WO2007083441A1 - 冷却庫及びサーモサイフォン - Google Patents

冷却庫及びサーモサイフォン Download PDF

Info

Publication number
WO2007083441A1
WO2007083441A1 PCT/JP2006/323194 JP2006323194W WO2007083441A1 WO 2007083441 A1 WO2007083441 A1 WO 2007083441A1 JP 2006323194 W JP2006323194 W JP 2006323194W WO 2007083441 A1 WO2007083441 A1 WO 2007083441A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
evaporator
temperature
refrigerator
thermosiphon
Prior art date
Application number
PCT/JP2006/323194
Other languages
English (en)
French (fr)
Inventor
Wei Chen
Mizuho Fukaya
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006010628A external-priority patent/JP2007192448A/ja
Priority claimed from JP2006015773A external-priority patent/JP3926377B1/ja
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007083441A1 publication Critical patent/WO2007083441A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery

Definitions

  • the present invention relates to a refrigerator equipped with a Stirling refrigerator. It also relates to thermosiphons used in Stirling refrigerators.
  • “Refrigerator” is a concept that refers to all devices that lower the temperature of food and other items. As “refrigerator” “freezer” “freezer refrigerator” “showcase” “vending machine” t Do not ask the name of! /.
  • CFC chlorofluorocarbon
  • HCFC hydrochlorofluorocarbon
  • HFC hydrofluorocarbon
  • CFCs and HCFCs are subject to international regulations for their production and use, as they are, to some extent, lead to the destruction of the ozone layer.
  • HFCs that do not destroy the ozone layer also have a problem if they promote global warming.
  • Stirling refrigerators use an inert gas such as helium as the working medium, and the piston and displacer are operated by external power to repeatedly compress and expand the working medium, increasing the temperature of the worm head (heat dissipating part) and cold head. Reduce the temperature of the heat sink. The warm head dissipates heat to the surrounding environment, and the cold head absorbs heat from the interior.
  • inert gas such as helium
  • thermosyphon is often used for heat dissipation and heat absorption in a Stirling refrigerator.
  • Thermosyphons encapsulate liquid refrigerant in a closed system in which an evaporator and a condenser are connected by a refrigerant pipe, and condense the refrigerant evaporated in the evaporator in the condenser.
  • the heat is transferred to the condenser by using the latent heat of the refrigerant.
  • a warm side evaporator is attached to the warm head to evaporate the secondary refrigerant in the warm head.
  • the evaporated secondary refrigerant is sent to the high-temperature side condenser, where it is restored to a liquid and returned to the high-temperature side evaporator.
  • a cold side condenser is attached to the cold head, and the secondary refrigerant in it is condensed with cold heat.
  • the condensed secondary refrigerant is sent to the low-temperature side evaporator, where it is restored to gas and cooled to the low-temperature side. Return to the contractor.
  • Patent Documents 1 and 2 show examples of a refrigerator that uses a thermosiphon to transmit the heat and cold of a Stirling refrigerator. Examples of thermosiphons can be found in Patent Documents 3 and 4.
  • Patent Document 1 JP 2002-221384 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-101050
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-214479
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-42949
  • thermosiphon used for heat dissipation of a warming head of a Stirling refrigerator is maintained at a predetermined temperature or higher if the Stirling refrigerator is in operation.
  • the thermosiphon will drop to ambient temperature.
  • the environmental temperature can drop significantly and can fall below the freezing temperature of the refrigerant.
  • a situation where the ambient temperature falls below the freezing temperature of the refrigerant is likely to occur when a Stirling refrigerator is assembled in a refrigerator and stored in a warehouse or outdoors.
  • refrigerants that do not have to worry about freezing even in cold regions in winter when the freezing point is low. These include chlorofluorocarbon refrigerants such as R22, alternative chlorofluorocarbon refrigerants such as 134a, hydrocarbon refrigerants, and ammonia. However, chlorofluorocarbon refrigerants have been abolished, and alternative chlorofluorocarbon refrigerants are also being phased out. Hydrocarbon refrigerants are flammable and explosive, and ammonia is toxic. As a matter of fact, water or a mixture of water and alcohol is selected as the refrigerant for thermosyphons used in household equipment. There is. And there is a risk of the thermosiphon bursting as a result of freezing.
  • the present invention has been made to address the above-described problems, and is a cooling system that can continue operation without problems even when a thermosiphon used for heat dissipation of a Stirling refrigerator is exposed to an environmental temperature below the refrigerant freezing temperature.
  • the purpose is to provide storage.
  • thermosiphon The purpose is to provide a thermosiphon that is unlikely to be damaged even if the refrigerant in the tank freezes.
  • the present invention includes a liquid refrigerant sealed in a closed system in which an evaporator and a condenser are connected by refrigerant piping, and the refrigerant evaporated in the evaporator is contained in the condenser.
  • a high temperature side thermosiphon that transfers the heat using the latent heat of the refrigerant to the evaporator and condenser, and a Stirling refrigerator that dissipates the warm head using the high temperature side thermosyphon.
  • the cooling unit includes a cooling space cooled by the Stirling refrigerator, a blower for forcibly cooling the condenser, and a control unit for controlling the operation of the Stirling refrigerator and the blower.
  • the high-temperature side thermosiphon is heated by the waste heat of the Stirling refrigerator that continues to operate, while the heat dissipation of the high-temperature side thermosiphon force is suppressed by stopping the blower, It is possible to prevent the refrigerant from freezing.
  • the control unit may reduce the stroke of the Stirling refrigerator when the temperature of the cooling space falls below a target temperature, and the temperature of the cooling space reaches the target temperature. When it exceeds the maximum, the stroke of the Stirling refrigerator is increased and the operation of the Stirling refrigerator is continued.
  • the present invention provides the cooler having the above-described configuration, in which the controller is configured to change the target temperature from the target temperature to a predetermined temperature when the temperature of the cooling space does not recover the target temperature even if the stroke of the Stirling refrigerator is reduced. Stop the Stirling refrigerator when it descends, and the defrost mode It is characterized by a shift to
  • the temperature drop of the cooling space cannot be prevented only by reducing the stroke of the Stirling refrigerator, sometimes the operation of the Stirling refrigerator is stopped to prevent the cooling space from being excessively cooled. Can do.
  • defrosting can be performed while the Stirling refrigerator is stopped to prevent the cooling space from being reduced.
  • an antifreeze heater is attached to the liquid phase refrigerant pipe of the high temperature side thermosyphon, and the control unit stops the operation of the Stirling refrigerator! /, The anti-freezing heater is energized during this time.
  • the antifreeze heater heats the liquid phase refrigerant pipe of the high-temperature side thermosyphon.
  • the high temperature thermosiphon can be prevented from freezing regardless of the shutdown of the machine.
  • the present invention encloses a liquid refrigerant in a closed system in which an evaporator and a condenser are connected by a refrigerant pipe, and the refrigerant evaporated in the evaporator is contained in the condenser.
  • the condenser is disposed at a higher position than the evaporator, and the evaporator Is characterized in that all of the refrigerant in the closed system gathers in liquid form and has a volume larger than the volume when all of the refrigerant is frozen.
  • thermosiphon having the above structure is covered with a heat insulating material except for the lower surface of the evaporator.
  • the present invention is characterized in that, in the thermosiphon having the above-described configuration, a strip of heat insulating material having a predetermined width is attached to the outer surface of the evaporator with the refrigerant liquid level inside.
  • the present invention is characterized in that it is used for heat dissipation of the thermosiphon force Stirling refrigerator having the above-described configuration.
  • the present invention is characterized in that it is used for heat dissipation of a Stirling refrigerator for a thermosiphon force cooler having the above-described configuration.
  • thermosiphon According to this configuration, it is possible to provide a refrigerator that can be used in a cold region without worrying about freezing destruction of the thermosiphon.
  • the refrigerator according to the present invention allows the refrigerant to be discharged by appropriate operation control even if the ambient temperature falls below the freezing temperature of the high-temperature thermosiphon refrigerant that dissipates the waste heat of the Stirling refrigerator. Freezing can be prevented. In addition, it is possible to prevent the cooling space from being excessively cooled by paying attention to the temperature of the cooling space. Further, the thermosyphon according to the present invention is less likely to destroy the evaporator due to the volume expansion of the refrigerant even if the refrigerant is exposed to an environmental temperature below the refrigerant freezing point and all the refrigerant is frozen. By using a heat insulating material, it is possible to induce the refrigerant freezing to start from the bottom surface of the evaporator, and to prevent the evaporator from being destroyed by freezing of the upper layer of the refrigerant.
  • FIG. 2 is a schematic configuration diagram of a cooling cycle according to the first embodiment.
  • FIG. 5 is a schematic configuration diagram of a cooling cycle according to the second embodiment.
  • FIG. 6 Cross section of the evaporator of the high temperature side thermosyphon in the cooling cycle of the second embodiment
  • FIG. 7 is a cross-sectional view similar to FIG. 6, but showing a state in which refrigerant freezing is in progress
  • FIG. 8 is a cross-sectional view of the evaporator of the high temperature side thermosyphon of the cooling cycle of the second embodiment, showing an embodiment different from FIG.
  • FIG. 9 Schematic configuration diagram of the cooling cycle of the third embodiment.
  • the refrigerator 1 is for food preservation, and a heat insulating housing 10 supported on the floor by the base 12 constitutes the main body.
  • the cooling space inside the heat insulating casing 10 is divided into two upper and lower stages by a horizontal partition wall 11, and the upper stage is set as a refrigerator compartment 20 and the lower stage is set as a freezer compartment 30.
  • the front side (left side in FIG. 1) of both the refrigerator compartment 20 and the freezer compartment 30 is an opening for taking in and out food, and the heat insulating doors 21 and 31 are closed at this opening.
  • a machine room 40 is formed on the back surface of the heat insulating housing 10.
  • the machine room 40 is a rectangular parallelepiped structure configured by combining sheet metal parts, and the back side is open.
  • a Stirling refrigerator 50 is installed in the machine room 40.
  • the machine room 40 is located at a height between the refrigerator room 20 and the freezer room 30.
  • the rear side opening of the machine room 40 is closed with a lid 44.
  • the lid 44 is formed with a vent hole 45 for taking in air for cooling the high-temperature side condenser described later and an opening 47 for connecting an outlet of an air-cooling duct described later.
  • the Stirling refrigerator 50 generates heat and cold by a reverse Stirling cycle, and is the central existence of the cooling cycle of the first embodiment shown in FIG.
  • Warm heat is dissipated mainly from the warm head 51 (see Fig. 2) as waste heat, and cold heat is taken out from the cold head 52.
  • the high temperature side thermosiphon 60 that dissipates waste heat from the worm head 51.
  • the high-temperature side thermosiphon 60 is obtained by enclosing a liquid secondary refrigerant 63 (see FIG. 3) in a closed system in which a high-temperature side evaporator 61 and a high-temperature side condenser 62 are connected by refrigerant piping.
  • the secondary refrigerant 63 can be water (including an aqueous solution) or a hydrocarbon refrigerant.
  • the high temperature side evaporator 61 is formed of a metal having good heat conductivity such as copper, copper alloy, or aluminum into a hollow ring shape.
  • the high temperature side evaporator 61 is fitted to the outer peripheral surface of the worm head 51 and is in thermal contact with the worm head 51. Continued. Two refrigerant pipes connected to the high temperature side condenser 62 are drawn out from the upper surface of the high temperature side evaporator 61.
  • One refrigerant pipe is a gas-phase refrigerant pipe 64G that sends the secondary refrigerant 63 evaporated to gas to the high-temperature side condenser 62.
  • the other refrigerant pipe is a liquid-phase refrigerant pipe 64L that returns the secondary refrigerant 63 condensed into a liquid by the high-temperature side condenser 62 to the high-temperature side evaporator 61.
  • the high-temperature side condenser 62 bends a pipe 62a having good heat conductivity and metal power, such as copper, copper alloy, and aluminum, and is attached with a large number of heat radiation fins 62b having metal power also having good heat conductivity.
  • the air blower 91 cools this.
  • One end of the high temperature side condenser 62 is connected to a gas phase refrigerant pipe 64G, and the other end is connected to a liquid phase refrigerant pipe 64L.
  • the high temperature side condenser 62 is disposed above the main body 53 of the Stirling refrigerator 50, and is therefore higher in position than the high temperature side evaporator 61. Due to this positional relationship, the secondary refrigerant 63 in the high temperature side condenser 62 returns to the high temperature side evaporator 61 when condensed.
  • a freeze-free heater 66 is attached to the liquid phase refrigerant pipe 64L (see Fig. 2).
  • a cold-side condenser 71 is attached to the cold head 52 (see Fig. 2).
  • the cold head 52 and the low-temperature side condenser 71 are in a state of transferring heat between each other, that is, in a state of being thermally connected.
  • a low-temperature side evaporator 72 that serves as an internal cooler for cooling the interior is installed.
  • the low temperature side condenser 71 and the low temperature side evaporator 72 are connected by a refrigerant pipe to form a low temperature side thermosiphon 70.
  • the low temperature side thermosyphon 70 is filled with natural refrigerant such as C02.
  • the low-temperature side evaporator 72 has a large number of endotherms that also have a metal force with good heat conduction after bending a pipe 72a with good metal power such as copper, copper alloy, and aluminum.
  • a defrost heater 73 is attached to the low temperature side evaporator 72.
  • the worm head 51 becomes high temperature and the cold head 52 becomes low temperature.
  • the power of the worm head 51 is the waste heat that should be dissipated to the outside.
  • the secondary refrigerant 63 After evaporating the secondary refrigerant 63 of the high-temperature side thermosiphon 60 and confining it in the gas of the secondary refrigerant 63 as latent heat, the secondary refrigerant 63 is condensed in the high-temperature side condenser 62 and released as sensible heat. And is dissipated into the environment.
  • the cold heat of the cold head 52 is transmitted to the low temperature side evaporator 72 via the low temperature side thermosiphon 70.
  • the air in the freezer compartment 30 is sucked from the inlet 82 at the lower end of the cooling duct 80 and passes through the low temperature side evaporator 72.
  • the return duct (not shown), the air in the refrigerator compartment 20 is sucked into the cooling duct 80 and also passes through the low temperature side evaporator 72.
  • the air is cooled and becomes cold.
  • the cold air is blown into the cooling duct 81 by the blower 83, and enters the refrigerator compartment 20 through the outlet 84 provided in the upper part of the cooling duct 81 (the part above the horizontal partition wall 11) and the cooling duct 81.
  • Each is sent into the freezer compartment 30 through the outlet 85 provided in the lower part (the part below the horizontal partition wall 11).
  • a control unit 13 installed at the upper back of the heat insulating housing 10 controls the above operation control.
  • the control unit 13 detects the temperature outside the apparatus, that is, the environmental temperature, and the temperatures of the refrigerator compartment 20 and the freezer compartment 30 by a temperature sensor (not shown).
  • a temperature sensor not shown
  • the term “cooling space temperature” is used as a general term for the temperatures of the refrigerator compartment 20 and the freezer compartment 30. Then, the control unit 13 controls the operation of the Stirling refrigerator 50 and the blower 91 based on the temperature detection result. Details of the control will be described below with reference to FIG.
  • step # 201 it is checked whether or not the environmental temperature is higher than the freezing temperature of the refrigerant 63 of the high temperature side thermosiphon 60. If it is higher, go to Step # 202.
  • Step # 202 the refrigerator 1 is normally operated.
  • the normal operation is an operation in which a piston and a displacer (both not shown) are reciprocated in a normal stroke inside the Stirling refrigerator 50, and the high-temperature side condenser 62 is forcibly air-cooled by a blower 91. .
  • During normal operation proceed to step # 203 at a predetermined timing.
  • step # 203 it is checked whether the cooling space temperature has fallen below a predetermined target temperature. To do. If not, return to Step # 202 and continue normal operation. When the cooling space temperature falls below the target temperature, proceed to Step # 204. Note that if the target temperature is slightly below the target temperature, proceed directly to step # 204, so set “target temperature minus 1 ° C”! Set an appropriate threshold, and then proceed to step # 204 only after that. It is good.
  • step # 204 the operation of the Stirling refrigerator 50 and the blower 91 is stopped. Then, proceed to step # 205 at the predetermined timing.
  • step # 205 it is checked whether or not the cooling space temperature is a force that exceeds the target temperature.
  • Step # 204 If not, return to Step # 204 and continue the operation stop. If the cooling space temperature exceeds the target temperature, proceed to Step # 206. If the target temperature slightly exceeds the target temperature, proceed directly to step # 206. Instead, set the target temperature plus 1 ° C and set an appropriate threshold. It is good to do.
  • Step # 206 the Stirling refrigerator 50 and the blower 91 are returned to the normal operation. Then go back to step # 201 and repeat the cycle.
  • Step # 207 the operation of the blower 91 is stopped, and only the operation of the Stirling refrigerator 50 is continued. By doing so, the high-temperature side thermosiphon 60 is heated by the waste heat of the Stirling refrigerator 50 that continues to operate, while the heat release from the high-temperature side thermosiphon 60 is suppressed by stopping the blower 91, and the high-temperature side thermosiphon 60 refrigerants 63 can be prevented from freezing. During blower stop operation, proceed to step # 2 08 at the specified timing.
  • step # 208 it is checked whether the cooling space temperature has fallen below a predetermined target temperature. If not, return to Step # 207 and continue the blower stop operation. When the cooling space temperature falls below the target temperature, the process proceeds to step # 209. The same threshold as in step # 203 is applied to the check in this case.
  • Step # 209 the piston and displacer stroke of the Stirling refrigerator 50 is reduced (stroke down).
  • Stirling refrigerator to reduce stroke What is necessary is just to reduce the drive voltage of 50. If the stroke is reduced, the cooling capacity of the Stirling refrigerator 50 is reduced, and the cooling space is not cooled much.
  • stroke down operation proceed to step # 210 at the specified timing.
  • step # 210 it is checked whether or not the cooling space temperature is a force that exceeds the target temperature.
  • Step # 211 If yes, go to step # 211. In this case, the same threshold value as in Step # 205 is applied.
  • step # 211 the stroke of the Stirling refrigerator 50 is increased to the level of normal operation (stroke up). Then go back to step # 201 and repeat the cycle.
  • step # 212 it is checked whether the cooling space temperature has fallen below the monitored temperature.
  • the monitored temperature is set to a temperature further lowered than the temperature at which the threshold is applied to the target temperature in Step # 210. If the temperature is not below the monitored temperature, the process returns to step # 209 and the Stirling refrigerator 50 continues the stroke down operation.
  • Step # 213 the stroke down operation of the Stirling refrigerator 50. Proceed to step # 214 to perform defrosting.
  • the control unit 13 energizes the defrost heater 73 and energizes the freeze prevention heater 66.
  • the refrigerant 63 in the liquid phase refrigerant pipe 64L is heated and freezing is avoided despite the fact that the ambient temperature is below the refrigerant freezing temperature and the Stirling refrigerator 50 does not produce waste heat.
  • the high-temperature side evaporator 61A has a volume larger than the volume when the secondary refrigerant 63 in the closed system is completely liquefied and concentrated in the high-temperature side evaporator 61A, and the secondary refrigerant 63 is all frozen. Has a large volume.
  • the outer surface of the high temperature side evaporator 61A is covered with a heat insulating material 65 except for the lower surface.
  • the lower end of the heat insulating material 65 is below the liquid level of the refrigerant 63 (see FIG. 6).
  • As the heat insulating material 65 urethane foam or styrene foam can be used.
  • the high-temperature-side thermosiphon 60 is maintained at a predetermined temperature or higher as long as the Stirling refrigerator 50 is in operation. If the Stirling refrigerator 50 stops, the temperature will drop to the ambient temperature.
  • the secondary refrigerant 63 in the high temperature side condenser 62 condenses and returns to the high temperature side evaporator 61A. If the ambient temperature is equal to or lower than the freezing temperature of the secondary refrigerant 63, the secondary refrigerant 63 in the high temperature side evaporator 61A will eventually begin to freeze.
  • the upper layer of the secondary refrigerant 63 remains liquid for a long time, and even if the liquid level rises due to volume expansion of the frozen part, the shape can be freely changed according to the shape of the high-temperature side evaporator 61A. There is little risk of destructive force on the 61A wall.
  • FIG. 8 A different embodiment of the high temperature side evaporator 61A is shown in FIG.
  • the high temperature side evaporator 61A in FIG. 8 is different from the high temperature side evaporator 61A in FIG. 6 in its adiabatic range.
  • the high temperature side evaporator 61A in FIG. 6 has the entire outer surface except the bottom surface covered with the heat insulating material 65, whereas the high temperature side evaporator 61A in FIG. 8 sandwiches the liquid level of the internal secondary refrigerant 63. Only a strip-shaped heat insulating material 65 having a predetermined width above and below is attached to the outer surface, and the high-temperature side evaporator 61A has an exposed upper surface in addition to the lower surface.
  • the secondary refrigerant 63 starts from the inner bottom surface of the high temperature side evaporator 61A in contact with the secondary refrigerant 63. Freezes to form an ice layer 66.
  • the upper layer of the secondary refrigerant 63 remains liquid for a long time, and even if the liquid level rises due to volume expansion of the frozen part, the shape can be changed depending on the shape of the high-temperature side evaporator 61A. There is little risk of destructive force on the 61A wall.
  • the cost of the heat insulating material can be reduced and the refrigerant pipes 64G and 64L where the upper surface force of the high-temperature side evaporator 61A is extended can be used as a heat insulating material. You need to worry about how to pass it.
  • FIG. 9 shows the configuration of the cooling cycle of the third embodiment.
  • the cooling cycle of the third embodiment adds the anti-freezing heater 66 and the defrosting heater 73 to the cooling cycle of the second embodiment, and executes the same control as the cooling cycle of the first embodiment.
  • the effect of the cooling cycle of the first embodiment and the effect of the cooling cycle of the second embodiment are superimposed.
  • the present invention is widely applicable to a refrigerator equipped with a Stirling refrigerator and using a thermosiphon to dissipate waste heat of the Stirling refrigerator. It can also be widely used in thermosyphons that transfer the heat using the latent heat of the refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 冷却庫は、蒸発器と凝縮器を冷媒配管で接続した密閉系の中に液状の冷媒を封入し、前記蒸発器内で蒸発した冷媒を前記凝縮器内で凝縮させることにより、蒸発器から凝縮器へと冷媒の潜熱を利用して熱を移動させる高温側サーモサイフォンと、前記高温側サーモサイフォンによりウォームヘッドの放熱を行うスターリング冷凍機と、このスターリング冷凍機で冷却される冷却空間と、前記凝縮器を強制空冷する送風機と、前記スターリング冷凍機と前記送風機の運転を制御する制御部とを備える。前記制御部は、環境温度が前記高温側サーモサイフォンの冷媒凍結温度以下になったとき、前記スターリング冷凍機の運転を継続しつつ、前記送風機の運転を停止する。

Description

明 細 書
冷却庫及びサーモサイフォン
技術分野
[0001] 本発明はスターリング冷凍機を搭載した冷却庫に関する。またスターリング冷凍機に 使用されるサーモサイフォンに関する。なお「冷却庫」とは、食品その他の物品の温 度を下げる装置全般を指す概念であり、「冷蔵庫」「冷凍庫」「冷凍冷蔵庫」「ショーケ ース」「自動販売機」 t 、つた商品としての名称を問わな!/、。
背景技術
[0002] 冷却庫の冷凍サイクルには特定フロン(CFC:chlorofluorocarbon)や代替フロン(HC FC: hydrochlorofluorocarbon, HFC:hydrofluorocarbon)が冷媒として使用されている 。これらの冷媒のうち CFCと HCFCは大気中に放出されると程度の差こそあれオゾン 層の破壊につながるので、その生産及び使用は国際的な規制の対象となっている。 また、オゾン層を破壊しな ヽ HFCにも地球温暖化を促進すると ヽぅ問題がある。
[0003] そこで、冷媒としてオゾン破壊物質を使用しないスターリング冷凍機が脚光を浴び ている。スターリング冷凍機ではヘリウム等の不活性ガスを作動媒体として使用し、外 部動力によりピストンとディスプレーサを動作させて作動媒体の圧縮'膨張を繰り返し 、ウォームヘッド (放熱部)の温度を高めるとともにコールドヘッド(吸熱部)の温度を 下げる。そしてウォームヘッドで周囲環境に放熱を行い、コールドヘッドで庫内から吸 熱を行うものである。
[0004] スターリング冷凍機で放熱と吸熱を行うにあたっては、サーモサイフォンを利用する ことが多い。サーモサイフォンは、蒸発器と凝縮器を冷媒配管で接続した密閉系の中 に液状の冷媒を封入し、蒸発器内で蒸発した冷媒を凝縮器内で凝縮させることによ り、蒸発器カゝら凝縮器へと冷媒の潜熱を利用して熱を移動させるものである。ウォー ムヘッドには高温側蒸発器を取付け、その中の二次冷媒を温熱で蒸発させる。蒸発 した二次冷媒は高温側凝縮器に送られ、そこで液体に復元して高温側蒸発器に戻 る。コールドヘッドには低温側凝縮器を取付け、その中の二次冷媒を冷熱で凝縮さ せる。凝縮した二次冷媒は低温側蒸発器に送られ、そこで気体に復元して低温側凝 縮器に戻る。
[0005] 上記のようにサーモサイフォンを利用してスターリング冷凍機の温熱と冷熱を伝達 する冷却庫の例を特許文献 1、 2に見ることができる。またサーモサイフォンの例を特 許文献 3、 4に見ることができる。
特許文献 1 :特開 2002— 221384号公報
特許文献 2 :特開 2004— 101050号公報
特許文献 3:特開 2005— 214479号公報
特許文献 4:特開 2005— 42949号公報
発明の開示
発明が解決しょうとする課題
[0006] スターリング冷凍機のウォームヘッドの放熱に用いられるサーモサイフォンは、スタ 一リング冷凍機が稼働中であれば所定以上の温度に維持される。しかしながらスター リング冷凍機が停止すると、サーモサイフォンは環境温度にまで温度が低下して行く 。寒冷地で、しかも冬季の場合、環境温度が著しく低下し、冷媒の凍結温度を下回る こともあり得る。環境温度が冷媒の凍結温度を下回るという事態は、スターリング冷凍 機を冷却庫に組み付け、その冷却庫を倉庫や屋外で保管する場合などに発生しや すい。
[0007] 凍結点が低ぐ冬季の寒冷地であっても凍結を懸念せずに済む冷媒も存在する。 R 22などのフロン系冷媒、 134aなどの代替フロン系冷媒、炭化水素系冷媒、アンモ- ァなどがそれである。し力しながらフロン系冷媒は廃止されており、代替フロン系冷媒 も廃止の方向にある。炭化水素系冷媒は可燃性で爆発の危険を伴い、アンモニアは 毒性を持つ。いきおい、家庭用機器に用いられるサーモサイフォンの冷媒としては水 や水とアルコールの混合液などが選択されるが、これらの冷媒は凍結点が高ぐ寒冷 地の冬季の環境温度だと凍結することがある。そして凍結の結果サーモサイフォンが 破裂する危険性をはらむ。
[0008] 本発明は上記の問題に対処するためになされたもので、スターリング冷凍機の放熱 に用いられるサーモサイフォンが冷媒凍結温度以下の環境温度にさらされたとしても 問題なく運転を継続できる冷却庫を提供することを目的とする。また、サーモサイフォ ンの冷媒が凍結する事態を想定し、そのような事態に陥ったとしてもダメージを受け にく 、サーモサイフォンを提供することを目的とする。
課題を解決するための手段
[0009] 上記目的を達成するために本発明は、蒸発器と凝縮器を冷媒配管で接続した密閉 系の中に液状の冷媒を封入し、前記蒸発器内で蒸発した冷媒を前記凝縮器内で凝 縮させることにより、蒸発器カゝら凝縮器へと冷媒の潜熱を利用して熱を移動させる高 温側サーモサイフォンと、前記高温側サーモサイフォンによりウォームヘッドの放熱を 行うスターリング冷凍機と、このスターリング冷凍機で冷却される冷却空間と、前記凝 縮器を強制空冷する送風機と、前記スターリング冷凍機と前記送風機の運転を制御 する制御部とを備えた冷却庫において、前記制御部は、環境温度が前記高温側サ ーモサイフォンの冷媒凍結温度以下になったとき、前記スターリング冷凍機の運転を 継続しつつ、前記送風機の運転を停止することを特徴として ヽる。
[0010] この構成によると、運転を継続するスターリング冷凍機の廃熱で高温側サーモサイ フォンを加熱する一方、送風機の停止により高温側サーモサイフォン力 の放熱を抑 制し、高温側サーモサイフォン内の冷媒が凍結しないようにすることができる。
[0011] 本発明は、上記構成の冷却庫において、前記制御部は、前記冷却空間の温度が 目標温度を下回ったときには、前記スターリング冷凍機のストロークを小さくし、冷却 空間の温度が目標温度を上回ったときには、スターリング冷凍機のストロークを大きく してスターリング冷凍機の運転を継続することを特徴としている。
[0012] この構成によると、環境温度が高温側サーモサイフォンの冷媒凍結温度以下になる といった状況下で冷却空間の温度が目標温度を下回ったときには、スターリング冷凍 機のストロークを小さくして、冷却空間が過度に冷却されるのを防ぐことができる。スタ 一リング冷凍機のストロークを小さくして運転を続けた結果、冷却空間の温度が目標 温度を上回ったときにはスターリング冷凍機のストロークを大きくして冷却能力を回復 し、冷却空間の温度を目標温度に向け低下させることができる。
[0013] 本発明は、上記構成の冷却庫において、前記制御部は、前記スターリング冷凍機 のストロークを小さくしても前記冷却空間の温度が目標温度を回復しないときは、目 標温度から所定温度降下した時点でスターリング冷凍機の運転を停止し、除霜モー ドに移行することを特徴として ヽる。
[0014] この構成によると、スターリング冷凍機のストロークを小さくしただけでは冷却空間の 温度低下を阻止できな 、ときにはスターリング冷凍機の運転を停止し、冷却空間が 過度に冷却されるのを防ぐことができる。またスターリング冷凍機の運転が止まってい る間に除霜を行い、冷却空間を冷却する能力が落ちないようにすることができる。
[0015] 本発明は、上記構成の冷却庫において、前記高温側サーモサイフォンの液相冷媒 配管に凍結防止ヒータが付設され、前記制御部は、前記スターリング冷凍機の運転 を停止して!/、る間前記凍結防止ヒータに通電することを特徴として 、る。
[0016] この構成〖こよると、スターリング冷凍機が運転を停止して廃熱が産出されなくなった ときは凍結防止ヒータが高温側サーモサイフォンの液相冷媒配管を加熱するから、ス ターリング冷凍機の運転停止に関わらず高温側サーモサイフォンの凍結を防ぐことが できる。
[0017] 上記目的を達成するために本発明は、蒸発器と凝縮器を冷媒配管で接続した密閉 系の中に液状の冷媒を封入し、前記蒸発器内で蒸発した冷媒を前記凝縮器内で凝 縮させることにより、蒸発器カゝら凝縮器へと冷媒の潜熱を利用して熱を移動させるサ ーモサイフォンにおいて、前記凝縮器を前記蒸発器より高い位置に配置するとともに 、前記蒸発器には、前記密閉系内の冷媒が全て液ィ匕して集結し、前記冷媒が全て 凍結したときの体積よりも大なる容積を備えさせることを特徴としている。
[0018] この構成〖こよると、凝縮器が蒸発器より高い位置にあるので、サーモサイフォンが冷 えたとき、凝縮器内で凝縮した冷媒は蒸発器に戻り、凝縮器内には冷媒が殆ど残ら ない。従って環境温度が冷媒凍結点以下になったとしても凝縮器内で冷媒が凍結し て凝縮器を破壊することがない。そして蒸発器には、全冷媒が凍結したとしてもその 体積膨張を許容できるだけの容積を持たせてあるので、冷媒凍結による蒸発器破壊 の懸念は著しく軽減される。
[0019] 本発明は、上記構成のサーモサイフォンにお!/、て、前記蒸発器の外面を、下面を 除き断熱材で覆ったことを特徴として 、る。
[0020] この構成によると、環境温度が低下したときに冷えるのは蒸発器の下部であり、氷 の結晶が成長を始めるのは蒸発器の内底面からとなる。冷媒の上層部は長らく液体 のまま残り、凍結部分の体積膨張により液面が上昇したとしても蒸発器の形状に応じ て自在に形を変えられるので、蒸発器の壁に破壊的な力を及ぼすおそれは少ない。
[0021] 本発明は、上記構成のサーモサイフォンにおいて、前記蒸発器の外面に、内部の 冷媒液面レベルを挟んで上下に所定の幅を有する断熱材の帯を添着したことを特徴 としている。
[0022] この構成によると、環境温度が低下したときに氷の結晶が成長し始めるのは断熱材 の帯力 外れた蒸発器の底の方力 となる。冷媒の上層部は長らく液体のまま残り、 凍結部分の体積膨張により液面が上昇したとしても蒸発器の形状に応じて自在に形 を変えられるので、蒸発器の壁に破壊的な力を及ぼすおそれは少ない。また蒸発器 の上面部は断熱材で覆わないので断熱材のコストを低減できるうえ、蒸発器の上面 力 延び出した配管をどのように断熱材に通すかにつ 、て頭を悩ます必要もな!/、。
[0023] 本発明は、上記構成のサーモサイフォン力 スターリング冷凍機の放熱に用いられ ることを特徴としている。
[0024] この構成によると、寒冷地で使用してもサーモサイフォンの凍結破壊を懸念せずに 済むスターリング冷凍機を提供できる。
[0025] 本発明は、上記構成のサーモサイフォン力 冷却庫用のスターリング冷凍機の放熱 に用いられることを特徴として ヽる。
[0026] この構成によると、寒冷地で使用してもサーモサイフォンの凍結破壊を懸念せずに 済む冷却庫を提供できる。
発明の効果
[0027] 本発明による冷却庫は、スターリング冷凍機の廃熱を放熱する高温側サーモサイフ オンの冷媒の凍結温度を環境温度が下回るようなことがあったとしても、適切な運転 制御により冷媒の凍結を防ぐことができる。また、冷却空間の温度にも目配りして、冷 却空間が過度に冷却されないようにすることができる。また本発明によるサーモサイフ オンは、仮に冷媒凍結点以下の環境温度にさらされ、全冷媒が凍結したとしても、冷 媒の体積膨張によって蒸発器が破壊されるおそれが少な ヽ。そして断熱材の使用に より、冷媒の凍結が蒸発器の底面から始まるように誘導し、冷媒上層部の凍結による 蒸発器の破壊を防ぐことができる。 図面の簡単な説明
[図 1]冷却庫の垂直断面図
[図 2]第 1実施形態の冷却サイクルの概略構成図
[図 3]高温側サーモサイフォンの蒸発器の断面図
[図 4]冷却動作のフローチャート
[図 5]第 2実施形態の冷却サイクルの概略構成図
[図 6]第 2実施形態冷却サイクルの高温側サーモサイフォンの蒸発器の断面図
[図 7]図 6と同様の断面図であって、冷媒凍結進行中の状態を表すもの
[図 8]第 2実施形態冷却サイクルの高温側サーモサイフォンの蒸発器の断面図であつ て、図 6と異なる実施形態を示すもの
[図 9]第 3実施形態の冷却サイクルの概略構成図
符号の説明
1 冷却庫
10 断熱筐体
13 制御部
20 冷蔵室
30 冷凍室
40 機械室
50 スターリング冷凍機
51 ウォームヘッド
52 =3—ノレド、ヘッド、
60 高温側サーモサイフォン
61 高温側蒸発器
61A 高温側蒸発器
62 高温側凝縮器
64G 気相冷媒配管
64L 液相冷媒配管 66 凍結防止ヒータ
70 低温側サーモサイフォン
71 低温側凝縮器
72 低温側蒸発器
73 除霜ヒータ
91 送風機
発明を実施するための最良の形態
[0030] 以下本発明に係る冷却庫の実施形態を図 1—4に基づき説明する。冷却庫 1は食 品保存用であり、ベース 12によって床上に支えられる断熱筐体 10が本体を構成する 。断熱筐体 10の内部の冷却空間は水平仕切壁 11により上下 2段に仕切られており、 上段は冷蔵室 20、下段は冷凍室 30という設定になっている。冷蔵室 20と冷凍室 30 とは、共に前面(図 1において左側)が食品を出し入れするための開口部となっており 、この開口部を断熱扉 21、 31が閉ざす。
[0031] 断熱筐体 10の背面部には機械室 40が形成される。機械室 40は板金製の部品を 組み合わせて構成された直方体形状の構造物であり、背面側が開口している。この 機械室 40の中にスターリング冷凍機 50が設置される。機械室 40は冷蔵室 20と冷凍 室 30の間の高さに置かれている。
[0032] スターリング冷凍機 50を設置した後、機械室 40の背面側開口を蓋 44で閉ざす。蓋 44には、後述する高温側凝縮器を冷却する空気を取り入れるための通風口 45と、後 述する空冷ダクトの出口を接続するための開口 47が形成されている。
[0033] スターリング冷凍機 50は逆スターリングサイクルにより温熱と冷熱を産出するもので あり、図 2に示す第 1実施形態の冷却サイクルの中心的存在である。温熱は廃熱とし て主としてウォームヘッド 51 (図 2参照)から放熱され、冷熱はコールドヘッド 52から 取り出される。
[0034] ウォームヘッド 51から廃熱を放熱するのは高温側サーモサイフォン 60である。高温 側サーモサイフォン 60は高温側蒸発器 61と高温側凝縮器 62を冷媒配管で接続し た密閉系の中に液状の二次冷媒 63 (図 3参照)を封入したものである。二次冷媒 63 は水(水溶液を含む)あるいは炭化水素系の冷媒カもなる。 [0035] 高温側蒸発器 61は銅や銅合金、アルミなど熱伝導の良い金属を中空のリング状に 成形したものであり、ウォームヘッド 51の外周面に嵌合し、ウォームヘッド 51に熱接 続される。高温側蒸発器 61の上面からは高温側凝縮器 62に接続する 2本の冷媒配 管が引き出される。一方の冷媒配管は蒸発して気体となった二次冷媒 63を高温側 凝縮器 62に送る気相冷媒配管 64Gである。他方の冷媒配管は高温側凝縮器 62で 凝縮して液体となった二次冷媒 63を高温側蒸発器 61に戻す液相冷媒配管 64Lで ある。
[0036] 高温側凝縮器 62は、銅や銅合金、アルミなど熱伝導の良 、金属力もなるパイプ 62 aを折り曲げ、これに、同じく熱伝導の良い金属力もなる多数の放熱フィン 62bを取り 付けた構造であり、送風機 91がこれを冷却する。高温側凝縮器 62の一端には気相 冷媒配管 64Gが接続され、他端には液相冷媒配管 64Lが接続される。
[0037] 高温側凝縮器 62はスターリング冷凍機 50の本体 53の上方に配置され、従って高 温側蒸発器 61よりも位置が高い。この位置関係により、高温側凝縮器 62内の二次冷 媒 63は凝縮すれば高温側蒸発器 61に戻る。また液相冷媒配管 64Lには凍結防止 ヒータ 66を付設する(図 2参照)。
[0038] コールドヘッド 52には低温側凝縮器 71が取り付けられる(図 2参照)。コールドへッ ド 52と低温側凝縮器 71は互いの間で熱を授受する状態、すなわち熱接続された状 態にある。
[0039] 冷凍室 30の奥には庫内を冷却する庫内冷却器としての役割を果たす低温側蒸発 器 72が設置される。低温側凝縮器 71と低温側蒸発器 72とは冷媒配管で接続され、 低温側サーモサイフォン 70を構成する。低温側サーモサイフォン 70には C02などの 自然冷媒を封入する。
[0040] 低温側蒸発器 72も、高温側凝縮器 62と同様、銅や銅合金、アルミなど熱伝導の良 い金属力もなるパイプ 72aを折り曲げたうえで熱伝導の良い金属力もなる多数の吸熱 フィン 72bを取り付けた構造である。低温側蒸発器 72には除霜ヒータ 73が付設され る。
[0041] スターリング冷凍機 50を運転すると、ウォームヘッド 51は高温となり、コールドヘッド 52は低温となる。ウォームヘッド 51の熱は外部に放熱すべき廃熱である力 これは 高温側サーモサイフォン 60の二次冷媒 63を蒸発させて二次冷媒 63の気体の中に 潜熱として内在した後、高温側凝縮器 62の中で二次冷媒 63が凝縮することにより顕 熱として解放され、環境中に放熱される。
[0042] コールドヘッド 52の冷熱は低温側サーモサイフォン 70を介して低温側蒸発器 72に 伝えられる。送風機 83を運転すると、冷却ダクト 80の下端の吸気口 82から冷凍室 30 の中の空気が吸い込まれ、低温側蒸発器 72を通過する。また図示しない戻りダクトを 通じ、冷蔵室 20の中の空気が冷却ダクト 80に吸い込まれ、同じく低温側蒸発器 72を 通過する。低温側蒸発器 72を通過する際に空気は冷却されて冷気となる。
[0043] 冷気は送風機 83により冷却ダクト 81に吹き込まれ、冷却ダクト 81の上方部分 (水平 仕切壁 11より上の部分)に設けられた吹出口 84を通じて冷蔵室 20に、また冷却ダク ト 81の下方部分 (水平仕切壁 11より下の部分)に設けられた吹出口 85を通じて冷凍 室 30に、それぞれ送り込まれる。このようにして冷蔵室 20及び冷凍室 30にはそれぞ れ所定量の冷気が送り込まれ (または送り込まれず)、冷蔵室 20及び冷凍室 30はそ れぞれ所定の温度に冷却される。断熱筐体 10の背面上部に設置された制御部 13 が上記の運転制御を司る。
[0044] 制御部 13は、図示しない温度センサにより、機外の温度、すなわち環境温度と、冷 蔵室 20及び冷凍室 30の温度を検知する。なお本明細書では冷蔵室 20及び冷凍室 30の温度の総称として「冷却空間温度」という呼称を用いる。そして制御部 13は、温 度検知結果に基づきスターリング冷凍機 50と送風機 91の運転を制御する。以下そ の制御の詳細を図 4に基づき説明する。
[0045] 図 4の動作フローにおいて、冷却庫 1の運転開始後、ステップ # 201で環境温度が 高温側サーモサイフォン 60の冷媒 63の凍結温度よりも高いかどうかをチェックする。 高ければステップ # 202へ進む。
[0046] ステップ # 202では冷却庫 1を通常運転する。通常運転とは、スターリング冷凍機 5 0の内部でピストンとディスプレーサ(いずれも図示せず)を通常のストロークで往復さ せ、また送風機 91で高温側凝縮器 62を強制空冷する運転のことである。通常運転 の間、所定タイミングでステップ # 203に進む。
[0047] ステップ # 203では冷却空間温度が所定の目標温度を下回ったかどうかをチェック する。そこまで至っていなければステップ # 202に戻って通常運転を継続する。冷却 空間温度が目標温度を下回ったときはステップ # 204に進む。なお、 目標温度を僅 かでも下回ったら直ちにステップ # 204に進むというのでなぐ「目標温度マイナス 1 °C」と!、つた適宜の閾値を定め、そこに至ってはじめてステップ # 204に進むようにす るのがよい。
[0048] ステップ # 204ではスターリング冷凍機 50と送風機 91の運転を停止する。そして所 定タイミングでステップ # 205に進む。
[0049] ステップ # 205では冷却空間温度が目標温度を上回った力どうかをチェックする。
そこまで至っていなければステップ # 204に戻って運転停止を継続する。冷却空間 温度が目標温度を上回ったときはステップ # 206に進む。なお、 目標温度を僅かで も上回ったら直ちにステップ # 206に進むと 、うのでなく、「目標温度プラス 1°C」 t 、 つた適宜の閾値を定め、そこに至ってはじめてステップ # 206に進むようにするのが よい。
[0050] ステップ # 206ではスターリング冷凍機 50と送風機 91を通常運転に戻す。そしてス テツプ # 201に戻ってサイクルを繰り返す。
[0051] ステップ # 201で環境温度が冷媒凍結温度以下であった場合にはステップ # 207 に進む。ステップ # 207では送風機 91の運転を停止し、スターリング冷凍機 50の運 転のみ継続する。このようにすることにより、運転を継続するスターリング冷凍機 50の 廃熱で高温側サーモサイフォン 60を加熱する一方、送風機 91の停止により高温側 サーモサイフォン 60からの放熱を抑制し、高温側サーモサイフォン 60の冷媒 63が凍 結しないようにすることができる。送風機停止運転の間、所定タイミングでステップ # 2 08に進む。
[0052] ステップ # 208では冷却空間温度が所定の目標温度を下回ったかどうかをチェック する。そこまで至っていなければステップ # 207に戻って送風機停止運転を継続す る。冷却空間温度が目標温度を下回ったときはステップ # 209に進む。この場合の チェックにもステップ # 203と同様の閾値を適用する。
[0053] ステップ # 209ではスターリング冷凍機 50のピストンとディスプレーサのストロークを 小さく(ストロークダウン)して運転する。ストロークを小さくするにはスターリング冷凍機 50の駆動電圧を低下させれば良い。ストロークを小さくするとスターリング冷凍機 50 の冷却能力が落ち、冷却空間はそれほど冷やされなくなる。ストロークダウン運転の 間、所定タイミングでステップ # 210に進む。
[0054] ステップ # 210では冷却空間温度が目標温度を上回った力どうかをチェックする。
上回ったらステップ # 211に進む。この場合のチェックにもステップ # 205と同様の閾 値を適用する。
[0055] ステップ # 211ではスターリング冷凍機 50のストロークを通常運転のレベルにまで 大きく(ストロークアップ)する。そしてステップ # 201に戻ってサイクルを繰り返す。
[0056] ステップ # 210で冷却空間温度が目標温度を上回って 、な力つたらステップ # 21 2に進む。ステップ # 212では冷却空間温度が監視温度を下回ったかどうかをチエツ クする。監視温度はステップ # 210において目標温度に閾値を適用した温度よりさら に降下した温度に設定する。監視温度を下回っていなければステップ # 209に戻り、 スターリング冷凍機 50のストロークダウン運転を継続する。監視温度を下回ったらス テツプ # 213に進み、スターリング冷凍機 50のストロークダウン運転を停止する。さら にステップ # 214に進み、除霜を行う。この時制御部 13は除霜ヒータ 73に通電する とともに凍結防止ヒータ 66にも通電する。これにより液相冷媒配管 64Lの中の冷媒 6 3は加熱され、環境温度が冷媒凍結温度以下で、スターリング冷凍機 50が廃熱を産 出していないという状況にも関わらず、凍結を免れる。
[0057] 所定時間経過後、除霜ヒータ 73と凍結防止ヒータ 66への通電を止める。そしてステ ップ # 201に戻り、冷却サイクルを再開する。
[0058] また、高温側サーモサイフォン 60の冷媒 63が凍結する事態に陥ったとしても、高温 側蒸発器の構造の工夫によりダメージを受けに《できる。以下、そのような高温側蒸 発器 61Aを構成要素として含む第 2実施形態の冷却サイクルの構成を図 5— 7に基 づき説明する。
[0059] 第 2実施形態の冷却サイクルを第 1実施形態の冷却サイクルと比較すると、そこに は凍結防止ヒータ 66と除霜ヒータ 73がな 、が、除霜ヒータ 73は残してぉ 、てもよ 、。
[0060] 高温側蒸発器 61 Aは、密閉系内の二次冷媒 63が全て液ィ匕して高温側蒸発器 61 Aに集結し、その二次冷媒 63が全て凍結したときの体積よりも大なる容積を備える。 高温側蒸発器 61Aの外面は、下面を除き断熱材 65で覆われる。断熱材 65の下端 は冷媒 63の液面より下にある(図 6参照)。断熱材 65としてはウレタン発泡体ゃスチ レン発泡体を用いることができる。
[0061] 高温側サーモサイフォン 60は、スターリング冷凍機 50が稼働中であれば所定以上 の温度に維持される。スターリング冷凍機 50が停止すれば環境温度にまで温度が低 下して行く。高温側凝縮器 62の中の二次冷媒 63は凝縮し、高温側蒸発器 61Aに戻 る。環境温度が二次冷媒 63の凍結温度以下であると、やがて高温側蒸発器 61Aの 中の二次冷媒 63が凍結し始める。
[0062] 高温側蒸発器 61Aの上部は断熱材 65で覆われているので、むき出しになった下 部に環境の冷熱が集中する。高温側蒸発器 61Aの下部が集中的に冷やされること により、高温側蒸発器 61Aの内底面から二次冷媒 63の氷の結晶が成長を始める。 すなわち図 4に見られるように高温側蒸発器 61Aの内底面にまず氷の層 66が生じ、 それが次第に厚みを増して行く。二次冷媒 63の上層部は長らく液体のまま残り、凍 結部分の体積膨張により液面が上昇したとしても高温側蒸発器 61Aの形状に応じて 自在に形を変えられるので、高温側蒸発器 61Aの壁に破壊的な力を及ぼすおそれ が少ない。
[0063] 前述のように、高温側蒸発器 61Aには、密閉系内の二次冷媒 63が全て液ィ匕して 高温側蒸発器 61 Aに集結し、その二次冷媒 63が全て凍結したとしてもその体積膨 張を許容できるだけの容積が与えられている。従って二次冷媒 63の凍結による高温 側蒸発器 61 Aの破壊の可能性は低 、。
[0064] 高温側蒸発器 61Aの異なる実施形態を図 8に示す。図 8の高温側蒸発器 61Aが 図 6の高温側蒸発器 61Aと異なる点は、その断熱範囲である。すなわち図 6の高温 側蒸発器 61Aは下面を除く外面全体が断熱材 65で覆われていたのに対し、図 8の 高温側蒸発器 61Aは内部の二次冷媒 63の液面レベルを挟んで上下に所定の幅を 有する帯状の断熱材 65が外面に添着されているのみであり、高温側蒸発器 61Aは 下面に加え上面もむき出しになって 、る。
[0065] 図 8の高温側蒸発器 61Aにおいても、環境温度が二次冷媒 63の凍結温度以下に 低下すると、二次冷媒 63が接している高温側蒸発器 61Aの内底面から二次冷媒 63 が凍結して氷の層 66が生じる。二次冷媒 63の上層部は長らく液体のまま残り、凍結 部分の体積膨張により液面が上昇したとしても高温側蒸発器 61Aの形状に応じて自 在に形を変えられるので、高温側蒸発器 61Aの壁に破壊的な力を及ぼすおそれが 少な 、。また高温側蒸発器 61Aの上面部は断熱材で覆わな 、ので断熱材のコストを 低減できるうえ、高温側蒸発器 61 Aの上面力も延び出した冷媒配管 64G、 64Lをど のように断熱材に通すかにつ 、て頭を悩ます必要もな 、。
[0066] 第 3実施形態の冷却サイクルの構成を図 9に示す。第 3実施形態の冷却サイクルは 、第 2実施形態の冷却サイクルに凍結防止ヒータ 66と除霜ヒータ 73を付加し、第 1実 施形態の冷却サイクルと同じ制御を実行するものである。第 1実施形態の冷却サイク ルの作用効果と第 2実施形態の冷却サイクルの作用効果が重畳して奏されることに なる。
[0067] 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるも のではなぐ発明の主旨を逸脱しない範囲で種々の変更をカ卩えて実施することがで きる。
産業上の利用可能性
[0068] 本発明は、スターリング冷凍機を搭載し、そのスターリング冷凍機の廃熱の放熱に サーモサイフォンを用いる冷却庫に広く利用可能である。また、冷媒の潜熱を利用し て熱を移動させるサーモサイフォンに広く利用可能である。

Claims

請求の範囲
[1] 蒸発器と凝縮器を冷媒配管で接続した密閉系の中に液状の冷媒を封入し、前記 蒸発器内で蒸発した冷媒を前記凝縮器内で凝縮させることにより、前記蒸発器から 前記凝縮器へと冷媒の潜熱を利用して熱を移動させる高温側サーモサイフォンと、 前記高温側サーモサイフォンによりウォームヘッドの放熱を行うスターリング冷凍機と 、前記スターリング冷凍機で冷却される冷却空間と、前記凝縮器を強制空冷する送 風機と、前記スターリング冷凍機と前記送風機の運転を制御する制御部とを備えた 冷却庫において、
前記制御部は、環境温度が前記高温側サーモサイフォンの冷媒凍結温度以下に なったとき、前記スターリング冷凍機の運転を継続しつつ、前記送風機の運転を停止 することを特徴とする冷却庫。
[2] 前記制御部は、前記冷却空間の温度が目標温度を下回ったときには、前記スター リング冷凍機のストロークを小さくし、前記冷却空間の温度が目標温度を上回ったとき には、スターリング冷凍機のストロークを大きくしてスターリング冷凍機の運転を継続 することを特徴とする請求項 1に記載の冷却庫。
[3] 前記制御部は、前記スターリング冷凍機のストロークを小さくしても前記冷却空間の 温度が目標温度に回復しないときは、目標温度力 所定温度降下した時点でスター リング冷凍機の運転を停止し、除霜モードに移行することを特徴とする請求項 2に記 載の冷却庫。
[4] 前記高温側サーモサイフォンの液相冷媒配管に凍結防止ヒータが付設され、前記 制御部は、前記スターリング冷凍機の運転を停止して 、る間前記凍結防止ヒータに 通電することを特徴とする請求項 3に記載の冷却庫。
[5] 蒸発器と凝縮器を冷媒配管で接続した密閉系の中に液状の冷媒を封入し、前記 蒸発器内で蒸発した冷媒を前記凝縮器内で凝縮させることにより、蒸発器カゝら凝縮 器へと冷媒の潜熱を利用して熱を移動させるサーモサイフォンにおいて、
前記凝縮器を前記蒸発器より高い位置に配置するとともに、前記蒸発器は、前記 密閉系内の冷媒が全て液ィ匕して集結し、前記冷媒が全て凍結したときの体積よりも 大なる容積を備えさせることを特徴とするサーモサイフォン。
[6] 前記蒸発器の外面を、下面を除き断熱材で覆ったことを特徴とする請求項 5に記載 のサーモサイフォン。
[7] 前記蒸発器の外面に、内部の冷媒液面レベルを挟んで上下に所定の幅を有する 断熱材の帯を添着したことを特徴とする請求項 5に記載のサーモサイフォン。
[8] スターリング冷凍機の放熱に用いられることを特徴とする請求項 5〜7のいずれか 1 項に記載のサーモサイフォン。
[9] 前記スターリング冷凍機が冷却庫に用いられることを特徴とする請求項 8に記載の サーモサイフォン。
[10] 請求項 5〜7の 、ずれか 1項に記載のサーモサイフォンを高温側サーモサイフォン として使用したことを特徴とする請求項 1に記載の冷却庫。
[11] 請求項 5〜7のいずれか 1項に記載のサーモサイフォンを高温側サーモサイフォン として使用したことを特徴とする請求項 2に記載の冷却庫。
[12] 請求項 5〜7の 、ずれか 1項に記載のサーモサイフォンを高温側サーモサイフォン として使用したことを特徴とする請求項 3に記載の冷却庫。
[13] 請求項 5〜7の 、ずれか 1項に記載のサーモサイフォンを高温側サーモサイフォン として使用したことを特徴とする請求項 4に記載の冷却庫。
PCT/JP2006/323194 2006-01-19 2006-11-21 冷却庫及びサーモサイフォン WO2007083441A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006010628A JP2007192448A (ja) 2006-01-19 2006-01-19 サーモサイフォン
JP2006-010628 2006-01-19
JP2006015773A JP3926377B1 (ja) 2006-01-25 2006-01-25 冷却庫
JP2006-015773 2006-01-25

Publications (1)

Publication Number Publication Date
WO2007083441A1 true WO2007083441A1 (ja) 2007-07-26

Family

ID=38287400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323194 WO2007083441A1 (ja) 2006-01-19 2006-11-21 冷却庫及びサーモサイフォン

Country Status (1)

Country Link
WO (1) WO2007083441A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104180586A (zh) * 2013-05-22 2014-12-03 海尔集团公司 一种低温冰箱低温端的热管传热系统
EP3193108A1 (en) * 2016-01-14 2017-07-19 Lg Electronics Inc. Refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186674U (ja) * 1983-05-25 1984-12-11 昭和アルミニウム株式会社 ヒ−トパイプ
JPS61259090A (ja) * 1985-05-10 1986-11-17 Sumitomo Electric Ind Ltd ヒ−トパイプ
JPS6361670U (ja) * 1986-10-07 1988-04-23
JPH06347182A (ja) * 1993-06-03 1994-12-20 Mitsubishi Electric Corp 熱伝達装置およびその製造方法
JP2003279222A (ja) * 2002-03-20 2003-10-02 Mitsubishi Electric Corp 冷蔵庫
JP2005283023A (ja) * 2004-03-30 2005-10-13 Sharp Corp スターリング冷却庫

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186674U (ja) * 1983-05-25 1984-12-11 昭和アルミニウム株式会社 ヒ−トパイプ
JPS61259090A (ja) * 1985-05-10 1986-11-17 Sumitomo Electric Ind Ltd ヒ−トパイプ
JPS6361670U (ja) * 1986-10-07 1988-04-23
JPH06347182A (ja) * 1993-06-03 1994-12-20 Mitsubishi Electric Corp 熱伝達装置およびその製造方法
JP2003279222A (ja) * 2002-03-20 2003-10-02 Mitsubishi Electric Corp 冷蔵庫
JP2005283023A (ja) * 2004-03-30 2005-10-13 Sharp Corp スターリング冷却庫

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104180586A (zh) * 2013-05-22 2014-12-03 海尔集团公司 一种低温冰箱低温端的热管传热系统
CN104180586B (zh) * 2013-05-22 2019-04-23 青岛海尔生物医疗股份有限公司 一种低温冰箱低温端的热管传热系统
EP3193108A1 (en) * 2016-01-14 2017-07-19 Lg Electronics Inc. Refrigerator
CN106969574A (zh) * 2016-01-14 2017-07-21 Lg 电子株式会社 冰箱
US10145600B2 (en) 2016-01-14 2018-12-04 Lg Electronics Inc. Refrigerator
CN106969574B (zh) * 2016-01-14 2019-11-05 Lg 电子株式会社 冰箱

Similar Documents

Publication Publication Date Title
JP3523381B2 (ja) 冷蔵庫
JP2004069294A (ja) 冷蔵庫及び除霜装置
JP2008002759A (ja) 二元冷凍システムおよび保冷庫
JP5261066B2 (ja) 冷凍冷蔵庫及び冷却庫
JP2006343078A (ja) 冷蔵庫
JP2009092371A (ja) 冷却庫
JP3443785B2 (ja) 冷蔵庫
JP2007093112A (ja) 冷却貯蔵庫
WO2007083441A1 (ja) 冷却庫及びサーモサイフォン
TW514716B (en) Stirling cooling apparatus, cooler, and refrigerator
JP3826998B2 (ja) スターリング冷凍システム及びスターリング冷蔵庫
JP3926377B1 (ja) 冷却庫
JPH10267508A (ja) 電気冷蔵庫
JP2003302117A (ja) スターリング機関用放熱システムおよびそれを備えた冷却庫
JP3733661B2 (ja) 冷蔵庫
JP3876719B2 (ja) 冷蔵庫
JP2008309448A (ja) ループ型サーモサイフォン及びこれを搭載した冷却庫
JP2007192448A (ja) サーモサイフォン
JP4020941B1 (ja) 冷却庫
KR20200001250A (ko) 가전기기를 이용한 건물의 냉, 난방시스템
JP4020930B2 (ja) 冷却庫
JP2011112270A (ja) コンテナ用冷凍装置
WO2007080708A1 (ja) 冷却庫
JP2004101050A (ja) 冷却庫
JP2006349233A (ja) 冷却庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833044

Country of ref document: EP

Kind code of ref document: A1