WO2007083417A1 - 物理乱数生成方法及び物理乱数生成装置 - Google Patents

物理乱数生成方法及び物理乱数生成装置 Download PDF

Info

Publication number
WO2007083417A1
WO2007083417A1 PCT/JP2006/319839 JP2006319839W WO2007083417A1 WO 2007083417 A1 WO2007083417 A1 WO 2007083417A1 JP 2006319839 W JP2006319839 W JP 2006319839W WO 2007083417 A1 WO2007083417 A1 WO 2007083417A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
random number
frequency
physical random
number generation
Prior art date
Application number
PCT/JP2006/319839
Other languages
English (en)
French (fr)
Inventor
Yoshiaki Saitoh
Takashi Satoh
Original Assignee
Niigata University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University filed Critical Niigata University
Priority to US11/917,938 priority Critical patent/US20100217789A1/en
Priority to JP2007554810A priority patent/JP4423431B2/ja
Publication of WO2007083417A1 publication Critical patent/WO2007083417A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • G06F7/588Random number generators, i.e. based on natural stochastic processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography

Definitions

  • the present invention relates to a physical random number generation method used in, for example, a field related to confidentiality in IT technology, and a physical random number generation device that implements the method.
  • Patent Document 1 a physical random number generation device that generates a physical random number using a random phenomenon in the natural world is known.
  • thermal noise of an electronic circuit is often used as a noise source of a physical random number generator.
  • Physical random numbers are used in many fields, such as encryption processing for the purpose of confidentiality in IT technology.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-259395
  • an object of the present invention is to provide a physical random number generation method and a physical random number generation apparatus capable of obtaining a safe random number at high speed.
  • the frequency of the laser light is discriminated, and Light is detected, and the detection result is converted into a numerical value to generate a random number.
  • a laser device that irradiates laser light, a frequency discrimination filter that discriminates the frequency of the laser light, and a photodetector that detects the transmitted light of the frequency discrimination filter And a numerical value conversion for converting the detection result of the light detector into a numerical value.
  • the laser light power with large frequency fluctuations can also produce very fast light intensity fluctuations (strength fluctuations), and the detection result of the light contains white noise of several GHz, By converting the detection result into a numerical value, a random number can be generated at a high speed.
  • the frequency of the laser light is discriminated, and the light after discrimination is divided into reflected light and transmitted light using a half mirror, and the reflected light of the half mirror is detected.
  • the detection result is converted into a numerical value to generate a random number.
  • a laser device that irradiates laser light, a frequency discrimination filter that discriminates the frequency of the laser light, and reflected light and transmitted light that are transmitted through the frequency discrimination filter.
  • a half-mirror that divides the half-mirror, a photodetector that detects the reflected light of the half-mirror, and a numeric converter that converts the detection result of the photodetector into a numerical value.
  • the frequency of the laser light is discriminated, and the discriminated light is divided into reflected light and transmitted light using a plurality of half mirrors, and the reflected light of each of the half mirrors Is detected by a plurality of photodetectors, and electrical signals output from the respective photodetectors are converted into digital data by shifting the timing by a plurality of AZD transformations to generate random numbers.
  • a laser device that irradiates laser light, a frequency discrimination filter that discriminates the frequency of the laser light, and the transmitted light of the frequency discrimination filter is transmitted as reflected light.
  • a plurality of AZD converters for converting the signal into digital data, and each of the AZD converters is configured such that the timing of the AZD conversion is shifted.
  • each AZD converter force can greatly differ in the value of the obtained digital data, and a large amount of random numbers suitable for encryption processing can be obtained.
  • the frequency of the laser beam is discriminated using a light absorbing material that absorbs light of a specific frequency, and a magnetic field or an electric field is applied to the light absorbing material.
  • the characteristic of the absorption line is controlled.
  • the frequency discrimination filter is made of a light absorbing material that absorbs light of a predetermined frequency, and a magnetic field generation means that applies a magnetic field or an electric field to the frequency discrimination filter.
  • a magnetic field generation means that applies a magnetic field or an electric field to the frequency discrimination filter.
  • an electric field generating means is provided.
  • the property of the random number can be changed using a phenomenon in which the frequency distribution changes when a magnetic field or an electric field is applied to the light-absorbing substance.
  • random numbers having different statistical properties can be changed. Because there are many, it becomes difficult to interpret when the random number is used for encryption processing.
  • the physical random number generation method of the present invention is characterized in that the laser beam is a plurality of laser beams having different frequencies.
  • the laser device irradiates a plurality of laser beams having different frequencies.
  • a physical random number generation method and a physical random number generation apparatus capable of generating a random number having a very high speed and a large number of digits at a time.
  • a physical random number generation method and a physical random number generation apparatus capable of generating a large amount of random numbers with a very high speed and a large number of digits at a time.
  • a safer random number suitable for encryption can be generated.
  • the features of the present invention are mainly the following two points.
  • the noise source semiconductor laser light with the loudest noise among the laser light is mainly used, so white noise with a bandwidth of 1 GHz or more with large fluctuations and poor frequency stability can be obtained. If you convert with ⁇ , you can get a secure cryptographic random number from many digits (almost all digits). 2) Since the split operation is performed using light with a frequency much higher than the maximum operating frequency of the AZD converter in the electronic circuit, the operation is fast, and the laser frequency fluctuates greatly and is unstable. Even if you get, you will not lose the nature of a secure cryptographic random number.
  • FIG. 1 shows the basic configuration of the first embodiment of the physical random number generator according to the present invention.
  • the physical random number generator of the first embodiment includes a laser device 1 that emits laser light L1 as a noise source, and a frequency discrimination filter 2 that discriminates the frequency of the laser light L1 emitted from the laser device 1.
  • the photodetector 13 for converting the intensity of the transmitted light L2 in the predetermined frequency band discriminated by the frequency discrimination filter 2 into an electric signal, and the photodetector 13 force.
  • the analog signal output as the detection result is converted into digital data. It consists of AZD variable 30 corresponding to the numerical variable ⁇ to be converted, and finally the digital data obtained here is input to PC31 corresponding to an information processing device such as a personal computer, and various random number data It will be used for the encryption process.
  • the AZD converter 30 can operate at an extremely high speed as long as it is a detection element that only determines on / off. If the AZD converter 30 has multiple digits, one specific digit may be used, but since it has multiple digits, If the information that appears in each digit is used as random number data, a larger number of random number data can be obtained.
  • the laser beam L1 is used as a noise source.
  • a semiconductor laser has a characteristic that “frequency fluctuation” of the laser beam (frequency noise) is noticeably observed.
  • any laser such as a gas laser, can be used as a noise source as long as the laser has a large frequency fluctuation of the laser beam.
  • the frequency discriminating filter 2 also has a cell force in which a light absorbing material having a property of absorbing laser light of a specific frequency such as cesium or rubidium is enclosed. Further, as the frequency discrimination filter 2, various optical filters such as an optical interference filter or a Fabry-Perot filter can be used.
  • the laser light L 1 emitted from the laser device 1 is passed through the frequency discrimination filter 2.
  • the frequency discrimination filter 2 For example, the frequency of the laser beam L 1 fluctuates near the optical absorption frequency of atoms such as cesium and rubidium, and the laser beam L 1 is absorbed. If not absorbed, the case is switched at high speed. This becomes the transmitted light L2 of the frequency discrimination filter 2, and the intensity of the transmitted light L2 changes at high speed.
  • the frequency discrimination filter 2 functions as an optical parameter conversion means for converting the frequency fluctuation force of the laser light L1 into the light intensity fluctuation of the transmitted light L2.
  • an optical filter or a Fabry-Perot filter when used, such an optical filter generally changes the intensity of transmitted light in response to a change in the frequency of the laser beam.
  • the intensity of transmitted light L2 that passes through filter 2 changes at high speed.
  • the intensity of the transmitted light L 2 is converted into an electric signal such as a voltage by the high-speed photodetector 13.
  • an on 'off detector 32 that performs on and off operations is used, the output becomes a binary output as it is. It can also be converted to binary random numbers using AZD variable 30. At this time, the result appearing at the binary output terminal of ⁇ D change becomes the binary random number as it is. And this binary Random number data is loaded into PC31.
  • random numbers can also be created using "0" and "1" that appear in time series, focusing on a certain digit of binary random number data output from the AZD variable. Similarly, random numbers can be generated by focusing on each digit of binary random number data. This method is more efficient because it is possible to generate random numbers using the lower bits even if the upper bits do not pass the statistical test.
  • the laser device 1 is used to pass the laser light L 1 having a large frequency fluctuation through the frequency discrimination filter 2, thereby obtaining a very high intensity fluctuation of the transmitted light L 2. Therefore, the voltage obtained by the photodetector 13 contains white noise of several GHz, and if the on'off detector 32 is used, random numbers can be generated at an extremely high speed. Also, random numbers can be generated at high speed by performing AZD conversion with A ZD conversion.
  • the frequency of the laser light L1 is discriminated, the transmitted light L2 after the discrimination is detected, the detection result is converted into a numerical value, and the random number is calculated. It is characterized by generating.
  • the laser device 1 that irradiates the laser beam L1, the frequency discrimination filter 2 that discriminates the frequency of the laser beam L1, and the transmitted light of the frequency discrimination filter 2 are used.
  • a light detector 13 for detecting L2 and an on'off detector 32 or AZD converter 30 corresponding to a numerical value conversion for converting the detection result of the light detector 13 into a numerical value are provided.
  • the frequency fluctuation is large! /
  • the intensity fluctuation of the transmitted light L2 from the laser light L1 is very fast. Therefore, the detection result of the transmitted light L2 includes white noise of several GHz.
  • the detection result can be converted into a numerical value and a random number can be generated at high speed. Therefore, it is possible to provide a physical random number generation method and a physical random number generation apparatus that can obtain a safe random number at high speed.
  • FIG. 2 shows a basic configuration of the second embodiment of the physical random number generation device according to the present invention.
  • the physical random number generation device includes a laser device 1, a frequency discrimination filter 2, and a detection mechanism 10 described later. Finally, the digital data obtained by the detection mechanism 10 is sent to an information processing device such as a personal computer as random number data. Thus, it is used for various encryption processes.
  • the detection mechanism 10 includes a plurality of half mirrors 3, a plurality of photodetectors 13, and a numerical value that is a force such as a comparator that determines binary “0” or “1” from the magnitude relationship of detection results of the photodetectors 13. And a discriminator 5 corresponding to the variable ⁇ .
  • the half mirror 3 is formed by arranging a plurality of half mirrors 3a, 3b,... Having a function of dividing reflected light and transmitted light in a one-to-one manner.
  • the detection mechanism 10 is provided with photodetectors 13a, 13b,... So as to be paired with the half mirrors 3a, 3b,... Until the transmitted light is attenuated and the photodetector 13 does not operate.
  • the structure is repeatedly provided. You can also use AZD transformation instead of a comparator.
  • Laser light L1 from laser device 1 is passed through frequency discrimination filter 2.
  • the detection mechanism 10 is connected to the subsequent stage, and the transmitted light L2 from the frequency discrimination filter 2 is passed through the half mirror 3a of the detection mechanism 10.
  • the half mirror 3a half of the transmitted light L2 is reflected and reaches the photodetector 13a, and the other half reaches the next half mirror 3b.
  • the light reflected by the half mirror 3b reaches the photodetector 13b.
  • This configuration is continued until the light is attenuated and the photodetectors 13 do not operate. If the signal of 13 detectors exceeds a predetermined level (threshold value), it will correspond to binary "1", and if it does not exceed it, it will correspond to "0".
  • the transmitted light L2 that has passed through the frequency discrimination filter 2 can easily be made lOOmW, and the photodetector 13 can detect up to lOOnW. In this case, 19 half mirrors are used. Use it to get a 20 digit binary random number. This can be done at 10GHz.
  • an AZD conversion 30 can be used instead of the discriminator 5.
  • the sampling frequency of each AZD transformation 30 is set to a different value, or a delay circuit that delays signal transmission from the photodetector 13 is inserted between the photodetector 13 and the AZD transformation.
  • each AZD converter 30 is configured to shift the timing of sampling (data collection) of the signal from the optical detector 13.
  • the frequency of the laser light L1 is discriminated, and the transmitted light L2 after the discrimination is divided into reflected light and transmitted light using a plurality of half mirrors 3.
  • the reflected light of the half mirror 3 is detected, and the detection result is converted into a numerical value to generate a random number.
  • the laser device 1 that irradiates the laser beam L1
  • the frequency discrimination filter 2 that discriminates the frequency of the laser beam L1
  • the transmitted light of the frequency discrimination filter 2 Half mirror 3 that divides L2 into reflected light and transmitted light, a photodetector 13 that detects the reflected light of half mirror 3, and a discriminator that corresponds to a numerical change that converts the detection result of photodetector 13 into a numerical value 5 and.
  • random numbers can be generated at a very high speed without using an AZD transformation that limits the conversion speed.
  • the noise source is divided using the half mirror of the optical system, it is possible to generate a random number having a number of digits longer than that of the electronic circuit at one time.
  • the frequency of the laser light L1 is discriminated, and the transmitted light L2 after the discrimination is converted into reflected light and transmitted light using a plurality of half mirrors 3.
  • the reflected light from each half mirror 3 is detected by a plurality of photodetectors 13, and the electrical signal output from each photodetector 13 is delayed by a plurality of AZD variables 30. And generating random numbers by converting into digital data.
  • the laser device 1 that irradiates the laser light L1, the frequency discrimination filter 2 that discriminates the frequency of the laser light L1, and the frequency discrimination filter 2 transmitted light L2 is divided into reflected light and transmitted light, a plurality of half mirrors 3, a plurality of photodetectors 13 that detect the reflected light of each half mirror 3, and the electric power output from each photodetector 13 And a plurality of AZD transformations 30 for converting a signal into digital data, and each AZD transformation 30 is configured so that the timing of the AZD transformation is shifted.
  • the noise source is divided using the half mirror 3 of the optical system, so that a random number having a number of digits longer than that of the electronic circuit can be generated at one time.
  • the value of the digital data acquired from each AZD converter 30 can be greatly varied, and a large amount of random numbers suitable for encryption processing can be obtained.
  • an amplifier may be inserted after the photodetector 13 so that the force can be connected to the discriminator 5. If a plurality of AZD converters 30 are used instead of the discriminator 5, the number of digits of the AZD converters is large, resulting in a large amount of random numbers.
  • FIG. 4 shows the basic configuration of the third embodiment of the physical random number generation device according to the present invention.
  • the physical random number generation device includes a laser device 1, a cell 20 corresponding to a frequency discrimination filter for discriminating the frequency of the laser light L1 emitted from the laser device 1, and a detection mechanism 10.
  • a cell 20 in which cesium, rubidium or the like is enclosed is used as a frequency discrimination filter, and a random number is generated using the detection mechanism 10 in the subsequent stage.
  • the detection mechanism 10 has the same configuration as that shown in FIG. Then, the digital data obtained by the detection mechanism 10 is used as random number data for various encryption processes by an information processing apparatus such as a personal computer.
  • FIG. 5 shows the basic configuration of the fourth embodiment of the physical random number generator according to the present invention.
  • a magnetic field M (or an electric field) is applied from the outside to the cell 20 in the configuration shown in FIG.
  • an external force such as a magnetic field M or an electric field is applied to the cell 20 containing cesium or rubidium
  • the frequency distribution of the transmitted light L2 changes.
  • This phenomenon is a force known as a Zeemans vector.
  • the property of the binary random number can be changed by using the change in the frequency distribution of the transmitted light L2.
  • the cell 20 encapsulating a light absorbing material that absorbs light of a specific frequency is used to discriminate the frequency of the laser light L 1, and the cell The characteristic of the absorption line is controlled by applying a magnetic field or electric field to 20.
  • the frequency discrimination filter includes the cell 20 in which a light absorbing material that absorbs light of a predetermined frequency is enclosed, and the frequency discrimination filter serves as the frequency discrimination filter.
  • a magnetic field generating means or an electric field generating means for applying a magnetic field or an electric field to the cell 20 is provided.
  • FIG. 6 shows the basic configuration of the fifth embodiment of the physical random number generator according to the present invention.
  • a laser device 22 having a different frequency is added to the laser device 1 to excite the cell 20 and control the properties of the transmitted light L2.
  • Combining two (or more) lasers with different fluctuation characteristics causes more complex frequency fluctuations and enables faster random number generation.
  • the characteristics of the absorption line may change depending on the incident light.
  • the physical random number generation method of the fifth embodiment is characterized in that the laser beam as the noise source is a plurality of laser beams LI and L3 having different frequencies.
  • the laser devices 1 and 22 emit a plurality of laser beams LI and L3 having different frequencies.
  • final random number data may be generated by combining or calculating them. ,.
  • FIG. 1 is a block diagram showing a configuration of a physical random number generation device according to a first example of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a physical random number generation device according to a second embodiment of the present invention.
  • FIG. 3 is a block diagram showing a modification of the physical random number generator.
  • FIG. 4 is a block diagram showing a configuration of a physical random number generation device according to the third embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a physical random number generation device according to the fourth embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration of a physical random number generation device according to a fifth embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Computational Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Communication System (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 安全な乱数を高速に得ることが可能な物理乱数生成方法及び物理乱数生成装置を提供する。  物理乱数生成装置は、レーザー光L1を照射するレーザー装置1と、レーザー光L1の周波数を弁別する周波数弁別フィルタ2と、透過光L2の強度を電気信号に変換する光検出器13と、光検出器13から当該検出結果として出力されるアナログ信号をディジタルデータに変換するon・off検出器32又はA/D変換器30とから構成される。まず、レーザー装置1から照射されたレーザー光L1を周波数弁別フィルタ2に通す。透過光L2の強さはレーザー光L1の周波数のゆらぎに対応して強弱に変化する。次に、この透過光L2の強さを光検出器13で電気信号に変換し、on・off検出器32又はA/D変換器30を用いて2進乱数に変換する。そして、この2進乱数データがPC31に取り込まれる。

Description

明 細 書
物理乱数生成方法及び物理乱数生成装置
技術分野
[0001] 本発明は、例えば IT技術での秘密保持に関する分野などに利用される物理乱数 の生成方法及びこの方法を実現する物理乱数生成装置に関する。
背景技術
[0002] 従来、例えば特許文献 1に開示されるように、自然界のランダム現象を利用して物 理乱数を生成する物理乱数生成装置が知られている。一般的に、物理乱数生成装 置の雑音源としては、電子回路の熱雑音等が利用されることが多い。物理乱数は、 例えば IT技術での秘密保持を目的とした暗号ィ匕処理など多くの分野で利用されて いる。
特許文献 1:特開 2000— 259395号公報
発明の開示
発明が解決しょうとする課題
[0003] 従来は雑音源として電子回路を用いていたので、ゆらぎ幅が小さく AZD変^^に 入力しても少ない桁でしか安全な乱数が得られなかった。また、従来は電子回路を 用いた AZD変 ^^を用いて 、たので、生成速度が lOOMbitsZ秒から lGbitsZ分 程度であった。本発明者は、電子回路を用いた AZD変換器の下位ビットを用いて 高速乱数生成法の開発を行って来たが、乱数の生成速度は、雑音源のゆらぎの周 波数と AZD変換器の変換速度に依存するので、 lGbitsZ分程度が限度である。
[0004] しかし、高度の情報安全性を追求すると、 1個の有効情報に対して数百個から数千 個の暗号用乱数を必要とするので、膨大な暗号用乱数を高速に生成する必要があ る。
[0005] そこで本発明は上記問題点に鑑み、安全な乱数を高速に得ることが可能な物理乱 数生成方法及び物理乱数生成装置を提供することを目的とする。
課題を解決するための手段
[0006] 本発明の物理乱数生成方法では、レーザー光の周波数を弁別し、当該弁別後の 光を検出し、当該検出結果を数値に変換して乱数を生成することを特徴とする。
[0007] また、本発明の物理乱数生成装置では、レーザー光を照射するレーザー装置と、 前記レーザー光の周波数を弁別する周波数弁別フィルタと、前記周波数弁別フィル タの透過光を検出する光検出器と、前記光検出器の検出結果を数値に変換する数 値変翻とを備えたことを特徴とする。
[0008] このようにすると、周波数ゆらぎの大きいレーザー光力も非常に高速な光の強度変 動(強弱変動)が得られるので、当該光の検出結果には数 GHzにおよぶ白色雑音が 含まれ、この検出結果を数値変換することで高速度で乱数を生成することができる。
[0009] 本発明の物理乱数生成方法では、レーザー光の周波数を弁別し、ハーフミラーを 用いて当該弁別後の光を反射光と透過光とに分割し、前記ハーフミラーの反射光を 検出し、当該検出結果を数値に変換して乱数を生成することを特徴とする。
[0010] また、本発明の物理乱数生成装置では、レーザー光を照射するレーザー装置と、 前記レーザー光の周波数を弁別する周波数弁別フィルタと、前記周波数弁別フィル タの透過光を反射光と透過光とに分割するハーフミラーと、前記ハーフミラーの反射 光を検出する光検出器と、前記光検出器の検出結果を数値に変換する数値変換器 とを備えたことを特徴とする。
[0011] このようにすると、変換速度が制限される AZD変 を用いなくてもよぐ超高速 度で乱数を生成できる。また、光学系のハーフミラーを用いて雑音源を分割している ので、電子回路に比べて、桁数の長い乱数を一度に生成できる。
[0012] 本発明の物理乱数生成方法では、レーザー光の周波数を弁別し、複数のハーフミ ラーを用いて当該弁別後の光を反射光と透過光とに分割し、前記各ハーフミラーの 反射光を複数の光検出器により検出し、前記各光検出器から出力される電気信号を 複数の AZD変 によりそれぞれタイミングをずらしながらディジタルデータに変換 して乱数を生成することを特徴とする。
[0013] また、本発明の物理乱数生成装置方法では、レーザー光を照射するレーザー装置 と、前記レーザー光の周波数を弁別する周波数弁別フィルタと、前記周波数弁別フィ ルタの透過光を反射光と透過光とに分割する複数のハーフミラーと、前記各ハーフミ ラーの反射光を検出する複数の光検出器と、前記各光検出器から出力される電気信 号をディジタルデータに変換する複数の AZD変換器とを備え、前記各 AZD変換 器は、当該 AZD変換のタイミングがそれぞれずれるように構成されたものであること を特徴とする。
[0014] このようにすると、光学系のハーフミラーを用いて雑音源を分割して 、るので、電子 回路に比べて、桁数の長い乱数を一度に生成できる。また、各 AZD変換器力も取 得されるディジタルデータの値をそれぞれ大きく異ならせることができ、暗号化処理に 適した多量の乱数を得ることができる。
[0015] 本発明の物理乱数生成方法では、特定周波数の光を吸収する光吸収物質を用い て前記レーザー光の周波数を弁別すると共に、前記光吸収物質に磁場又は電場を 印加することで、その吸収線の特性を制御することを特徴とする。
[0016] また、本発明の物理乱数生成装置では、前記周波数弁別フィルタが所定の周波数 の光を吸収する光吸収物質から構成されると共に、当該周波数弁別フィルタに磁場 又は電場を印加する磁場発生手段又は電場発生手段を備えたことを特徴とする。
[0017] このようにすると、光吸収物質に磁場又は電場を印加した際に周波数分布に変化 が生じる現象を利用して乱数の性質を変化させることができ、その結果、統計的性質 の異なる乱数が多く存在することで、当該乱数を暗号化処理に利用した場合には解 読が難しくなる。
[0018] 本発明の物理乱数生成方法では、前記レーザー光が周波数の異なる複数のレー ザ一光であることを特徴とする。
[0019] また、本発明の物理乱数生成装置では、前記レーザー装置は、周波数の異なる複 数のレーザー光を照射するものであることを特徴とする。
[0020] このようにすると、周波数の異なる複数のレーザー装置を用いると吸収線の特性の 入射光依存性が軽減し、透過光強度の変化の特性に生じる差を抑制できる。
発明の効果
[0021] 本発明によると、安全な乱数を高速に得ることが可能な物理乱数生成方法及び物 理乱数生成装置を提供することができる。
[0022] また、本発明によると、超高速で桁数の長い乱数を一度に生成することが可能な物 理乱数生成方法及び物理乱数生成装置を提供することができる。 [0023] また、本発明によると、超高速で桁数の長い乱数を一度に多量に生成することが可 能な物理乱数生成方法及び物理乱数生成装置を提供することができる。
[0024] また、本発明によると、暗号ィ匕に適したより安全な乱数を生成することができる。
[0025] また、本発明によると、 2進乱数の性質に悪影響を与える透過光強度の変化の特性 に生じる差を抑制できる。
発明を実施するための最良の形態
[0026] 以下、添付図面を参照しながら、本発明における物理乱数生成方法及び物理乱数 生成装置の好ましい各実施例を説明する。なお、各実施例で共通する部分の説明 は重複するため極力省略する。
[0027] 本発明の特徴は、主に次の 2点である。 1)雑音源としてレーザー光の中で最も雑 音の大きな半導体レーザー光を主として用いるので、ゆらぎが大きく周波数安定度が 悪ぐ 1GHz以上の帯域幅の白色雑音を得ることができ、これを AZD変^^で変換 すると、多くの桁 (ほとんど全ての桁)から安全な暗号用乱数が得られる。 2)電子回路 の AZD変換器の最高動作周波数より遥かに高い周波数の光を用いて分割動作を しているので動作が速ぐ尚且つレーザーの周波数はゆらぎが大きく不安定なので、 超高速でデータを取得しても、安全な暗号用乱数としての性質は失われな 、。
実施例 1
[0028] 本発明における物理乱数生成装置の第 1実施例に関する基本構成を図 1に示す。
本第 1実施例の物理乱数生成装置は、雑音源としてのレーザー光 L1を照射するレ 一ザ一装置 1と、レーザー装置 1から照射されたレーザー光 L1の周波数を弁別する 周波数弁別フィルタ 2と、周波数弁別フィルタ 2で弁別された所定周波数帯域の透過 光 L2の強度を電気信号に変換する光検出器 13と、光検出器 13力 当該検出結果と して出力されるアナログ信号をディジタルデータに変換する数値変^^に相当する AZD変 30とから構成され、最終的にはここで得られたディジタルデータは例え ばパーソナルコンピュータなどの情報処理装置に相当する PC31へ入力され、乱数 データとして各種の暗号化処理に利用されることとなる。 AZD変換器 30は、 on, off の判別のみをする検出素子であれば超高速の動作が可能である。 AZD変換器 30 が複数桁を有する場合、ある特定の桁一桁を用いてもよいが、複数桁を有するので、 その各桁に現れた情報を乱数データとして利用すればより多数の乱数データが得ら れる。
[0029] 本発明では雑音源としてレーザー光 L1を用いているが、一般的に半導体レーザー では「レーザー光の周波数ゆらぎ」(周波数雑音)が顕著に観測される特性があること から、レーザー装置 1は半導体レーザーとするのが好ましい。もちろん、「レーザー光 の周波数ゆらぎ」の大きいレーザーであれば、例えばガスレーザーなどあらゆるレー ザ一を雑音源として用いることができる。
[0030] 周波数弁別フィルタ 2は、例えばセシウムやルビジウムなど特定周波数のレーザー 光を吸収する性質を有する光吸収物質を封入したセル力もなる。また、周波数弁別 フィルタ 2として、例えば光干渉フィルタゃフアブリーペローフィルタなどの各種光フィ ルタを用いることもできる。
[0031] 以下、上記構成による作用について物理乱数生成の手順と共に説明する。
[0032] まず、レーザー装置 1から照射されたレーザー光 L1を周波数弁別フィルタ 2に通す 。周波数ゆらぎの大きいレーザー光 L1を周波数弁別フィルタ 2に通すと、そこからの 透過光 L2の強さはレーザー光 L1の周波数のゆらぎに対応して強弱に変化する。周 波数弁別フィルタ 2にお!/、ては、例えばセシウムやルビジウムなどの原子の光吸収周 波数付近でレーザー光 L 1の周波数がゆら 、で 、ると、レーザー光 L 1が吸収される 場合と吸収されな 、場合とが高速でスイッチングされる。これが周波数弁別フィルタ 2 の透過光 L2となり、この透過光 L2の強弱が高速で変化することになる。すなわち、 周波数弁別フィルタ 2は、レーザー光 L1の周波数ゆらぎ力 透過光 L2の光強度ゆら ぎへ変換する光パラメータ変換手段としての作用を有している。なお、例えば光干渉 フィルタゃフアブリーペローフィルタなどを用いた場合は、このような光フィルタは一般 的にレーザー光の周波数変化に対応して透過光の強さが変化するので、やはり周波 数弁別フィルタ 2を透過する透過光 L2の強弱が高速で変化することになる。
[0033] 次に、この透過光 L2の強さを高速の光検出器 13で例えば電圧などの電気信号に 変換する。 on, off動作をする on 'off検出器 32を用いれば、その出力がそのまま 2進 出力となる。 AZD変 30を用いて 2進乱数に変換することもできる。このとき、 ΑΖ D変 の 2進出力端子に現れる結果がそのまま 2進乱数となる。そして、この 2進 乱数データが PC31に取り込まれる。なお、 AZD変 から出力される 2進乱数 データの或る桁に着目して時系列的に出てくる" 0", "1"を用いて乱数を作ることもで きる。同様に、 2進乱数データの各桁に着目して乱数を生成することができる。このや り方の方が上位ビットが統計学的検定に通らない場合でも下位ビットを用いて乱数を 生成することができ、効率的である。
[0034] 本第 1実施例の物理乱数生成装置では、レーザー装置 1を用いて周波数ゆらぎの 大きいレーザー光 L1を周波数弁別フィルタ 2を通すことにより非常に高速な透過光 L 2の強度変動が得られるので、光検出器 13で得られた電圧には数 GHzにおよぶ白 色雑音が含まれ、 on 'off検出器 32を用いれば超高速で乱数が生成できる。また、 A ZD変 により AZD変換することで高速度で乱数を生成することができる。
[0035] 以上のように本第 1実施例の物理乱数生成方法では、レーザー光 L1の周波数を 弁別し、当該弁別後の透過光 L2を検出し、当該検出結果を数値に変換して乱数を 生成することを特徴とする。
[0036] また、本第 1実施例の物理乱数生成装置では、レーザー光 L1を照射するレーザー 装置 1と、レーザー光 L1の周波数を弁別する周波数弁別フィルタ 2と、周波数弁別フ ィルタ 2の透過光 L2を検出する光検出器 13と、光検出器 13の検出結果を数値に変 換する数値変^^に相当する on'off検出器 32又は AZD変 30とを備えたことを 特徴とする。
[0037] このようにすると、周波数ゆらぎの大き!/、レーザー光 L1から非常に高速な透過光 L 2の強弱変動が得られるので、当該透過光 L2の検出結果には数 GHzにおよぶ白色 雑音が含まれ、この検出結果を数値変換することで高速度で乱数を生成することが できる。従って、安全な乱数を高速に得ることが可能な物理乱数生成方法及び物理 乱数生成装置を提供するができる。
実施例 2
[0038] 本発明における物理乱数生成装置の第 2実施例に関する基本構成を図 2に示す。
本第 1実施例の物理乱数生成装置は、レーザー装置 1と、周波数弁別フィルタ 2と、 後述する検出機構 10とから構成されている。最終的には検出機構 10で得られたディ ジタルデータは例えばパーソナルコンピュータなどの情報処理装置に、乱数データと して各種の暗号ィ匕処理に利用されることとなる。
[0039] ここで検出機構 10の構成にっ 、て詳述する。検出機構 10は、複数のハーフミラー 3 と、複数の光検出器 13と、光検出器 13の検出結果の大小関係から 2進数の" 0"又は" 1"を判別する例えばコンパレータなど力 なる数値変^^に相当する判別器 5とを 備えている。ハーフミラー 3は、反射光と透過光とを 1対 1に分割する作用を持つハー フミラー 3a, 3b,…を複数並設したものである。検出機構 10には、ハーフミラー 3a, 3 b,…と一対となるように光検出器 13a, 13b,…が設けられ、透過光が減衰して光検 出器 13が動作しなくなるまで当該一対の構成が繰り返し設けられている。またコンパ レータの代りに AZD変翻を用いることもできる。
[0040] 以下、上記構成による作用について物理乱数生成の手順と共に説明する。
[0041] レーザー装置 1よりのレーザー光 L1を周波数弁別フィルタ 2を通す。光の強弱が高 速で変化するまでの説明は、図 1で示した第 1実施例と同じである。本第 2実施例で は、その後段に検出機構 10を接続し、周波数弁別フィルタ 2からの透過光 L2を検出 機構 10のハーフミラー 3aに通す。ハーフミラー 3aでは透過光 L2の半分が反射され て光検出器 13aに到達し、残りの半分は次のハーフミラー 3bに到達する。ハーフミラ 一 3bで反射された光は光検出器 13bに到達する。この構成を光が減衰し光検出器 1 3が動作しなくなるまで続ける。光検出器 13力もの信号は予め定められたレベル(閾 値)を超えれば 2進数の" 1"に対応させる一方、超えなければ" 0"に対応させる on, o ff動作をする。
[0042] 現在の技術では周波数弁別フィルタ 2を通過した透過光 L2は lOOmWにすること は容易であり、光検出器 13は lOOnWまで検出可能であるから、この場合、 19個のハ 一フミラーを用い、 20桁の 2進乱数を得ることができる。これを 10GHzの高速で実行 することができる。
[0043] 勿論、或る桁に着目して、ある時間(例えば Ins)で時系列的に出てくる" 0", "1"を 用いて乱数列を作ることもできる。各桁に着目して乱数を生成すれば一度に桁数分 の乱数列ができる。このやり方の方が上位ビットが統計学的検定に通らない場合でも 下位ビットを用いて乱数を生成することができ、効率的である。
[0044] 本第 2実施例では、変換速度が制限される AZD変換器 30を用いないので、超高 速度で乱数を生成できる。また、光学系を用いているので、電子回路に比べて、桁数 の長 、乱数を一度に生成できる。
[0045] 本第 2実施例の変形例として、図 3に示すように、図 2に示す構成において判別器 5 の代りに AZD変翻30を用いることもできる。この場合、例えば各 AZD変翻30 のサンプリング周波数を相異なる値に設定したり、光検出器 13と AZD変 との 間に、光検出器 13からの信号の伝達を遅らせる遅延回路を挿入するなどして、光検 出器 13からの信号をサンプリング (データ採取)するタイミングを各 AZD変換器 30で ずらすよう構成する。各 AZD変 30のサンプリングタイミングを非同期とすること により、各 AZD変 から取得されるディジタルデータの値をそれぞれ大きく異 ならせることができ、暗号ィ匕処理に適した多量の乱数を得ることができる。
[0046] 以上のように本第 2実施例の物理乱数生成方法では、レーザー光 L1の周波数を 弁別し、複数のハーフミラー 3を用いて当該弁別後の透過光 L2を反射光と透過光と に分割し、ハーフミラー 3の反射光を検出し、当該検出結果を数値に変換して乱数を 生成することを特徴とする。
[0047] また、本第 2実施例の物理乱数生成装置では、レーザー光 L1を照射するレーザー 装置 1と、レーザー光 L1の周波数を弁別する周波数弁別フィルタ 2と、周波数弁別フ ィルタ 2の透過光 L2を反射光と透過光とに分割するハーフミラー 3と、ハーフミラー 3 の反射光を検出する光検出器 13と、光検出器 13の検出結果を数値に変換する数値 変 に相当する判別器 5とを備えたことを特徴とする。
[0048] このようにすると、変換速度が制限される AZD変 を用いなくてもよぐ超高 速度で乱数を生成できる。また、光学系のハーフミラーを用いて雑音源を分割してい るので、電子回路に比べて、桁数の長い乱数を一度に生成できる。以上より、超高速 で桁数の長い乱数を一度に生成することが可能な物理乱数生成方法及び物理乱数 生成装置を提供するができる。
[0049] 本第 2実施例の変形例における物理乱数生成方法では、レーザー光 L1の周波数 を弁別し、複数のハーフミラー 3を用いて当該弁別後の透過光 L2を反射光と透過光 とに分割し、各ハーフミラー 3の反射光を複数の光検出器 13により検出し、各光検出 器 13から出力される電気信号を複数の AZD変 30によりそれぞれタイミングをず らしながらディジタルデータに変換して乱数を生成することを特徴とする。
[0050] また、本第 2実施例の変形例における物理乱数生成装置方法では、レーザー光 L1 を照射するレーザー装置 1と、レーザー光 L1の周波数を弁別する周波数弁別フィル タ 2と、周波数弁別フィルタ 2の透過光 L2を反射光と透過光とに分割する複数のハー フミラー 3と、各ハーフミラー 3の反射光を検出する複数の光検出器 13と、各光検出器 13から出力される電気信号をディジタルデータに変換する複数の AZD変 30と を備え、各 AZD変 30は、当該 AZD変換のタイミングがそれぞれずれるように 構成されたものであることを特徴とする。
[0051] このようにすると、光学系のハーフミラー 3を用いて雑音源を分割して 、るので、電 子回路に比べて、桁数の長い乱数を一度に生成できる。また、各 AZD変換器 30か ら取得されるディジタルデータの値をそれぞれ大きく異ならせることができ、暗号化処 理に適した多量の乱数を得ることができる。以上より、超高速で桁数の長い乱数を一 度に多量に生成することが可能な物理乱数生成方法及び物理乱数生成装置を提供 することができる。
[0052] なお、光検出器 13のあとに増幅器を入れて力も判別器 5に接続することができる。も し、判別器 5の代りに複数の AZD変換器 30を用いれば、 AZD変換器の桁数が多 いので結果的に多量の乱数が得られる。
実施例 3
[0053] 本発明における物理乱数生成装置の第 3実施例に関する基本構成を図 4に示す。
本第 3実施例の物理乱数生成装置は、レーザー装置 1と、レーザー装置 1から照射さ れたレーザー光 L1の周波数を弁別する周波数弁別フィルタに相当するセル 20と、検 出機構 10とから構成されている。本第 3実施例では、周波数弁別フィルタとして例え ばセシウムやルビジウムなどを封入したセル 20を用い、その後段に検出機構 10を用 いて乱数を生成する。検出機構 10は図 2に示したものと同様の構成のものである。そ して、検出機構 10で得られたディジタルデータは例えばパーソナルコンピュータなど の情報処理装置に、乱数データとして各種の暗号ィ匕処理に利用されることとなる。
[0054] 上記構成による作用に関して、光の強弱が高速で変化するまでの説明は、第 1実 施例と同じである。また、検出機構 10による光検出に関しては第 2実施例と同じであ る。
[0055] 本第 3実施例では、セシウムやルビジウムなどを封入したセル 20の吸収周波数付近 のゆらぎ周波数を持つレーザー光を用いると、非常に急峻な光の強弱が得られ、高 速乱数生成が可能である。
実施例 4
[0056] 本発明における物理乱数生成装置の第 4実施例に関する基本構成を図 5に示す。
図 5では、図 4に示した構成にカ卩え、セル 20に外部から磁場 M (又は電場でもよい)を 印加して 、る。セシウムやルビジウムなどを封入したセル 20に外部力も例えば磁場 M や電場を印加することで透過光 L2の周波数分布が変化する。この現象はゼーマンス ベクトルとして知られている力 本第 4実施例では、この透過光 L2の周波数分布の変 化を用いて 2進乱数の性質を変化させることができる。その結果、統計的性質の異な る乱数が多く存在することで、当該乱数を暗号ィ匕処理に利用した場合には解読が難 しくなる。
[0057] 以上のように本第 4実施例の物理乱数生成方法では、特定周波数の光を吸収する 光吸収物質を封入したセル 20を用 、てレーザー光 L 1の周波数を弁別すると共に、 セル 20に磁場又は電場を印加することで、その吸収線の特性を制御することを特徴 とする。
[0058] また、本第 4実施例の物理乱数生成装置では、周波数弁別フィルタが所定の周波 数の光を吸収する光吸収物質を封入したセル 20から構成されると共に、当該周波数 弁別フィルタとしてのセル 20に磁場又は電場を印加する磁場発生手段又は電場発 生手段を備えたことを特徴とする。
[0059] このようにすると、セル 20に封入された光吸収物質に磁場又は電場を印加した際に 周波数分布に変化が生じる現象を利用して乱数の性質を変化させることができ、そ の結果、統計的性質の異なる乱数が多く存在することで、当該乱数を暗号ィ匕処理に 利用した場合には解読が難しくなる。従って、暗号ィ匕に適したより安全な乱数を生成 することができる。
実施例 5
[0060] 本発明における物理乱数生成装置の第 5実施例に関する基本構成を図 6に示す。 図 6では、図 4又は図 5に示した構成に加え、レーザー装置 1の他に周波数の異なる レーザー装置 22を追加してセル 20を光励振し、透過光 L2の性質を制御している。ゆ らぎ特性の異なる 2個(或いはそれ以上)のレーザーを組合せることでより複雑な周波 数変動が起り、より高速な乱数生成が可能となる。レーザー装置 1のみでは周波数弁 別フィルタとしてセル 20を用いた場合に、吸収線の特性が入射光により変化すること がある。その結果、レーザー光 L1を入射した直後と少し時間が経過した時点とでの、 透過光 L2の強度の変化の特性に差が生じる可能性があり、この差が 2進乱数の性 質に悪影響を与える場合がある。これを避けるために、周波数の異なるもう一つのレ 一ザ一装置 22を追加すると吸収線の特性の入射光依存性を軽減し、透過光強度の 変化の特性に生じる差を抑制できる。この周波数分布の方が統計的乱数検定をパス し易い。
[0061] 以上のように本第 5実施例の物理乱数生成方法では、雑音源としてのレーザー光 が周波数の異なる複数のレーザー光 LI, L3であることを特徴とする。
[0062] また、本第 5実施例の物理乱数生成装置では、レーザー装置 1, 22は、周波数の異 なる複数のレーザー光 LI, L3を照射するものであることを特徴とする。
[0063] このようにすると、周波数の異なる複数のレーザー装置 1, 22を用いると、より高速な 乱数生成が可能となり、かつ吸収線の特性の入射光依存性が軽減し、透過光強度 の変化の特性に生じる差を抑制できる。従って、 2進乱数の性質に悪影響を与える透 過光強度の変化の特性に生じる差を抑制できる。
[0064] なお、本発明は、上記各実施例に限定されるものではなぐ本発明の趣旨を逸脱し な!、範囲で変更可能である。本発明の物理乱数生成方法及び物理乱数生成装置 で得られた 2進乱数に関しては、例えばそれらを組合わせたり、演算したりするなどし て最終的な乱数データを生成するよう構成してもよ 、。
図面の簡単な説明
[0065] [図 1]本発明の第 1実施例における物理乱数生成装置の構成を示すブロック図であ る。
[図 2]本発明の第 2実施例における物理乱数生成装置の構成を示すブロック図であ る。 [図 3]同上、物理乱数生成装置の変形例を示すブロック図である。
圆 4]本発明の第 3実施例における物理乱数生成装置の構成を示すブロック図であ る。
圆 5]本発明の第 4実施例における物理乱数生成装置の構成を示すブロック図であ る。
[図 6]本発明の第 5実施例における物理乱数生成装置の構成を示すブロック図であ る。
符号の説明
1 レーザー装置
2 周波数弁別フィルタ
3 ハーフミラー
5 判別器 (数値変換器)
13 光検出器
20 セル (光吸収物質)
22 レーザー装置
30 AZD変 (数値変 )
32 on'off検出器 (数値変換器)

Claims

請求の範囲
[1] レーザー光の周波数を弁別し、当該弁別後の光を検出し、当該検出結果を数値に 変換して乱数を生成することを特徴とする物理乱数生成方法。
[2] 前記検出される光は、前記弁別後の光をハーフミラーを用いて反射光と透過光と〖こ 分割することにより生ずる当該反射光であることを特徴とする請求項 1記載の物理乱 数生成方法。
[3] 前記弁別後の光を複数のハーフミラーを用いて反射光と透過光とに分割し、前記各 ハーフミラーの反射光を複数の光検出器により検出し、前記各光検出器から出力さ れる電気信号を複数の AZD変 によりそれぞれタイミングをずらしながらディジタ ルデータに変換して前記乱数を生成することを特徴とする請求項 1記載の物理乱数 生成方法。
[4] 特定周波数の光を吸収する光吸収物質を用いて前記レーザー光の周波数を弁別す ると共に、前記光吸収物質に磁場又は電場を印加することで、その吸収線の特性を 制御することを特徴とする請求項 1記載の物理乱数生成方法。
[5] 特定周波数の光を吸収する光吸収物質を用いて前記レーザー光の周波数を弁別す ると共に、前記光吸収物質に磁場又は電場を印加することで、その吸収線の特性を 制御することを特徴とする請求項 2記載の物理乱数生成方法。
[6] 特定周波数の光を吸収する光吸収物質を用いて前記レーザー光の周波数を弁別す ると共に、前記光吸収物質に磁場又は電場を印加することで、その吸収線の特性を 制御することを特徴とする請求項 3記載の物理乱数生成方法。
[7] 前記レーザー光が周波数の異なる複数のレーザー光であることを特徴とする請求項 1〜6のいずれか 1つに記載の物理乱数生成方法。
[8] レーザー光を照射するレーザー装置と、前記レーザー光の周波数を弁別する周波 数弁別フィルタと、前記周波数弁別フィルタの透過光を検出する光検出器と、前記光 検出器の検出結果を数値に変換する数値変 とを備えたことを特徴とする物理乱 数生成装置。
[9] 前記周波数弁別フィルタの透過光を反射光と透過光とに分割するハーフミラーと、前 記光検出器の検出結果を数値に変換する数値変 とを備え、前記光検出器が前 記ハーフミラーの反射光を検出するよう構成されたことを特徴とする請求項 8記載の 物理乱数生成装置。
[10] 前記周波数弁別フィルタの透過光を反射光と透過光とに分割する複数のハーフミラ 一を備え、前記光検出器が前記各ハーフミラーの反射光を検出するよう複数構成さ れると共に、前記数値変^^が、前記各光検出器力 出力される電気信号をデイジ タルデータに変換し、かつ当該 AZD変換のタイミングがそれぞれずれるように構成 された複数の AZD変換器から構成されることを特徴とする請求項 8記載の物理乱数 生成装置。
[11] 前記周波数弁別フィルタが所定の周波数の光を吸収する光吸収物質から構成され ると共に、当該周波数弁別フィルタに磁場又は電場を印加する磁場発生手段又は電 場発生手段を備えたことを特徴とする請求項 8記載の物理乱数生成装置。
[12] 前記周波数弁別フィルタが所定の周波数の光を吸収する光吸収物質から構成され ると共に、当該周波数弁別フィルタに磁場又は電場を印加する磁場発生手段又は電 場発生手段を備えたことを特徴とする請求項 9記載の物理乱数生成装置。
[13] 前記周波数弁別フィルタが所定の周波数の光を吸収する光吸収物質から構成され ると共に、当該周波数弁別フィルタに磁場又は電場を印加する磁場発生手段又は電 場発生手段を備えたことを特徴とする請求項 10記載の物理乱数生成装置。
[14] 前記レーザー装置は、周波数の異なる複数のレーザー光を照射するものであること を特徴とする請求項 8〜 13の 、ずれか 1つに記載の物理乱数生成装置。
PCT/JP2006/319839 2006-01-20 2006-10-04 物理乱数生成方法及び物理乱数生成装置 WO2007083417A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/917,938 US20100217789A1 (en) 2006-01-20 2006-10-04 Physical random number generation method and physical random number generator
JP2007554810A JP4423431B2 (ja) 2006-01-20 2006-10-04 物理乱数生成方法及び物理乱数生成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-013151 2006-01-20
JP2006013151 2006-01-20

Publications (1)

Publication Number Publication Date
WO2007083417A1 true WO2007083417A1 (ja) 2007-07-26

Family

ID=38287377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319839 WO2007083417A1 (ja) 2006-01-20 2006-10-04 物理乱数生成方法及び物理乱数生成装置

Country Status (3)

Country Link
US (1) US20100217789A1 (ja)
JP (1) JP4423431B2 (ja)
WO (1) WO2007083417A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070009A (ja) * 2007-09-12 2009-04-02 Sony Corp 乱数生成装置および乱数生成方法
JP2009230200A (ja) * 2008-03-19 2009-10-08 Nippon Telegr & Teleph Corp <Ntt> カオスレーザ発振器と、それを用いた超高速物理乱数生成装置とその方法と、そのプログラムと記録媒体
GB2473078A (en) * 2009-08-27 2011-03-02 Univ Bruxelles Network distributed quantum random number generation
KR20180073663A (ko) * 2015-10-27 2018-07-02 푼다시오 인스티튜트 드 시엔시스 포토닉스 다모드 레이저 캐비티 내 양자 난수 발생 프로세스
WO2019107233A1 (ja) * 2017-11-28 2019-06-06 日本電気株式会社 乱数発生回路および乱数発生方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090132624A1 (en) * 2004-10-15 2009-05-21 Koninklijke Philips Electronics N.V. Integrated circuit with a true random number generator
US8479009B2 (en) * 2010-09-17 2013-07-02 International Business Machines Corporation Wearable time-bracketed video authentication
US10019235B2 (en) 2011-09-30 2018-07-10 Los Alamos National Security, Llc Quantum random number generators
KR101564954B1 (ko) * 2012-10-08 2015-11-02 에스케이 텔레콤주식회사 광원과 단일광자검출기를 이용한 난수 생성 방법 및 장치
US9072109B2 (en) * 2013-03-14 2015-06-30 Board Of Trustees Of Michigan State University Collision detection and bitwise arbitration in multicarrier wireless networks
WO2015009499A1 (en) * 2013-07-17 2015-01-22 Board Of Trustees Of Michigan State University Dynamic channel bonding in multicarrier wireless networks
KR102200221B1 (ko) * 2015-05-13 2021-01-11 한국전자통신연구원 다중 출력 양자 난수 발생기
US10552145B2 (en) * 2017-12-12 2020-02-04 Cypress Semiconductor Corporation Memory devices, systems, and methods for updating firmware with single memory device
US10481873B2 (en) 2018-01-31 2019-11-19 Seagate Technology Llc Random number generation using heat assisted magnetic recording
US11329743B2 (en) 2019-05-23 2022-05-10 Asahi Kasei Microdevices Corporation Transmission system, transmitting apparatus, receiving apparatus, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998016008A1 (de) * 1996-10-10 1998-04-16 Deutsche Telekom Ag Optischer zufallsgenerator basierend auf der einzelphotonenstatistik am optischen strahlteiler
WO1998058309A1 (en) * 1997-06-16 1998-12-23 Kim Hong J A random number generator
JP2001520839A (ja) * 1998-02-02 2001-10-30 ドイッチェ テレコム アーゲー 2進シーケンスの乱数を発生させるための方法および装置
JP2005250714A (ja) * 2004-03-03 2005-09-15 Univ Nihon 光子乱数発生器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04307822A (ja) * 1991-04-05 1992-10-30 Nippon Telegr & Teleph Corp <Ntt> 波長多重光通信装置
DE19826802C2 (de) * 1998-06-16 2000-05-25 Deutsche Telekom Ag Verfahren zur Erzeugung einer Zufallszahl auf quantenmechanischer Grundlage und Zufallsgenerator
US6539410B1 (en) * 1999-03-17 2003-03-25 Michael Jay Klass Random number generator
US6947559B2 (en) * 2000-02-18 2005-09-20 Kent State University Random number generator based on turbulent convection
US7519641B2 (en) * 2003-08-27 2009-04-14 Id Quantique S.A. Method and apparatus for generating true random numbers by way of a quantum optics process
JP4800674B2 (ja) * 2005-06-10 2011-10-26 株式会社日立製作所 通信方法および通信システム
US7844649B2 (en) * 2006-04-20 2010-11-30 Hewlett-Packard Development Company, L.P. Optical-based, self-authenticating quantum random number generators
US7849121B2 (en) * 2006-04-20 2010-12-07 Hewlett-Packard Development Company, L.P. Optical-based, self-authenticating quantum random number generators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998016008A1 (de) * 1996-10-10 1998-04-16 Deutsche Telekom Ag Optischer zufallsgenerator basierend auf der einzelphotonenstatistik am optischen strahlteiler
WO1998058309A1 (en) * 1997-06-16 1998-12-23 Kim Hong J A random number generator
JP2001520839A (ja) * 1998-02-02 2001-10-30 ドイッチェ テレコム アーゲー 2進シーケンスの乱数を発生させるための方法および装置
JP2005250714A (ja) * 2004-03-03 2005-09-15 Univ Nihon 光子乱数発生器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070009A (ja) * 2007-09-12 2009-04-02 Sony Corp 乱数生成装置および乱数生成方法
JP2009230200A (ja) * 2008-03-19 2009-10-08 Nippon Telegr & Teleph Corp <Ntt> カオスレーザ発振器と、それを用いた超高速物理乱数生成装置とその方法と、そのプログラムと記録媒体
GB2473078A (en) * 2009-08-27 2011-03-02 Univ Bruxelles Network distributed quantum random number generation
JP2013503374A (ja) * 2009-08-27 2013-01-31 ユニベルシテ リブル ドゥ ブリュッセル ネットワーク分散量子乱数発生
GB2473078B (en) * 2009-08-27 2014-05-07 Univ Bruxelles Network distributed quantum random number generation
US8930429B2 (en) 2009-08-27 2015-01-06 Universite Libre De Bruxelles Network distributed quantum random number generation
KR20180073663A (ko) * 2015-10-27 2018-07-02 푼다시오 인스티튜트 드 시엔시스 포토닉스 다모드 레이저 캐비티 내 양자 난수 발생 프로세스
JP2019500707A (ja) * 2015-10-27 2019-01-10 フンダシオ インスティチュート デ サイエンセズ フォトニクス マルチモードレーザキャビティにおける量子乱数生成のための方法
KR102626031B1 (ko) 2015-10-27 2024-01-18 푼다시오 인스티튜트 드 시엔시스 포토닉스 다모드 레이저 캐비티 내 양자 난수 발생 프로세스
WO2019107233A1 (ja) * 2017-11-28 2019-06-06 日本電気株式会社 乱数発生回路および乱数発生方法
JPWO2019107233A1 (ja) * 2017-11-28 2020-11-19 日本電気株式会社 乱数発生回路および乱数発生方法
JP6992819B2 (ja) 2017-11-28 2022-01-13 日本電気株式会社 乱数発生回路および乱数発生方法
US11442699B2 (en) 2017-11-28 2022-09-13 Nec Corporation Random number generating circuit and random number generating method

Also Published As

Publication number Publication date
JPWO2007083417A1 (ja) 2009-06-11
JP4423431B2 (ja) 2010-03-03
US20100217789A1 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
WO2007083417A1 (ja) 物理乱数生成方法及び物理乱数生成装置
CN113037463B (zh) 基于混沌放大量子噪声实时高速生成量子随机码的方法
CN106445465B (zh) 一种基于相位噪声的真随机数产生装置
EP1408629B1 (en) Optical sampling system for simultaneously monitoring intensity modulation and frequency modulation
CN110187867A (zh) 芯片结构相位噪声采样的量子随机数发生器
JP4950924B2 (ja) カオスレーザ発振器と、それを用いた超高速物理乱数生成装置とその方法と、そのプログラムと記録媒体
CN113821943A (zh) Ase噪声量子随机数产生方案的随机性量化模型及方法
WO2021094606A1 (en) A quantum random number generator
JP4786767B1 (ja) 繰り返し周波数制御装置
CN115390792B (zh) 一种无需反馈控制的量子随机数发生器芯片
CN114780058B (zh) 一种基于真空涨落的量子随机数发生器芯片
US6529674B2 (en) Optical devices employing an optical thresholder
CN113992323B (zh) 一种基于芯片的测量设备无关量子密钥分发系统及方法
CN213659430U (zh) 一种量子随机数发生器芯片
CN112804055A (zh) 连续变量量子密钥分发系统中的动态偏振控制方法、系统及介质
US6160504A (en) Repetitive absorptive thresholding optical quantizer
Rudé et al. Phase diffusion quantum entropy source on a silicon chip
JP7375029B2 (ja) 高ダイナミックレンジでパルス信号を測定する方法及び装置
US6420984B1 (en) Optical kerr effect analog to digital converter
CN110764735B (zh) 一种基于自反馈混沌光的真随机数发生器
CN218918124U (zh) 一种真空涨落量子随机数发生器熵源装置
CN110609673B (zh) 一种基于toad环的真随机数发生器
EP4130977A1 (en) Quantum random number generator
Nishimura et al. Physical-random number generation using laser diodes' inherent noises
Abellan et al. Integrated quantum entropy sources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007554810

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11917938

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811179

Country of ref document: EP

Kind code of ref document: A1