品質及び変調多値数が予め降順に ソートされているものとして説明したが、受信品質及び変調多値数が昇順にソートさ れて 、る場合にぉ 、ても同様の効果が得られることは勿論である。
[0078] 〔第 4実施形態〕
続いて第 4実施形態について説明する。第 4実施形態は、第 2無線機 200が受信 品質情報として、受信可能な MCSを第 1無線機 100に報告するシステムにおいて、 第 2無線機 200が本発明を用いて MCSを選択する場合について説明する。
[0079] 図 12に本実施の形態に係るシステムのブロック構成の一例を示す。図 12は図 1と 同様の構成を取っているが、第 1無線機内 100のスケジューラ部 380および第 2無線 機 200内の受信品質情報生成部 450の処理が異なる。
[0080] 受信品質情報生成部 380のブロック構成を図 13に示す。判定部で分離されたノ ィ ロット信号は受信品質測定部 451に送られ、受信品質測定部 451では、各チャネル の受信品質が測定される。各チャネルにおける受信品質測定結果は MCS選択部 4 52へと送られる。 MCS選択部 452では、各チャネルにおける受信品質測定結果か ら、各チャネルにおける MCSを選択し、選択した MCSを示す MCS情報を送信フレ ーム 260に通知する。このとき、 MCS選択部で 452は、第 1実施形態から第 3実施形 態で説明したのと同様の選択方法を用いることができる。また、第 2無線機 200で M CSを選択する場合、 MCSレベルの一つとしてキャリアホールを設定してもよい。す なわち、あるチャネルにおいて、最低伝送レートとなる符号化率と変調方式の組み合
わせを選択しても所要品質を満たすことができな 、場合、そのチャネルの MCSとし てはキャリアホールを選択することとなる。キャリアホールとなるチャネルが存在する場 合、そのチャネルを除いたチャネルに対して、第 1実施形態から第 3実施形態で説明 したのと同様の選択方法を用いる。
[0081] 送信フレーム生成部 260は、受信品質情報生成部 380から通知された MCS情報 を第 1無線機 100に報告するために、制御信号を送信データに多重する。
[0082] スケジューラ部 380のブロック構成を図 14に示す。各第 2無線機 200から報告され た MCS情報は割り当て決定部 381に送られ、各チャネルにおける MCSを比較する 。各チャネルにおける伝送レートが大き ヽ第 2無線機 200を送信先とする送信データ に、そのチャネルを割り当てる。割り当てられた送信データの MCSは、その送信デー タの送信先である第 2無線機 200から報告された MCSとする。割り当て決定部 381 で決定されたスケジューリング情報は、割り当てられた送信データの MCS情報ととも に送信フレーム生成部 110に送られる。また、スケジューリング制御情報はマッピング 部 120へも出力される。
[0083] 以上のように、第 2無線機 200において所要品質を満たす最大レートの MCSを選 択し、第 1無線機 100に報告するシステムにおいても、本発明を用いることにより、効 率的に MCSを選択することができる。
Claims
[1] 第 1の通信装置から第 2の通信装置へ複数のチャネルを用いてデータ伝送を行い 、複数のチャネルに渡って割り当てられたデータに対し、該データが割り当てられた 前記複数のチャネルにおいて、符号化率は同一であり、変調方式のみ異なることを 許すシステムにおける変調方式および符号ィヒ率に関する変調パラメータ選択方法で あって、
予め定められた選択可能な符号ィ匕率の中から、一の符号ィ匕率を選択して暫定的に 決定する第 1のステップと、
暫定的に決定した符号化率の下で、各チャネルにおいて所要品質を満たし、かつ 所定の伝送レートとなる変調方式を選択する第 2のステップと、
第 1のステップで暫定的に決定した符号ィ匕率と、第 2のステップで選択した各チヤネ ルにおける変調方式とから伝送レートを算出する第 3のステップと
第 1のステップ力も第 3のステップまでを、他の選択可能な符号化率に対して繰り返 TV、、所定の伝送レートとなる符号ィ匕率と各チャネルにおける変調方式を決定する 第 4のステップと、
を含むことを特徴とする変調パラメータ選択方法。
[2] 請求項 1に記載の変調パラメータ選択方法であって、
第 2のステップの前に、
各チャネルを受信品質に基づいて順序付けする第 5のステップと、
選択可能な変調方式を変調多値数により順序付けする第 6のステップと、 をさらに含み、
第 5のステップで決定したチャネルの順序、および第 6のステップで決定した変調方 式の順序に従って、第 2のステップで変調方式を選択することを特徴とする変調パラ メータ選択方法。
[3] 請求項 1または請求項 2に記載の変調パラメータ選択方法であって、
第 1のステップの前に、
受信品質が予め定められた条件に含まれるチャネルにおける受信品質から、選択 可能な符号ィ匕率を変更する第 7のステップをさらに含み、
第 7のステップで決定した選択可能な符号ィ匕率の中から、第 1のステップで暫定符 号化率を決定することを特徴とする変調パラメータ選択方法。
[4] 請求項 1または請求項 2に記載の変調パラメータ選択方法であって、
第 1のステップの前に、
受信品質が最も劣悪なチャネルにお 、て、選択可能な最低伝送レートとなる変調 方式を暫定的に決定する第 8のステップと、
第 8のステップで暫定的に決定した変調方式の下で、前記チャネルが所要品質を 満たし、かつ最大伝送レートとなる符号ィ匕率を決定する第 9のステップと、
第 9のステップで決定した符号ィ匕率に基づ 、て、選択可能な符号化率を変更する 第 10のステップと、
をさらに含み、
第 10のステップで決定した選択可能な符号ィ匕率の中から、第 1のステップで暫定 符号化率を決定することを特徴とする変調パラメータ選択方法。
[5] 請求項 1または請求項 2に記載の変調パラメータ選択方法であって、
第 1のステップの前に、
所定の受信品質を満たすチャネルの中で受信品質が最も劣悪なチャネルにお ヽ て、選択可能な最低伝送レートとなる変調方式を暫定的に決定する第 8のステップと 第 8のステップで暫定的に決定した変調方式の下で、前記チャネルが所要品質を 満たし、かつ最大伝送レートとなる符号ィ匕率を決定する第 9のステップと、
第 9のステップで決定した符号ィ匕率に基づ 、て、選択可能な符号化率を変更する 第 10のステップと、
をさらに含み、
第 10のステップで決定した選択可能な符号ィ匕率の中から、第 1のステップで暫定 符号化率を決定し、
前記所定の受信品質を満たさないチャネルをキャリアホールと決定することを特徴 とする変調パラメータ選択方法。
[6] 第 1の通信装置から第 2の通信装置へ複数のチャネルを用いてデータ伝送を行い
、複数のチャネルに渡って割り当てられたデータに対し、該データが割り当てられた 前記複数のチャネルにおいて、符号化率は同一であり、変調方式のみ異なることを 許すシステムにおける変調方式および符号ィヒ率に関する変調パラメータ選択装置で あって、
予め定められた選択可能な符号ィ匕率の中から、一の符号ィ匕率を選択して暫定的に 決定する暫定符号化率決定部と、
暫定的に決定した符号化率の下で、各チャネルにおいて所要品質を満たし、かつ 所定の伝送レートとなる変調方式を選択する暫定変調方式決定部と、
前記暫定符号化率決定部で暫定的に決定した符号化率と、前記暫定変調方式決 定部で選択した各チャネルにおける変調方式とから伝送レートを算出する伝送レート 演算部とを具備し、
前記暫定符号化率決定部から伝送レート演算部まで処理を、他の選択可能な符号 化率に対して繰り返し行 ヽ、所定の伝送レートとなる符号化率と各チャネルにおける 変調方式を決定することを特徴とする変調パラメータ選択装置。
[7] 請求項 6に記載の変調パラメータ選択装置であって、
各チャネルを受信品質に基づいて順序付けするチャネル順序付け部と、 選択可能な変調方式を変調多値数により順序付けする変調方式順序付け部と、 をさらに含み、
前記チャネル順序付け部で決定したチャネルの順序、および前記変調方式順序付 け部で決定した変調方式の順序に従って、前記暫定変調方式決定部で変調方式を 選択することを特徴とする変調パラメータ選択装置。
[8] 請求項 6または請求項 7に記載の変調パラメータ選択装置であって、
受信品質が予め定められた条件に含まれるチャネルにおける受信品質から、選択 可能な符号化率を変更する符号化率演算部をさらに含み、
前記符号ィ匕率演算部で決定した選択可能な符号ィ匕率の中から、暫定符号化率決 定部で暫定符号ィヒ率を決定することを特徴とする変調パラメータ選択装置。
[9] 請求項 6または請求項 7に記載の変調パラメータ選択装置であって、
受信品質が最も劣悪なチャネルにお 、て、選択可能な最低伝送レートとなる変調
方式の下で、前記チャネルが所要品質を満たし、かつ最大伝送レートとなる符号ィ匕 率に基づいて、選択可能な符号ィ匕率を変更する最高符号ィ匕率演算部をさらに含み 最高符号化率演算部で変更した選択可能な符号化率の中から、暫定符号化率決 定部で暫定符号ィヒ率を決定することを特徴とする変調パラメータ選択装置。
[10] 請求項 6または請求項 7に記載の変調パラメータ選択装置であって、
所定の受信品質を満たすチャネルの中で受信品質が最も劣悪なチャネルにお ヽ て、選択可能な最低伝送レートとなる変調方式の下で、前記チャネルが所要品質を 満たし、かつ最大伝送レートとなる符号ィ匕率に基づいて、選択可能な符号化率を変 更する最高符号化率演算部をさらに含み、
最高符号化率演算部で変更した選択可能な符号化率の中から、暫定符号化率決 定部で暫定符号化率を決定し、
前記所定の受信品質を満たさないチャネルをキャリアホールと決定することを特徴 とする変調パラメータ選択装置。
[11] 請求項 6から請求項 10のいずれかに記載の変調パラメータ選択装置を具備し、通 信相手に前記変調パラメータ選択装置で選択した変調パラメータに関する情報を送 信することを特徴とする通信装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07706858A EP1981192A1 (en) | 2006-01-31 | 2007-01-16 | Modulation parameter selecting method, modulation parameter selecting apparatus and communication apparatus |
JP2007556808A JP4476331B2 (ja) | 2006-01-31 | 2007-01-16 | 変調パラメータ選択方法、変調パラメータ選択装置及び通信装置 |
US12/161,660 US8094739B2 (en) | 2006-01-31 | 2007-01-16 | Modulation parameter selecting method, modulation parameter selecting apparatus, and communication apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006022454 | 2006-01-31 | ||
JP2006-022454 | 2006-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007088723A1 true WO2007088723A1 (ja) | 2007-08-09 |
Family
ID=38327303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/050531 WO2007088723A1 (ja) | 2006-01-31 | 2007-01-16 | 変調パラメータ選択方法、変調パラメータ選択装置及び通信装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8094739B2 (ja) |
EP (1) | EP1981192A1 (ja) |
JP (1) | JP4476331B2 (ja) |
CN (1) | CN101375537A (ja) |
WO (1) | WO2007088723A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009094902A1 (fr) * | 2008-01-23 | 2009-08-06 | Datang Mobile Communications Equipment Co., Ltd. | Procede et dispositif de definition de mode de modulation et dispositif pour systeme de communication |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6180229B2 (ja) * | 2013-08-21 | 2017-08-16 | キヤノン株式会社 | 通信装置及びその制御方法、並びにプログラム |
WO2017187236A1 (en) | 2016-04-29 | 2017-11-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Wireless device specific maximum code rate limit adjustment |
JP6533557B2 (ja) * | 2017-06-05 | 2019-06-19 | アンリツ株式会社 | 測定装置及び測定方法 |
TWI806402B (zh) * | 2022-02-07 | 2023-06-21 | 瑞昱半導體股份有限公司 | 無線傳輸方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005002253A1 (ja) * | 2003-06-30 | 2005-01-06 | Nec Corporation | 無線通信システムおよび送信モード選択方法 |
JP2005252834A (ja) * | 2004-03-05 | 2005-09-15 | Rikogaku Shinkokai | Mimo固有モード適応伝送システム及びmimo−ofdm固有モード適応伝送システム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7277406B2 (en) * | 2002-01-21 | 2007-10-02 | Samsung Electronics Co., Ltd. | Apparatus and method for distributing power in an HSDPA system |
US7525988B2 (en) * | 2005-01-17 | 2009-04-28 | Broadcom Corporation | Method and system for rate selection algorithm to maximize throughput in closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system |
-
2007
- 2007-01-16 JP JP2007556808A patent/JP4476331B2/ja active Active
- 2007-01-16 WO PCT/JP2007/050531 patent/WO2007088723A1/ja active Application Filing
- 2007-01-16 CN CNA2007800038100A patent/CN101375537A/zh active Pending
- 2007-01-16 US US12/161,660 patent/US8094739B2/en not_active Expired - Fee Related
- 2007-01-16 EP EP07706858A patent/EP1981192A1/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005002253A1 (ja) * | 2003-06-30 | 2005-01-06 | Nec Corporation | 無線通信システムおよび送信モード選択方法 |
JP2005252834A (ja) * | 2004-03-05 | 2005-09-15 | Rikogaku Shinkokai | Mimo固有モード適応伝送システム及びmimo−ofdm固有モード適応伝送システム |
Non-Patent Citations (1)
Title |
---|
3GPP TSG RAN WG1 #42BIS R1-051149, October 2005 (2005-10-01), XP003015883, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_42bis/Docs/R1-051149.zip> * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009094902A1 (fr) * | 2008-01-23 | 2009-08-06 | Datang Mobile Communications Equipment Co., Ltd. | Procede et dispositif de definition de mode de modulation et dispositif pour systeme de communication |
Also Published As
Publication number | Publication date |
---|---|
US8094739B2 (en) | 2012-01-10 |
US20100220807A1 (en) | 2010-09-02 |
JPWO2007088723A1 (ja) | 2009-06-25 |
CN101375537A (zh) | 2009-02-25 |
EP1981192A1 (en) | 2008-10-15 |
JP4476331B2 (ja) | 2010-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11356225B2 (en) | Method and apparatus for transmitting/receiving data and control information through an uplink in a wireless communication system | |
US11522650B2 (en) | Methods and apparatus for multi-carrier communication systems with adaptive transmission and feedback | |
KR100996080B1 (ko) | 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서적응적 변조 및 코딩 제어 장치 및 방법 | |
KR100943624B1 (ko) | 직교 주파수 분할 다중 통신 시스템에서 동적 자원 할당장치 및 방법 | |
JP5000725B2 (ja) | 無線通信システムにおいてアップリンクを通じたデータ及び制御情報の送受信方法及び装置 | |
US8861632B2 (en) | Method and apparatus for subcarrier and antenna selection in MIMO-OFDM system | |
KR101468490B1 (ko) | 무선 통신 시스템에서 제어 채널들의 집합을 한정하여 송수신하는 방법 및 장치 | |
CN106464648B (zh) | 多用户下行蜂窝系统中的数据传输装置 | |
CN102217220B (zh) | 无线通信终端装置、无线通信基站装置以及群集配置设定方法 | |
US8284731B2 (en) | Communication terminal apparatus, communication control apparatus, wireless communication system, and communication method all using a plurality of slots | |
US20050281226A1 (en) | Apparatus and method for feedback of channel quality information in communication systems using an OFDM scheme | |
US8416737B2 (en) | Radio communication base station device and control channel MCS control method | |
WO2005020488A1 (ja) | 無線通信装置及びサブキャリア割り当て方法 | |
EP1766826A2 (en) | Method and apparatus for determining channel quality and performing adaptive modulation/coding within a multicarrier communication system | |
KR20070082569A (ko) | 직교 주파수 분할 다중 접속 방식 시스템에서 무선리소스를 할당하는 방법 및 장치 | |
US8630313B2 (en) | Signal mapping method and communication device | |
JP4476331B2 (ja) | 変調パラメータ選択方法、変調パラメータ選択装置及び通信装置 | |
Seba et al. | System model with adaptive modulation and frequency hopping in wireless networks | |
Al-Janabi et al. | Simulated and semi-analytical throughput evaluation for AMC-OFDMA systems | |
KR20070050118A (ko) | Ofdma 이동 통신 시스템의 채널할당방법 및 그 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007556808 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12161660 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780003810.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007706858 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |