WO2007083809A1 - 光ピックアップ、光ディスクドライブ装置及び光情報装置 - Google Patents

光ピックアップ、光ディスクドライブ装置及び光情報装置 Download PDF

Info

Publication number
WO2007083809A1
WO2007083809A1 PCT/JP2007/050981 JP2007050981W WO2007083809A1 WO 2007083809 A1 WO2007083809 A1 WO 2007083809A1 JP 2007050981 W JP2007050981 W JP 2007050981W WO 2007083809 A1 WO2007083809 A1 WO 2007083809A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
spherical aberration
optical pickup
aberration correction
Prior art date
Application number
PCT/JP2007/050981
Other languages
English (en)
French (fr)
Inventor
Keiichi Matsuzaki
Yoshiaki Komma
Toshiyasu Tanaka
Kousei Sano
Kanji Wakabayashi
Hidenori Wada
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007083809A1 publication Critical patent/WO2007083809A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1362Mirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Definitions

  • Optical pickup, optical disk drive device, and optical information device are Optical pickup, optical disk drive device, and optical information device
  • the present invention relates to an optical pickup device using a spherical aberration correction mechanism using a lens driving device that enables a lens constituting the optical pickup device to move in the optical axis direction, and the optical pickup.
  • the present invention relates to an optical disk drive device and an optical information device.
  • An optical disc apparatus includes an optical pickup for forming a beam spot on an information recording surface of an optical disc.
  • an optical beam emitted from a light source is affected by spherical convergence when passing through a transparent protective substrate layer that protects an information recording layer of an optical disc.
  • Patent Document 1 in order to reduce the influence of this spherical aberration, a lens group for correcting spherical aberration is provided, and a variable gap is provided between the surfaces of a pair of sequential lens elements in the lens group. And a device for varying the gap interval by a mechanical method is disclosed.
  • FIGS. 8A and 8B are diagrams schematically showing a configuration of an example in which the conventional lens driving device in Patent Document 1 is applied to an optical pickup, and FIG. 8A is a plan view of the optical pickup.
  • FIG. 3 is a side view of the optical pickup.
  • 114 is an optical disk
  • 101 is a laser diode as a light source
  • 102 is a collimating lens
  • 103 is a beam splitter
  • 104 is a rising mirror
  • 105 is an objective lens
  • 106 is a detection lens
  • 107 is a photoelectric sensor.
  • the light beam emitted from the laser diode 101 passes through the beam splitter 103 and the collimator lens 102, is deflected in the direction of the optical disk 114 by the rising mirror 104, and is an objective lens The light is focused on the recording surface of the optical disk 114 by 105.
  • Optical beam reflected from the surface of optical disk 114 The light passes through the objective lens 105, is deflected by the rising mirror 104, passes through the collimator lens 102, is deflected by the beam splitter 103, and is focused on the light receiving surface of the photodetector 107 by the detection lens 106.
  • the collimating lens 102 is a lens for correcting the diffusion and convergence of the light beam by moving the position in the optical axis direction.
  • the collimating lens 102 is held by a lens holder 108, and the lens holder 108 is supported by a pair of guide shafts 109 and a sliding shaft 110.
  • the guide shaft 109 and the sliding shaft 110 are fixed to the shaft holding member 113.
  • the guide shaft 109 and the sliding shaft 110 are arranged so that the extending direction of the shaft is parallel to the optical axis of the collimating lens 102.
  • the lens holder 108 is slidably engaged with the guide shaft 109 and the sliding shaft 110.
  • the collimating lens 102 can move in the optical axis direction when the lens holder slides along the guide shaft 109 and the sliding shaft 110.
  • a drive mechanism (not shown) including a gear, a stepping motor, and the like is provided.
  • the sliding shaft 110 slides in the thrust direction in response to the driving force of the driving mechanism, the lens holder 108 moves in the optical axis direction.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-77705
  • multilayer recording disks having various protective layer thicknesses have been proposed as next-generation technologies, and a spherical aberration correction mechanism with a wider correction range is being demanded of optical pickups.
  • the present invention provides an optical pickup that is smaller than the conventionally proposed optical pickup, has a wide spherical aberration correction range, and an optical disc drive device and an optical information device using the optical pickup. Objective.
  • the present invention is configured as follows.
  • the objective lens that condenses the light emitted from the light source on the information recording surface of the information recording medium
  • a spherical aberration correction lens for correcting spherical aberration of a light beam condensed on the information recording surface by the objective lens
  • a lens holder for holding the spherical aberration correction lens
  • a guide member that extends in the optical axis direction of the spherical aberration correction lens and whose end is disposed to the side of the rising mirror reflecting surface;
  • a sliding portion that is fixed to the lens holder and slides along the guide member in a state of protruding to the rising mirror side;
  • an optical pickup configured such that when the spherical aberration correction lens is closest to the rising mirror, the protruding portion of the sliding portion is accommodated on the side surface of the rising mirror reflecting surface.
  • the spherical aberration correction lens may be a collimating lens that converts the emitted light from the light source into parallel light, or the emitted light from the light source is the object lens. It may be provided in a beam expander that converts the beam diameter when entering the beam.
  • the spherical aberration correction lens may include a color correction element! /.
  • the spherical aberration correction lens may be configured to be flat in the height direction.
  • the guide member is composed of a pair of shafts provided in parallel to each other, and the lens member projects in the state of projecting to the rising mirror side.
  • the optical pickup according to the first aspect is provided in which only one shaft with which the sliding portion fixed to the rudder engages extends to the side of the rising mirror.
  • the guide member is composed of a pair of shafts provided in parallel to each other, and is fixed to the lens holder in a state of protruding toward the rising mirror side.
  • the first aspect of the optical pickup further includes a spring that urges the lens holder toward the rising mirror side on one shaft with which the sliding portion is engaged.
  • the guide member is arranged to extend to the side of the rising mirror reflecting surface, and the sliding portion that moves along the guide member is more than the lens holder. Since it is configured to project to the rising mirror side, the spherical aberration correction lens can be moved to the position close to the rising mirror, and the movement range can be increased. Therefore, it is possible to increase the correction range of the spherical aberration. Therefore, it can be suitably used for an information recording medium including two or more information recording layers that require a large range of spherical aberration correction.
  • the optical pickup can be made smaller than the absolutely required movement width. Therefore, it can be made smaller than the conventional technology.
  • the sliding portion is configured to protrude with respect to the lens holder, it is possible to prevent the lens holder from blurring with respect to the guide member.
  • FIG. 1A is a plan view schematically illustrating the configuration of the optical pickup according to the first embodiment of the invention.
  • FIG. 1B is a side view schematically illustrating the configuration of the optical pickup according to the first embodiment of the present invention.
  • Fig. 2 is a plan view specifically showing the positional relationship of the lens holder when the collimating lens is moved.
  • FIG. 3A shows a lens holder unit and a collimator used in the optical pickup shown in FIG. 1A. It is a figure which shows the state which looked at the mate lens from the optical axis direction of the collimating lens,
  • FIG. 3B is a diagram showing a state in which the lens holder unit and the collimating lens, which are useful for the modification used in the optical pickup of FIG. 1A, are viewed from the optical axis direction of the collimating lens.
  • FIG. 4A is a diagram schematically showing a modification of the collimating lens applicable to the optical pickup of FIG. 1A.
  • FIG. 4B is a diagram schematically showing a modification of the collimating lens applicable to the optical pickup of FIG. 1A.
  • FIG. 5 is a diagram showing a configuration of an optical disk drive equipped with the optical pickup of FIG. 1A.
  • FIG. 6 is a plan view schematically illustrating the configuration of the optical pickup according to the second embodiment of the invention.
  • FIG. 7A is a plan view schematically illustrating the configuration of the optical pickup according to the third embodiment of the invention.
  • FIG. 7B is a side view schematically illustrating the configuration of the optical pickup according to the third embodiment of the present invention.
  • FIG. 8A is a schematic diagram showing the structure of a conventional optical pickup disclosed in Patent Document 1,
  • FIG. 8B is a schematic diagram showing the structure of a conventional optical pickup disclosed in Patent Document 1.
  • FIG. 1 is a schematic diagram for explaining the configuration of an optical pickup that is useful in the first embodiment of the present invention.
  • FIG. 1A is a plan view of the optical pickup
  • FIG. 1B is a side view of the optical pickup.
  • 14 is an optical disk as an information recording medium, and 1 is a laser diode as a light source. Diode, 2 is a collimating lens as a spherical aberration correction lens, 3 is a beam splitter, 4 is a rising mirror, 5 is an objective lens, 6 is a detection lens, and 7 is a photodetector that also has a force such as a photoelectric conversion element.
  • Reference numeral 20 is a stepping motor, and 21 is a ball screw. Note that the objective lens 5 and the optical disk 14 are not shown in the plan view of FIG. 1A.
  • the light beam emitted from the laser diode 1 sequentially passes through the beam splitter 3 and the collimator lens 2, and is deflected in the direction of the optical disc 14 by the rising mirror 4 to be objective.
  • the light is focused on the optical disk 14 by the lens 5 as a light spot.
  • information is recorded on the information recording surface of the optical disc 14 or the information recorded on the information recording surface of the optical disc 14 is read.
  • the light beam reflected by the optical disc 14 passes through the objective lens 5, is deflected by the rising mirror 4, passes through the collimator lens 2, is deflected by the beam splitter 3, and is detected by the detection lens 6.
  • the light is condensed on the light receiving surface of the optical device 7 and information from the information recording surface of the optical disk 14 is converted into an electric signal.
  • the collimator lens 2 is a convex lens configured such that one surface is a flat surface and the other surface is convex at the center.
  • the first guide shaft 11 and the second guide shaft 12 are arranged so as to be parallel to the optical axis L of the collimating lens 2. Both guide shafts 11 and 12 are fixed to shaft holding portions 13a and 13b at both ends thereof.
  • the shaft holding portion 13a of the first guide shaft 11 is provided at a downstream position in the optical axis direction of the beam splitter 3 and a lateral position of the rising mirror 4.
  • the first guide shaft 11 extends between shaft holding portions 13a provided at the position.
  • the shaft holding portions of the second guide shaft 12 are provided at the downstream end portion of the beam splitter 3 in the optical axis direction and the upstream end portion of the rising mirror 4 in the optical axis direction, respectively. Therefore, the second guide shaft 12 extends between the beam splitter 3 and the rising mirror 4.
  • the collimating lens 2 is moved along the first guide shaft 11 and the second guide shaft 12 to converge the parallel light flux incident on the objective lens 5.
  • the divergence of the optical disk 14 allows the tolerance of the protective layer thickness of the optical disc 14 and the spherical aberration at the spot position due to the spherical aberration of the optical pickup. Adjust so that it is below the value. That is, when the distance from the light source 1 is equal to the focal length of the collimating lens 2, the collimating lens 2 turns the light beam that has passed through the collimating lens 2 into parallel light. Also, the light beam is diverged when the distance from the light source 1 is shorter than the focal length of the collimating lens 2, while the light beam is converged when the distance from the light source 1 is longer than the focal length of the collimating lens 2. Function.
  • the lens holder unit 8 includes a lens holder main body 9 that holds the collimating lens 2 and first and second sliding portions 15 and 16 that engage with the first and second guide shafts 11 and 12. Composed.
  • the lens holder body 9 is a frame-like member that holds the collimating lens 2 so that the curved surface side of the collimating lens faces the rising mirror 4 side.
  • the thickness dimension of the lens holder main body 9 is configured to be smaller than the maximum thickness dimension of the collimating lens 2, and when the lens holder main body 9 force S collimating lens 2 is held, the collimating lens 2 becomes the lens holder main body. It rises from 9 and protrudes to the mirror 4 side.
  • the surface of the lens holder body 9 on the beam splitter 3 side is a flat surface.
  • first and second sliding portions 15, 16 are slidably engaged along the first guide shaft 11 and the second guide shaft 12 as guide members.
  • the dimension of the first sliding portion 15 is configured to be thicker than the thickness dimension of the collimating lens 2 in the optical axis direction.
  • the first sliding portion 15 is fixed to the lens holder body 9 so as to protrude toward the downstream side in the optical axis direction with respect to the collimating lens 2.
  • the second sliding portion 16 is configured with a thickness dimension substantially the same as that of the lens holder body 9. This is because if the second sliding portion 16 is configured to be long in the axial direction, friction increases when the lens holder unit 8 is moved, which affects the movement of the lens holder unit.
  • the second sliding portion 16 is screwed to a ball screw 21 that can be rotated by a stepping motor 20 that is a driving force generation source.
  • stepping motor 20 is driven to rotate
  • the ball screw 21 is driven through the gears 22 and 23 and the relative position between the second sliding portion 16 and the ball screw 21 is changed, the lens holder unit 8 is moved.
  • FIG. 2 is a plan view specifically showing the positional relationship of the lens holder when the collimating lens is moved.
  • Fig. 2 (b) shows the state where the collimating lens 2 is located at a substantially central position.
  • Figs. 2 (a) and 2 (c) show the collimating lens 2 on the rising mirror 4 side and the beam splitter 3 side, respectively. Indicates the state of movement.
  • the collimator lens functions so as to converge light of three beams.
  • the spherical aberration is corrected so that the focal point is closer to the surface of the optical disk 14. Since one end of the first guide shaft 11 is extended to the side of the rising mirror 4, the first sliding shaft is moved when the collimating lens 2 is closest to the rising mirror 4 side.
  • the moving part 15 is set on the side of the rising mirror 4.
  • the collimating lens 2 protrudes toward the rising mirror 4 than the lens holder 8
  • the collimating lens are arranged so that the protruding part overlaps with the reflecting surface of the rising mirror 4 so as to overlap. That is, even when the lens holder is arranged so as to be very close to the raising mirror 4, the collimating lens 2 does not contact the surface of the raising mirror 4. Therefore, the collimating lens 2 can be moved to a position very close to the raising mirror 4.
  • the collimating lens 2 can be moved to a position very close to the mirror 4, and the movable range of the collimating lens 2 can be increased. Can be bigger.
  • larger spherical convergence correction can be performed even in a small space where the movable range of the collimating lens 2 is large.
  • the collimating lens is closest to the beam splitter 3 side. In the state, it functions to diverge the light from the beam splitter 3. In this state, the spherical aberration is corrected so that the optical disc 14 is focused in the depth direction in the thickness direction.
  • the surface on the beam splitter 3 side of the lens holder unit 8 is formed in a substantially flat surface without protrusion, so the lens holder unit is moved to the very vicinity of the collimating lens 3. And the movable range can be increased.
  • the spherical aberration correction amount is increased with respect to the same size as compared with the case where this configuration is not employed. That power S.
  • the size of the height direction can be reduced by configuring the shape of the collimating lens to be flat in the height direction in the optical pickup of the present embodiment.
  • FIG. 3A shows a state in which the lens holder unit 8 and the collimating lens 2 are viewed from the optical axis direction of the collimating lens 2.
  • the lens holder and the collimating lens when the lens surface of the collimating lens 2 is circular are shown.
  • the effective diameter of the optically required collimating lens may be smaller in the radial direction than in the tracking direction. This is because it is not necessary to consider the movement of the objective lens in the tracking direction (lens shift) during tracking control.
  • the collimating lens 2a and the lens holder main body 9a can have a flat shape in which a part in the height direction is cut as shown in FIG. 3B. As a result, the entire height of the lens holder unit 8a can be reduced, so that a thin optical pickup can be configured.
  • the amount by which the height direction of the collimator lens 2a and the lens holder main body 9a is decreased is, for example, the length of the operating range of the lens shift in the radial direction of the objective lens.
  • an oval lens may be created in advance, or the upper and lower positions of a circular lens may be cut!
  • FIG. 4A and FIG. 4B are diagrams schematically showing a modification of the collimating lens applicable to the optical pickup according to the embodiment of the present invention.
  • the collimating lenses 2b and 2c shown in FIGS. 4A and 4B are provided on the entrance surface or exit surface of the lens with a diffractive optical element 25b for correcting chromatic aberration, The feature is that 25c is formed.
  • the collimating lens 2b shown in FIG. 4A has a configuration in which the diffractive optical element 25b is integrally formed with the collimating lens 2b.
  • Reference numeral 5c denotes a lens attached to the surface with the smaller curvature (the surface on the left side in the figure), and the color correction element 26 is provided in a body-like manner.
  • the diffractive optical element can be provided on both the incident side and the emission side of the collimating lens.
  • FIG. 5 is a diagram showing a configuration of an optical disk drive for explaining an application example of the optical pickup shown in FIG. 1A, and 50 shows an optical pickup unit having the configuration shown in FIG.
  • the optical pickup unit 50 is configured to be movable in the radial direction of the disk 14 by a pickup movement drive mechanism 51.
  • the pickup movement drive mechanism 51 includes a seek motor 52 and a lead screw 53 that are power sources.
  • the pickup unit 50 is supported by guide rails 54 and 55 extending in the radial direction of the disk.
  • the lead screw 53 rotates by moving to the seek motor 52, the pickup unit 50 is moved along the guide rails 54 and 55. Moving.
  • the spindle motor 40 is a motor that rotates the optical disk 14. Information is read from and recorded on the optical disk 14 by moving the optical pickup 50 in the seek direction while rotating the optical disk 14 by the spindle motor 40.
  • the optical pickup that can be used in the present embodiment can be configured in a small size, if an optical disc drive equipped with the optical pickup is applied to an optical information device, the optical pickup is small and has high performance. An optical information device can be obtained.
  • FIG. 6 is a schematic diagram for explaining the configuration of an optical pickup that is useful in the second embodiment of the present invention.
  • a laser diode 1 as a light source
  • a collimating lens 2 as a spherical aberration correction lens
  • a beam splitter 3 a rising mirror 4
  • an objective lens 5 a photoelectric conversion element, etc.
  • the optical detector 7, the stepping motor 20, and the ball screw 21, which also have a force, have the same configuration as in the first embodiment, and thus description thereof is omitted.
  • 31 is a light quantity monitor for detecting the light quantity of the laser diode 1 by detecting the light quantity reflected by the optical disk 14.
  • the position near the objective lens of the housing 30 is notched so that the spindle motor 40 and the housing 30 do not interfere with each other! Is provided.
  • the spindle motor 40 is fitted into the notch 33, and the objective lens of the optical pickup can be arranged up to the vicinity of the spindle motor. Therefore, it is possible to read / write information at a position near the center of the optical disk 14.
  • the light beam emitted from the laser diode 1 is reflected and deflected by the beam splitter 3, passes through the collimator lens 2, and is deflected in the direction of the optical disk 14 by the rising mirror 4. Then, it is condensed on the optical disk 14 as a light spot by an objective lens (not shown). As a result, information is recorded on the information recording surface of the optical disc 14 or the information recorded on the information recording surface of the optical disc 14 is read.
  • the light beam reflected by the optical disk 14 passes through the objective lens, is deflected by the rising mirror 4, passes through the collimator lens 2, passes through the beam splitter 3, and reaches the light receiving surface of the photodetector 7.
  • the light is collected and information from the information recording surface of the optical disk 14 is converted into an electrical signal.
  • the first guide shaft 41 and the second guide shaft 42 are arranged so as to be parallel to the optical axis L of the collimating lens 2. Both guide shafts 11 and 12 are fixed to shaft holding portions 43a and 43b at both ends thereof.
  • the shaft holding portion 43a of the first guide shaft 41 is provided at the downstream end portion in the optical axis direction of the beam splitter 3 and the upstream end portion in the optical axis direction of the raising mirror 4, respectively. Since the first guide shaft 41 is provided at a position close to the spindle motor 40 with respect to the collimating lens 2, in the optical pickup having the cutout 33, the side of the rising mirror is provided for the cutout 33. It is made not to arrange in. On the other hand, the shaft guide of the second guide shaft 42 The holding portions 43b are provided at the downstream end of the beam splitter 3 in the optical axis direction and at the side orientation of the rising mirror 4, respectively.
  • the collimating lens 2 is moved along the first guide shaft 11 and the second guide shaft 12 to converge the parallel light flux incident on the objective lens 5.
  • the difference in the protective layer thickness V of the optical disk 14 and the spherical aberration at the spot position caused by the spherical aberration of the optical pickup are adjusted to be below the allowable value.
  • the lens holder unit 32 includes a lens holder body 9 that holds the collimating lens 2, and first and second sliding portions 35 and 36 that engage with the first and second guide shafts 41 and 42. Composed.
  • the lens holder body 9 holds the collimating lens 2 so that the curved surface side of the collimating lens faces the rising mirror 4 side.
  • the collimating lens 2 rises from the lens holder 8 and protrudes toward the mirror 4.
  • the surface of the lens holder body 9 on the beam splitter 3 side is a flat surface.
  • first and second sliding portions 35 and 36 are slidably engaged along the first guide shaft 41 and the second guide shaft 42 as guide members.
  • the dimension of the second sliding portion 36 is smaller than the thickness dimension of the collimating lens 2 in the optical axis direction in order to suppress the tilt due to the backlash in the optical axis direction of the collimating lens 2. Make it thick. Further, the second sliding portion 36 is fixed to the lens holder body 9 so as to protrude downstream in the optical axis direction with respect to the collimating lens 2. By configuring the second sliding portion 36 to be long in the extending direction of the guide shaft 42, the backlash in the optical axis L direction of the collimating lens 2 can be reduced.
  • the second guide shaft 42 is provided with a spring 39, which raises the lens holder unit 32 in the direction of the lens 4 and biases it.
  • a spring 39 which raises the lens holder unit 32 in the direction of the lens 4 and biases it.
  • the second sliding portion 36 has a connecting portion 37 that is screwed into a ball screw 21 that can be rotated by a stepping motor 20 that is a driving force generation source. Stepping motor 20 By rotating and driving, the ball screw 21 is driven through the gears 22 and 23, and the relative position between the second sliding portion 36 and the ball screw 21 is changed, so that the lens holder unit 8 is moved.
  • the second sliding portion 36 is configured to be fitted on the side surface of the raising mirror 4 when the collimating lens is closest to the raising mirror 4 side.
  • the protruding part of the collimating lens is arranged so as to overlap the reflecting surface of the rising mirror 4. Therefore, the collimating lens 2 can be moved to a position very close to the raising mirror 4, and the movable range of the collimating lens 2 can be increased.
  • the lens holder unit 8 on the beam splitter 3 side is configured to be a substantially flat surface without protrusion, the lens holder unit can be moved to the very vicinity of the collimating lens 3 and is movable. The range can be increased.
  • the size in the height direction can be reduced by configuring the shape of the collimator lens to be flat in the height direction as shown in Fig. 3B.
  • collimating lenses 2b and 2c in which diffractive optical elements 25b and 25c for correcting chromatic aberration are formed on the entrance surface or exit surface of the lens shown in FIGS. 4A and 4B can also be used.
  • FIG. 7A and 7B are schematic views showing the configuration of the optical pickup according to the third embodiment of the present invention.
  • FIG. 7A is a plan view of the optical pickup
  • FIG. 7B is a side view of the optical pickup. It is.
  • 31 is a light amount monitor for detecting the light amount of the laser diode 1 by detecting the light amount reflected from the optical disk 14.
  • the collimator lens 2 for making the laser light parallel light is fixed.
  • a beam expander unit 60 is provided between the collimator lens 2 and the raising mirror for changing the beam system of the light beam having the light source power.
  • Bi The expander unit 60 functions as a spherical aberration correction lens.
  • the beam expander unit 60 includes two lenses, a first lens located on the beam splitter 3 side and a second lens located on the rising mirror 4 side.
  • the first lens 63 is fixed, and the second lens 64 is configured to be movable in the optical axis L direction.
  • the light beam emitted from the laser diode 1 is reflected and deflected by the beam splitter 3, passes through the collimator lens 2 and the beam expander unit 60, and rises to the mirror 4. Is deflected in the direction of the optical disc 14 and is focused on the optical disc 14 as a light spot by an objective lens (not shown). As a result, information is recorded on the information recording surface of the optical disc 14 or the information recorded on the information recording surface of the optical disc 14 is read.
  • the light beam reflected by the optical disc 14 passes through the objective lens, is deflected by the rising mirror 1, passes through the beam expander unit 60 and the collimator lens 2, passes through the beam splitter 3, and is detected by light.
  • the light is collected on the light receiving surface of the device 7 and information on the information recording surface force of the optical disk 14 is converted into an electric signal.
  • the first lens 63 of the beam expander unit 60 is a convex lens configured such that both surfaces are curved, and the second lens 64 is configured such that one surface is a flat surface and the other surface is a surface. It is a convex lens configured such that the central portion is convex.
  • the first lens 63 is held and fixed by the first lens holder 62. 1st lens holder 6
  • the thickness dimension is wider or the same as that of the first lens 63, and the first lens 62 is configured not to protrude from the first lens holder.
  • the first guide shaft 71 and the second guide shaft 72 are arranged so as to be parallel to the optical axis L of the collimating lens 2. Both guide shafts 71 and 72 are fixed to shaft holding portions 73a and 73b at both ends thereof.
  • the shaft holding portion 73a of the first guide shaft 71 is provided at the downstream position of the first lens 63 in the optical axis direction and the upstream end portion of the rising mirror 4 in the optical axis direction.
  • the shaft holding portion 73b of the second guide shaft 72 is positioned at the upstream end of the first lens 63 in the optical axis direction and the lateral position of the rising mirror 4.
  • the shaft holding portion 73b of the second guide shaft 72 extends to the upstream end portion in the optical axis direction of the first lens 63, and is positioned upstream from the end portion of the first guide shaft. As will be described later, this is for securing a space for accommodating the spring 39 when the lens holder unit 9d is closest to the first lens 63.
  • the second lens 64 is moved along the first guide shaft 11 and the second guide shaft 12, thereby changing the distance between the first and second lenses.
  • the spherical aberration is adjusted by converging or diverging.
  • the lens holder unit 8d includes a lens holder main body 9d that holds the second lens 64, and first and second sliding portions 15d and 16d that engage with the first and second guide shafts 71 and 72. And a connecting portion 17d connected to the second sliding portion.
  • the lens holder body 9 is a frame-like member that holds the second lens 64 so that the curved surface side of the second lens 64 faces the rising mirror 4 side.
  • the thickness dimension of the second lens holder body 9d is configured to be smaller than the maximum thickness dimension of the second lens 64.
  • the surface of the lens holder body 9d on the first lens 63 side is a flat surface.
  • the dimension of the second sliding portion 16d is the thickness of the second lens 64 in the optical axis direction. Construct thicker than the dimensions. Further, the second sliding portion 16d is fixed to the lens holder body 9d so as to protrude toward the downstream side in the optical axis direction with respect to the second lens 64. By configuring the second sliding portion 16d to be long in the extending direction of the guide shaft 72, the backlash in the optical axis L direction of the collimating lens 2 can be reduced.
  • the second guide shaft 72 is provided with a spring 39, which raises the lens holder unit 9d in the direction of the lens 4!
  • a spring 39 which raises the lens holder unit 9d in the direction of the lens 4!
  • the second sliding portion 16d is screwed into a rotatable ball screw 21 by a stepping motor 20 which is a driving force generation source, and is connected to the connecting portion 17d.
  • a stepping motor 20 which is a driving force generation source, and is connected to the connecting portion 17d.
  • the ball screw 21 is driven via the gears 22 and 23, and the second sliding portion.
  • the lens holder unit 8d moves.
  • the second lens 64 is closest to the rising mirror 4 side, the second sliding portion 16d can be accommodated on the side surface of the rising mirror 4 even when the optical pickup that works for the present embodiment is used.
  • the collimating lens is arranged so that the protruding portion of the collimating lens overlaps the reflecting surface of the rising mirror 4. Therefore, the second lens 64 can be raised to a position very close to the mirror 4 and the movable range of the second lens 64 can be increased.
  • the surface of the lens holder unit 8d on the first lens 63 side is configured to be a substantially flat surface that does not protrude, and the first lens 63 is configured not to protrude from the first lens holder 62. Therefore, the lens holder unit 8d can be moved to the very vicinity of the first lens holder 62, and the movable range of the lens holder unit 8d can be increased.
  • the size in the height direction can be reduced by configuring the shape of the lens constituting the beam expander unit 60 to be flat in the height direction as shown in FIG. 3B. it can. It is also possible to use a lens in which a diffractive optical element for correcting chromatic aberration is formed on the entrance surface or exit surface of the lens shown in FIGS.
  • the optical pickup in this embodiment is applied to a double-layer disc or a future multi-layer disc having three or more layers, the optical pickup can be made compact.
  • the guide portion is provided on the lens holder side and the guide shaft slides.
  • the guide shaft may be joined to the lens holder side and the guide shaft may slide in the guide groove. .
  • optical pickup optical disk drive apparatus and optical information apparatus of the present invention are useful for an optical information recording / reproducing apparatus using an optical disk such as a magneto-optical recording apparatus or a CD, DVD, HD-DVD, Blu-ray disk apparatus. It can also be applied to optical systems and devices for hologram recording devices and future ultra-high density recording / reproducing devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

 小型で球面収差の補正範囲の広い光ピックアップを提供する。光ピックアップは、光ビームを略直角に偏向し前記対物レンズの入射面に導く立ち上げミラー(4)と、対物レンズにより光ビームの球面収差を補正する球面収差補正レンズ(2)と、球面収差補正レンズ(2)を保持するレンズホルダ(9)と、球面収差補正レンズ(s)の光軸(L)方向に延在しその端部が前記立ち上げミラー(4)の反射面の側方にまで配置されたガイド部材(11,42,72)と立ち上げミラー側に突出した状態で前記レンズホルダ(9)に固定され前記ガイド部材(11,42,72)に沿って摺動する摺動部(15,36,16d)とを有し、球面収差補正レンズ(2)が最も前記立ち上げミラー(4)に接近した際に前記摺動部(15,36,16d)の突出部分が立ち上げミラー(4)反射面の側面に収まるように構成される。

Description

明 細 書
光ピックアップ、光ディスクドライブ装置及び光情報装置
技術分野
[0001] 本発明は、光ピックアップ装置を構成するレンズを光軸方向に移動可能にするレン ズ駆動装置を用いた球面収差補正機構を用いた光ピックアップ装置、及び当該光ピ ックアップを用 1ゝた光ディスクドライブ装置及び光情報装置に関する。
背景技術
[0002] 近年、光ディスクを情報記録媒体として使用して情報信号の記録または再生を行う 分野においては、高精細な静止画や動画等を扱うために、小型且つ大容量の光ディ スク装置の開発が進んで 、る。
[0003] 光ディスク装置は、光ディスクの情報記録面上にビームスポットを形成するための光 ピックアップを備えている。この光ピックアップにおいて、光源から出射された光ビー ムは、光ディスクの情報記録層を保護する透明な保護基板層を通過する際に球面収 差の影響を受ける。
[0004] 特許文献 1では、この球面収差の影響を軽減させるために、球面収差補正用のレ ンズ群を設け、そのレンズ群における逐次的な 1対のレンズ要素の面の間に可変の 空隙を形成し、機械的手法によって空隙間隔を可変する装置が開示されている。
[0005] 図 8A及び図 8Bは特許文献 1における従来のレンズ駆動装置を光ピックアップに適 用した例の構成を模式的に示した図であり、図 8Aは前記光ピックアップの平面図、 図 8Bは前記光ピックアップの側面図である。
[0006] 同図において、 114は光ディスク、 101は光源であるレーザダイオード、 102はコリ メートレンズ、 103はビームスプリッタ、 104は立ち上げミラー、 105は対物レンズ、 10 6は検出レンズ、 107は光電変換素子など力もなる光検出器をそれぞれ示している。
[0007] 前記光ディスク 114に対する記録 Z再生を行うとき、前記レーザダイオード 101から 出射した光ビームは、ビームスプリッタ 103、コリメートレンズ 102を通過し、立ち上げ ミラー 104により光ディスク 114方向へ偏向され、対物レンズ 105により光スポットとし て光ディスク 114の記録面上に集光される。光ディスク 114の表面で反射した光ビー ムは、対物レンズ 105を通り、立ち上げミラー 104で偏向されてコリメートレンズ 102を 通り、ビームスプリッタ 103で偏向されて、検出レンズ 106で光検出器 107の受光面 に集光される。
[0008] コリメートレンズ 102は、光軸方向に位置を移動することにより、光ビームの拡散及 び収束を補正するためのレンズである。コリメートレンズ 102は、レンズホルダ 108に 保持されており、レンズホルダ 108は一対のガイド軸 109、摺動軸 110にて支持され ている。ガイド軸 109及び摺動軸 110は、軸保持部材 113に固定される。ガイド軸 10 9及び摺動軸 110は、その軸の延在方向が、コリメートレンズ 102の光軸に対して平 行になるように配置されて 、る。
[0009] レンズホルダ 108は、ガイド軸 109及び摺動軸 110に摺動可能に係合されている。
すなわち、コリメートレンズ 102は、レンズホルダがガイド軸 109及び摺動軸 110に沿 つて摺動することにより、光軸方向に移動することができる。レンズホルダ 108を移動 させる機構としては、ギア、ステッピングモータなどで構成される図示しない駆動機構 が設けられている。駆動機構力もの駆動力を受けて摺動軸 110がスラスト方向に摺 動することによって、レンズホルダ 108が光軸方向に移動する。
特許文献 1:特開 2004— 77705号公報
発明の開示
発明が解決しょうとする課題
[0010] しかし、近年、光情報記録媒体の高密度化を実現するために、複数の情報記録層 を有する多層光情報記録媒体の開発が進められている。この多層光情報記録媒体 では、一層の光情報記録媒体と比較してさらに大きな球面収差補正を行う必要性が 生じている。また、複数種類の光情報記録媒体の記録および再生に対応するため光 学系の構成はより複雑になり、部品点数が増加する。一方、光ピックアップ自体はより 小型となることを要求されており、狭小な部品配置スペースにおいて球面収差補正を 行うことができるように光ピックアップを構成する必要が生じて!/、る。
[0011] さらに、次世代の技術として、多様な保護層厚みを有する多層記録ディスクも提案 されており、より補正範囲の広い球面収差補正機構が光ピックアップに要望されつつ ある。 [0012] 本発明は、前記従来提案されている光ピックアップよりもさらに小型で、球面収差の 補正範囲の広 、光ピックアップおよび当該光ピックアップを用いた光ディスクドライブ 装置及び光情報装置を提供することを目的とする。
課題を解決するための手段
[0013] 本発明は、上記目的を達成するため、以下のように構成している。
本発明の第 1態様によれば、光源からの出射光を情報記録媒体の情報記録面に 集光する対物レンズと、
前記対物レンズにより前記情報記録面に集光される光ビームの球面収差を補正す る球面収差補正レンズと、
前記球面収差補正レンズを通過した前記出射光を略直角に偏向し前記対物レン ズの入射面に導く立ち上げミラーと、
前記球面収差補正レンズを保持するレンズホルダと、
前記球面収差補正レンズの光軸方向に延在し、その端部が前記立ち上げミラー反 射面の側方にまで配置されたガイド部材と、
前記立ち上げミラー側に突出した状態で前記レンズホルダに固定され前記ガイド部 材に沿って摺動する摺動部と、
前記球面収差補正レンズを駆動させる駆動機構を有し、
前記球面収差補正レンズが最も前記立ち上げミラーに接近した際に前記摺動部の 突出部分が立ち上げミラー反射面の側面に収まるように構成された光ピックアップを 提供する。
[0014] 上記構成にぉ ヽて、球面収差補正レンズは、前記光源からの前記出射光を平行光 に変換するコリメートレンズであってもよいし、前記光源からの前記出射光が前記対 物レンズに入射する際のビーム径を変換するビームエキスパンダ内に設けられてい てもよい。
[0015] また、球面収差補正レンズは、色補正素子を備えて!/、てもよ 、。
[0016] また、球面収差補正レンズは、高さ方向に扁平な形状に構成されていてもよい。
[0017] 本発明の第 2態様によれば、前記ガイド部材は、互いに平行に設けられた一対の 軸体で構成されており、前記前記立ち上げミラー側に突出した状態で前記レンズホ ルダに固定された摺動部が係合する一方の軸のみが前記立ち上げミラーの側方に まで延在して 、る第 1態様の光ピックアップを提供する。
[0018] 本発明の第 3態様によれば、前記ガイド部材は、互いに平行に設けられた一対の 軸体で構成されており、前記前記立ち上げミラー側に突出した状態で前記レンズホ ルダに固定された摺動部が係合する一方の軸に、前記レンズホルダを前記立ち上げ ミラー側へ付勢するスプリングをさらに有する第 1態様の光ピックアップを提供する。 発明の効果
[0019] 本発明によれば、ガイド部材が立ち上げミラー反射面の側方にまで延在して配置さ れており、また、ガイド部材に沿って移動する摺動部がレンズホルダよりも前記立ち上 げミラー側に突出して構成されているので、球面収差補正レンズを、立ち上げミラー の直近まで移動させることができ移動幅を大きくとることができる。したがって、球面収 差の補正幅を大きくすることができる。したがって、大きな球面収差補正の幅を必要と する 2層以上の情報記録層を備える情報記録媒体に好適に用いることができる。
[0020] また、球面収差補正レンズの移動幅を広くすることができるため、絶対的に必要とさ れる移動幅に対して光ピックアップを小さく構成することができる。よって、従来の技 術よりもさらに小型とすることができる。また、摺動部がレンズホルダに対して突出して 構成されて ヽるため、レンズホルダのガイド部材に対するブレを防止することができる
図面の簡単な説明
[0021] 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形 態に関連した次の記述から明らかになる。この図面においては、
[図 1A]図 1Aは、本発明にかかる第 1の実施の形態の光ピックアップの構成を模式的 に説明する平面図であり、
[図 1B]図 1Bは、本発明にかかる第 1の実施の形態の光ピックアップの構成を模式的 に説明する側面図であり、
[図 2]図 2は、コリメートレンズ移動時のレンズホルダの位置関係を具体的に示した平 面図あり、
[図 3A]図 3Aは、図 1Aの光ピックアップに用いられるレンズホルダユニットおよびコリ メートレンズを、コリメートレンズの光軸方向から見た状態を示す図であり、
[図 3B]図 3Bは、図 1Aの光ピックアップに用いられる変形例に力かるレンズホルダュ ニットおよびコリメートレンズを、コリメートレンズの光軸方向から見た状態を示す図で あり、
[図 4A]図 4Aは、図 1 Aの光ピックアップに適用可能なコリメートレンズの変形例を概 略的に示す図であり、
[図 4B]図 4Bは、図 1Aの光ピックアップに適用可能なコリメートレンズの変形例を概略 的に示す図であり、
[図 5]図 5は、図 1 Aの光ピックアップを搭載した光ディスクドライブの構成を示す図で あり、
[図 6]図 6は、本発明にかかる第 2実施形態の光ピックアップの構成を模式的に説明 する平面図であり、
[図 7A]図 7Aは、本発明にかかる第 3実施形態の光ピックアップの構成を模式的に説 明する平面図であり、
[図 7B]図 7Bは、本発明にかかる第 3の実施の形態の光ピックアップの構成を模式的 に説明する側面図であり、
[図 8A]図 8Aは、特許文献 1に開示された従来の光ピックアップの構造を示す概略図 であり、
[図 8B]図 8Bは、特許文献 1に開示された従来の光ピックアップの構造を示す概略図 である。
発明を実施するための最良の形態
[0022] 本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号 を付している。以下、図面を参照して本発明の各実施形態を詳細に説明する。
[0023] (第 1実施形態)
図 1は本発明の第 1実施の形態に力かる光ピックアップの構成を説明するための模 式図であり、図 1Aは光ピックアップの平面図、図 1Bは前記光ピックアップの側面図 である。
[0024] 同図において、 14は情報記録媒体としての光ディスク、 1は光源としてのレーザダ ィオード、 2は球面収差補正レンズとしてのコリメートレンズ、 3はビームスプリッタ、 4 は立ち上げミラー、 5は対物レンズ、 6は検出レンズ、 7は光電変換素子など力もなる 光検出器である。また、 20はステッピングモータ、 21はボールネジである。なお、図 1 Aの平面図においては、対物レンズ 5及び光ディスク 14の記載を省略している。
[0025] 前記光ディスク 14に対する記録 Z再生を行うとき、レーザダイオード 1から出射した 光ビームは、ビームスプリッタ 3、コリメートレンズ 2を順に通過し、立ち上げミラー 4に より光ディスク 14方向へ偏向され、対物レンズ 5により光スポットとして光ディスク 14上 に集光される。これにより、光ディスク 14の情報記録面に情報が記録され、または、 光ディスク 14の情報記録面に記録された情報を読み出す。
[0026] さらに、光ディスク 14によって反射した光ビームは、対物レンズ 5を通り、立ち上げミ ラー 4で偏向されてコリメートレンズ 2を通り、ビームスプリッタ 3で偏向されて、検出レ ンズ 6で光検出器 7の受光面に集光され、光ディスク 14の情報記録面からの情報が 電気信号に変換される。
[0027] コリメートレンズ 2は、一方の面が平らな面として構成され、他方の面が中央部分が 凸になるように構成された凸レンズである。
[0028] 前記第 1のガイド軸 11及び前記第 2のガイド軸 12は前記コリメ一トレンズ 2の光軸 L に対して平行になるように配置されている。両ガイド軸 11, 12は、その両端部が軸保 持部 13a, 13bにそれぞれに固定される。
[0029] 第 1のガイド軸 11の軸保持部 13aは、ビームスプリッタ 3の光軸方向下流側位置お よび立ち上げミラー 4の側方位置に設けられる。第 1のガイド軸 11は、当該位置に設 けられた軸保持部 13a間に延在する。また、第 2のガイド軸 12の軸保持部は、ビーム スプリッタ 3の光軸方向下流側端部と立ち上げミラー 4の光軸方向上流側端部にそれ ぞれ設けられている。よって、第 2のガイド軸 12は、ビームスプリッタ 3と立ち上げミラ 一 4との間に延在する。
[0030] 同図における光ピックアップでは、コリメートレンズ 2を前記第 1のガイド軸 11及び前 記第 2のガイド軸 12に沿って移動させることにより、対物レンズ 5へ入射する平行光 束を収束させたり、発散させたりすることにより、前記光ディスク 14の保護層厚みの違 V、や、光ピックアップが持つ球面収差に起因するスポット位置での球面収差を許容 値以下となるように調整する。すなわち、コリメートレンズ 2は、光源 1からの距離がコリ メートレンズ 2の焦点距離と等しい場合は、コリメートレンズ 2を透過した光ビームを平 行光にする。また、光源 1からの距離がコリメートレンズ 2の焦点距離よりも短くなると 光ビームを発散させ、一方、光源 1からの距離がコリメートレンズ 2の焦点距離よりも長 くなると光ビームを収束させるように機能する。
[0031] レンズホルダユニット 8は、コリメートレンズ 2を保持するレンズホルダ本体 9と、第 1 及び第 2のガイド軸 11, 12と係合する第 1及び第 2の摺動部 15, 16とで構成される。 レンズホルダ本体 9は、コリメートレンズの曲面側が立上げミラー 4側を向くようにコリメ 一トレンズ 2を保持する枠状部材である。レンズホルダ本体 9の厚み寸法は、コリメ一 トレンズ 2の最大厚み寸法よりも小さくなるように構成されており、レンズホルダ本体 9 力 Sコリメートレンズ 2を保持した場合に、コリメートレンズ 2がレンズホルダ本体 9より立 ち上げミラー 4側へ突出した状態となる。
[0032] 一方、前記レンズホルダ本体 9の前記ビームスプリッタ 3側の面は平面となっている
[0033] 第 1及び第 2の摺動部 15, 16は、ガイド部材としての第 1のガイド軸 11および第 2の ガイド軸 12に沿って摺動可能に係合されている。
[0034] 前記コリメートレンズ 2の光軸方向のガタによる傾きを小さく抑えるため、ガイド軸の 受け部である摺動部の長さを大きくとる必要がある。本実施形態においては、第 1の 摺動部 15の寸法は、コリメートレンズ 2の光軸方向の厚み寸法よりも厚く構成する。こ のとき、第 1の摺動部 15は、コリメートレンズ 2に対して光軸方向下流側に突出させる ように、レンズホルダ本体 9に固定されている。第 1摺動部 15をガイド軸 11の延在方 向に長く構成することによって、当該コリメートレンズ 2の光軸 L方向のガタを小さくす ることがでさる。
[0035] 一方で、第 2の摺動部 16は、レンズホルダ本体 9とほぼ同程度の厚み寸法で構成 する。第 2の摺動部 16を軸方向に長く構成すると、レンズホルダユニット 8の移動時に 摩擦が大きくなり、レンズホルダユニットの移動に影響を及ぼすためである。
[0036] 第 2の摺動部 16は、駆動力発生源であるステッピングモータ 20によって回転可能 なボールネジ 21に螺合されて 、る。ステッピングモータ 20が回転駆動することにより 、ギア 22, 23を介してボールネジ 21が駆動し、第 2の摺動部 16とボールネジ 21の相 対位置が変化することにより、レンズホルダユニット 8が移動する。
[0037] なお、レンズホルダユニットを駆動させる駆動力発生源としてはステッピングモータ などのほかに、超音波モータを駆動動力発生源として用いればより小型でシンプル な構成が可能となる。
[0038] 図 2は、コリメートレンズ移動時のレンズホルダの位置関係を具体的に示した平面図 ある。図 2 (b)は前記コリメートレンズ 2が略中央位置にある状態を示しており、図 2 (a) と図 2 (c)は前記コリメートレンズ 2がそれぞれ立ち上げミラー 4側、ビームスプリッタ 3 側に移動した状態を示して 、る。
[0039] コリメートレンズが立ち上げミラー 4側に最も近づ 、た状態では、ビームスプリッタ 3 力もの光を収束させるように機能する。この状態では、光ディスク 14の表面に近い側 に焦点が合うように球面収差を補正する。第 1のガイド軸 11の一端は、立ち上げミラ 一 4の側方にまで延在させた構成としているため、コリメートレンズ 2が最も前記立ち 上げミラー 4側に接近した際に、前記第 1摺動部 15が立ち上げミラー 4の側面に収ま るようになっている。
[0040] また、レンズホルダ 8よりもコリメートレンズ 2が、立ち上げミラー 4側に突出した構成 を採っているため、立ち上げミラー 4の下端がコリメートレンズ 2にごく近接した場合に は、コリメートレンズの突出部分が立ち上げミラー 4の反射面に重なるようにオーバー ラップするよう〖こ配置される。すなわち、レンズホルダを立ち上げミラー 4にごく近くな るように配置した場合であっても、コリメートレンズ 2が立ち上げミラー 4の表面に接触 することがない。したがって、コリメートレンズ 2を立ち上げミラー 4にきわめて近い位置 まで移動させることができる。
[0041] 本実施形態に力かる光ピックアップにおいては、上記の構成を採用することにより、 コリメートレンズ 2を立ち上げミラー 4のごく近くまで移動させることができ、コリメ一トレ ンズ 2の可動範囲を大きくすることができる。本実施形態に力かる光ピックアップにお いては、コリメートレンズ 2の可動範囲が大きぐ少ないスペースでもより大きな球面収 差補正が可能となる。
[0042] また、図 2 (c)に示すように、コリメートレンズがビームスプリッタ 3側に最も近づいた 状態では、ビームスプリッタ 3からの光を発散させるように機能する。この状態では、光 ディスク 14の厚み方向に奥側に焦点が合うように球面収差を補正する。図 2 (c)に示 すように、レンズホルダユニット 8のビームスプリッタ 3側の面は、突出がない略平面に 構成されて 、るので、コリメートレンズ 3のごく近傍にまでレンズホルダユニットを移動 させることができ、可動範囲を大きくすることができる。
[0043] このように、本実施形態では、コリメートレンズの移動量を大きく取ることができるた め、本構成を採用しない場合と比較して、同じサイズに対して球面収差補正量を大き くとること力 Sできる。
[0044] なお、本実施形態の光ピックアップにぉ 、て、コリメートレンズの形状を高さ方向に 扁平に構成することにより、高さ方向のサイズを小さくすることができる。
[0045] 図 3Aは、レンズホルダユニット 8およびコリメートレンズ 2を、コリメートレンズ 2の光軸 方向から見た状態を示している。図 3Aの例では、コリメートレンズ 2のレンズ面が円形 の場合のレンズホルダおよびコリメートレンズを示している。
[0046] 一方、図中の横方向が光ディスク 14のトラッキング方向に対応する場合、光学的に 必要なコリメートレンズの有効径はトラッキング方向に比較してラジアル方向は少なく てよい。なぜなら、トラッキング制御時の対物レンズのトラッキング方向の動き分 (レン ズシフト)を考慮する必要がな 、ためである。
[0047] 従って、コリメートレンズ 2aおよびレンズホルダ本体部 9aにおいては、その高さ方向 の一部を、図 3Bのようにカットしたような扁平形状とすることができる。これによりレン ズホルダユニット 8a全体の高さを小さくすることができるため、薄型の光ピックアップを 構成することが可能となる。
[0048] コリメートレンズ 2aおよびレンズホルダ本体部 9aをの高さ方向を減少させる量として は、たとえば対物レンズのラジアル方向のレンズシフトの動作範囲の長さ分とする。こ の構成のレズホルダユニット 8aを作成する場合にお!、て、予め楕円形状のレンズを 作成してもよ 、し、円形のレンズの上下位置を切断するようにしてもよ!、。
[0049] 図 4A及び図 4Bは、本発明の実施の形態に係る光ピックアップに適用可能なコリメ 一トレンズの変形例を概略的に示す図である。図 4A及び図 4Bに示すコリメートレン ズ 2b、 2cは、レンズの入射面、または出射面に色収差補正用の回折光学素子 25b、 25cが形成されて 、る点が特徴である。
[0050] 図 4Aに示すコリメートレンズ 2bは、回折光学素子 25bがコリメートレンズ 2bに一体 成形されている構成である。また、図 4Bに示すコリメートレンズ 4は、回折光学素子 2
5cが曲率が小さい方の表面(図示左側の面)に取り付けられているレンズであり、さら に色補正素子 26がー体的に設けられている構成である。回折光学素子はコリメート レンズの入射側および出射側の双方に設けることもできる。
[0051] コリメートレンズに回折光学素子を取り付けることにより、光源に波長変動がある場 合や、光源波長に広がりがある場合も対物レンズの集光特性を良好に確保すること が可能となる。
[0052] 図 5は図 1Aに示した光ピックアップの応用例を説明するための光ディスクドライブ の構成を示す図であり、 50は図 1に示す構成の光ピックアップユニットを示している。 光ピックアップユニット 50は、ピックアップ移動駆動機構 51により、ディスク 14のラジ アル方向に移動可能に構成される。
[0053] ピックアップ移動駆動機構 51は、動力源であるシークモータ 52、リードスクリュー 53 を備えている。ピックアップユニット 50は、ディスクのラジアル方向に延在するガイドレ ール 54, 55に支持されており、シークモータ 52に移動によりリードスクリュー 53が回 転駆動することによって、ガイドレール 54, 55に沿って移動する。
スピンドルモータ 40は、光ディスク 14を回転駆動させるモータである。スピンドルモ ータ 40によって光ディスク 14を回転駆動させながら光ピックアップ 50をシーク方向に 移動させることで、光ディスク 14に対して情報の読み取りおよび記録を行う。
[0054] 上記のように、本実施形態に力かる光ピックアップは小型に構成することができるた め、当該光ピックアップを搭載した光ディスクドライブを光情報装置に適用すれば、小 型で高性能な光情報装置とすることが可能となる。
[0055] (第 2実施形態)
図 6は、本発明の第 2実施形態に力かる光ピックアップの構成を説明するための模 式図である。
[0056] 図 6において、光源としてのレーザダイオード 1、球面収差補正レンズとしてのコリメ 一トレンズ 2、ビームスプリッタ 3、立ち上げミラー 4、対物レンズ 5、光電変換素子など 力もなる光検出器 7、ステッピングモータ 20、ボールネジ 21については、第 1実施形 態と同じ構成であるため、説明を省略する。 31は、光量モニタであり、光ディスク 14 力 反射された光の光量を検出することでレーザダイオード 1の光量を検出するため のものである。
[0057] 本実施形態においては、光ピックアップを構成する各部材を格納するため筐体 30 の対物レンズの近傍位置は、スピンドルモータ 40と筐体 30が干渉しな!、ように切り欠 き 33が設けられている。光ピックアップがスピンドルモータ 40に最近接したとき、スピ ンドルモータ 40が当該切り欠き 33に嵌り込み、光ピックアップの対物レンズをスピンド ルモータの近傍にまで配置させることができる。したがって、光ディスク 14の中心に近 V、位置の情報の読み書きが可能となる。
[0058] 前記光ディスクに対する記録 Z再生を行うとき、レーザダイオード 1から出射した光 ビームは、ビームスプリッタ 3により反射されて偏向され、コリメートレンズ 2を通過し、 立ち上げミラー 4により光ディスク 14方向へ偏向され、対物レンズ(図示なし)により光 スポットとして光ディスク 14上に集光される。これにより、光ディスク 14の情報記録面 に情報が記録され、または、光ディスク 14の情報記録面に記録された情報を読み出 す。
[0059] さらに、光ディスク 14によって反射した光ビームは、対物レンズを通り、立ち上げミラ 一 4で偏向されてコリメートレンズ 2を通り、ビームスプリッタ 3を透過して、光検出器 7 の受光面に集光され、光ディスク 14の情報記録面からの情報が電気信号に変換さ れる。
[0060] 前記第 1のガイド軸 41及び前記第 2のガイド軸 42は前記コリメートレンズ 2の光軸 L に対して平行になるように配置されている。両ガイド軸 11, 12は、その両端部が軸保 持部 43a, 43bにそれぞれに固定される。
[0061] 第 1のガイド軸 41の軸保持部 43aは、ビームスプリッタ 3の光軸方向下流側端部と 立ち上げミラー 4の光軸方向上流側端部にそれぞれ設けられている。第 1のガイド軸 41は、コリメートレンズ 2に対して、スピンドルモータ 40に近い位置に設けられるため 、上記切り欠き 33を有する光ピックアップにおいては、当該切り欠き 33のため立ち上 げミラーの側方に配置させないようにしたものである。一方、第 2のガイド軸 42の軸保 持部 43bは、ビームスプリッタ 3の光軸方向下流側端部と立ち上げミラー 4の側方位 置にそれぞれ設けられて ヽる。
[0062] 同図における光ピックアップでは、コリメートレンズ 2を前記第 1のガイド軸 11及び前 記第 2のガイド軸 12に沿って移動させることにより、対物レンズ 5へ入射する平行光 束を収束させたり、発散させたりすることにより、前記光ディスク 14の保護層厚みの違 V、や、光ピックアップが持つ球面収差に起因するスポット位置での球面収差を許容 値以下となるように調整する。
[0063] レンズホルダユニット 32は、コリメートレンズ 2を保持するレンズホルダ本体 9と、第 1 及び第 2のガイド軸 41, 42と係合する第 1及び第 2の摺動部 35, 36とで構成される。 レンズホルダ本体 9は、コリメートレンズの曲面側が立上げミラー 4側を向くようにコリメ 一トレンズ 2を保持する。レンズホルダ本体 9がコリメートレンズ 2を保持した場合に、コ リメ一トレンズ 2がレンズホルダ 8より立ち上げミラー 4側へ突出した状態となる。
[0064] 一方、前記レンズホルダ本体 9の前記ビームスプリッタ 3側の面は平面となっている
[0065] 第 1及び第 2の摺動部 35, 36は、ガイド部材としての第 1のガイド軸 41および第 2の ガイド軸 42に沿って摺動可能に係合されている。
[0066] 前記コリメートレンズ 2の光軸方向のガタによる傾きを小さく抑えるため、本実施形態 においては、第 2の摺動部 36の寸法は、コリメートレンズ 2の光軸方向の厚み寸法よ りも厚く構成する。また、第 2の摺動部 36は、コリメートレンズ 2に対して光軸方向下流 側に突出させるように、レンズホルダ本体 9に固定されている。第 2摺動部 36をガイド 軸 42の延在方向に長く構成することによって、当該コリメートレンズ 2の光軸 L方向の ガタを小さくすることができる。
[0067] また、第 2のガイド軸 42には、スプリング 39が設けられており、レンズホルダユニット 32を立ち上げレンズ 4方向に付勢して 、る。このようにスプリングを設けることにより、 レンズホルダユニット 32の光軸 L方向への遊びをなくすることができ、光軸方向への がたつきを防止することができる。
[0068] 第 2の摺動部 36は、駆動力発生源であるステッピングモータ 20によって回転可能 なボールネジ 21に螺合されて!/、る連結部 37を有して!/、る。ステッピングモータ 20が 回転駆動することにより、ギア 22, 23を介してボールネジ 21が駆動し、第 2の摺動部 36とボールネジ 21の相対位置が変化することにより、レンズホルダユニット 8が移動 する。
[0069] 本実施形態に力かる光ピックアップにおいても、コリメートレンズが立ち上げミラー 4 側に最も近づいた状態では、前記第 2摺動部 36が立ち上げミラー 4の側面に収まる ように構成されているとともに、コリメートレンズの突出部分が立ち上げミラー 4の反射 面に重なるようにオーバーラップするように配置される。したがって、コリメートレンズ 2 を立ち上げミラー 4にきわめて近い位置まで移動させることができ、コリメートレンズ 2 の可動範囲を大きくすることができる。
[0070] レンズホルダユニット 8のビームスプリッタ 3側の面は、突出がない略平面に構成さ れて 、るので、コリメートレンズ 3のごく近傍にまでレンズホルダユニットを移動させるこ とができ、可動範囲を大きくすることができる。
[0071] なお、本実施形態においても、図 3Bに示すようにコリメータレンズの形状を高さ方 向に扁平に構成することにより、高さ方向のサイズを小さくすることができる。また、図 4A及び図 4Bに示すレンズの入射面、または出射面に色収差補正用の回折光学素 子 25b、 25cが形成されているコリメートレンズ 2b、 2cを用いることもできる。
[0072] (第 3実施形態)
図 7A及び図 7Bは、本発明の第 3実施形態にカゝかる光ピックアップの構成を示すた めの模式図であり、図 7Aは光ピックアップの平面図、図 7Bは前記光ピックアップの 側面図である。
[0073] 図 7A,図 7Bにおいて、光源としてのレーザダイオード 1、ビームスプリッタ 3、立ち 上げミラー 4、対物レンズ 5、光電変換素子など力 なる光検出器 7、ステッピングモー タ 20、ボールネジ 21については、第 1実施形態と同じ構成であるため、説明を省略 する。 31は、光量モニタであり、光ディスク 14から反射された光の光量を検出するこ とでレーザダイオード 1の光量を検出するためのものである。
[0074] 本実施形態においては、レーザ光を平行光にするためのコリメータレンズ 2は固定 されている。また、コリメータレンズ 2と立ち上げミラーとの間には、光源力もの光ビー ムのビーム系を変更するためのビームエキスパンダユニット 60が設けられている。ビ ームエキスパンダユニット 60は、球面収差補正レンズとして機能する。
[0075] ビームエキスパンダユニット 60は、ビームスプリッタ 3側に位置する第 1レンズと立ち 上げミラー 4側に位置する第 2レンズの 2枚のレンズを備える。第 1レンズ 63は固定さ れており、第 2レンズ 64は光軸 L方向に移動可能に構成されて 、る。
[0076] 前記光ディスクに対する記録 Z再生を行うとき、レーザダイオード 1から出射した光 ビームは、ビームスプリッタ 3により反射されて偏向され、コリメートレンズ 2及びビーム エキスパンダユニット 60を通過し、立ち上げミラー 4により光ディスク 14方向へ偏向さ れ、対物レンズ(図示なし)により光スポットとして光ディスク 14上に集光される。これ により、光ディスク 14の情報記録面に情報が記録され、または、光ディスク 14の情報 記録面に記録された情報を読み出す。
[0077] さらに、光ディスク 14によって反射した光ビームは、対物レンズを通り、立ち上げミラ 一 4で偏向されてビームエキスパンダユニット 60及びコリメートレンズ 2を通り、ビーム スプリッタ 3を透過して、光検出器 7の受光面に集光され、光ディスク 14の情報記録 面力 の情報が電気信号に変換される。
[0078] ビームエキスパンダユニット 60の第 1レンズ 63は、両面が曲面となるように構成され た凸レンズであり、第 2レンズ 64は、一方の面が平らな面として構成され、他方の面 が中央部分が凸になるように構成された凸レンズである。
[0079] 第 1レンズ 63は、第 1レンズホルダ 62に保持されて固定される。第 1レンズホルダ 6
2は、第 1レンズ 63よりも厚さ寸法が広くもしくは同じに構成されており、第 1レンズ 62 は第 1レンズホルダよりも突出しないように構成されている。
[0080] 第 2レンズ 64は、レンズホルダユニット 8dの構成部材である第 2レンズホルダ本体 9 dに固定される、レンズホルダユニット 8dの構成については詳細は後述する。
[0081] 前記第 1のガイド軸 71及び前記第 2のガイド軸 72は前記コリメートレンズ 2の光軸 L に対して平行になるように配置されている。両ガイド軸 71, 72は、その両端部が軸保 持部 73a, 73bにそれぞれに固定される。
[0082] 第 1のガイド軸 71の軸保持部 73aは、第 1レンズ 63の光軸方向下流側位置および 立ち上げミラー 4の光軸方向上流側端部に設けられる。また、第 2のガイド軸 72の軸 保持部 73bは、第 1レンズ 63の光軸方向上流側端部と立ち上げミラー 4の側方位置 にそれぞれ設けられている。なお、第 2のガイド軸 72の軸保持部 73bが、第 1レンズ 6 3の光軸方向上流側端部まで延在し、第 1のガイド軸の端部よりも上流側に位置する のは、後述するように、レンズホルダユニット 9dが最も第 1レンズ 63に近接したときに スプリング 39を収納させるためのスペースを確保するためである。
[0083] 同図における光ピックアップでは、第 2レンズ 64を前記第 1のガイド軸 11及び前記 第 2のガイド軸 12に沿って移動させることにより、第 1及び第 2レンズの間隔を変えて 光束を収束させたり、発散させたりすることにより、球面収差の調整を行う。
[0084] レンズホルダユニット 8dは、第 2レンズ 64を保持するレンズホルダ本体 9dと、第 1及 び第 2のガイド軸 71, 72と係合する第 1及び第 2の摺動部 15d, 16dと第 2の摺動部 に連結される連結部 17dを有する。レンズホルダ本体 9は、第 2レンズ 64の曲面側が 立上げミラー 4側を向くように第 2レンズ 64を保持する枠状部材である。第 2レンズホ ルダ本体 9dの厚み寸法は、第 2レンズ 64の最大厚み寸法よりも小さくなるように構成 されており、レンズホルダ本体 9dが第 2レンズ 64を保持した場合に、第 2レンズ 64力 S レンズホルダ本体 9dより立ち上げミラー 4側へ突出した状態となる。
[0085] 一方、前記レンズホルダ本体 9dの前記第 1レンズ 63側の面は平面となっている。
[0086] 前記第 2レンズ 64の光軸方向のガタによる傾きを小さく抑えるため、本実施形態に おいては、第 2の摺動部 16dの寸法は、第 2レンズ 64の光軸方向の厚み寸法よりも 厚く構成する。また、第 2の摺動部 16dは、第 2レンズ 64に対して光軸方向下流側に 突出させるように、レンズホルダ本体 9dに固定されている。第 2の摺動部 16dをガイド 軸 72の延在方向に長く構成することによって、当該コリメートレンズ 2の光軸 L方向の ガタを小さくすることができる。
[0087] また、第 2のガイド軸 72には、スプリング 39が設けられており、レンズホルダユニット 9dを立ち上げレンズ 4方向に付勢して!/、る。このようにスプリング 39を設けることによ り、レンズホルダユニット 8dの光軸 L方向への遊びをなくすることができ、光軸方向へ のがたつきを防止することができる。
[0088] 第 2の摺動部 16dは、駆動力発生源であるステッピングモータ 20によって回転可能 なボールネジ 21に螺合されて 、る連結部 17dと連結する。ステッピングモータ 20が 回転駆動することにより、ギア 22, 23を介してボールネジ 21が駆動し、第 2の摺動部 16dとボールネジ 21の相対位置が変化することにより、レンズホルダユニット 8dが移 動する。
[0089] 本実施形態に力かる光ピックアップにぉ 、ても、第 2レンズ 64が立ち上げミラー 4側 に最も近づいた状態では、前記第 2摺動部 16dが立ち上げミラー 4の側面に収まるよ うに構成されているとともに、コリメートレンズの突出部分が立ち上げミラー 4の反射面 に重なるようにオーバーラップするように配置される。したがって、第 2レンズ 64を立 ち上げミラー 4にきわめて近い位置まで移動させることができ、第 2レンズ 64の可動範 囲を大きくすることができる。
[0090] また、レンズホルダユニット 8dの第 1レンズ 63側の面は、突出がない略平面に構成 されており、また、第 1レンズホルダ 62からは第 1レンズ 63が突出しないよう構成され て!、るので、第 1レンズホルダ 62のごく近傍にまでレンズホルダユニット 8dを移動させ ることができ、レンズホルダユニット 8d可動範囲を大きくすることができる。
[0091] なお、本実施形態においても、図 3Bに示すようにビームエキスパンダユニット 60を 構成するレンズの形状を高さ方向に扁平に構成することにより、高さ方向のサイズを 小さくすることができる。また、図 4A及び図 4Bに示すレンズの入射面、または出射面 に色収差補正用の回折光学素子が形成されているレンズを用いることもできる。
[0092] さらに、本実施例における光ピックアップを二層ディスクや、将来の三層以上の多 層ディスクに適用すれば、光ピックアップを小型に構成することが可能となる。
[0093] なお、本発明は上記実施形態に限定されるものではなぐその他種々の態様で実 施できる。本実施例では、レンズホルダ側にガイド部を設け、ガイド軸を摺動する構 成としたが、レンズホルダ側にガイド軸を接合し、案内溝を前記ガイド軸が摺動する 構成としてもよい。
[0094] なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより 、それぞれの有する効果を奏するようにすることができる。
本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載され ているが、この技術の熟練した人々にとつては種々の変形や修正は明白である。そ のような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限り において、その中に含まれると理解されるべきである。 産業上の利用可能性
本発明の光ピックアップ光ディスクドライブ装置及び光情報装置は、光磁気記録装 置や CD、 DVD, HD— DVD、 Blu— rayディスク装置などの光ディスクを用いた光 情報記録再生装置に対し有用である。また、ホログラム記録装置や将来の超高密度 記録再生装置の光学系や装置用としても適用が可能である。

Claims

請求の範囲
[1] 光源(1)からの出射光を情報記録媒体(14)の情報記録面に集光する対物レンズ( 5)と、
前記対物レンズ (5)により前記情報記録面に集光される光ビームの球面収差を補 正する球面収差補正レンズ (2、 64)と、
前記球面収差補正レンズ (2)を通過した前記出射光を略直角に偏向し前記対物レ ンズの入射面に導く立ち上げミラー (4)と、
前記球面収差補正レンズを保持するレンズホルダ (9)と、
前記球面収差補正レンズの光軸方向に延在し、その端部が前記立ち上げミラー反 射面の側方にまで配置されたガイド部材(11, 42, 72)と、
前記立ち上げミラー (4)側に突出した状態で前記レンズホルダに固定され前記ガイ ド部材に沿って摺動する摺動部(15, 36, 16d)と、
前記球面収差補正レンズを駆動させる駆動機構 (20)を有し、
前記球面収差補正レンズ (2)が最も前記立ち上げミラー (4)に接近した際に前記 摺動部の突出部分が立ち上げミラー反射面 (4)の側面に収まるように構成された光 ピックアップ。
[2] 前記球面収差補正レンズ (2)は前記光源(1)からの前記出射光を平行光に変換す るコリメートレンズである請求項 1記載の光ピックアップ。
[3] 前記球面収差補正レンズは、前記光源からの前記出射光が前記対物レンズに入 射する際のビーム径を変換するビームエキスパンダ (60)に設けられて 、る請求項 1 記載の光ピックアップ。
[4] 前記球面収差補正レンズ (2)は、色補正素子(26)を備える請求項 2記載の光ピッ クァップ。
[5] 前記球面収差補正レンズ (2)は、高さ方向に扁平な形状に構成される請求項 2記 載の光ピックアップ。
[6] 前記ガイド部材は、互いに平行に設けられた一対の軸体で構成されており、前記前 記立ち上げミラー (4)側に突出した状態で前記レンズホルダに固定された摺動部が 係合する一方の軸のみが前記立ち上げミラーの側方にまで延在している請求項 1記 載の光ピックアップ。
[7] 前記ガイド部材は、互いに平行に設けられた一対の軸体で構成されており、前記前 記立ち上げミラー (4)側に突出した状態で前記レンズホルダに固定された摺動部が 係合する一方の軸に、前記レンズホルダを前記立ち上げミラー側へ付勢するスプリン グ(39)をさらに有する請求項 1記載の光ピックアップ。
[8] 前記駆動機構(20)は、ステッピングモータであることを特徴とする請求項 1に記載 の光ピックアップ。
[9] 前記駆動機構 (20)は、超音波モータであることを特徴とする請求項 1に記載の光 ピックアップ。
[10] 前記情報記録媒体(14)は 2層以上の情報記録層を備える請求項 1に記載の光ピ ックアップ。
[11] 請求項 1から請求項 10のいずれ力 1項に記載の光ピックアップ(50)を備えた光デ イスクドライブ装置。
[12] 請求項 11記載の光ディスクドライブを備えた光情報装置。
PCT/JP2007/050981 2006-01-23 2007-01-23 光ピックアップ、光ディスクドライブ装置及び光情報装置 WO2007083809A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-013371 2006-01-23
JP2006013371A JP2009087382A (ja) 2006-01-23 2006-01-23 光ピックアップ、および光ディスクドライブ装置

Publications (1)

Publication Number Publication Date
WO2007083809A1 true WO2007083809A1 (ja) 2007-07-26

Family

ID=38287751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050981 WO2007083809A1 (ja) 2006-01-23 2007-01-23 光ピックアップ、光ディスクドライブ装置及び光情報装置

Country Status (2)

Country Link
JP (1) JP2009087382A (ja)
WO (1) WO2007083809A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1993092A1 (en) * 2006-02-27 2008-11-19 Panasonic Corporation Optical pickup, optical disc drive and optical information device
EP2034476A1 (en) * 2007-09-04 2009-03-11 Funai Electric Co., Ltd. Optical pickup apparatus with a metal cover plate that dissipates heat of an electrical lens driving element
JP2010073226A (ja) * 2008-09-16 2010-04-02 Hitachi Media Electoronics Co Ltd 光ピックアップ及びそれを搭載した光ディスク装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103687A (ja) * 1996-06-17 1998-01-06 Konica Corp 光ピックアップ及び光ディスク装置
JPH11353692A (ja) * 1998-06-04 1999-12-24 Olympus Optical Co Ltd 光ピックアップ
JP2003045068A (ja) * 2001-07-27 2003-02-14 Toshiba Corp 光学ヘッド
JP2003091847A (ja) * 2001-09-17 2003-03-28 Sony Corp 光学ヘッド装置の駆動方法及び装置及び光学式情報処理装置
JP2005122778A (ja) * 2003-10-14 2005-05-12 Sharp Corp 光ピックアップ装置およびそれに備わる球面収差補正部の調整方法
JP2005209325A (ja) * 2003-12-25 2005-08-04 Konica Minolta Opto Inc 光ピックアップ装置
JP2005209267A (ja) * 2004-01-21 2005-08-04 Canon Inc 光ディスク装置及び光ピックアップ
JP2005284169A (ja) * 2004-03-30 2005-10-13 Konica Minolta Opto Inc 駆動装置及び光学機器
WO2006038483A1 (ja) * 2004-10-01 2006-04-13 Pioneer Corporation ピックアップ装置および記録媒体駆動装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103687A (ja) * 1996-06-17 1998-01-06 Konica Corp 光ピックアップ及び光ディスク装置
JPH11353692A (ja) * 1998-06-04 1999-12-24 Olympus Optical Co Ltd 光ピックアップ
JP2003045068A (ja) * 2001-07-27 2003-02-14 Toshiba Corp 光学ヘッド
JP2003091847A (ja) * 2001-09-17 2003-03-28 Sony Corp 光学ヘッド装置の駆動方法及び装置及び光学式情報処理装置
JP2005122778A (ja) * 2003-10-14 2005-05-12 Sharp Corp 光ピックアップ装置およびそれに備わる球面収差補正部の調整方法
JP2005209325A (ja) * 2003-12-25 2005-08-04 Konica Minolta Opto Inc 光ピックアップ装置
JP2005209267A (ja) * 2004-01-21 2005-08-04 Canon Inc 光ディスク装置及び光ピックアップ
JP2005284169A (ja) * 2004-03-30 2005-10-13 Konica Minolta Opto Inc 駆動装置及び光学機器
WO2006038483A1 (ja) * 2004-10-01 2006-04-13 Pioneer Corporation ピックアップ装置および記録媒体駆動装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1993092A1 (en) * 2006-02-27 2008-11-19 Panasonic Corporation Optical pickup, optical disc drive and optical information device
EP1993092A4 (en) * 2006-02-27 2009-04-01 Panasonic Corp OPTICAL BUYER, OPTICAL DRIVE AND OPTICAL INFORMATION EQUIPMENT
US7773304B2 (en) 2006-02-27 2010-08-10 Panasonic Corporation Optical pickup, optical disc drive device, and optical information device
USRE43540E1 (en) 2006-02-27 2012-07-24 Panasonic Corporation Optical pickup, optical disc drive device, and optical information device
EP2034476A1 (en) * 2007-09-04 2009-03-11 Funai Electric Co., Ltd. Optical pickup apparatus with a metal cover plate that dissipates heat of an electrical lens driving element
JP2010073226A (ja) * 2008-09-16 2010-04-02 Hitachi Media Electoronics Co Ltd 光ピックアップ及びそれを搭載した光ディスク装置
US8341657B2 (en) 2008-09-16 2012-12-25 Hitachi Media Electronics Co., Ltd. Lens driving mechanism for optical pickup and optical disc apparatus

Also Published As

Publication number Publication date
JP2009087382A (ja) 2009-04-23

Similar Documents

Publication Publication Date Title
JP3545233B2 (ja) 球面収差検出装置および光ピックアップ装置
US7791986B2 (en) Optical information recording/reproducing apparatus
JP4505533B2 (ja) 光ピックアップ、光ディスクドライブ装置及び光情報装置
JPWO2008081859A1 (ja) 光ピックアップ、光ディスク装置、複合カップリングレンズ、複合プリズム、及び光情報機器
JP5069893B2 (ja) 光ピックアップ及び光ディスクドライブ
JPH10134400A (ja) 光ヘッド装置
WO2008010506A1 (fr) Dispositif à tête optique, dispositif d'informations optiques, ordinateur, lecteur de disque, système de navigation pour automobile, enregistreur de disque optique et véhicule
WO2010084784A1 (ja) 光学ヘッド及び光情報装置
US6876620B2 (en) Optical storage device
WO2007083809A1 (ja) 光ピックアップ、光ディスクドライブ装置及び光情報装置
KR100303053B1 (ko) 광픽업
JP3545362B2 (ja) 球面収差検出装置及び光ピックアップ装置
US20020048249A1 (en) Optical pickup apparatus restricting aberration and optical disc apparatus using the same
JP4834168B2 (ja) 光ピックアップ装置
JP3545361B2 (ja) 光ピックアップ装置
JP2010073229A (ja) 光ピックアップ装置及び光ディスク装置
JP2007328862A (ja) 光ピックアップ装置および情報記録再生装置
JP3521893B2 (ja) 光ピックアップ装置
JP3545360B2 (ja) 光ピックアップ装置
JP4308204B2 (ja) 光ヘッド装置
JP5954060B2 (ja) 光ピックアップ
JP3810055B2 (ja) 光ディスク装置
JP2011150767A (ja) 光学ヘッド
JPWO2009044551A1 (ja) 光ピックアップ装置、光ディスク装置、コンピュータ、光ディスクプレーヤ及び光ディスクレコーダ
JP2011060380A (ja) 光ヘッド及び光ディスクドライブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP