WO2007088146A1 - Procédé permettant d'appliquer des ions alcalins sur la surface d'une couche d'absorption de cigsse d'une cellule solaire de chalkopyrite - Google Patents

Procédé permettant d'appliquer des ions alcalins sur la surface d'une couche d'absorption de cigsse d'une cellule solaire de chalkopyrite Download PDF

Info

Publication number
WO2007088146A1
WO2007088146A1 PCT/EP2007/050818 EP2007050818W WO2007088146A1 WO 2007088146 A1 WO2007088146 A1 WO 2007088146A1 EP 2007050818 W EP2007050818 W EP 2007050818W WO 2007088146 A1 WO2007088146 A1 WO 2007088146A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorber layer
substrate
layer
etching
solar cell
Prior art date
Application number
PCT/EP2007/050818
Other languages
German (de)
English (en)
Inventor
Wolfgang Eisele
Ilka Luck
Alexander Meeder
Original Assignee
Sulfurcell Solartechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulfurcell Solartechnik Gmbh filed Critical Sulfurcell Solartechnik Gmbh
Publication of WO2007088146A1 publication Critical patent/WO2007088146A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the invention relates to a method for applying alkali metal ions to the CIGSSe absorber layer of a chalcopyrite solar cell.
  • Dunn harsh solar cells with I-III-VI 2 -Chalkopyrit- absorber layers that is compounds of the form Cu (In x Gai_ x ) (Se y , Si_ y ) 2 with O ⁇ x ⁇ l and O ⁇ y ⁇ l, currently forming a promising approach for the production of cost-effective solar cells with high efficiency.
  • the present method is particularly concerned with solar cells based on polycrystalline absorber layers of copper indium disulfide.
  • the solar cells are produced in a multistage process by first applying to a glass substrate a back-contact layer mostly consisting of molybdenum and then copper and indium. In a sulfurization process, the formation of the copper indium disulfide layer (CuInS 2 ) takes place. That through a
  • a buffer layer usually cadmium sulfide (CdS), and a zinc oxide window layer (ZnO) as a front electrode and possibly front contacts are applied to the absorber layer. From empirical studies it is known that the efficiency of the solar cell increases significantly if alkali ions can diffuse into the absorber layer.
  • CdS cadmium sulfide
  • ZnO zinc oxide window layer
  • a first common method is the use of alkaline glass substrates.
  • alkali ions may diffuse into the absorber layer.
  • the alkali metal is not uniformly distributed in the glass substrate and diffused so different degrees in the absorber layer.
  • the deposition conditions of the back contact layer can also have an influence on the diffusion behavior of the alkali ions.
  • alkali metal-containing precursor layer for example NaF, Na 2 Se or Na 2 S
  • a third possibility is the alkali metal incorporation during or after the deposition of the absorber layer.
  • a metered addition of a sodium compound by means of co-evaporation during the vapor deposition of the absorber layer material is proposed, for example, in DE 100 24 882 A1.
  • An alkali metal incorporation after the deposition of the absorber layer is proposed in DE 102 59 258 A1.
  • sodium is recommended for incorporation into the absorber layer, in the form of sodium halides or sodium chalcogenides.
  • the introduction should be carried out by means of CVD or PVD Deposition or a wet separation and subsequent annealing at 400 ° C in a vacuum or under an inert gas atmosphere.
  • the invention has for its object to provide a method for applying alkali ions on the surface of the CIGSSe absorber layer of a chalcopyrite solar cell, which can be easily put into the technological process for the production of the layer structure of a chalcopyrite solar cell and in which the alkali metal easy and reliable dosing.
  • the object is achieved by the features of claim 1.
  • Advantageous embodiments are the subject of the dependent claims. Thereafter, the application of the alkali ions during an already following the deposition of the CIS absorber layer chemical treatment phase of the absorber layer, that is, a subsequent etching and / or a subsequent bath chemical coating.
  • the substrate is after processing the CIS absorber layer and before the application of further layers with a solution of 1 to 30% by weight of sodium cyanate (NaCN) and
  • CuInS2 copper sulfide
  • CuS / Cu2S copper sulfide
  • CuS has a high conductivity and would cause short circuits within the absorber layer or between the absorber layer and the other layers. The CuS layer must therefore be selectively removed.
  • the removal of the CuS layer is usually carried out in a wet-chemical process step using potassium cyanate (KCN).
  • KCN potassium cyanate
  • electrochemical etching processes DE 103 44 315 B3
  • wet-chemical etching is used, but not below
  • the method has the advantage that in comparison to the previously known methods, no additional process step is required, since the wet-chemical treatment of the absorber layer according to the current state of knowledge anyway an irreplaceable process step.
  • Etching and concurrent application of the sodium ions can be accomplished by both dipping and spraying for a given time. This is followed by a drying process and the further processing of the solar cell, that is to say, for example, application of a CdS buffer layer, a ZnO window layer (front electrode) and optionally aluminum front contacts.
  • An annealing process to infiltrate the sodium may improve the effect, but is not essential.
  • the treatment can be carried out under atmospheric pressure and at a temperature below 100 0 C, in the simplest case
  • the heat treatment can be carried out between 20 0 C and 500 0 C.
  • the application of the alkali ions during the application of the adjoining the absorber layer buffer layer by means of chemical bath deposition wherein the bath, based on the water content, about 0.01 to 10.0 wt.% Sodium hydroxide (NaOH) is added.
  • the buffer layer usually made of cadmium sulfide (CdS), protects the surface of the absorber layer from damage caused by the application of the contact layer could occur. In addition, it ensures a surface doping of the absorber layer.
  • CdS cadmium sulfide
  • buffer layer such as ZnS, ZnSe, InS, PbSe or MgO.
  • the buffer layer can be applied by sputtering, vapor deposition or by chemical bath deposition.
  • the chemical bath deposition is used, which is also the most advantageous method.
  • chemical bath deposition is usually carried out by immersing the substrate coated with the absorber layer in an aqueous solution of cadmium acetate (CdAc) and ammonia (NH 3) and thiourea (SC (NH 2) 2).
  • CdAc cadmium acetate
  • NH 3 ammonia
  • SC thiourea
  • the water is heated to about 40 0 C - 100 ° C and then added a CdAc / NH3 solution and thiourea.
  • the substrate is immersed in the solution for about 1 to 20 minutes and then rinsed immediately.
  • Fig. 1 shows the efficiency and the open circuit voltage of samples in different etching methods
  • Fig. 2 shows the efficiency and the open circuit voltage for three samples after the application of alkali ions during a wet-chemical coating.
  • a back contact layer for example molybdenum
  • a CIS absorber layer is deposited, for example by sputtering copper and indium and then
  • the treatment can be through
  • the treatment time is based on the concentration of the atzloss and Temperature dependent and would be at a higher concentration of NaCN possibly shorter.
  • the substrate is rinsed with water and dried with air.
  • the substrate is provided with the further layers, which are necessary for the function of the solar cell, that is, applying a CdS buffer layer and a ZnO window layer.
  • FIG. 1 shows the achieved values for the efficiency and the voltage of a solar cell in comparison with other variants of etching listed below or the previously known standard etching method (FIGS. 1-5). Indicated are average values for the efficiency and the voltage.
  • Ratio of the product of current and voltage at an operating point to the product of short-circuit current and no-load voltage) and short-circuit current of the solar cell are only insignificantly influenced by the process.
  • the best values are achieved with the above-described Atzlosung at a treatment time of about 3 minutes.
  • a jolt contact layer and the CIS absorber layer are likewise applied to a glass substrate. Unlike the first
  • the unwanted CuS / Cu2S is removed with a sodium-free Atzlosung.
  • a CdS buffer layer After etching the absorber layer, it is provided with a CdS buffer layer.
  • a solution of CdAc in NH3 is prepared and dissolved in 60 ° C warm water.
  • the solution is thiourea and, based on the amount of water, 0.06 wt.% NaOH was added.
  • the substrate is immersed in the solution for about 7 minutes and then immediately rinsed and dried.
  • Fig. 2 shows the experimental results for the second
  • Exemplary Embodiment The mean and maximum values for the efficiency and the voltage of cells on three investigated substrates (1-3) for a CdS bath "with sodium" (addition of 0.045 g NaOH to the CdS bath) are given in each case in comparison with a standard bath "without sodium”. Full factor and short-circuit current of the solar cells are only insignificantly influenced by the variation (constant).

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un procédé dé permettant d'appliquer des ions alcalins sur la surface de la couche d'absorption de CIGSSe d'une cellule solaire de chalkopyrite. Selon l'invention, les ions alcalins sont appliqués pendant une phase de traitement chimique de la couche d'absorption, c'est-à-dire un procédé de mordançage consécutif et/ou un revêtement chimique en bain, dès que la couche d'absorption est déposée sur un substrat.
PCT/EP2007/050818 2006-02-01 2007-01-29 Procédé permettant d'appliquer des ions alcalins sur la surface d'une couche d'absorption de cigsse d'une cellule solaire de chalkopyrite WO2007088146A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200610004909 DE102006004909A1 (de) 2006-02-01 2006-02-01 Verfahren zum Aufbringen von Alkaliionen auf die Oberfläche der CIGSSe-Absorberschicht einer Chalkopyrit-Solarzelle
DE102006004909.8 2006-02-01

Publications (1)

Publication Number Publication Date
WO2007088146A1 true WO2007088146A1 (fr) 2007-08-09

Family

ID=37963665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/050818 WO2007088146A1 (fr) 2006-02-01 2007-01-29 Procédé permettant d'appliquer des ions alcalins sur la surface d'une couche d'absorption de cigsse d'une cellule solaire de chalkopyrite

Country Status (2)

Country Link
DE (1) DE102006004909A1 (fr)
WO (1) WO2007088146A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8604336B2 (en) 2010-02-09 2013-12-10 Dow Global Technologies Llc Photovoltaic device with transparent, conductive barrier layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037177B4 (de) 2008-08-09 2010-06-17 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Verfahren zur Herstellung nanostrukturierter Metalloxide oder -chalkogenide mittels chemischer Badabscheidung
EP3627564A1 (fr) * 2018-09-22 2020-03-25 (CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd. Procédé de traitement ultérieur d'une couche absorbante

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10022652A1 (de) * 2000-04-28 2001-11-08 Hahn Meitner Inst Berlin Gmbh Verfahren zum selektiven Entfernen von Fremdphasen an Oberflächen von sulfidhaltigen Chalkopyrithalbleitern
FR2839201A1 (fr) * 2002-04-29 2003-10-31 Electricite De France Procede de fabrication de semi-conducteurs en couches minces a base de composes i-iii-vi2, pour applications photovoltaiques
DE10259258A1 (de) * 2002-12-11 2004-07-08 Würth Solar Gmbh & Co. Kg Verfahren zur Herstellung einer Verbindungshalbleiterschicht mit Alkalimetallzusatz

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909863A (en) * 1988-07-13 1990-03-20 University Of Delaware Process for levelling film surfaces and products thereof
DE4442824C1 (de) * 1994-12-01 1996-01-25 Siemens Ag Solarzelle mit Chalkopyrit-Absorberschicht
DE10024882A1 (de) * 2000-05-19 2001-11-29 Zsw Verfahren zur Herstellung einer photoelektrisch aktiven Verbindungshalbleiterschicht mit Alkalimetall-Dotieranteil
DE10344315B3 (de) * 2003-09-21 2004-12-09 Hahn-Meitner-Institut Berlin Gmbh Elektrochemisches Ätzverfahren zum selektiven Entfernen von Fremdphasen an der Oberfläche eines sulfidhaltigen Chalkopyrithalbeiters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10022652A1 (de) * 2000-04-28 2001-11-08 Hahn Meitner Inst Berlin Gmbh Verfahren zum selektiven Entfernen von Fremdphasen an Oberflächen von sulfidhaltigen Chalkopyrithalbleitern
FR2839201A1 (fr) * 2002-04-29 2003-10-31 Electricite De France Procede de fabrication de semi-conducteurs en couches minces a base de composes i-iii-vi2, pour applications photovoltaiques
DE10259258A1 (de) * 2002-12-11 2004-07-08 Würth Solar Gmbh & Co. Kg Verfahren zur Herstellung einer Verbindungshalbleiterschicht mit Alkalimetallzusatz

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8604336B2 (en) 2010-02-09 2013-12-10 Dow Global Technologies Llc Photovoltaic device with transparent, conductive barrier layer

Also Published As

Publication number Publication date
DE102006004909A1 (de) 2007-09-13

Similar Documents

Publication Publication Date Title
DE19912961B4 (de) Halbleiterdünnfilm, Herstellungsverfahren dafür, sowie den Halbleiterdünnfilm aufweisende Solarzelle
EP0468094B1 (fr) Procédé de fabrication d'une cellule solaire en chalcopyrite
EP0715358B2 (fr) Méthode de fabrication d'une cellule solaire avec une couche d'absorption en chalcopyrite et cellule solaire ainsi produite
EP1792348A1 (fr) Procede pour appliquer une couche tampon de sulfure de zinc sur un substrat semiconducteur par depot en bain chimique, en particulier sur la couche absorbante d'une cellule solaire en couches minces a base de chalcopyrite
DE102008024230A1 (de) Schichtsystem für Solarzellen
DE10151415A1 (de) Solarzelle
DE102006046312A1 (de) Verfahren zur Abscheidung einer Oxidschicht auf Absorbern von Solarzellen, Solarzelle und Verwendung des Verfahrens
DE102010006499A1 (de) Badabscheidungslösung zur nasschemischen Abscheidung einer Metallsulfidschicht und zugehörige Herstellungsverfahren
DE102013104616A1 (de) Auf einem Metall basierende Lösungsbehandlung einer CIGS-Absorberschicht bei Dünnfilm-Solarzellen
DE102013109202A1 (de) Verfahren zur Behandlung einer Halbleiterschicht
DE112015000755T5 (de) Dünnfilm-Solarzelle auf Verbindungsbasis
WO2007088146A1 (fr) Procédé permettant d'appliquer des ions alcalins sur la surface d'une couche d'absorption de cigsse d'une cellule solaire de chalkopyrite
DE10259258B4 (de) Verfahren zur Herstellung einer Verbindungshalbleiterschicht mit Alkalimetallzusatz
DE102010030884A1 (de) Verfahren zur Abscheidung einer Pufferschicht auf einer CIS-Dünnschicht-Solarzelle und nach dem Verfahren hergestellte CIS-Dünnschicht-Solarzelle
WO2011072975A2 (fr) Cellule solaire à couche mince en chalcopyrite avec couche tampon en cds/(zn(s,o) et procédé de fabrication associé
EP2411558B1 (fr) Procédé pour appliquer une couche tampon de zn(s, o) sur un substrat semi-conducteur par dépôt par bain chimique
DE102006039331C5 (de) Photovoltaik-Dünnschichtaufbau und Herstellungsverfahren
EP3627564A1 (fr) Procédé de traitement ultérieur d'une couche absorbante
DE102014223485A1 (de) Schichtaufbau für eine Dünnschichtsolarzelle und Herstellungsverfahren
DE112016006557T5 (de) Verfahren zur Herstellung einer CdTe-Dünnschichtsolarzelle
DE4440878C2 (de) Verbindungshalbleiter-Dünnschichtsolarzelle und Verfahren zu ihrer Herstellung
DE102011055618A1 (de) Verfahren zur Herstellung einer Cadmiumsulfidschicht
DE102012204676B4 (de) Chalkopyrit-Dünnschicht-Solarzelle mit Zn(S,O)-Pufferschicht und dazugehöriges Herstellungsverfahren
WO2002099899A1 (fr) Conditionnement de surfaces en verre permettant le transfert de cellules solaires cigs sur des substrats en matiere plastique souple
CN111697104B (zh) 一种全非真空制备铜铟镓硒太阳能电池的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07726242

Country of ref document: EP

Kind code of ref document: A1