WO2007080980A1 - Ball bearing for spindle pivot section of machine tool, and spindle pivot device of machine tool, using the same - Google Patents

Ball bearing for spindle pivot section of machine tool, and spindle pivot device of machine tool, using the same Download PDF

Info

Publication number
WO2007080980A1
WO2007080980A1 PCT/JP2007/050343 JP2007050343W WO2007080980A1 WO 2007080980 A1 WO2007080980 A1 WO 2007080980A1 JP 2007050343 W JP2007050343 W JP 2007050343W WO 2007080980 A1 WO2007080980 A1 WO 2007080980A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
bearing
ball bearing
cross
row
Prior art date
Application number
PCT/JP2007/050343
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiaki Katsuno
Mitsuho Aoki
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006337342A external-priority patent/JP5092383B2/en
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to CN2007800008266A priority Critical patent/CN101341347B/en
Priority to KR1020077030965A priority patent/KR101057311B1/en
Priority to US11/996,510 priority patent/US20090131235A1/en
Priority to EP07706685.0A priority patent/EP1972801B1/en
Publication of WO2007080980A1 publication Critical patent/WO2007080980A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/50Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/08Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/50Other types of ball or roller bearings
    • F16C19/505Other types of ball or roller bearings with the diameter of the rolling elements of one row differing from the diameter of those of another row
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/56Systems consisting of a plurality of bearings with rolling friction in which the rolling bodies of one bearing differ in diameter from those of another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3806Details of interaction of cage and race, e.g. retention, centring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • F16C33/7853Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with one or more sealing lips to contact the inner race
    • F16C33/7856Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with one or more sealing lips to contact the inner race with a single sealing lip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T483/00Tool changing
    • Y10T483/17Tool changing including machine tool or component
    • Y10T483/1702Rotating work machine tool [e.g., screw machine, lathe, etc.]
    • Y10T483/1705Tool support comprises rotary spindle

Definitions

  • the present invention uses a ball bearing for a spindle turning device of a machine tool that performs turning, grinding, lapping and the like in a machine tool represented by a milling machine, a lathe, a grinding machine, and a lapping machine, and the same.
  • the present invention relates to a spindle turning device for machine tools.
  • a spindle turning device that drives the spindle to turn on a machine tool such as a milling machine, a lathe, or a grinding machine
  • a work piece In order to improve the machining accuracy of workpieces (for example, roundness, cylindricity, inner and outer diameter dimensional accuracy), machined surface quality (for example, glossiness of the machined surface, texture, etc.), and machined surface roughness, The following functions are usually required.
  • NC machine tools machine tools with so-called numerical control functions
  • NC lathes NC milling machines, machining centers that can handle various machining conditions with a single machine tool.
  • complex NC machine tools with the function of a machining center added to NC lathes have also appeared.
  • Multi-function machine tools such as machining centers and complex NC machine tools have more machine components and force than single-function machine tools in the floor space and height direction required by one machine. Space is big. Therefore, in addition to satisfying the functions (1) to (3) described above, components such as bearings are further required to save space.
  • the cross roller bearing has a configuration in which a large number of cylindrical cores 3 are arranged between an inner ring 1 and an outer ring 2 so as to roll freely. It can receive axial load and moment load in both directions and save space.
  • the rolling element is a roller, and the rolling contact surface of the roller 3 is in line contact with the raceway groove la, 2a. Due to slight deformation when incorporated in uzing, the contact state of the line contact portion becomes unstable and torque unevenness occurs. In addition, for a spindle turning part of a machine tool, a preload is often applied to the bearing in order to achieve high accuracy and high rigidity, but in this case, the torque unevenness due to the above deformation becomes even larger.
  • the four-point contact ball bearing has a configuration in which a large number of balls 6 are arranged between the inner ring 4 and the outer ring 5 so as to be able to roll. It can receive axial load and moment load in both directions, and can save space.
  • the rolling element is a ball, so when receiving a pure axial load, or when an axial load predominates over a radial load, the torque is smaller than the cross roller bearing of the same size, but the axial load
  • the radial load prevails against each other, or when receiving a pure radial load, each ball 6 comes into contact with the raceway grooves 4a and 5a at four points, so that the spin slip between the ball 6 and each raceway groove 4a and 5a occurs.
  • the large torque is large.
  • preload is often applied to the bearings in order to achieve high accuracy and high rigidity. The torque further increases due to contact with the grooves 4a and 5a at four points.
  • the two-row combination ball bearing has a configuration in which an anguilla ball bearing or the like in which a plurality of balls 9 are rotatably arranged between an inner ring 7 and an outer ring 8 is combined in two rows.
  • each single-row bearing has two points of contact between the raceway grooves of the ball 9 and the inner and outer rings 7, 8, so that torque can be reduced, but twice that of the single-row bearing.
  • a space in the axial direction is required, and cross roller bearings are inferior to 4-point contact ball bearings in terms of compactness.
  • a two-row combination ball bearing having a configuration in which an extremely thin deep groove ball bearing is combined with an anguilla ball bearing (see FIG. 34) for the purpose of space saving.
  • the shaft is usually formed at the end of the shaft 11 as shown in FIG.
  • the inner ring 7 of the two-row combination bearing is fitted to the stepped portion 12 and the free end of the inner ring 7 is pressed to the end of the shaft 11 by the inner ring presser 14 fastened with the bolt 13 to the rotary shaft 11.
  • the inner ring 7 of the two-row combination bearing is fixed, and the outer ring 8 of the two-row combination bearing is fitted to the step 16 formed at the end of the housing 15 covering the rotating shaft 11, and the free end of the outer ring is fitted to the housing.
  • the outer ring 8 of the two-row combination bearing is fixed to the housing 15 by being pressed by the outer ring presser 18 fastened to the end of 15 by the bolt 17.
  • the two-row combined tapered roller bearing is a tapered roller bearing in which a plurality of tapered rollers 24 are arranged between a inner ring 21 and an outer ring 22 via a cage 23 so as to be capable of rolling.
  • the inner ring spacer 25 and the outer ring spacer 26 are combined in two rows.
  • the roller bearing is a roller S rolling element as in the case of the cross roller bearing.
  • the rolling contact surface of the roller 24 is in line contact with the raceway groove, and the end of the roller 24 and the inner ring 21 are in contact with each other. Since the flange 27 is in sliding contact, the torque increases, and twice the axial space of the single row bearing is required. is there.
  • a preload is often applied to the bearing, but in this case, the torque is further increased.
  • Patent Document 1 As a conventional spindle turning device of a machine tool, for example, as described in Japanese translations of PCT publication No. 2004-520944 (hereinafter referred to as Patent Document 1), a mechanical structure centered on a vertical first axis is used.
  • the first half head pivots relative to the first half head via a guide bearing on an inclined plane inclined at 35 ° to the horizontal plane to support the tool spindle and is perpendicular to the inclined plane
  • a second half head that swivels around the second axis with respect to the first half head, and a direct motor that swivels the first and second half heads separately.
  • a spindle head that can rotate between two axes in a state where the second half head is swiveled to rotate the tool spindle so that its central axis is at an elevation angle with respect to the horizontal plane.
  • Patent Document 2 As an example of the rotary table, as described in Japanese Patent Application Laid-Open No. 10-29125 (hereinafter referred to as Patent Document 2), the table is mounted on a support shaft standing at the center of the base. Rotation indexing, which is inserted through a distributor, is rotatably supported by a cross roller bearing on the base, and the table is rotationally driven by a worm gear or direct motor.
  • the device is known.
  • the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and the recent trend toward compounding while maintaining or improving the functions (1) to (3) above. It is an object of the present invention to provide a spindle bearing ball bearing for a machine tool and a spindle machine for a machine tool using the same.
  • a spindle bearing ball bearing for a machine tool is used for a spindle turning section of a machine tool, and a large number of balls are provided between an outer ring raceway groove and an inner ring raceway groove.
  • BZH cross-sectional dimension ratio
  • the ball bearing for a spindle turning part of a machine tool according to claim 2 is characterized in that, in the invention according to claim 1, a seal housing groove is formed on at least one side end surface between the outer ring and the inner ring.
  • An annular seal body is disposed in the seal housing groove, and a cage for positioning the plurality of balls in the circumferential direction is disposed, and the cage is disposed on both axial sides of the pockets for holding the plurality of balls.
  • An annular portion is formed, and the annular portion has one of the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring as a guide surface, and is positioned at a position facing the intersection edge portion of the guide surface and the seal receiving groove portion.
  • a concave groove that avoids contact with the intersection edge is formed in the circumferential direction.
  • a spindle turning device for a machine tool is characterized in that the spindle turning ball bearing according to claim 1 or 2 is provided in a spindle turning portion for turning the spindle. Furthermore, the ball bearing for the spindle turning part according to claim 4 is used for the spindle turning part of the machine tool, and a large number of balls are arranged between the outer ring raceway groove and the inner ring raceway groove in a freely rolling manner.
  • the double-row ball bearing is characterized in that the cross-sectional dimension ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 is (B2ZH2) ⁇ 1.2.
  • a spindle turning device for a machine tool according to claim 5 is the spindle according to claim 4.
  • the ball bearing for the turning part is provided in a spindle turning part for turning the spindle.
  • FIG. 29 is a comparison data of the relative inclination angles of the inner and outer rings when a moment load is applied to each of the single row product of the present invention and the cross roller bearing.
  • the main dimensions of the measuring bearing are Invention product:
  • Rolling element pitch circle diameter ⁇ 192.5
  • Rolling element pitch circle diameter ⁇ 189.7
  • the product of the present invention is compared to the cross roller bearing for both the product of the present invention and the cross roller bearing in which the pitch circle diameters of the rolling elements are substantially the same, based on the moment rigidity comparison data.
  • the motor belt When the product of the present invention was rotated at a low speed by driving
  • the rotating force caused by torque fluctuation was actually confirmed in the case of the cross roller bearing.
  • the dimension series defined by the International Organization for Standardization is 18 (eg 6820), 19 (eg 6924), 10 (eg 6028), 02 (eg 7224A), 03 (eg 7322A)
  • the inner diameter of the bearing is ⁇ 5mn!
  • the above-mentioned cross-sectional dimension ratio (BZH) is set to 0.63 ⁇ : L17.
  • the narrowest ball bearing of the conventional standard single row ball bearing is set by setting the cross sectional dimension ratio (BZH) of these ball bearings to the maximum value of 1.17, approximately 1Z 2 times, that is, less than 0.63.
  • BZH cross sectional dimension ratio
  • claim 1 Can be arranged in combination with two rows of ball bearings.
  • each ball since each ball always contacts the raceway groove of the inner and outer rings at two points, an increase in torque due to a large spin of the ball can be suppressed as in a four-point contact ball bearing.
  • cross-roller bearings Compared to two-row combined tapered roller bearings, cross-roller bearings have lower rolling resistance and can achieve lower torque.
  • the ball diameter is also about half that of the conventional ball bearing, but conversely the number of balls per row increases and the bearing rigidity is reduced. Increased compared to conventional ball bearings.
  • rolling fatigue life time is a problem in practice even if the load capacity of the bearing is reduced by reducing the ball diameter. None become.
  • each of the outer ring and the inner ring is formed with a seal accommodating groove, and an annular seal body is disposed in each of the seal accommodating grooves.
  • the conventional standard single unit is the same as when combining single row narrow ball bearings according to claim 1 in two rows.
  • the double row ball bearing according to claim 4 can be arranged in the axial width space of the row ball bearing, and it is also possible to apply a preload or apply a moment load.
  • Other operational effects are the same as those obtained when the single-row narrow ball bearing according to claim 1 is combined in two rows.
  • FIG. 30 is a comparison of calculated moment stiffness of various bearings.
  • the width of the single row according to claim 1 Narrow anguilla ball bearings (contact angle 30 °: calculation example of total ball bearings) are combined in two rows, and the invention examples A to E in which the inner and outer ring raceway radius of curvature are changed are all cross roller bearings, standard
  • the moment stiffness is larger than the two-row combined angular contact ball bearings and four-point contact ball bearings.
  • the invention example B can hold moment rigidity 2.4 times that of a cross roller bearing, 1.9 times that of a standard two-row combination anguilla ball bearing, and 3.3 times that of a 4-point contact ball bearing. It is.
  • Each design preload clearance is -0.001mm for the examples A to E of the present invention, standard two-row combination anguilla ball bearing and four-point contact ball bearing, and -0.001mm for the cross roller bearing. (When using a cross roller bearing with a preload clearance smaller than -0.001 mm, the torque may be excessive and may be unusable in practice).
  • the appropriate ball diameter of the narrow ball bearing according to the present invention varies depending on whether or not a seal or the like is mounted, but in order to increase rigidity, if the ball diameter is extremely reduced, the ball and inner and outer ring raceway grooves and Since the surface pressure between the contact parts increases and the pressure scar resistance decreases, the bearing width (B) or (B2Z2) is preferably 30% to 90%.
  • the contact angle of the bearing is preferably within a range of approximately 10 to 60 ° of force selected according to required rigidity (for example, moment rigidity) and required torque. Furthermore, according to the direction and magnitude of the load, the contact angle of each combined single row bearing may be changed as necessary, or, in the case of a double row bearing, the contact angle between each row may be changed! / ⁇ .
  • the radius of curvature of the inner and outer ring raceway grooves depends on the required rigidity and torque characteristics.
  • each raceway groove of the inner and outer rings may not be the same, or may be different between each row of the double row bearings between the single row bearings to be combined.
  • the axial sectional width B and the radial sectional height H are Section ratio (B
  • ZH is set to (BZH) ⁇ 0.63, and in the case of a double row ball bearing, the sectional ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 is (B2ZH2) ⁇ 1.2
  • B2 / H2 the sectional ratio between the axial sectional width B2 and the radial sectional height H2
  • FIG. 1 is a side view with a cross section of a main part showing a spindle turning device for a machine tool according to a first embodiment of the present invention (corresponding to claim 1 or 3).
  • FIG. 2 is a side view with a cross section of the main part showing a modification of the main spindle turning device of the machine tool according to the first embodiment (corresponding to claim 1 or 3) of the present invention.
  • FIG. 3 is a cross-sectional view of a single row anguilla ball bearing showing a first embodiment of a ball bearing for a spindle turning part according to the present invention.
  • FIG. 4 is a cross-sectional view of a principal part showing a state in which two rows of single row ball bearings of FIG. 3 are combined.
  • FIG. 5 is a cross-sectional view of an essential part showing a state in which two rows of single row ball bearings, which are another embodiment of the first embodiment of the present invention, are combined.
  • FIG. 6 is a cross-sectional view of an essential part showing a state in which two rows of single row ball bearings of FIG. 3 and single row ball bearings according to another embodiment are combined.
  • FIG. 7 Two-row combination of single row ball bearings, which is another embodiment of the first embodiment of the present invention. It is principal part sectional drawing which shows the state.
  • FIG. 8 is a cross-sectional view of an essential part for explaining a single row ball bearing which is another embodiment of the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the main part showing a state in which three rows of single row ball bearings of FIG.
  • FIG. 10 is a cross-sectional view of a principal part showing a state in which four rows of single row ball bearings of FIG. 3 are combined.
  • FIG. 11 is a cross-sectional view of an essential part showing a state in which the single row ball bearing of FIG. 3 is combined in a two-row front combination.
  • FIG. 12 is a cross-sectional view of an essential part showing a state in which two rows of single row ball bearings which are other embodiments of the first embodiment of the present invention are combined.
  • FIG. 14 is a partial perspective view of the cage when the radial inner force is also seen.
  • FIG. 15 is a view seen from the direction of arrow B in FIG.
  • FIG. 16 (a) is a view as seen from the direction of arrow A in FIG. 13, and FIG. 16 (b) is a view showing a modification of (a).
  • FIG. 17 is a cross-sectional view of an essential part for explaining a single-row ball bearing for a spindle turning part of a machine tool, which is an example of a modification (corresponding to claim 2) of the first embodiment of the present invention.
  • FIG. 19 is a cross-sectional view of an essential part for explaining a modification of the single-row ball bearing for the spindle turning part of the machine tool.
  • FIG. 20 is a cross-sectional view of an essential part for explaining a single-row ball bearing for a main spindle turning part of a machine tool, which is an example of another modified example of the first embodiment of the present invention.
  • FIG. 21 is a cross-sectional view of an essential part for explaining a double-row ball bearing for a spindle turning part of a machine tool, which is an example of an embodiment in a second embodiment (corresponding to claim 4 or 5) of the present invention.
  • FIG. 22 is a cross-sectional view of an essential part for explaining a double row ball bearing which is another embodiment of the second embodiment of the present invention.
  • FIG. 23 is a cross-sectional view of an essential part for explaining a double-row ball bearing which is another embodiment of the second embodiment of the present invention.
  • FIG. 24 is a cross-sectional view of an essential part for explaining a double-row ball bearing which is another embodiment of the second embodiment of the present invention.
  • FIG. 25 is an explanatory diagram for explaining the amount of deformation in the radial direction of the inner ring.
  • FIG. 26 is an explanatory diagram for explaining a method of calculating a cross-sectional secondary moment of the inner ring.
  • FIG. 27 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the amount of deformation of the inner and outer rings in the radial direction.
  • FIG. 28 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the cross-sectional secondary moment I.
  • FIG. 29 is a graph showing a comparison of moment stiffness between the product of the present invention and a cross roller bearing.
  • FIG. 30 is a graph showing a comparison of calculated moment stiffness in various bearings.
  • FIG. 31 is a cross-sectional view of a principal part of a cross roller bearing.
  • FIG. 32 is a cross-sectional view of a principal part of a four-point contact ball bearing.
  • FIG. 33 is a cross-sectional view of a main part of a conventional two-row combination anguilla ball bearing.
  • FIG. 34 is a cross-sectional view of a main part of a conventional two-row combination anguilla ball bearing with a very thin cross section.
  • FIG. 35 is a cross-sectional view showing a state in which a conventional double-row combination anguilla ball bearing with an ultra-thin wall section is mounted on a shaft.
  • FIG. 36 is a cross-sectional view of a main part of a conventional two-row combined tapered roller bearing.
  • FIG. 38 is a cross-sectional view of an essential part for explaining a single-row angular contact ball bearing which is an example of the first embodiment in the third embodiment of the present invention.
  • FIG. 39 is a cross-sectional view of the principal part showing a state in which two rows of single row anguilla ball bearings of FIG. 38 are combined.
  • FIG. 40 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the amount of deformation of the inner and outer rings in the radial direction.
  • FIG. 41 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the cross-sectional secondary moment I. ⁇ 42] An explanatory diagram for explaining the amount of deformation of the inner ring in the radial direction.
  • FIG. 43 is an explanatory diagram for explaining a method of calculating a cross-sectional secondary moment of the inner ring.
  • FIG. 44 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the amount of deformation of the inner and outer rings in the radial direction.
  • FIG. 45 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the cross-sectional secondary moment I. [46] It is a graph showing a comparison of calculated moment stiffness in various bearings.
  • FIG. 47 is an essential part cross-sectional view for explaining a single-row anguilla ball bearing of the first embodiment in the third embodiment.
  • FIG. 48 is a cross-sectional view of an essential part for explaining the single-row anguilla ball bearing of the first embodiment in the third embodiment of the present invention.
  • FIG. 49 is a cross-sectional view of a principal part for explaining a modification of the single row anguilla ball bearing of the first embodiment in the third embodiment of the present invention.
  • FIG. 50 is a cross-sectional view of an essential part for explaining a single-row angular ball bearing according to another modification of the first embodiment in the third embodiment of the present invention.
  • FIG. 51 is a cross-sectional view of a main part showing a state in which two rows of single row ball bearings showing another example of the single row anguilla ball bearing of the first embodiment in the third embodiment of the present invention are combined.
  • FIG. 52 is a cross-sectional view of the cage along the radial direction.
  • FIG. 53 is a partial perspective view of the cage as seen from the radially inner side.
  • FIG. 54 is an essential part cross-sectional view for describing a double-row anguilla ball bearing according to a second embodiment of the third embodiment of the present invention.
  • FIG. 55 is a cross-sectional view showing a conventional deep groove ball bearing.
  • FIG. 56 is a perspective view showing the retainer of FIG. 55.
  • FIG. 57 is a cross-sectional view taken along the line BB in FIG. 55.
  • FIG. 58 is a cross-sectional view taken along the line AA in FIG. 55.
  • FIG. 59 is a cross-sectional view showing a conventional angular contact ball bearing.
  • FIG. 60 is a side view showing the retainer of FIG. 59.
  • FIG. 61 is a cross-sectional view of an essential part for explaining a combination ball bearing as a back combination which is an example of the first embodiment in the fourth embodiment of the present invention.
  • FIG. 62 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the amount of deformation of the inner and outer rings in the radial direction.
  • FIG. 63 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the cross-sectional secondary moment I.
  • FIG. 64 is an explanatory diagram for explaining the amount of deformation in the radial direction of the inner ring.
  • FIG. 65 is an explanatory diagram for explaining a method of calculating a sectional second moment of the inner ring.
  • FIG. 66 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the amount of deformation of the inner and outer rings in the radial direction. is there.
  • FIG. 67 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the cross-sectional secondary moment I.
  • FIG. 68 is a graph showing a comparison of calculated moment stiffness for various bearings.
  • FIG. 69 is a cross-sectional view taken along the radial direction of the cage.
  • FIG. 70 is a partial perspective view of the cage as seen from the radially inner side.
  • FIG. 71 is an arrow view seen from the arrow Y direction of FIG. 69.
  • FIG. 72 is a cross-sectional view taken along the line ZZ in FIG. 69.
  • FIG. 73 is an explanatory diagram for explaining the operation when the cage is moved in the axial direction.
  • FIG. 75 is an essential part cross-sectional view showing a state in which grease is enclosed in FIG. 61.
  • FIG. 76 is a cross-sectional view of relevant parts showing a combined bearing in front combination.
  • FIG. 77 is a cross-sectional view of a principal part showing another example of an annular seal body.
  • FIG. 78 is a cross-sectional view of an essential part for explaining a double-row angular contact ball bearing which is an example of a fifth embodiment in the fourth embodiment of the present invention.
  • FIG. 1 is a side view in cross section of a main portion showing a first embodiment (corresponding to claim 1 or 3) when the spindle turning device of a machine tool according to the present invention is applied to, for example, a 5-axis machining center. It is.
  • 30 is a spindle turning device for a machine tool.
  • a base 31 fixed to a fixed part of the machining center, a turning base 32 rotatably supported by the base 31, and this turning base And a main spindle body 33 attached to 32.
  • the base 31 has a housing recess 34 for housing a swivel pedestal 32 in which the central force on the left end surface is also recessed on the right side.
  • the swivel pedestal 32 is a ball bearing for a main shaft swivel unit according to the present invention. It is supported rotatably via 35.
  • the swivel base 32 forms a flat mounting surface 36 at the left end opposite the left end surface of the base 31.
  • a disc portion 37 formed, a step portion 38 that protrudes from the right end of the disc portion 37 and holds the inner ring of the main shaft turning portion ball bearing 35 and a step portion 40 that fits and holds the worm wheel 39,
  • the central right end force also has a protrusion 42 formed with a recess 41 to reduce the weight to the left.
  • the outer ring of the spindle turning ball bearing 35 is fitted into a step 45 formed in the receiving recess 34 of the base 31, and the outer ring presser 46 disposed on the left end surface side of the base 31 is turned, for example.
  • the pedestal 32 is fixed to the base 31 by bolting with bolts 47 inserted through through holes (not shown) formed in the disc portion 37 of the base 32.
  • the worm wheel 39 is coupled with a worm 48 coupled to a rotational drive source such as a motor.
  • a rotational drive source such as a motor.
  • the swivel base 32 is attached to a tool body of a spindle body 33 described later, for example.
  • the main spindle body 33 is swung (oscillated) about ⁇ 100 ° in the longitudinal direction.
  • main spindle body 33 is integrated with a main spindle 52 equipped with a rotation drive source for rotating a tool with a tool mounting surface 51 for attaching a tool (not shown) such as an end mill or a drill, and a side surface of the main spindle 52 integrally. And a mounting plate portion 53 bolted to the mounting surface 36 of the disc portion 37 of the formed swivel base 32.
  • a tool such as an end mill or a drill is mounted on the tool mounting surface 51 of the spindle 52.
  • cutting can be performed as a vertical machining center by moving the jig and workpiece (workpiece) relative to each other while being driven to rotate at high speed by a built-in rotation drive source.
  • the main shaft body 33 is moved forward by rotating the swivel pedestal 32 by + 90 ° by rotating the worm seat 32 forward by rotating the worm 48 forward, for example, by a rotational drive source (not shown). Turn the tool 90 ° to bring the tool to the front.
  • cutting can be performed as a horizontal machining center.
  • the worm 48 is driven in the reverse direction by the rotation drive source, and the swivel base, for example, the swivel base 32 and the main spindle body 33 are rotated 90 ° rearward to relatively move the power tool and the work material (workpiece). As a result, cutting can be performed as a horizontal machining center.
  • the spindle turning ball bearing 35 according to the present invention to the spindle turning portion of the spindle turning device 30, the spindle turning ball bearing 35 has both a radial load and a bidirectional direction, as will be described later.
  • the spindle turning ball bearing 35 As well as being able to receive the axial load and moment load, it is possible to achieve higher accuracy (higher rotational accuracy), higher rigidity, lower torque and lower heat generation, and further space saving Therefore, the spindle turning device 30 itself can also save space.
  • the swivel base 32 is rotationally driven by the worm gear.
  • the invention is not limited to this, and the rotational base 32 is rotationally driven by applying another bevel gear mechanism or other gear mechanism.
  • the worm wheel 39 and the worm 48 are omitted, and the stator 61 disposed on the inner peripheral surface of the housing recess 34 of the base 31 and the swivel opposite thereto are arranged.
  • the turning base 32 may be directly driven to turn by a direct motor 63 composed of a rotor 62 disposed on the outer peripheral surface of the projecting portion 42 of the base 32.
  • a direct motor 63 composed of a rotor 62 disposed on the outer peripheral surface of the projecting portion 42 of the base 32.
  • the swivel base 32 includes a base 64 that holds the main spindle turning ball bearing 35 and the rotor 62, and a mounting plate 65 that also serves as an inner ring presser of the main spindle turning ball bearing 35 that is bolted to the base 64. It is configured.
  • the direct motor 63 is not limited to the configuration of the outer rotor type shown in FIG. 2, but a rotor is disposed on the inner peripheral surface of the recess 41 of the protrusion 42, and a stator is disposed on the inner side of the rotor.
  • An inner rotor type may be used.
  • the swivel base 32 is rotatably supported in the housing recess 34 formed in the base 31 .
  • the present invention is not limited to this.
  • the swivel base 32 is rotated through the ball bearing 35 for the main spindle revolving unit according to the present invention. Let's support it freely.
  • the present invention is not limited to this, and is not limited to lathes, milling machines, grinding machines, lapping machines, etc.
  • the present invention can be applied to an arbitrary composite type machine tool provided with a spindle turning device for turning the spindle to add a center function.
  • main spindle turning device 30 is not limited to the above-described configuration, and any configuration may be adopted as long as the main spindle body 33 is supported via the main spindle turning portion ball bearing. it can.
  • the spindle body 33 installed on the turning pedestal 32 of the spindle turning device 30 is rotated with high accuracy (runout accuracy), and (b) the spindle body 33 is driven with low torque.
  • the radial bearing, axial load and moment load generated according to the machining conditions are applied to the ball bearing 35 for the spindle turning part. It can act alone or these loads can act in combination.
  • FIG. 3 shows a first embodiment (corresponding to claim 1) of a ball bearing for a spindle turning part according to the present invention.
  • the main shaft turning part ball bearing (single row ball bearing) 100 shown in the figure has a large number of balls 103 rotatably arranged between a raceway groove 101a of the outer ring 101 and a raceway groove 102a of the inner ring 102.
  • an anguilla ball bearing 100 is used as a two-row rear combination, and is replaced with a 7940A (contact angle 30 °) two-row combination angio ball bearing. take.
  • the contact angle of the anguilla ball bearing 100 is, for example, 30 °.
  • the pitch circle diameter of the balls 103 is as shown in the following formula (1). If you want to increase the moment stiffness by increasing the number of balls per row of force bearings, the following formula (2) The pitch circle diameter of the ball 103 can be shifted to the outer ring side to create the structure shown in Fig. 5! If necessary, the pitch circle diameter of the ball 103 can be reversed by using the following formula (3). May be shifted to the inner ring 102 side (not shown).
  • Ball pitch circle diameter (inner ring inner diameter + outer ring outer diameter) Z2-(1)
  • FIG. 7 shows a back row combination of an anguilla ball bearing 100 having an annular seal body 104 attached to one end in the axial direction.
  • annular seal body 104 is a non-contact type (non-contact with the inner ring 102) inserted into the seal groove 104a of the outer ring 101, and a reinforcing rubber seal (for example, -tolyl rubber'acrylic) of the metal core 105. (Rubber or fluororubber) 10 6 and an annular seal 104 is attached only on the side opposite to the combined end face to save space.
  • FIG. 8 shows an anguilla ball bearing 100 in which annular seal bodies 104 are mounted at both ends in the axial direction.
  • a multi-row combination of three or more rows may be used as shown in FIGS. 9 and 10, and for some reason (for example, misalignment can be avoided when incorporating a bearing). If you want to reduce the moment rigidity, for example, if you want to reduce the internal load load of the bearing as much as possible), as shown in Fig. 11, the front combination (contact angle direction is reversed) may be used. .
  • the angular ball bearing is used, but other ball bearings such as a deep groove ball bearing may be used.
  • the annular seal body may be a contact-type metal core reinforced rubber seal (for example, -tolyl rubber, acrylic rubber or fluororubber), which is not the non-contact type shown in FIGS. You can also use a metal shield plate that is crimped into the seal groove. Also, insert the annular seal body by pushing it into the seal groove on the inner ring 102 side. Or it may be attached by caulking! ⁇ (structure that contacts or does not contact the outer ring).
  • the material of the inner ring 102, the outer ring 101, and the ball 103 is a force that is a bearing steel (eg, SUJ2, SUJ3, etc.) under standard use conditions.
  • a stainless steel material for example, a corrosion resistant material
  • Martensitic stainless steel materials such as SUS440C, austenitic stainless steel materials such as SUS304, precipitation hardened stainless steel materials such as SUS630), titanium alloys and ceramic materials (eg, Si N, SiC, Al 2 O, ZrO, etc.) May be adopted.
  • the lubrication method is not particularly limited, and in a general use environment, a mineral oil-based grease or a synthetic oil-based grease is used.
  • Grease and oil for example, lithium-based, urea-based, etc.
  • FIG. 12 shows an anguilla ball equipped with an annular seal body 104 at one end in the axial direction (the end opposite to the end surface on the combination side) and a retainer 110 that holds the ball 103 in a rollable manner. This is a combination of 100 bearings and 2 backs.
  • the cage 110 includes an annular portion 111 and a plurality of axial directions at substantially equal intervals in the circumferential direction at one end portion of the annular portion 111. And adopting a flexible crown-shaped cage having a column portion 112 projecting from the column portion 112 and a pocket portion 113 formed between the column portions 112 to hold the ball 103 so as to be able to roll in the circumferential direction.
  • the material of the cage 110 is, for example, a synthetic resin material such as polyamide, polyacetal, or polyphenylene sulfide, and a material in which a reinforcing material such as glass fiber or carbon fiber is mixed into the synthetic resin material is used as necessary.
  • the circumferential pitch between adjacent balls 103 is made as small as possible and the number of balls is increased as much as possible. Further, the axial pitch of the balls 103 is shifted to the opposite side of the end face on the combination side as much as possible (Fig. 12: X> X)
  • the ring part 111 of the cage 110 is arranged so as to be on the end face side of the bearing combination, so that the distance between the operating points for increasing the moment rigidity can be increased.
  • a bearing with a cage is used for all ball bearings under conditions where the revolution speed is likely to vary due to changes in the contact angle of each ball, such as the condition of continuous rotation in one direction and the application of a large moment load. It is more effective in terms of low torque and low heat generation in applications where contact between balls or clogging is likely to occur when used.
  • the entrance portion of the pocket portion 113 is slightly smaller than the ball diameter and a pulling force (batching allowance) is provided, the ball 103 will not drop out when assembled into the inner ring 102 and the outer ring 101. Is easy to assemble.
  • the shape of the cage is not limited to this embodiment, and any type other than the separator-type cage disposed between the balls 103 may be used.
  • the material may also be a metal material that is not a synthetic resin material.
  • FIG. 16 (b) is a crown-shaped cage having the same basic structure as FIG. 16 (a), but the adjacent pocket portions 113 are cut in advance at least at one location in the circumferential direction of the annular portion 111. And it is set as the structure which gave the predetermined clearance gap between each cut surface.
  • the thickness of the annular part 111 of the cage in the radial direction cannot be increased (also understood from FIG. 12). Therefore, the cage needs to be positioned with an appropriate gap in the gap between the outer diameter of the inner ring and the inner diameter of the outer ring.
  • the gap between the outer diameter of the inner ring and the inner diameter of the outer ring is approximately the same as the ball diameter. Furthermore, due to the proportional relationship, it is narrow), and due to the narrow structure, the axial gap and the axial thickness must be reduced.
  • the intended application is swivel rotation, and the centrifugal force is not continuously applied to the cage. Therefore, when the present invention is applied to these uses, even if the cage structure as shown in FIG. If necessary, the cut portion of the annular part 111 may be two or more places in the circumferential direction. In this case, it is desirable that the cut points be equally divided in the circumferential direction as much as possible.
  • these ball bearings are applied to the spindle turning device of a machine tool, they are usually used with a preload to increase the rigidity, but there are gaps depending on the conditions or other uses. You can use it.
  • annular seal body 120 is provided on one side of a single-row ball bearing 100 constituted by a single-row all-ball annulus ball bearing shown in FIG. 1, and a plurality of balls 103 are positioned in the circumferential direction.
  • a vessel 130 is provided.
  • seal housing grooves 121 and 122 for housing the annular seal body 120 are disposed, for example, on one end face on the right side of the outer ring 101 and the inner ring 102.
  • the annular seal body 120 is constituted by a reinforced rubber seal (for example, -tolyl rubber 'acrylic rubber or fluororubber) 126 reinforced with a metal core 125 formed in an inverted L shape.
  • the rubber seal 126 has a fitting portion 126a that fits the outer ring 101 on the outer peripheral portion, and a lip portion 126b that contacts the inner ring 102 on the inner peripheral portion.
  • the seal receiving groove 121 of the outer ring 101 is formed in a circumferential direction on the right end side of the inclined inner peripheral surface 101b that is connected to the raceway groove 101a of the outer ring 101, and in the circumferential direction at the bottom of the step part 121a.
  • the seal housing groove 122 of the inner ring 102 is relatively deep on the right end side on the right side of the raceway groove 102a on the cylindrical outer peripheral surface 102b connected to the left and right ends of the raceway groove 102a of the inner ring.
  • a shallow lip portion 126b formed on the inner peripheral surface of the annular seal body 120 formed in the circumferential direction is formed on the bottom surface of the inner surface of the cylindrical seal member 120, and a housing concave portion 122b.
  • the retainer 130 has a pair of annular portions 132a and 132b extending in the axial direction with the pocket portion 131 that accommodates the ball 103 interposed therebetween, and these annular portions 132a and 132b are the inner rings 10 2.
  • the cylindrical outer peripheral surface 102b is mounted as a guide surface.
  • An annular portion 132b on the side of the annular seal body 120 has an intersection edge portion 123 on the inner circumferential surface facing the intersection edge portion 123 formed at the intersection between the cylindrical outer circumferential surface 102b of the inner ring 102 and the seal housing groove 122.
  • a concave groove 133 having a semicircular cross section that avoids contact is formed in the circumferential direction.
  • This cage 130 is made of a metal material such as a copper alloy manufactured by cutting, a synthetic resin material such as polyamide, polyacetal, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or glass. Manufactured with a synthetic resin material with reinforcing material added with reinforcing materials such as fiber and carbon fiber.
  • a metal material such as a copper alloy manufactured by cutting
  • a synthetic resin material such as polyamide, polyacetal, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or glass.
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • the concave groove 133 is formed in the circumferential direction on the inner peripheral surface facing the intersection edge portion 123 formed on the right end side of the guide surface of the cage 130, the intersection edge portion 123 is retained. It is possible to reliably prevent contact with the inner peripheral surface of the vessel 130, while widening the width of the annular portion 132b on the annular seal body 120 side and increasing the cross-sectional area while ensuring the strength, Wear of the cage 130 can be reliably prevented.
  • the concave groove 133 provided in a part of the guide surface can serve as a reservoir for holding a dull in the case of grease lubrication, and in addition, is located in the vicinity of the guide surface.
  • the annular seal body 120 when the annular seal body 120 is disposed on at least one side of the ball bearing 100, the force that uses the inner diameter surface of the outer ring 101 and the outer diameter surface of the inner ring 102 as the guide surface of the retainer 130. Since the intersection edge portion 123 is formed at a position where the groove 122 is in contact with the groove 122, the cage 130 is worn due to the contact between the intersection edge portion 123 and the annular portion 132b of the cage 130. [0062] In order to prevent the wear of the cage 130, conventionally, when the inner ring guide is used, as shown in FIG. 18, the axial direction of the annular portion 132b on the intersection edge portion 123 side of the cage 130 It is considered that the length or width is shortened so that the annular portion 132b and the intersection edge portion 123 do not contact each other.
  • the width of the annular portion 132b it is necessary to increase the width of the annular portion 132b to ensure the strength.
  • the inner portion of the annular portion 132b is increased. Since the circumferential surface and the intersection edge portion 123 face each other, when the cage 130 is inclined with respect to the guide-side raceway while the ball bearing 100 is rotating, the inner circumferential surface of the annular portion 132b is the intersection edge. The cage 130 will wear due to the edge hitting the part 123.
  • seal receiving grooves 121 and 122 are often heat-treated surfaces after cutting, the surface roughness is poor and burrs are likely to be formed at the intersections where they contact the cage 130. Is likely to occur.
  • the ball bearing 100 according to the present invention has a structure in which the ball diameter is very small with respect to the ball pitch circle diameter of the bearing, and accordingly, the cross section of the annular portion 132b of the cage 130 is correspondingly reduced. And the radial strength of the cage 130 (radial strength of the annular portion 132b) is also reduced.
  • the application of the ball bearing 100 according to the present invention tends to tilt the bearing because a large moment load is easily applied during rotation of the bearing due to its usage conditions.
  • the width of the annular portion 132b on the annular seal body 120 side of the cage 130 is increased to increase the cross-sectional area.
  • the concave groove 133 is formed in a portion that may come into contact with the intersection edge 123 of the boundary between the seal housing groove 122 and the cylindrical outer peripheral surface 102b serving as the guide surface, the cage 130 is inclined.
  • a sufficient space can be secured between the intersection edge portion 123 and the concave groove portion 133, the contact between the concave groove portion 133 and the intersection edge portion 123 can be reliably prevented.
  • wear of the cage 130 can be reliably prevented.
  • the annular seal body 120 is disposed on the right side of the ball bearing 100 .
  • the present invention is not limited to this, and the annular seal body 120 is disposed on the left side of the ball bearing 100. It may be arranged, and furthermore, the annular seal body 120 may be arranged on both sides.
  • the guide surface of the cage 130 is the outer peripheral surface of the inner ring 102
  • the inner peripheral surface of the outer ring 101 is not limited to this and is used as the guide surface. May be.
  • the concave groove portions of the retainer 130 can be assembled from any direction without being confirmed at the time of assembly, thereby improving the assembling work. be able to.
  • FIG. 21 a double row ball bearing for a spindle turning part of a machine tool, which is an example of an embodiment of the second embodiment (corresponding to claim 4 or 5) of the present invention. Will be explained.
  • This double row full ball anguilla ball bearing 200 has a large number of balls 203 arranged between the double row raceway grooves 201a and 201b of the outer ring 201 and the double row raceway grooves 202a and 202b of the inner ring 202,
  • radial load, axial load in both directions, and moment load can be received, as well as high accuracy (high rotation accuracy), high rigidity, low torque and low heat generation.
  • space saving of 1Z2 can be achieved in the axial dimension.
  • the cross-sectional dimension ratio (B2ZH2) may be set to be less than 0.95 or more than 0.95 (however, (B2ZH2) is 1. 2).
  • the contact angle of the anguilla ball bearing 200 is, for example, 30 °.
  • Fig. 22 shows an example in which the ball pitch circle diameter is shifted to the outer diameter side with a double-row full ball anguilla ball bearing 200 in order to increase the moment rigidity.
  • Fig. 24 shows an example of changing the ball diameter of the row and the ball pitch circle diameter.
  • Fig. 24 shows a double row full ball anguilla ball bearing 200 fitted with annular seals 104 at both ends in the axial direction. This is an example in which the ball pitch circle diameter is shifted to the outer diameter side.
  • the application example related to the structure is the same as the single row ball bearing described in the first embodiment. Further, similarly to the first embodiment, it may be used under any conditions of preload and clearance.
  • the spindle turning part of a machine tool which is an example of the embodiment of the third embodiment of the present invention, other machine tools, industrial machines, robots, medical equipment, semiconductor Z liquid crystal manufacturing equipment, optics, and optoelectronic equipment Especially for ball bearings
  • An anguillare ball bearing in which a load and an axial load in both directions, especially a large moment load, acts as a load will be described.
  • an anguilla ball bearing is not equipped with a seal like a deep groove ball bearing. Therefore, for example, as shown in FIG.
  • single row angular contact ball bearings 73A and 73B are arranged in two rows between the housing 71 and the shaft 72, and the inner ring presser 74 and the bearing which are constituted by the inner ring 73a.
  • the extension line L1 in the normal direction of the contact point representing the contact angle of the angular bearings 73A, 73B is only the shoulder of the inner ring 73a and the outer ring 73b. Passing through the parts 73c and 73d, the shaft 72 or the inner ring presser 74 is passed, the udging 71 or the outer ring presser 76 is passed.
  • the inner ring 73a and the outer ring 73b are backed up by the shaft 72 and the inner ring retainer 71 and the inner ring retainer 74 and the outer ring retainer 76 that are in contact with them. Therefore, only the shoulders 73c and 73d of the inner ring 73a and the outer ring 73b do not bear the rolling element load. Therefore, the groove shoulders 73c and 73d do not deform and support the rolling element load. Can do.
  • Patent Document 3 JP-A-2006-105385 (hereinafter referred to as Patent Document 3), a large number of balls are rotatably arranged between the outer ring raceway groove and the inner ring raceway groove.
  • a seal is provided even for narrow-angle anguillar ball bearings in which the cross-sectional dimension ratio (B / H) between the axial cross-section width B and the radial cross-section height H is (BZH) ⁇ 0.63 If not, bearing the rolling element load only at the shoulder of the inner ring or outer ring can support the rolling element load without deformation of the shoulder.
  • the third embodiment of the present invention has been made paying attention to the unsolved problems of the above conventional example, and when forming a groove or the like for storing the seal, at least the inner ring and the outer ring are reduced.
  • the purpose of the present invention is to provide an anguilla ball bearing that does not bear the rolling element load only at the shoulder.
  • the first embodiment of the third embodiment of the present invention is an inner ring in which a concave step having a diameter smaller than that of the inner ring groove shoulder is formed at least in a part of the circumferential direction.
  • at least one of the outer rings in which a concave step portion having a diameter larger than the shoulder portion of the outer ring groove is formed at least in a part in the circumferential direction, and a large number of grooves are provided between the race grooves of the outer ring and the race grooves of the inner ring.
  • the contact angle is set as follows.
  • the second embodiment of the third embodiment includes an inner ring in which a concave step portion having a diameter smaller than that of the inner ring groove shoulder is formed at least in a part of the circumferential direction, and at least the circumferential direction.
  • At least one of the outer rings in which a concave step portion having a diameter larger than the shoulder portion of the outer ring groove is formed, and a large number of balls can freely roll between the race groove of the outer ring and the race groove of the inner ring.
  • the contact angle is set so that the normal extension line at the contact portion between the ball, the outer ring and the inner ring does not interfere with the concave stepped portion. It is characterized by.
  • a third embodiment of the third embodiment is the same as the first or second embodiment, wherein the concave step portion is constituted by a groove into which an annular seal body is inserted and an opposing seal labyrinth portion. It has been characterized by
  • a fourth embodiment of the third embodiment is the embodiment according to any one of the first to third forces described above, wherein an annular seal is formed on the concave step portion of either the inner ring or the outer ring.
  • the body is inserted, and the annular seal body is configured to be in contact or non-contact with the concave step portion of the inner ring and the outer ring corresponding to the inserted side. .
  • the narrow anguilla ball bearing is a size that does not fit the standard anguilla ball bearing (78xx, 79xx, 7 Oxx, 72xx, 73xx series, etc.), that is, at least for example, a single row anguilla ball bearing
  • BZH narrow cross-section dimension ratio
  • BZH cross-section dimension ratio
  • B2ZH2 the cross-sectional dimension ratio between the axial cross-sectional width B2 and the radial cross-sectional height H2 is (B2ZH2) ⁇ 1.2.
  • the contact angle of the anguilla ball bearing the height of the shoulder of the inner ring and the outer ring 'ratio of the ball diameter and the bearing width ⁇
  • the force that varies depending on the shape and size of the seal groove is approximately 60 ° or less, preferably 50 ° or less, more preferably 40 ° or less, but less than 20 ° is not preferable because the allowable axial load and allowable moment load decrease.
  • the extension line in the normal direction at the contact portion between the ball and the outer ring and the inner ring is the concave stepped portion. Since the contact angle is set so that it does not interfere with the bearing, it is possible to reliably prevent the rolling element load from being borne only by the shoulders of at least one of the inner ring and the outer ring, and a narrow anguilla ball bearing with a seal. In addition, the groove shoulder does not deform, and the effect of supporting the rolling element load is obtained.
  • FIG. 38 is a cross-sectional view of an essential part for explaining a single row ball bearing as an example of the first embodiment in the third embodiment, and FIG. 39 shows a state in which two rows of single row ball bearings of FIG. 38 are combined. It is principal part sectional drawing.
  • a single row ball bearing 100 which is an example of the first embodiment in the third embodiment, includes a large number of balls 10 between the raceway groove 101a of the outer ring 101 and the raceway groove 102a of the inner ring 102.
  • the ratio (BZH) is set to (B / H) 0.63.
  • an anguilla ball bearing 100 is used as a two-row rear combination, and is replaced with a two-row combination anguilla ball bearing of 7208A (contact angle 30 °) as an example. take.
  • the cross-sectional dimension ratio (BZH) of the anguilla ball bearing 100 may be set to less than 0.45 or more than 0.45 (however, (BZH) is less than 0.63). It does n’t turn.
  • BZH cross-sectional dimension ratio
  • each ball always contacts the inner and outer ring raceway grooves at two points, so that it is possible to suppress an increase in torque due to a large spin of the ball as in the case of a four-point contact ball bearing. Since the rolling resistance is lower than that of the bearing, a reduction in torque can be realized.
  • the width dimension is about half that of the conventional standard single row ball bearing
  • the ball diameter is also about half that of the conventional ball bearing, but conversely, the number of balls per row increases, Bearing rigidity is increased compared to conventional ball bearings.
  • the rotation speed is mostly low, rolling fatigue life time is practical even if the load capacity of the bearing is reduced by reducing the ball diameter. There is no problem.
  • FIG. 46 is a comparison of the calculated moment stiffness of various bearings. Same size (calculation example is equivalent to bearing name 7906A (contact angle 30 °) and the inner and outer diameters are the same: inner ring inner diameter ⁇ 30mm For outer ring outer diameter ⁇ 47mm), single row narrow anguillar ball bearings (contact angle 30 °: calculation example of bearing) according to claim 1 are combined in two rows, and raceway radius of curvature of inner and outer rings (Da is In the present invention examples A to E in which the ball diameter is changed, the moment rigidity is higher than that of the cross roller bearing, the standard two-row combined angular contact ball bearing and the four-point contact ball bearing. B can hold moment rigidity 2.4 times that of a cross roller bearing, 1.9 times that of a conventional standard two-row combination anguilla ball bearing, and 3.3 times that of a 4-point contact ball bearing.
  • the appropriate ball diameter of the narrow ball bearing in the present embodiment varies depending on whether or not a seal or the like is mounted.
  • the ball diameter is extremely small, the ball and inner / outer ring raceways are reduced. Since the contact pressure between the contact parts with the road groove increases and the pressure dent may be lowered, generally 30 to 90% of the bearing width (B) or (B2Z2) is desired! /.
  • annular seal body 120 is provided on one side of the single row ball bearing 100, and a cage 130 for positioning a large number of balls 103 in the circumferential direction is provided.
  • seal housing grooves 121 and 122 for housing the annular seal body 120 are disposed on one end face on the right side of the outer ring 101 and the inner ring 102, for example.
  • the annular seal body 120 is composed of a reinforced rubber seal 126 (for example, -tolyl rubber, acrylic rubber or fluororubber) reinforced with a metal core 125 formed in an inverted L shape.
  • the rubber seal 126 has a fitting portion 126a that fits the outer ring 101 on the outer peripheral portion, and a lip portion 126b that contacts the inner ring 101 on the inner peripheral portion.
  • the seal housing groove 121 of the outer ring 101 has a relatively shallow step portion 121a on the right end side of the inclined inner peripheral surface 101b connected to the raceway groove 101a of the outer ring 101, and a circumferential shape at the bottom portion of the step portion 121a.
  • the seal receiving groove 122 of the inner ring 102 is relatively deeper than the right end of the groove 102a on the right side of the raceway groove 102a on the cylindrical outer peripheral surface 102b connected to the left and right ends of the raceway groove 102a of the inner ring.
  • the lip portion 126b formed on the inner peripheral surface of 0 has a shallow receiving recess 122b that contacts the lip portion 126b.
  • the retainer 130 has a pair of annular portions 132a and 132b extending in the axial direction across the pocket portion 131 that accommodates the ball 103, and these annular portions 132a and 132b are the inner rings 10 2.
  • the cylindrical outer peripheral surface 102b is mounted as a guide surface.
  • An annular portion 132b on the side of the annular seal body 120 has an intersection edge portion 123 on the inner circumferential surface facing the intersection edge portion 123 formed at the intersection between the cylindrical outer circumferential surface 102b of the inner ring 102 and the seal housing groove 122.
  • a concave groove 133 having a semicircular cross section that avoids contact is formed in the circumferential direction.
  • the cage 130 is made of a metal material such as a copper alloy manufactured by cutting, a synthetic resin material such as polyamide, polyacetal, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or glass. Manufactured with a synthetic resin material with reinforcing material added with reinforcing materials such as fiber and carbon fiber.
  • a metal material such as a copper alloy manufactured by cutting
  • a synthetic resin material such as polyamide, polyacetal, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or glass.
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • the concave groove 133 is formed in the circumferential direction on the inner peripheral surface facing the intersection edge portion 123 formed on the right end side of the guide surface of the cage 130, the intersection edge portion 123 is retained. It is possible to reliably prevent contact with the inner peripheral surface of the vessel 130, while widening the width of the annular portion 132b on the annular seal body 120 side and increasing the cross-sectional area while ensuring the strength, Wear of the cage 130 can be reliably prevented.
  • the concave groove 133 provided in a part of the guide surface can play a role as a reservoir for holding a dull, and in addition, is located in the vicinity of the guide surface.
  • the width of the annular portion 132b it is necessary to increase the width of the annular portion 132b to ensure the strength.
  • the inner portion of the annular portion 132b is increased. Since the circumferential surface and the intersection edge portion 123 face each other, when the cage 130 is inclined with respect to the guide-side raceway while the ball bearing 100 is rotating, the inner circumferential surface of the annular portion 132b is the intersection edge. The cage 130 will wear due to the edge hitting the part 123.
  • seal receiving grooves 121 and 122 are often heat-treated surfaces after cutting, the surface roughness is poor and burrs are likely to be formed at the intersections where they contact the cage 130. Is likely to occur.
  • the ball bearing 100 according to the present invention has a structure in which the ball diameter is very small with respect to the ball pitch circle diameter of the bearing, and accordingly, the cross-section of the annular portion 132b of the cage 130 is correspondingly reduced. And the radial strength of the cage 130 (radial strength of the annular portion 132b) is also reduced.
  • the application of the ball bearing 100 according to the present invention tends to tilt the bearing because a large moment load is easily applied during rotation of the bearing due to its usage conditions.
  • the width of the annular portion 132b on the annular seal body 120 side of the cage 130 is increased to increase the cross-sectional area!
  • the concave groove 133 is formed at a portion where the seal receiving groove 122 and the cylindrical surface 102b serving as the guide surface may come into contact with the intersection edge portion 123, the cage 130 is inclined. Even so, a sufficient distance can be secured between the intersection edge portion 123 and the concave groove 133, so that the contact between the concave groove 133 and the intersection edge portion 123 can be reliably prevented and maintained. The wear of the vessel 130 can be reliably prevented.
  • the normal line extension line L1 at the contact portion P1 that contacts the raceway groove 101a of the outer ring 101 of the ball 103 and the contact portion P2 that contacts the raceway groove 102a of the inner ring 102 interferes with the housing recess 122b.
  • the contact angle is set to ⁇ force.
  • the distance ⁇ between the parallel line L2 parallel to the extension line L1 and in contact with the receiving recess 122b is set to ⁇ > 0.
  • the contact angle ⁇ is the height of the groove of the inner ring and outer ring, the ratio of the ball diameter to the bearing width, and the force that varies depending on the shape and size of the seal receiving recess 122b. More desirably, 40 ° or less is preferable, but if it is less than 20 °, the allowable axial load and allowable moment load are reduced, which is preferable.
  • the extension line L1 in the normal direction of the contact portions P1 and P2, which is the direction in which the rolling element load is applied becomes the accommodation recess 122b that accommodates the annular seal body 120
  • it passes through a position separated by a distance ⁇ (> 0) and it is reliably prevented that the rolling element load is borne only by the shoulder of the inner ring groove, and the inner ring presser 140 shown by the chain line in FIG.
  • the rolling element load can be received by the inner ring 102 and the shaft (not shown) fitted to the inner ring 102 to be raised, and the groove shoulder 102c is deformed to receive the rolling element load without causing a decrease in rigidity.
  • the force described in the case where the annular seal body 120 is disposed on the right side of the ball bearing 100 is not limited thereto.
  • the annular seal body 120 is disposed on the left side of the ball bearing 100.
  • the annular seal body 120 contacts the inner ring seal housing groove 122.
  • the force described in this case is not limited to this.
  • the inner ring seal shown in Fig. 50 does not come into contact with the receiving groove 122 ⁇
  • the guide surface of the retainer 130 is the outer peripheral surface of the inner ring 102
  • the inner peripheral surface of the outer ring 101 is not limited to this and is used as the guide surface. You may do it.
  • the force described in the case where the concave groove 133 is formed in the annular portion 132b on the annular seal body 120 side among the annular portions 132a and 132b of the cage 130 is not limited to this.
  • the annular seal part 120a opposite to the annular seal body 120 is symmetrical with respect to the concave groove 133 of the annular part 132b and the vertical plane passing through the center of each ball 103.
  • a concave groove 134 may be provided at the position. In this way, when the concave groove is formed in the left and right annular portions 132a and 132b, it can be assembled from any direction without confirming the position of the concave groove of the retainer 130 during assembly, improving the assembly work. Can be made.
  • the cage has an annular seal body 104 attached to one end in the axial direction (the end opposite to the end face on the combination side),
  • an annular portion 111 and the annular portion 111 A plurality of pillars 112 projecting in a plurality of axial directions at substantially equal intervals in the circumferential direction at one end of each of them, and a pocket part 113 formed between the pillars 112 to hold the balls 103 so as to be rollable in the circumferential direction.
  • the distance between the operating points can be increased to increase the moment rigidity. Further, a full ball anguilla ball bearing without a cage may be applied.
  • the pitch circle diameter of the balls 103 is as shown in the following equation (4). However, if it is desired to further increase the moment stiffness by increasing the number of balls per row, (Five ), The pitch circle diameter of the ball 103 may be shifted to the outer ring side, and if necessary, the pitch circle diameter of the ball 103 is moved to the inner ring 102 side by using the following equation (6). Even if you shift it (not shown).
  • Ball pitch circle diameter (inner ring inner diameter + outer ring outer diameter) Z2--(4)
  • the ball pitch circle diameters of the left and right ball bearings to be combined need not be the same value, and the diameters of the balls 103 of the left and right ball bearings to be combined need not be the same value.
  • the cross-sectional dimension ratio (BZH) of the two ball bearings to be combined is not the same.
  • the axial pitch of the balls 103 is shifted in the axial direction in order to secure the distance between the application points of the seals and cages and the moment action point, even if the axial pitch of the balls 103 is not centered in the axial direction. Also good.
  • This double-row anguilla ball bearing 200 has a large number of balls 203 rotatably arranged between the double-row raceway grooves 201a and 201b of the outer ring 201 and the double-row raceway grooves 202a and 202b of the inner ring 202.
  • seal housing grooves 121 and 122 similar to those of the first embodiment in the third embodiment are formed on the left and right side surfaces of the outer ring 201 and the inner ring 202, respectively, and annular seal bodies are formed in these seal housing grooves 121 and 122, respectively. 120 are housed in the left and right objects.
  • the cross-sectional dimension ratio (B2ZH2) may be set to be less than 0.90 or more than 0.90 (however, (B2ZH2X1.2).
  • the contact angle of the anguilla ball bearing 200 is set to 35 °, for example, similarly to the first embodiment in the third embodiment described above, and the raceway grooves 201a, 201b of the outer ring 201 and the inner ring 202 of the ball 203 and The extension lines LI in the normal direction of the contact portions PI and P2 with 202a and 202b are set so as to pass through a position separated by a predetermined distance ⁇ (> 0) from the receiving recess 122b.
  • the extension line L1 in the normal direction of the contact portion P1 and the flange 2 does not interfere with the housing recess 122b of the seal housing groove 122. Since the contact angle ⁇ is set for the inner ring 20 2 and the inner ring backed up by the inner ring presser, it is not necessary to bear this rolling element load only at the groove shoulder when a large rolling element load is applied. It can be received by a shaft to be inserted (not shown), and can prevent deformation of the groove shoulder and prevent breakage or chipping of the groove shoulder, thereby improving the life of the narrow double row anguilla bearing. Can be prolonged.
  • the ball pitch circle diameter is shifted to the outer diameter side with the double-row anguilla ball bearing 200, or the double-row anguilla ball In the bearing 200, the ball diameter of each row may be changed.
  • double row full ball anguilla ball bearings are also available without cage.
  • the application example related to the structure is the single row ball bearing described in the first embodiment of the third embodiment. According to Further, as in the first embodiment in the third embodiment, it may be used under any conditions of preload and clearance.
  • the fitting recess 121b and the housing recess for housing the annular seal body 120 connected to the shoulder portion 102c only on the inner ring 102 side.
  • the force described in the case of forming 122b is not limited to this.
  • an annular seal is connected to the groove shoulders of the outer ring 101 and the inner ring 102 as a shape reversed left and right by a vertical line passing through the center of the ball 103.
  • the present invention can also be applied to the case where an accommodation recess for accommodating the body 120 is formed.
  • the annular seal body 120 may be provided on both the left and right sides.
  • the fitting recess 121b for housing the annular seal body 120 and the housing recess 122b extend over the entire circumference in the circumferential direction.
  • the force described for the case where it is formed The present invention can be applied to the case where the concave step portion is formed in a part of the circumferential direction.
  • the concave step portion is not limited to the one for accommodating the annular seal body 120, and a concave step portion used for any application can be applied.
  • a spindle turning part and a rotary table of a machine tool, an industrial machine, a joint part and a turning mechanism part of a robot, a medical device, and a semiconductor Z liquid crystal manufacturing apparatus which are examples of the fourth embodiment of the present invention.
  • the ball bearings used in applications in which radial loads and axial loads in both directions, particularly large moment loads, act as loads, will be described with regard to combination ball bearings used in optical and optoelectronic devices.
  • the balls 83 are rotatably held between the raceways of the inner ring 82 and the outer ring 81 to hold the sealed grease and prevent leakage to the outside.
  • a seal 85 is attached to the end surface in the axial direction between the inner ring 82 and the outer ring 81 for the purpose of preventing foreign matter from entering the bearing from the outside.
  • the ball guide retainer 84 for holding the ball 83 has a crown-shaped (cantilever ring structure) ball guide synthetic resin holding the required number of pockets 86b on the ring 86a. Standard equipment is used.
  • the ball guide retainer 84 has a pocket inner surface 86c that normally holds the ball 83, and is formed in a spherical shape having a curvature slightly larger than the curvature of the ball 83.
  • the movement amount of the cage 84 in the radial direction is the smaller of the clearance AR between the ball 83 and the pocket inner diameter end surface or the clearance AR between the ball 83 and the pocket outer diameter side end surface.
  • the axial movement amount of the cage 84 is determined by the clearance AS between the ring-side pocket inner surface 86c and the ball 83 in one direction, and in the other direction by the pocket column portion 86d.
  • the cage 84 is usually manufactured by injection molding. When the cage is separated from the mold, the cage 84 is separated in the axial direction (so-called axial draw type). At this time, the relationship between the inner diameter ⁇ d of the pocket surface and the distance between the pair of ball engaging portions 86e, that is, the diameter H of the mouth is ⁇ d
  • the ball engaging portion 86e is deformed when a molding die member (spherical member) for forming a pocket passes therethrough. You have to take the so-called unreasonable form. Therefore, it is necessary for the ball engaging portion 86e to retain flexibility so as not to leave breakage, cracks, or a large plastic deformation that may cause a functional problem when released.
  • the ball engaging portion 86e has a relationship of the ball diameter ⁇ D force S ⁇ D> H with respect to the outer diameter H of the mouth between the opposing ball engaging portions 86e.
  • the cage 84 Under normal general rotation conditions, the cage 84 is unlikely to come out of the ball 83, but the vibration during rotation of the bearing is large, or the inclination between the outer ring 81 and the inner ring 82 due to moment load or other factors. Therefore, in applications where an eccentric load is applied to the ball locking portion 86e of the cage 84, it is easy to come off, so it is necessary to maintain a strength that prevents the cage 84 from falling off in the axial direction.
  • the ball diameter must be particularly small because the axial width of the bearing is narrowed for the purpose of space saving in the axial direction.
  • the annular strength of the ring portion is reduced because the cross-sectional thickness of the cage is thin and the cage is easily deformed, the cage is likely to be pulled out in the axial direction as described above. There is.
  • the fourth embodiment of the present invention has been made by paying attention to the unsolved problems of the above-described conventional example, and when a crown-shaped cage is used for the purpose of space saving in the axial direction.
  • An object of the present invention is to provide a ball bearing that does not cause the cage to be disengaged in the axial direction and that can exhibit stable rotational performance without causing wear or damage to the ball or damage to the cage. Yes.
  • the combination ball bearing according to the first embodiment of the fourth embodiment of the present invention is configured by combining two rows of narrow ball bearings, and each narrow ball bearing is arranged on one side.
  • a combined ball bearing having a ring portion and a crown-shaped ball guide retainer having a required number of pocket portions for holding balls on the other side of the ring portion, the ring portion side being arranged on the combination surface side.
  • the pocket portion has a ball locking portion that prevents a ball formed at a tip portion opposite to the ring portion from being pulled out, and the center of curvature of the pocket portion and the ball locking portion.
  • the center of curvature of the pocket and the center of curvature of the pocket are matched to the axial distance from the tip.
  • the axial clearance between the ring portion end portions of two opposing cages in the state is set so that the value obtained by adjusting the axial clearance between the pocket surface of the pocket portion and the ball is small. Yes.
  • the combination ball bearing according to the second embodiment in the fourth embodiment of the present invention is the invention according to the first embodiment, wherein the ball guide retainer is formed of a synthetic resin material. It is characterized by that.
  • each of the narrow ball bearings is the ball guide cage.
  • An annular seal body is provided on the inner ring and the outer ring axial end surface on the opposite side of the ring part side and the ball.
  • the combined ball bearing according to the fourth embodiment of the fourth embodiment of the present invention is the invention according to the third embodiment, wherein the annular seal body is the narrow ball bearing. It is characterized by being in contact with at least one of the outer ring and the inner ring.
  • the double row ball bearing according to the fifth embodiment of the fourth embodiment of the present invention has a narrow double row ball bearing configuration, and each row has a ring portion on one side.
  • the crown-shaped ball guide retainer having the required number of pocket portions for holding balls on the other side of the ring portion is arranged in a double row with the ring portion facing the inner side in the axial direction of the bearing.
  • the pocket portion has a ball locking portion that prevents a ball formed at a tip portion on the opposite side of the ring portion, and a center of curvature of the pocket portion and the ball locking portion.
  • the pocket In the axial clearance between the two ring holder ends facing each other in a state where the center of curvature of the pocket and the center of curvature of the ball coincide with the axial distance from the tip, the pocket
  • the value force S with the axial clearance between the pocket surface and the ball is set to be small. It is characterized by that.
  • the ball guide cage is formed of a synthetic resin material. It is characterized by that.
  • the double row ball bearing according to the seventh embodiment of the fourth embodiment of the present invention is the above-mentioned fifth or sixth embodiment, wherein the double row ball bearing is a ring of the ball guide retainer.
  • An annular seal body is disposed on the inner side and outer ring axial end surface portions on the opposite side through the ball side and the ball side.
  • the double row ball bearing according to the eighth embodiment of the fourth embodiment of the present invention is the above seventh embodiment, wherein the annular seal body includes the outer ring of the narrow ball bearing and It is characterized by being in contact with at least one of the inner rings.
  • the pocket surface of the pocket portion has a gap in the axial direction between the end portions of the ring portions of the two opposing cages in a state in which the center of curvature of the pocket portion and the center of curvature of the ball coincide with each other. Since the axial clearance between the ball and the ball is set to be small, when the cage moves in the axial direction due to inner / outer ring inclination due to moment load, etc., the other combined bearing is held. By contacting the bowl end surface, the ball does not slip until the large diameter part of the ball exceeds the ball locking part, so it is possible to reliably prevent the ball and the cage from falling off! /, Effect.
  • FIG. 61 is a cross-sectional view of the principal part showing a state in which two single-row ball bearings according to the first embodiment of the fourth embodiment of the present invention are combined
  • FIG. 62 is a cross-sectional dimension ratio (BZH) and radial inner dimensions
  • Fig. 63 is a graph showing the relationship between the deformation of the outer ring
  • Fig. 63 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the secondary moment I of the cross section
  • Fig. 64 is for explaining the deformation in the radial direction of the inner ring.
  • Fig. 65 is an explanatory diagram for explaining the method of calculating the secondary moment of inertia of the inner ring.
  • Fig. 63 is a graph showing the relationship between the deformation of the outer ring
  • Fig. 63 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the secondary moment I of the cross section
  • Fig. 64 is for
  • FIG. 66 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the deformation amount of the inner and outer rings in the radial direction.
  • Fig. 67 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the cross-sectional secondary moment I
  • Fig. 68 is a graph showing a comparison of the calculated moment stiffness of various bearings
  • Fig. 69 is a cross-section showing a ball guide cage.
  • Fig. 70 is a partial perspective view of the cage as seen from the radial inner force.
  • Fig. 71 is an arrow view as seen from the arrow Y direction of Fig. 69.
  • FIG. 73 is an explanatory diagram for explaining the operation when the retainer is moved in the axial direction
  • FIG. 74 is a palm view also seen the arrow X direction forces in Figure 69.
  • the combination bearing 100 of the present invention includes two single-row anguilla ball bearings 300 as shown in FIG. It has a configuration in which A and 300B are combined in two rows so that the contact angle represents a square shape.
  • each of the single-row angular bearings 300A and 300B as shown in FIG. 61, a large number of balls 303 are arranged between the raceway groove 301a of the outer ring 301 and the raceway groove 302a of the inner ring 302 so as to be able to roll. It has a configuration of a narrow bearing provided.
  • the material of the inner ring 302, outer ring 301 and ball 303 is a bearing steel (eg, SUJ2, SUJ3, etc.) under standard operating conditions.
  • the stainless steel material eg, SUS440C
  • Martensitic stainless steel such as SUS304, austenitic stainless steel such as SUS304, precipitation hardened stainless steel such as SUS630), titanium alloy and ceramic materials (eg Si N, SiC, Al O, ZrO etc.)
  • the lubrication method is not particularly limited, and in general use environment, mineral oil-based grease or synthetic oil-based
  • Grease and oil for example, lithium-based and urea-based
  • Solid lubricants such as 2 can be used.
  • Narrow bearings are bearings of a size that do not fit the standard angular bearings (78 XX, 79 XX, 70 XX, 72 XX, 73 XX series, etc.) specified by the International Organization for Standardization (ISO).
  • Bearing with axial sectional width B and radial sectional height H ( (outer ring outer diameter D—inner ring inner diameter d) / 2) sectional dimension ratio (BZH) (BZH) ⁇ 0.63 It is.
  • the inner ring inner diameter is ⁇ 40mm
  • the outer ring outer diameter is ⁇ 80mm
  • the axial sectional width (bearing unit width) B is 18mm.
  • the dimension ratio (BZH) is 0.9.
  • the cross-sectional dimension ratio (B / H) 0.45 (the inner ring inner diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing single body width) is 9mm).
  • the cross-sectional dimension ratio (BZH) of the anguilla ball bearing 300 may be set to less than 0.45 or more than 0.45 (however, (BZH) is less than 0.63). It does n’t turn.
  • each ball always contacts the inner and outer ring raceway grooves at two points, so that it is possible to suppress an increase in torque due to a large spin of the ball as in the case of a four-point contact ball bearing. Since the rolling resistance is lower than that of the bearing, a reduction in torque can be realized.
  • the width is about half that of the conventional standard single row ball bearing, so the ball diameter is also about half that of the conventional ball bearing, but conversely, the number of balls per row increases, Bearing rigidity is increased compared to conventional ball bearings. Also, when applied to the arm joint of a turning robot, etc., since the rotation speed is mostly low, rolling fatigue life time is practical even if the load capacity of the bearing is reduced by reducing the ball diameter. There is no problem.
  • Fig. 68 is a comparison of calculated moment stiffness of various bearings.
  • the first in the fourth embodiment Example A of the present invention in which the two-row combination narrow angular contact ball bearing (contact angle 30 °: calculation example of bearing) according to the embodiment and the raceway groove radius of curvature (Da is the ball diameter) of the inner and outer rings are changed.
  • Example E has a higher moment stiffness than cross roller bearings, standard two-row combination anguillar ball bearings and 4-point contact ball bearings.
  • Example B of the present invention is 2.4 times the cross roller bearing, It is possible to maintain a moment stiffness 1.9 times that of conventional standard two-row combination anguillar ball bearings and 3.3 times that of 4-point contact ball bearings.
  • the appropriate ball diameter of the narrow ball bearing in the present embodiment varies depending on whether or not a seal or the like is mounted.
  • the ball diameter is extremely small, the ball and inner / outer ring raceways are reduced. Since the surface pressure between the contact parts with the road groove increases and the pressure dent resistance may decrease, 30 to 90% of the width (B) is desirable.
  • the contact angle ⁇ is approximately 60 ° or less, preferably 50 ° or less in order to prevent the ball and the inner / outer ring groove contact portion from climbing onto the shoulder portion of the inner / outer ring groove when a large moment load is applied. 40 ° or less is more desirable, but if it is less than 20 °, the allowable axial load or allowable moment load will be reduced.
  • a ball guide retainer 310 for positioning a large number of balls 303 in the circumferential direction is disposed on the combined surface side of the single-row angular bearings 300A and 300B, and an annular seal is provided on the opposite side to the combined surface.
  • the body 320 is disposed.
  • the ball guide retainer 310 protrudes in the axial direction at a plurality of locations at substantially equal intervals in the circumferential direction on the ring portion 311 and one end portion of the ring portion 311. Pillar portions 312 formed between the pillar portions 312 and a plurality of pocket portions 313 formed between the pillar portions 312 so as to be able to roll the balls 303 in the circumferential direction, and tip portions of the pocket portions 313 opposite to the ring portions 311 And a pair of ball locking portions 314 for preventing the balls 303 formed from being pulled out from each other.
  • the material of the cage 310 is, for example, a synthetic resin material such as polyamide, polyacetal, or polyphenylene sulfide, and a material in which a reinforcing material such as glass fiber or carbon fiber is mixed in the synthetic resin material is used as necessary. .
  • ball guide retainer 310 is arranged in single row anguilla ball bearings 300A and 300B so that ring portion 311 is on the combination surface side.
  • the center of curvature O of the pocket portion 313 and the center of curvature of the ball 303 coincide with the axial distance L between the center of curvature O of the pocket portion 313 and the tip of the ball locking portion 314.
  • the value obtained by adding the axial clearance ⁇ P between the pocket surface 313a of the pocket portion 313 and the ball 303 to the axial clearance ⁇ G between the ends of the ring portion 311 in the two opposing cages 310 in the state ⁇ G + ⁇ P is set to be small as shown in the following formula (7)!
  • the cages 310 of the anguilla ball bearings 300A and 300B both revolve at substantially the same speed, and the relative sliding speed of the cages 310 is extremely small, and both are in contact with a flat surface. Therefore, it is difficult for the contact portion to be worn or damaged.
  • an angular ball bearing cannot only apply an axial load in one direction in the single-row structure. In most cases, it is used in a combination of more than one row, and the frequency of application when implemented is high.
  • the cage 310 By disposing the cage 310 so as to have the relationship of the above formula (7) in the combined bearing 300, the cage 310 can be reliably prevented from coming off from the ball 303, and the cage 3
  • the range of selection of the shape design of the 10 ball locking portions 314 can be expanded, and the design becomes easy.
  • the circumferential pitch between the adjacent balls 303 is shifted as much as possible to the opposite side of the end face on the combination side (FIG. 61: X> X).
  • the ring part 311 of the cage 310 is arranged so as to be on the bearing combination end face side, so that the distance between the action points for increasing moment rigidity can be increased.
  • FIG. 74 (b) is a crown-shaped cage having the same basic structure as FIG. 74 (a), but the ring portion 311 has a gap between the pocket portions 313 adjacent to each other at least at one place in the circumferential direction. It has a structure in which a predetermined gap is provided between the cut surfaces by cutting in advance.
  • the rolling element pitch circle diameter and the cage pitch circle diameter are shifted due to the difference in thermal expansion coefficient between the cage and the inner and outer rings and the variation in dimensional accuracy and roundness of the cage.
  • both the radial flexibility due to the cantilever shape and the elastic deformation in the circumferential direction (circumferential flexibility) due to the gaps between the cut surfaces are combined. This prevents the cage from being damaged or worn by buffering the tension between the ball and the pocket 313, and also reduces torque unevenness and heat generation due to sliding contact resistance between the ball 303 and the pocket 313. .
  • the ball bearing of the present invention is structurally small in the diameter of the ball used.
  • the radial thickness of 11 cannot be increased (as can be understood from FIG. 61, the cage needs to be positioned with an appropriate gap in the gap between the outer diameter of the inner ring and the inner diameter of the outer ring.
  • the gap between the outer diameter and the inner diameter of the outer ring is narrow because it is approximately proportional to the ball diameter.
  • the axial gap and the axial thickness must be reduced. .
  • the cage ring part is extremely smaller than the standard size bearing, so that dimensional accuracy such as roundness can be obtained, so the cage structure with the ring part 311 as shown in Fig. 74 (b) is particularly The above-described cage damage and wear prevention effects, and torque unevenness and heat generation reduction effects can be obtained.
  • the annular seal body 320 is configured to be in contact or non-contact with the inner ring 302 or the outer ring 301 corresponding to the side where the annular seal body 320 is inserted. ing.
  • the annular seal body 320 is disposed on the opposite end surfaces of the inner and outer ring axial directions through the ring portion 311 and the ball 303 of the cage 310 of both single-row angular bearings 300A and 300B.
  • the annular seal body 320 is accommodated in seal housing grooves 321 and 322 formed in the axial end surfaces of the outer ring 301 and the inner ring 302.
  • the annular seal body 320 is a non-contact type (non-contact with the inner ring 302) inserted into the fitting groove 321a formed in the seal housing groove 321 of the outer ring 301, and an inverted L-shaped metal core 325 Reinforced rubber seal (for example, -tolyl rubber, acrylic rubber or fluoro rubber) 326 reinforced with
  • the rubber seal 326 of the single row angular contact ball bearing 300A includes a fitting portion 326a fitted into the fitting groove 321a, and an annular shape extending from the fitting portion 326a toward the inner ring 302 while being curved outward in the axial direction. And a plate portion 326b. Further, the rubber seal 326 of the single row anguilla ball bearing 300B has a plane symmetrical shape with the rubber seal 326 of the single row anguilla ball bearing 300A sandwiching the combination surface.
  • the ring portion 311 of the cage 310 causes the outer diameter surface of the outer ring 301 and the outer diameter surface of the ring portion 311 and the outer diameter surface and the ring portion of the inner ring 302 by the ring portion 311.
  • the opening between the inner diameter surfaces of 311 is narrow and doubles as a labyrinth mechanism. For this reason, the grease can be prevented from leaking to the combined surface, and the bearing can be easily handled until the bearing is assembled in the machine.
  • the seal mounting side is the outer end surface after the bearing is assembled. Since the ring 311 side of the cage 310 is an opposing surface of the two bearings, foreign matter and dust can be reliably prevented from entering the bearing if grease leaks.
  • Fig. 76 the force S described in the case where the two single-row anguilla ball bearings 300A and 300B are combined on the back surface with a contact angle of a square shape is shown in Fig. 76, which is not limited to this. As shown, make sure that the contact angle is in the shape of an inverted letter C.
  • the force described for the case where the annular seal body 320 is a non-contact type that does not contact the inner ring seal housing groove 322 is not limited to this.
  • the inner ring seal housing groove 322 shown in FIG. A contact-type annular seal body having a lip portion 327 to be contacted or a metal seal that is caulked in an outer ring seal groove can be applied.
  • an annular seal body 320 may be fitted on the inner ring 302 side so as to be in contact or non-contact with the outer ring.
  • the pitch circle diameter of the balls 303 is as shown in the following formula (8).
  • the following formula ( 9) may be adopted to shift the pitch circle diameter of the ball 303 to the outer ring side, or the following equation (10) may be adopted if necessary to reverse the pitch circle diameter of the ball 303 to the inner ring 302 side. It may be shifted to (not shown).
  • Ball pitch circle diameter (inner ring inner diameter + outer ring outer diameter) Z2--(8)
  • the ball pitch circle diameters of the left and right ball bearings to be combined need not be the same value, and the diameters of the balls 303 of the left and right ball bearings to be combined need not be the same value.
  • the cross-sectional dimension ratio (BZH) of the two ball bearings to be combined is not the same.
  • the axial pitch of the balls 103 is shifted in the axial direction in order to ensure that the axial pitch of the balls 303 is not centered in the axial direction and to secure the distance between the action points of the seals and cages and the moment. Also good.
  • a preloaded clearance combined angular ball bearing is used in order to increase the moment rigidity.
  • a combination of clearance anguilla ball bearings may be used.
  • the cage 410 is a crown-shaped cage having the same configuration as that of the first embodiment described above, and the same reference numerals are given to the corresponding parts to the first embodiment, and the detailed description thereof will be given here.
  • the pocket portion 313 curvature with respect to the axial distance L between the curvature center O of the pocket portion 313 and the tip of the ball locking portion 314.
  • the value obtained by adjusting the axial clearance ⁇ P ⁇ G + ⁇ P is set to be small !, (L> A G + ⁇ ⁇ ) 0
  • seal receiving grooves 421 and 422 similar to those in the first embodiment are formed symmetrically on the left and right end surfaces in the axial direction of the outer ring 401 and the inner rings 402 and 402, respectively.
  • Annular seal body 420 is accommodated in 421 and 422 symmetrically.
  • This annular seal body 420 is opposite to the ring portion 311 of the cage 410 via a ball 403. It is arrange
  • the annular seal body 420 is a non-contact type (non-contact with the inner rings 402A and 402B) that is inserted into the fitting groove 421a formed in the seal receiving groove 421 of the outer ring 401, and an inverted L-shaped metal core 42 Reinforced type rubber seal reinforced in 5 (for example -tolyl rubber, acrylic rubber or fluororubber) 426.
  • the rubber seal 426 includes a fitting portion 426a fitted into the fitting groove 421a and an annular plate portion 426b extending from the fitting portion 426a toward the inner rings 402A and 402B while being curved outward in the axial direction. Yes.
  • the 7208A has an inner ring inner diameter of 40 mm, an outer ring outer diameter of ⁇ 80 mm, and an axial sectional width (bearing unit width) B of 18 mm, so the sectional dimension ratio (B / H) is 0.9. Therefore, in the double-row anguillar ball bearing 400 of this embodiment, the cross-sectional dimension ratio (B2ZH2) is set to 0.90 (the inner ring axial cross-sectional width (bearing unit width) B2 is set to 18 mm).
  • the cross-sectional dimension ratio (B2ZH2) may be set to be less than 0.90 or more than 0.90 (B2 / H2X 1.2).
  • the pocket portion with respect to the axial distance L between the center of curvature of the pocket portion 313 and the tip of the ball engaging portion 314.
  • the pocket surface of the pocket 313 and the ball 403 Since the axial clearance is set to be small, the ball and cage can be reliably prevented from falling off due to the inner and outer ring tilts caused by the moment load.
  • the moment rigidity is increased.
  • the ball pitch circle diameter may be shifted to the outer ring outer diameter side with a double row angular ball bearing, or the ball diameter or ball pitch circle diameter of each row may be changed with a double row angular ball bearing.
  • the application examples related to the structure of the annular seal body 420, whether or not it is mounted, the structure of the cage, and the like are based on the single row ball bearing described in the first embodiment.
  • it should be used under either preload or clearance conditions.
  • the sectional ratio (BZH) of the axial section width B to the radial section height H is (BZH) ⁇ 0.63
  • the axial section width B2 And the radial cross-sectional height H2 (B2 / H2) is (B2ZH2) ⁇ 1.2

Abstract

Provided are a ball bearing for a spindle pivot section, adapted to be compatible with machine tools with recent tendency of having composite functions while keeping or improving functions of high accuracy (high rotational accuracy), high rigidity, low torque, and low heat generation, and a spindle pivot device of a machine tool, using the ball bearing. In the ball bearing, when it is a single-row ball bearing, the cross-sectional area ratio (B/H) between the cross-sectional width B in the axial direction and the cross-sectional height H in the radial direction is set to (B/H) < 0.63, and when it is a double-row ball bearing, the cross-sectional ratio (B2/H2) of the cross-sectional width B2 in the axial direction and the cross-sectional height H2 in the radial direction is set to(B2/H2) < 1.2.

Description

明 細 書  Specification
工作機械の主軸旋回部用玉軸受及びこれを使用した工作機械の主軸旋 回装置  Ball bearings for machine tool spindle turning parts and machine tool spindle turning devices using the same
技術分野  Technical field
[0001] 本発明は、フライス盤、旋盤、研削盤、ラップ盤に代表される工作機械において、旋 削加工、研削加工,ラップ加工などを行う工作機械の主軸旋回装置用玉軸受及びこ れを使用した工作機械の主軸旋回装置に関する。  [0001] The present invention uses a ball bearing for a spindle turning device of a machine tool that performs turning, grinding, lapping and the like in a machine tool represented by a milling machine, a lathe, a grinding machine, and a lapping machine, and the same. The present invention relates to a spindle turning device for machine tools.
背景技術  Background art
[0002] フライス盤、旋盤、研削盤等の工作機械で主軸を旋回駆動する主軸旋回装置の場 合に、この主軸旋回装置の回転支持部に組込まれて使用される軸受には、被削材( ワーク)の加工精度 (例えば、真円度、円筒度、内外径寸法精度)や加工面品位 (例 えば、加工面の光沢度、引き目など)、加工面粗さなどを良くするために、通常、以下 の機能が要求される。  [0002] In the case of a spindle turning device that drives the spindle to turn on a machine tool such as a milling machine, a lathe, or a grinding machine, a work piece ( In order to improve the machining accuracy of workpieces (for example, roundness, cylindricity, inner and outer diameter dimensional accuracy), machined surface quality (for example, glossiness of the machined surface, texture, etc.), and machined surface roughness, The following functions are usually required.
(1)高精度(高回転精度)  (1) High accuracy (high rotation accuracy)
(2)高剛性  (2) High rigidity
(3)低トルク、低発熱  (3) Low torque and low heat generation
特に、最近では、数値制御機能を有する工作機械 (いわゆる、 NC工作機械)が殆 どを占めており、一台の工作機械で種々の加工条件をこなせる NC旋盤や NCフライ ス盤、マシユングセンタなどの NC工作機械の外に、 NC旋盤にマシユングセンタの機 能を付加した複合型 NC工作機械も出現して 、る。マシユングセンタや複合型 NCェ 作機械のような多機能工作機械は、単能型の工作機械に比べて機械構成要素も多 ぐし力も一台の機械が必要とする床スペースや高さ方向のスペースが大きい。その ため、軸受などの構成要素には上述した(1)ないし(3)の機能を満たすことに加え、 省スペース化がさらに要求される。  In particular, machine tools with so-called numerical control functions (so-called NC machine tools) have become the most recent, and NC lathes, NC milling machines, machining centers that can handle various machining conditions with a single machine tool. In addition to NC machine tools such as these, complex NC machine tools with the function of a machining center added to NC lathes have also appeared. Multi-function machine tools such as machining centers and complex NC machine tools have more machine components and force than single-function machine tools in the floor space and height direction required by one machine. Space is big. Therefore, in addition to satisfying the functions (1) to (3) described above, components such as bearings are further required to save space.
[0003] このような多機能工作機械では、工具を装着する主軸を旋回させることにより、多機 能化を図ることが考えられており、このような工作機械の主軸旋回装置に使用される 軸受としては、従来、以下のような形式のものが使用されている。 (1)クロスローラ軸受(図 31参照) [0003] In such a multi-function machine tool, it is considered to achieve multi-function by turning the spindle on which the tool is mounted, and a bearing used in the spindle turning device of such a machine tool. Conventionally, the following types are used. (1) Cross roller bearing (See Fig. 31)
クロスローラ軸受は、図 31に示すように、内輪 1と外輪 2との間に円筒形の多数のこ ろ 3が転動自在に配設された構成を有しており、一つの軸受でラジアル荷重と両方 向のアキシャル荷重、モーメント荷重を受けられ、また、省スペース化が可能である。  As shown in FIG. 31, the cross roller bearing has a configuration in which a large number of cylindrical cores 3 are arranged between an inner ring 1 and an outer ring 2 so as to roll freely. It can receive axial load and moment load in both directions and save space.
[0004] しかし、クロスローラ軸受は、転動体がころであり、軌道溝 la, 2aに対してころ 3の転 力 Sり接触面が線接触しているので、トルクが大きぐし力も軸やノヽゥジングに組込んだ 際のわずかな変形により、線接触部分の接触状態が不安定となり、トルクむらが発生 しゃすい。また、工作機械の主軸旋回部用では、高精度化と高剛性ィ匕を図るために 軸受に予圧をかけることが多いが、この場合、上記の変形によるトルクむらがさらに大 きくなる。 [0004] However, in the cross roller bearing, the rolling element is a roller, and the rolling contact surface of the roller 3 is in line contact with the raceway groove la, 2a. Due to slight deformation when incorporated in uzing, the contact state of the line contact portion becomes unstable and torque unevenness occurs. In addition, for a spindle turning part of a machine tool, a preload is often applied to the bearing in order to achieve high accuracy and high rigidity, but in this case, the torque unevenness due to the above deformation becomes even larger.
(2) 4点接触玉軸受(図 32参照)  (2) 4-point contact ball bearing (See Fig. 32)
4点接触玉軸受は、図 32に示すように、内輪 4と外輪 5との間に多数の玉 6が転動 自在に配設された構成を有しており、一つの軸受でラジアル荷重と両方向のアキシ ャル荷重、モーメント荷重を受けられ、また省スペース化が可能である。  As shown in Fig. 32, the four-point contact ball bearing has a configuration in which a large number of balls 6 are arranged between the inner ring 4 and the outer ring 5 so as to be able to roll. It can receive axial load and moment load in both directions, and can save space.
[0005] 4点接触玉軸受の場合、転動体が玉なので、純アキシャル荷重を受ける場合、又は ラジアル荷重よりアキシャル荷重が優勢な場合、同寸法のクロスローラ軸受よりトルク が小さい一方で、アキシャル荷重に対してラジアル荷重が優勢な場合、又は純ラジア ル荷重を受ける場合、各玉 6は軌道溝 4a, 5aと 4点で接触するため玉 6と各軌道溝 4 a, 5aとのスピン滑りが大きぐやはりトルクが大きい。また、クロスローラ軸受と同様に 、工作機械の主軸旋回部用では、高精度化と高剛性ィ匕を図るために軸受に予圧を かけることが多いが、この場合、玉 6が常に内外輪軌道溝 4a, 5aと 4点で接触するた め、トルクがさらに増加してしまう。 [0005] In the case of a four-point contact ball bearing, the rolling element is a ball, so when receiving a pure axial load, or when an axial load predominates over a radial load, the torque is smaller than the cross roller bearing of the same size, but the axial load When the radial load prevails against each other, or when receiving a pure radial load, each ball 6 comes into contact with the raceway grooves 4a and 5a at four points, so that the spin slip between the ball 6 and each raceway groove 4a and 5a occurs. The large torque is large. In addition, as with cross roller bearings, for the main spindle turning part of machine tools, preload is often applied to the bearings in order to achieve high accuracy and high rigidity. The torque further increases due to contact with the grooves 4a and 5a at four points.
(3) 2列組合せ玉軸受(図 33参照)  (3) Two-row combination ball bearing (see Fig. 33)
2列組合せ玉軸受は、図 33に示すように、内輪 7と外輪 8との間に複数の玉 9が転 動可能に配設されたアンギユラ玉軸受等を 2列に組合せた構成を有する。 2列組合 せ玉軸受の場合、それぞれの単列軸受において、玉 9と内外輪 7, 8の軌道溝間は 2 点接触であるので、低トルク化は図れるものの、単列軸受の 2倍の軸方向スペースが 必要となり、コンパクトィ匕の点でクロスローラ軸受ゃ 4点接触玉軸受に劣る。 [0006] 更に、 2列組合せ玉軸受で、省スペース化を目的として、極薄肉の深みぞ玉軸受ゃ アンギユラ玉軸受(図 34参照)を組み合わせた構成を有するものがある。このように極 薄肉の玉軸受を組合せた 2列組合せ軸受を使用してハウジングに回転軸を回転自 在に支持する場合には、通常、図 35に示すように、軸 11の端部に形成した段部 12 に 2列組合せ軸受の内輪 7を嵌合させ、この内輪 7の自由端を軸 11の端部にボルト 1 3で締結される内輪押え 14で押圧することにより、回転軸 11に 2列組合せ軸受の内 輪 7を固定し、 2列組合せ軸受の外輪 8を、回転軸 11を覆うハウジング 15の端部に形 成した段部 16に嵌合させ、その外輪の自由端をハウジング 15の端部にボルト 17に よって締結される外輪押え 18によって押圧することにより、ハウジング 15に 2列組合 せ軸受の外輪 8を固定するようにして 、る。 As shown in FIG. 33, the two-row combination ball bearing has a configuration in which an anguilla ball bearing or the like in which a plurality of balls 9 are rotatably arranged between an inner ring 7 and an outer ring 8 is combined in two rows. In the case of two-row combined ball bearings, each single-row bearing has two points of contact between the raceway grooves of the ball 9 and the inner and outer rings 7, 8, so that torque can be reduced, but twice that of the single-row bearing. A space in the axial direction is required, and cross roller bearings are inferior to 4-point contact ball bearings in terms of compactness. [0006] Further, there is a two-row combination ball bearing having a configuration in which an extremely thin deep groove ball bearing is combined with an anguilla ball bearing (see FIG. 34) for the purpose of space saving. When using a two-row combination bearing with a combination of ultra-thin ball bearings to support the rotating shaft on the housing, the shaft is usually formed at the end of the shaft 11 as shown in FIG. The inner ring 7 of the two-row combination bearing is fitted to the stepped portion 12 and the free end of the inner ring 7 is pressed to the end of the shaft 11 by the inner ring presser 14 fastened with the bolt 13 to the rotary shaft 11. The inner ring 7 of the two-row combination bearing is fixed, and the outer ring 8 of the two-row combination bearing is fitted to the step 16 formed at the end of the housing 15 covering the rotating shaft 11, and the free end of the outer ring is fitted to the housing. The outer ring 8 of the two-row combination bearing is fixed to the housing 15 by being pressed by the outer ring presser 18 fastened to the end of 15 by the bolt 17.
[0007] このため、回転軸 11及びノヽウジング 15間に介挿する 2列組合せ軸受として極薄肉 の深溝玉軸受ゃ図 34に示すアンギユラ玉軸受を適用する場合には、省スペース化 の点では有利である力 内輪 7及び外輪 8のリング肉厚が非常に薄ぐ内輪 7及び外 輪 8の剛性が低いため、加工精度がでにく 特に真円度)、且つ上述したように、内 輪 7及び外輪 8を回転軸 11及びハウジング 15に嵌合すると共に、内輪押え 14及び 外輪押え 18によって押圧して回転軸 11及びノヽウジング 15に固定するので、 2列組 合せ軸受の組付け時即ち回転軸 11及びハウジング 15への嵌合時や内輪押え 14及 び外輪押え 18による押圧時に変形し易ぐ組込み精度の確保に手間を要するなどの 問題がある。また、場合によっては、組込み時の変形により内輪 7及び外輪 8の軌道 溝が歪み、玉 9と軌道溝との接触部間に偏荷重が加わったり、玉 9の円滑な転がり運 動が阻害されたりして、短期間の運転で損傷するという不具合を生じることがある。 (4) 2列組合せ円すいころ軸受(図 36参照)  [0007] For this reason, in the case of applying an extremely thin deep groove ball bearing shown in Fig. 34 as a two-row combination bearing inserted between the rotary shaft 11 and the nosing 15 to save space, Advantageous force Inner ring 7 and outer ring 8 are very thin. The inner ring 7 and outer ring 8 have low rigidity, so the machining accuracy is very low, especially roundness. 7 and the outer ring 8 are fitted to the rotating shaft 11 and the housing 15, and are pressed by the inner ring retainer 14 and the outer ring retainer 18 to be fixed to the rotating shaft 11 and the nosing 15. There is a problem that it takes time to secure the built-in accuracy that is easily deformed when fitted to the rotary shaft 11 and the housing 15 or when pressed by the inner ring retainer 14 and the outer ring retainer 18. Also, depending on the case, the inner and outer ring 7 and the outer ring 8 raceway grooves may be distorted due to deformation at the time of assembly, and an offset load may be applied between the contact portions between the balls 9 and the raceway grooves, and the smooth rolling movement of the balls 9 may be hindered. In some cases, it may cause a problem of being damaged by short-term driving. (4) Two-row combination tapered roller bearing (See Fig. 36)
2列組合せ円すいころ軸受は、図 36に示すように、内輪 21と外輪 22との間に保持 器 23を介して複数の円すい形のころ 24が転動可能に配設された円すいころ軸受 20 を内輪間座 25及び外輪間座 26を介して 2列に組合せて構成されて 、る。円す 、こ ろ軸受は、クロスローラ軸受と同様に転動体力 Sころであり、軌道溝に対してころ 24の 転がり接触面が線接触しており、また、ころ 24の端部と内輪 21のつば部 27が滑り接 触しているのでトルクが大きくなり、更に、単列軸受の 2倍の軸方向スペースが必要で ある。また、工作機械の主軸旋回部用では、高精度化と高剛性ィ匕を図るために、軸 受に予圧をかけることが多いが、この場合、トルクがさらに大きくなる。 As shown in FIG. 36, the two-row combined tapered roller bearing is a tapered roller bearing in which a plurality of tapered rollers 24 are arranged between a inner ring 21 and an outer ring 22 via a cage 23 so as to be capable of rolling. The inner ring spacer 25 and the outer ring spacer 26 are combined in two rows. The roller bearing is a roller S rolling element as in the case of the cross roller bearing. The rolling contact surface of the roller 24 is in line contact with the raceway groove, and the end of the roller 24 and the inner ring 21 are in contact with each other. Since the flange 27 is in sliding contact, the torque increases, and twice the axial space of the single row bearing is required. is there. In addition, in order to achieve high accuracy and high rigidity in a main spindle turning part of a machine tool, a preload is often applied to the bearing, but in this case, the torque is further increased.
[0008] 従来の工作機械の主軸旋回装置としては、例えば特表 2004— 520944号公報( 以下、特許文献 1と称す)に記載されているように、垂直な第 1軸を中心に機械構造 に対して旋回する第 1ハーフヘッドと、ツールスピンドルを支持するために水平面に 対して 35° 傾斜した傾斜平面上で第 1ハーフヘッドにガイドベアリングを介して結合 し、傾斜平面に対して直角である第 2軸を中心として第 1ハーフヘッドに対して旋回 する第 2ハーフヘッドと、第 1ハーフヘッド及び第 2ハーフヘッドを個別に旋回させる ダイレクトモータとを備え、ツールスピンドルをその中心軸が垂直となる状態力も第 2 ハーフヘッドを旋回させてツールスピンドルをその中心軸が水平面に対して仰角をな す状態の 2軸間で回転可能なスピンドルヘッドが知られている。  [0008] As a conventional spindle turning device of a machine tool, for example, as described in Japanese translations of PCT publication No. 2004-520944 (hereinafter referred to as Patent Document 1), a mechanical structure centered on a vertical first axis is used. The first half head pivots relative to the first half head via a guide bearing on an inclined plane inclined at 35 ° to the horizontal plane to support the tool spindle and is perpendicular to the inclined plane A second half head that swivels around the second axis with respect to the first half head, and a direct motor that swivels the first and second half heads separately. There is also known a spindle head that can rotate between two axes in a state where the second half head is swiveled to rotate the tool spindle so that its central axis is at an elevation angle with respect to the horizontal plane.
[0009] また、回転テーブルの例としては、特開平 10— 29125号公報(以下、特許文献 2と 称す)に記載されているように、基台の中心に立設された支持軸にテーブルがデスト リビュータを介して嵌挿され、このテーブルが基台上にクロスローラベアリングを介し て回転可能に支持され、テーブルがウォームギヤ又はダイレクトモータによって回転 駆動されて回転割出しを行うようにした回転割出し装置が知られている。 [0009] Further, as an example of the rotary table, as described in Japanese Patent Application Laid-Open No. 10-29125 (hereinafter referred to as Patent Document 2), the table is mounted on a support shaft standing at the center of the base. Rotation indexing, which is inserted through a distributor, is rotatably supported by a cross roller bearing on the base, and the table is rotationally driven by a worm gear or direct motor. The device is known.
発明の開示  Disclosure of the invention
[0010] このように、上記特許文献 1及び特許文献 2に記載されている構成を採用すること により、 4側面以外に上面も種々の加工が可能となる 5軸加工 (被削材 (ワーク)を保 持するテーブル設置面以外の対向する面の加工が 1段取りで可能)のマシニングセ ンタゃ NC旋盤とマシユングセンタの両機能を備えた複合加工機の製作が可能となり 、この種の工作機械が増加しているが、何れの構成を採用するとしても、回転を支持 する支持軸受の性能が回転機構部の回転精度'剛性等の特性に最も影響を与える ことになる。  [0010] Thus, by adopting the configuration described in Patent Document 1 and Patent Document 2 described above, various processing can be performed on the upper surface in addition to the four side surfaces (work material (workpiece)) Machining center can be used to manufacture multi-tasking machines with both NC lathe and machining center functions. Although the number of machines is increasing, the performance of the support bearing that supports the rotation has the most influence on the characteristics such as the rotational accuracy and rigidity of the rotating mechanism regardless of which configuration is adopted.
[0011] また、上記構成を達成するためには、旋回機構部の周辺の構成部品スペースが増 加せざるを得ないため、更なる省スペース化が要求される。さらに、主軸全体を揺動 させるための動力をできるだけ軽減し、省エネルギ化を図るためには、旋回機構部の コンパクトィ匕による軽量化'低イナ一シャ化も必要である。 し力しながら、前述したように、支持軸受として、クロスローラ軸受、 4点接触玉軸受 、 2列組合せ玉軸受、 2列組合せ円すいころ軸受等を適用した場合には、種々の不 具合を生じることになり、上記(1)〜(3)の機能を保持又は向上させつつ、最近の複 合化傾向の工作機械に対応した主軸旋回部用玉軸受を構成することができないとい う未解決の課題がある。 [0011] Further, in order to achieve the above-described configuration, the space for the components around the swivel mechanism must be increased, and thus further space saving is required. Furthermore, in order to reduce the power for swinging the entire main shaft as much as possible and to save energy, it is necessary to reduce the weight and reduce the inertia by the compactness of the turning mechanism. However, as described above, when a cross roller bearing, a four-point contact ball bearing, a two-row combination ball bearing, a two-row tapered roller bearing, or the like is applied as a support bearing, various problems occur. As a result, there is an unresolved problem that it is not possible to construct a ball bearing for a spindle turning part corresponding to a recent compounding machine tool while maintaining or improving the functions (1) to (3). There are challenges.
[0012] そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、上 記(1)〜(3)の機能を保持又は向上させつつ、最近の複合化傾向の工作機械に対 応した主軸旋回部用玉軸受及びこれを使用した工作機械の主軸旋回装置を提供す ることを目的としている。  [0012] Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and the recent trend toward compounding while maintaining or improving the functions (1) to (3) above. It is an object of the present invention to provide a spindle bearing ball bearing for a machine tool and a spindle machine for a machine tool using the same.
上記目的を達成するために、請求項 1に係る工作機械の主軸旋回部用玉軸受は、 工作機械の主軸旋回部に用いられ、外輪の軌道溝と内輪の軌道溝との間に多数の 玉が転動自在に配設された単列の玉軸受であって、軸方向断面幅 Bと半径方向断 面高さ Hとの断面寸法比(BZH)が(BZH) < 0. 63であることを特徴として 、る。  In order to achieve the above object, a spindle bearing ball bearing for a machine tool according to claim 1 is used for a spindle turning section of a machine tool, and a large number of balls are provided between an outer ring raceway groove and an inner ring raceway groove. Is a single-row ball bearing that is arranged so as to be able to roll, and the cross-sectional dimension ratio (BZH) between the axial cross-sectional width B and the radial cross-sectional height H is (BZH) <0.63 It is characterized by
[0013] また、請求項 2に係る工作機械の主軸旋回部用玉軸受は、請求項 1に係る発明に おいて、前記外輪及び内輪間の少なくとも片側端面にシール収容溝部を夫々形成し 、該シール収容溝部内に環状シール体を配設すると共に、前記多数の玉を円周方 向に位置決めする保持器を配設し、該保持器は前記多数の玉を保持するポケットの 軸方向両側に円環状部が形成され、該円環状部は内輪外周面及び外輪内周面の 何れか一方を案内面とし、当該案内面と前記シール収容溝部との交点エッジ部と対 向する位置に、当該交点エッジ部との接触を回避する凹状溝部を円周方向に形成し たことを特徴としている。  [0013] In addition, the ball bearing for a spindle turning part of a machine tool according to claim 2 is characterized in that, in the invention according to claim 1, a seal housing groove is formed on at least one side end surface between the outer ring and the inner ring. An annular seal body is disposed in the seal housing groove, and a cage for positioning the plurality of balls in the circumferential direction is disposed, and the cage is disposed on both axial sides of the pockets for holding the plurality of balls. An annular portion is formed, and the annular portion has one of the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring as a guide surface, and is positioned at a position facing the intersection edge portion of the guide surface and the seal receiving groove portion. A concave groove that avoids contact with the intersection edge is formed in the circumferential direction.
[0014] さらに、請求項 3に係る工作機械の主軸旋回装置は、請求項 1又は 2に記載の主軸 旋回部用玉軸受を主軸を旋回させる主軸旋回部に備えたことを特徴として 、る。 さらにまた、請求項 4に係る主軸旋回部用玉軸受は、工作機械の主軸旋回部に用 いられ、外輪の軌道溝と内輪の軌道溝との間に多数の玉が転動自在に配設された 複列の玉軸受であって、軸方向断面幅 B2と半径方向断面高さ H2との断面寸法比( B2/H2)が(B2ZH2) < 1. 2であることを特徴としている。  [0014] Further, a spindle turning device for a machine tool according to claim 3 is characterized in that the spindle turning ball bearing according to claim 1 or 2 is provided in a spindle turning portion for turning the spindle. Furthermore, the ball bearing for the spindle turning part according to claim 4 is used for the spindle turning part of the machine tool, and a large number of balls are arranged between the outer ring raceway groove and the inner ring raceway groove in a freely rolling manner. The double-row ball bearing is characterized in that the cross-sectional dimension ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 is (B2ZH2) <1.2.
[0015] なおさらに、請求項 5に係る工作機械の主軸旋回装置は、請求項 4に記載の主軸 旋回部用玉軸受を、主軸を旋回させる主軸旋回部に備えたことを特徴としている。 請求項 1に係る発明は、例えば図 3を参照して、外輪 101の軌道溝 101aと内輪 10 2の軌道溝 102aとの間に多数の玉 103が転動自在に配設された単列の玉軸受 100 において、軸方向断面幅 Bと半径方向断面高さ H (= (外輪外径 D—内輪内径 d)Z 2)が断面寸法比(BZH)を (BZH) < 0. 63として 、る。 [0015] Still further, a spindle turning device for a machine tool according to claim 5 is the spindle according to claim 4. The ball bearing for the turning part is provided in a spindle turning part for turning the spindle. In the invention according to claim 1, for example, referring to FIG. 3, a single row in which a large number of balls 103 are rotatably arranged between the raceway groove 101a of the outer ring 101 and the raceway groove 102a of the inner ring 102. In the ball bearing 100, the axial sectional width B and the radial sectional height H (= (outer ring outer diameter D—inner ring inner diameter d) Z 2) have a sectional dimension ratio (BZH) of (BZH) <0.63. .
[0016] ここで、請求項 1に係る発明における断面寸法比(BZH)を (BZH)く 0. 63に設 定した理由は以下の通りである。  Here, the reason why the cross-sectional dimension ratio (BZH) in the invention according to claim 1 is set to (BZH) 0.66 is as follows.
すなわち、図 27及び図 28は、それぞれ標準的に使用されている極薄肉玉軸受 (軸 受内径: Φ 203. 2mm,軸受外径: φ 254mm,軸受幅: 25. 4mm,前記断面寸法 比 (BZH) = 1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させ た場合 (即ち、(BZH)の値を変化させた場合)の内外輪リングの半径方向の変形特 性(図 25参照:内輪を例示)及び半径方向の断面 2次モーメント I (図 26参照): I=bh Vl2)を比較した結果を示して 、る。  27 and 28 show the standard thin ball bearings (bearing inner diameter: Φ 203.2 mm, bearing outer diameter: φ 254 mm, bearing width: 25.4 mm, cross-sectional dimension ratio ( BZH) = 1) as a reference, when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width (that is, when the value of (BZH) is changed), the inner and outer ring rings are deformed in the radial direction. The comparison results of the characteristics (see Fig. 25: inner ring shown as an example) and the radial second moment of inertia I (see Fig. 26): I = bh Vl2) are shown.
[0017] これら図 27及び図 28によると、 (B/H) =0. 63未満で、剛性の増加率勾配の変 化が顕著に出ている。すなわち、断面 2次モーメント Iの増加は顕著になり、半径方向 における内外輪リングの変形量の減少は飽和状態となる。  [0017] According to Figs. 27 and 28, when (B / H) = less than 0.63, the change in the gradient of increase in the stiffness is prominent. That is, the increase in the secondary moment I of the cross section becomes significant, and the decrease in the deformation amount of the inner and outer ring in the radial direction becomes saturated.
したがって、本発明では、従来の極薄肉軸受で問題となる内外輪製作時の旋盤加 ェゃ研磨加工時の加工力による軸受変形を防止することができ、真円度や偏肉等の 軸受精度を向上させることができる。  Therefore, according to the present invention, it is possible to prevent bearing deformation due to processing force during lathe machining and grinding during inner and outer ring production, which is a problem with conventional ultra-thin bearings, and bearing accuracy such as roundness and uneven thickness Can be improved.
[0018] また、軸やノヽゥジングに組込んだ場合 (特に、軸やハウジングとすきま嵌合で組込 んだ場合)、内輪押えや外輪押え等で軸受を固定したときの内外輪の変形 (特に真 円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転精 度不良の他、発熱増大や摩耗、焼付き等の不具合を防止することができる。  [0018] In addition, when assembled in a shaft or nosing (especially when assembled by clearance fitting with the shaft or housing), deformation of the inner and outer rings when the bearing is fixed with an inner ring retainer or outer ring retainer ( In particular, the deterioration of roundness) can be suppressed, and in addition to poor torque and rotational accuracy caused by deformation, problems such as increased heat generation, wear, and seizure can be prevented.
つまり、従来使用されている極薄肉玉軸受に比較して、省スペース化と同時に高精 度化を両立させることが可能である。  In other words, compared to the ultra-thin ball bearings used in the past, it is possible to achieve both space saving and high accuracy.
[0019] 図 29は、単列の本発明品とクロスローラ軸受についてそれぞれの軸受にモーメント 荷重を負荷した場合の内外輪相対傾き角の比較データである。  [0019] FIG. 29 is a comparison data of the relative inclination angles of the inner and outer rings when a moment load is applied to each of the single row product of the present invention and the cross roller bearing.
ここで、測定軸受の主要寸法は、 本発明品: Here, the main dimensions of the measuring bearing are Invention product:
内輪内径 : φ 170  Inner ring inner diameter: φ 170
外輪外径 : Φ 215  Outer ring outer diameter: Φ 215
単体幅 : 13. 5mm  Single unit width: 13.5mm
転動体ピッチ円直径: φ 192. 5  Rolling element pitch circle diameter: φ 192.5
接触角 35。  Contact angle 35.
(B/H = 0. 60)  (B / H = 0. 60)
クロスローラ軸受:  Cross roller bearing:
内輪内径 : φ 130  Inner ring inner diameter: φ 130
外輪外径 : φ 230  Outer ring outer diameter: φ 230
糸且立幅 : 30mm  Thread length: 30mm
転動体ピッチ円直径: φ 189. 7  Rolling element pitch circle diameter: φ 189.7
である。  It is.
[0020] この図 29から明らかなように、転動体のピッチ円直径が略同一となる本発明品及び クロスローラ軸受の両者について、モーメント剛性の比較データから、本発明品がク ロスローラ軸受に対して、約 1. 3倍のモーメント剛性を保持していることが確認された また、上記の実験に加えて、本発明品及びクロスローラ軸受を軸及びノヽウジングに 組込んだ後、モータ(ベルト駆動)により低速で回転させたところ、本発明品は、回転 ムラもなくスムーズに回転した力 クロスローラ軸受の場合はトルク変動による回転ム ラが実際に確認された。  As is apparent from FIG. 29, the product of the present invention is compared to the cross roller bearing for both the product of the present invention and the cross roller bearing in which the pitch circle diameters of the rolling elements are substantially the same, based on the moment rigidity comparison data. In addition to the above experiments, after incorporating the product of the present invention and the cross roller bearing into the shaft and nosing, the motor (belt When the product of the present invention was rotated at a low speed by driving), the rotating force caused by torque fluctuation was actually confirmed in the case of the cross roller bearing.
[0021] 一方、国際標準化機構 (ISO)で規定されている寸法系列が 18 (例えば 6820)、 1 9 (例えば 6924)、 10 (例えば 6028)、 02 (例えば 7224A)、 03 (例えば 7322A)の 標準玉軸受では、軸受内径寸法が φ 5mn!〜 φ 500mmにおいては、上述の断面寸 法比(BZH)は 0. 63〜: L 17に設定されている。 On the other hand, the dimension series defined by the International Organization for Standardization (ISO) is 18 (eg 6820), 19 (eg 6924), 10 (eg 6028), 02 (eg 7224A), 03 (eg 7322A) For standard ball bearings, the inner diameter of the bearing is φ5mn! For ~ 500mm, the above-mentioned cross-sectional dimension ratio (BZH) is set to 0.63 ~: L17.
したがって、これらの玉軸受における断面寸法比(BZH)の最大値 1. 17の約 1Z 2倍、すなわち 0. 63未満に設定することで、従来の標準単列玉軸受で最も幅狭の 玉軸受より幅狭で、且つ従来の標準単列玉軸受の軸方向スペース以内に、請求項 1 に係る玉軸受を 2列組み合わせて配置することができる。 Therefore, the narrowest ball bearing of the conventional standard single row ball bearing is set by setting the cross sectional dimension ratio (BZH) of these ball bearings to the maximum value of 1.17, approximately 1Z 2 times, that is, less than 0.63. Narrower and within the axial space of conventional standard single row ball bearings, claim 1 Can be arranged in combination with two rows of ball bearings.
[0022] 例えば、従来の玉軸受の断面寸法比(BZH)が(BZH) =0. 9であれば、本発明 の軸受の断面寸法比(BZH)を (BZH) =0. 45とすればよい。また、本例の場合、 組み合わせる 2個の玉軸受における軸受の断面寸法比(BZH)を同一にする必要 はなぐ例えば、片方を 0. 50、もう一方を 0. 40としてもよい。  [0022] For example, if the sectional dimension ratio (BZH) of a conventional ball bearing is (BZH) = 0.9, the sectional dimension ratio (BZH) of the bearing of the present invention is (BZH) = 0.45. Good. In the case of this example, it is not necessary for the two ball bearings to be combined to have the same cross-sectional dimension ratio (BZH). For example, one may be 0.50 and the other may be 0.40.
なお、単列玉軸受は、 1列では、予圧を掛けたりモーメント荷重を負荷することは困 難であるが、 2列以上の多列組合せとすることで、ラジアル荷重'アキシャル荷重及び モーメント荷重を負荷することが可能となる。  In single-row ball bearings, it is difficult to apply preload or moment load in one row, but by combining multiple rows of two or more rows, radial load, axial load and moment load can be reduced. It becomes possible to load.
[0023] また、各玉が内外輪の軌道溝に対して常に 2点で接触するので、 4点接触玉軸受 のように、玉の大きなスピンによるトルクの増加を抑制することができ、更には、クロス ローラ軸受ゃ 2列組合せ円すいころ軸受に比べて、転がり抵抗が低くなるので低トル ク化を実現することができる。  [0023] Further, since each ball always contacts the raceway groove of the inner and outer rings at two points, an increase in torque due to a large spin of the ball can be suppressed as in a four-point contact ball bearing. Compared to two-row combined tapered roller bearings, cross-roller bearings have lower rolling resistance and can achieve lower torque.
さらに、幅寸法が従来の標準単列玉軸受の約半分となることで、玉径も従来の玉軸 受の半分程度となるが、逆に 1列あたりの玉数が増加し、軸受剛性は従来の玉軸受 に対して増加する。また、工作機械の主軸旋回部に用いる場合においては、揺動回 転条件であるので、玉径を小さくしたことにより軸受の負荷容量が低下しても転がり疲 れ寿命時間が実用上で問題となることはない。  Furthermore, since the width dimension is about half that of the conventional standard single row ball bearing, the ball diameter is also about half that of the conventional ball bearing, but conversely the number of balls per row increases and the bearing rigidity is reduced. Increased compared to conventional ball bearings. In addition, when used in the spindle turning part of a machine tool, since it is a rocking rotation condition, rolling fatigue life time is a problem in practice even if the load capacity of the bearing is reduced by reducing the ball diameter. Never become.
[0024] また、請求項 2に係る発明では、単列の玉軸受において、外輪及び内輪の少なくと も片側端面にシール収容溝部を夫々形成し、これらシール収容溝部内に環状シー ル体を配設すると共に、多数の玉を円周方向に位置決めする保持器を配設したとき に、保持器の多数の玉を保持するポケットの軸方向両側に形成した内輪外周面及び 外輪内周面の何れか一方を案内面とする円環状部に、当該案内面とシール収容溝 部との交点エッジ部と対向する位置に、凹状溝部を円周方向に形成したので、前述 したように幅狭形状の軸受であっても、凹状溝部によって保持器の円環状部が交点 エッジ部に接触するエッジ当りを回避して、エッジ当りによる円環状部の摩耗を確実 に防止することができる。  [0024] In the invention according to claim 2, in the single row ball bearing, at least one end face of each of the outer ring and the inner ring is formed with a seal accommodating groove, and an annular seal body is disposed in each of the seal accommodating grooves. When the cage that positions many balls in the circumferential direction is installed, either the outer peripheral surface of the inner ring or the inner peripheral surface of the outer ring formed on both sides in the axial direction of the pocket that holds the many balls of the cage Since the concave groove portion is formed in the circumferential direction at the position facing the intersection edge portion between the guide surface and the seal receiving groove portion in the annular portion having one of the guide surfaces as described above, the narrow shape as described above. Even in the case of a bearing, it is possible to prevent wear of the annular portion due to contact with the edge by avoiding contact with the edge where the annular portion of the cage contacts the intersection edge portion by the concave groove portion.
[0025] また、請求項 4に係る発明は、例えば図 21を参照して、外輪 201の複列軌道溝 20 la, 201bと内輪 202の複列軌道溝 202a, 202bとの間に多数の玉 203が転動自在 に配設された複列の玉軸受 200において、軸方向断面幅 B2と半径方向断面高さ H 2 ( = (外輪外径 D2—内輪内径 d2) /2)との断面寸法比(B2ZH2)を (B2ZH2) < 1. 2として!/ヽる。 [0025] In the invention according to claim 4, with reference to FIG. 21, for example, a large number of balls are arranged between the double row raceway grooves 20la, 201b of the outer ring 201 and the double row raceway grooves 202a, 202b of the inner ring 202. 203 can roll freely In the double-row ball bearing 200 disposed in the axial direction, the sectional dimension ratio (B2ZH2) between the axial sectional width B2 and the radial sectional height H 2 (= (outer ring outer diameter D2—inner ring inner diameter d2) / 2) is (B2ZH2) <1. 2!
複列玉軸受において、断面寸法比 (B2ZH2)を以上のような設定とすることで、請 求項 1に係る単列の幅狭玉軸受を 2列組合せとした場合と同様、従来の標準単列玉 軸受の軸方向幅スペース内に請求項 4に係る複列玉軸受を配置することが可能とな り、また、予圧をかけたり、モーメント荷重を付加すること等も可能となる。その他の作 用効果は請求項 1に係る単列の幅狭玉軸受を 2列組合せとした場合と同様である。  By setting the cross-sectional dimension ratio (B2ZH2) as described above for a double row ball bearing, the conventional standard single unit is the same as when combining single row narrow ball bearings according to claim 1 in two rows. The double row ball bearing according to claim 4 can be arranged in the axial width space of the row ball bearing, and it is also possible to apply a preload or apply a moment load. Other operational effects are the same as those obtained when the single-row narrow ball bearing according to claim 1 is combined in two rows.
[0026] 図 30は、各種軸受の計算モーメント剛性の比較である。同一サイズ (計算例は、軸 受名番 7906A (接触角 30° )相当で、内外径寸法が同じ場合:内輪内径 φ 30mm 、外輪外径 φ 47mm)では、請求項 1に係る単列の幅狭アンギユラ玉軸受 (接触角 3 0° :総玉軸受の計算例)を 2列組合せ、且つ内外輪の軌道溝曲率半径を変化させ た本発明例 A〜Eは、何れもクロスローラ軸受、標準 2列組合せアンギユラ玉軸受及 び 4点接触玉軸受に比べてモーメント剛性が大きくなつている。例えば、本発明例 B は、クロスローラ軸受の 2. 4倍、標準 2列組合せアンギユラ玉軸受の 1. 9倍、 4点接 触玉軸受の 3. 3倍のモーメント剛性を保持させることが可能である。  FIG. 30 is a comparison of calculated moment stiffness of various bearings. For the same size (calculation example is equivalent to bearing name 7906A (contact angle 30 °) and the inner and outer diameter dimensions are the same: inner ring inner diameter φ 30mm, outer ring outer diameter φ 47mm), the width of the single row according to claim 1 Narrow anguilla ball bearings (contact angle 30 °: calculation example of total ball bearings) are combined in two rows, and the invention examples A to E in which the inner and outer ring raceway radius of curvature are changed are all cross roller bearings, standard The moment stiffness is larger than the two-row combined angular contact ball bearings and four-point contact ball bearings. For example, the invention example B can hold moment rigidity 2.4 times that of a cross roller bearing, 1.9 times that of a standard two-row combination anguilla ball bearing, and 3.3 times that of a 4-point contact ball bearing. It is.
[0027] なお、それぞれの設計予圧すきまは、本発明例 A〜E、標準 2列組合せアンギユラ 玉軸受及び 4点接触玉軸受は、 -0. 010mm,クロスローラ軸受は—0. 001mmと 実用上の標準的な値として計算している(クロスローラ軸受で、—0. 001mmより小さ ぃ予圧すきま設定をした場合、トルクが過多となり実用上で使用不可となるおそれが ある)。  [0027] Each design preload clearance is -0.001mm for the examples A to E of the present invention, standard two-row combination anguilla ball bearing and four-point contact ball bearing, and -0.001mm for the cross roller bearing. (When using a cross roller bearing with a preload clearance smaller than -0.001 mm, the torque may be excessive and may be unusable in practice).
なお、本発明に係る幅狭玉軸受の適正な玉径は、シール等の装着有無により変化 するが、剛性を増カロさせるため、極端に玉径を小さくすると、玉と内外輪の軌道溝と の接触部間の面圧が増加し、耐圧痕性が低下するので、おおむね、軸受幅 (B)又は (B2Z2)の 30%〜90%が望ましい。  The appropriate ball diameter of the narrow ball bearing according to the present invention varies depending on whether or not a seal or the like is mounted, but in order to increase rigidity, if the ball diameter is extremely reduced, the ball and inner and outer ring raceway grooves and Since the surface pressure between the contact parts increases and the pressure scar resistance decreases, the bearing width (B) or (B2Z2) is preferably 30% to 90%.
[0028] さらに、本発明をアンギユラ玉軸受に適用した場合、軸受の接触角は必要な剛性( 例えば、モーメント剛性)及び要求トルクにより選ばれる力 おおむね 10〜60° の範 囲が望ましい。 さらに、荷重の方向や大きさに合わせて、必要に応じて、組合せた各単列軸受の接 触角、或 ヽは複列軸受の場合は各列間の接触角を変えても構わな!/ヽ。 [0028] Furthermore, when the present invention is applied to an anguilla ball bearing, the contact angle of the bearing is preferably within a range of approximately 10 to 60 ° of force selected according to required rigidity (for example, moment rigidity) and required torque. Furthermore, according to the direction and magnitude of the load, the contact angle of each combined single row bearing may be changed as necessary, or, in the case of a double row bearing, the contact angle between each row may be changed! /ヽ.
さらには、内外輪軌道溝の曲率半径は、要求される剛性やトルク特性に応じて、 51 Furthermore, the radius of curvature of the inner and outer ring raceway grooves depends on the required rigidity and torque characteristics.
〜60%Da (Da:玉径)、好ましくは 52〜56%Da、より好ましくは 52〜54%Da程度 とする。また、内外輪のそれぞれの軌道溝の曲率半径は同一でなくてもよいし、組み 合される単列軸受間ゃ複列軸受の各列間で異なってもよい。 -60% Da (Da: ball diameter), preferably 52-56% Da, more preferably about 52-54% Da. Further, the radius of curvature of each raceway groove of the inner and outer rings may not be the same, or may be different between each row of the double row bearings between the single row bearings to be combined.
[0029] 本発明によれば、工作機械の主軸旋回部に用いられる主軸旋回部用玉軸受にお いて、単列玉軸受の場合に、軸方向断面幅 Bと半径方向断面高さ Hとの断面比(B [0029] According to the present invention, in the spindle turning ball bearing used for the spindle turning portion of the machine tool, in the case of a single row ball bearing, the axial sectional width B and the radial sectional height H are Section ratio (B
ZH)を (BZH) <0. 63とし、複列玉軸受の場合に、軸方向断面幅 B2と半径方向 断面高さ H2との断面比(B2/ H2)が(B2ZH2) < 1. 2とすることで、ラジアル荷重 と両方向のアキシャル荷重、モーメント荷重を受けられるのは勿論のこと、高精度化( 高回転精度化)、高剛性化、低トルク化及び低発熱化を図ることができると共に、更な る省スペース化を図ることができるという効果が得られる。そして、上記効果を奏する 主軸旋回部用玉軸受を、主軸旋回部に適用して主軸旋回装置を構成することにより 、主軸旋回装置自体も省スペース化を図ることができる。 ZH) is set to (BZH) <0.63, and in the case of a double row ball bearing, the sectional ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 is (B2ZH2) <1.2 In addition to being able to receive radial load, axial load in both directions, and moment load, high accuracy (high rotational accuracy), high rigidity, low torque and low heat generation can be achieved. As a result, it is possible to achieve further space saving. Further, by configuring the main spindle turning device by applying the main spindle turning portion ball bearing having the above effect to the main spindle turning portion, the main spindle turning device itself can also save space.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本発明の第 1の実施形態 (請求項 1又は 3に対応)である工作機械の主軸旋回 装置を示す要部を断面とした側面図である。  FIG. 1 is a side view with a cross section of a main part showing a spindle turning device for a machine tool according to a first embodiment of the present invention (corresponding to claim 1 or 3).
[図 2]本発明の第 1の実施形態 (請求項 1又は 3に対応)である工作機械の主軸旋回 装置の変形例を示す要部を断面とした側面図である。  FIG. 2 is a side view with a cross section of the main part showing a modification of the main spindle turning device of the machine tool according to the first embodiment (corresponding to claim 1 or 3) of the present invention.
[図 3]本発明に係る主軸旋回部用玉軸受の第 1の実施形態を示す単列アンギユラ玉 軸受の断面図である。  FIG. 3 is a cross-sectional view of a single row anguilla ball bearing showing a first embodiment of a ball bearing for a spindle turning part according to the present invention.
[図 4]図 3の単列玉軸受を 2列組み合わせた状態を示す要部断面図である。  FIG. 4 is a cross-sectional view of a principal part showing a state in which two rows of single row ball bearings of FIG. 3 are combined.
[図 5]本発明の第 1の実施形態における他の実施態様である単列玉軸受を 2列組み 合わせた状態を示す要部断面図である。  FIG. 5 is a cross-sectional view of an essential part showing a state in which two rows of single row ball bearings, which are another embodiment of the first embodiment of the present invention, are combined.
[図 6]図 3の単列玉軸受と他の実施態様である単列玉軸受とを 2列組み合わせた状 態を示す要部断面図である。  FIG. 6 is a cross-sectional view of an essential part showing a state in which two rows of single row ball bearings of FIG. 3 and single row ball bearings according to another embodiment are combined.
[図 7]本発明の第 1の実施形態の他の実施態様である単列玉軸受を 2列組み合わせ た状態を示す要部断面図である。 [Fig. 7] Two-row combination of single row ball bearings, which is another embodiment of the first embodiment of the present invention. It is principal part sectional drawing which shows the state.
圆 8]本発明の第 1の実施形態の他の実施態様である単列玉軸受を説明するための 要部断面図である。 [8] FIG. 8 is a cross-sectional view of an essential part for explaining a single row ball bearing which is another embodiment of the first embodiment of the present invention.
圆 9]図 3の単列玉軸受を 3列組み合わせた状態を示す要部断面図である。 [9] FIG. 9 is a cross-sectional view of the main part showing a state in which three rows of single row ball bearings of FIG.
[図 10]図 3の単列玉軸受を 4列組み合わせた状態を示す要部断面図である。  FIG. 10 is a cross-sectional view of a principal part showing a state in which four rows of single row ball bearings of FIG. 3 are combined.
圆 11]図 3の単列玉軸受を 2列正面組合せで組み合わせた状態を示す要部断面図 である。 [11] FIG. 11 is a cross-sectional view of an essential part showing a state in which the single row ball bearing of FIG. 3 is combined in a two-row front combination.
圆 12]本発明の第 1の実施形態の他の実施態様である単列玉軸受を 2列組み合わ せた状態を示す要部断面図である。 [12] FIG. 12 is a cross-sectional view of an essential part showing a state in which two rows of single row ball bearings which are other embodiments of the first embodiment of the present invention are combined.
圆 13]保持器の径方向に沿う断面図である。 13] A sectional view taken along the radial direction of the cage.
圆 14]保持器を径方向内側力も見た部分斜視図である。 [14] FIG. 14 is a partial perspective view of the cage when the radial inner force is also seen.
[図 15]図 13の矢印 B方向から見た図である。  FIG. 15 is a view seen from the direction of arrow B in FIG.
[図 16] (a)は図 13の矢印 A方向から見た図、(b)は(a)の変形例を示す図である。 圆 17]本発明の第 1の実施形態の変形例 (請求項 2に対応)の一例である工作機械 の主軸旋回部用単列玉軸受を説明するための要部断面図である。  FIG. 16 (a) is a view as seen from the direction of arrow A in FIG. 13, and FIG. 16 (b) is a view showing a modification of (a). FIG. 17 is a cross-sectional view of an essential part for explaining a single-row ball bearing for a spindle turning part of a machine tool, which is an example of a modification (corresponding to claim 2) of the first embodiment of the present invention.
圆 18]工作機械の主軸旋回部用単列玉軸受を説明するための要部断面図である。 18] A main portion sectional view for explaining a single row ball bearing for a spindle turning portion of a machine tool.
[図 19]工作機械の主軸旋回部用単列玉軸受の変形例を説明するための要部断面 図である。 FIG. 19 is a cross-sectional view of an essential part for explaining a modification of the single-row ball bearing for the spindle turning part of the machine tool.
圆 20]本発明の第 1の実施形態における他の変形例の一例である工作機械の主軸 旋回部用単列玉軸受を説明するための要部断面図である。 FIG. 20 is a cross-sectional view of an essential part for explaining a single-row ball bearing for a main spindle turning part of a machine tool, which is an example of another modified example of the first embodiment of the present invention.
圆 21]本発明の第 2の実施形態 (請求項 4又は 5に対応)における実施態様の一例で ある工作機械の主軸旋回部用複列玉軸受を説明するための要部断面図である。 圆 22]本発明の第 2の実施形態における他の実施態様である複列玉軸受を説明す るための要部断面図である。 FIG. 21 is a cross-sectional view of an essential part for explaining a double-row ball bearing for a spindle turning part of a machine tool, which is an example of an embodiment in a second embodiment (corresponding to claim 4 or 5) of the present invention. FIG. 22 is a cross-sectional view of an essential part for explaining a double row ball bearing which is another embodiment of the second embodiment of the present invention.
圆 23]本発明の第 2の実施形態における他の実施態様である複列玉軸受を説明す るための要部断面図である。 FIG. 23 is a cross-sectional view of an essential part for explaining a double-row ball bearing which is another embodiment of the second embodiment of the present invention.
[図 24]本発明の第 2の実施形態における他の実施態様である複列玉軸受を説明す るための要部断面図である。 [図 25]内輪の半径方向の変形量を説明するための説明図である。 FIG. 24 is a cross-sectional view of an essential part for explaining a double-row ball bearing which is another embodiment of the second embodiment of the present invention. FIG. 25 is an explanatory diagram for explaining the amount of deformation in the radial direction of the inner ring.
圆 26]内輪の断面 2次モーメントの計算方法を説明するための説明図である。 [26] FIG. 26 is an explanatory diagram for explaining a method of calculating a cross-sectional secondary moment of the inner ring.
[図 27]断面寸法比 (BZH)と半径方向の内外輪の変形量との関係を示すグラフ図で ある。  FIG. 27 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the amount of deformation of the inner and outer rings in the radial direction.
[図 28]断面寸法比(BZH)と断面 2次モーメント Iとの関係を示すグラフ図である。  FIG. 28 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the cross-sectional secondary moment I.
[図 29]本発明品とクロスローラ軸受のモーメント剛性の比較を示すグラフ図である。 圆 30]各種軸受での計算モーメント剛性の比較を示すグラフ図である。  FIG. 29 is a graph showing a comparison of moment stiffness between the product of the present invention and a cross roller bearing. [30] FIG. 30 is a graph showing a comparison of calculated moment stiffness in various bearings.
[図 31]クロスローラ軸受の要部断面図である。  FIG. 31 is a cross-sectional view of a principal part of a cross roller bearing.
[図 32]4点接触玉軸受の要部断面図である。  FIG. 32 is a cross-sectional view of a principal part of a four-point contact ball bearing.
[図 33]従来の 2列組合せアンギユラ玉軸受の要部断面図である。  FIG. 33 is a cross-sectional view of a main part of a conventional two-row combination anguilla ball bearing.
[図 34]従来の極薄肉断面の 2列組合せアンギユラ玉軸受の要部断面図である。 圆 35]従来の極薄肉断面の 2列組合せアンギユラ玉軸受を軸に取付けた状態を示す 断面図である。  FIG. 34 is a cross-sectional view of a main part of a conventional two-row combination anguilla ball bearing with a very thin cross section. [35] FIG. 35 is a cross-sectional view showing a state in which a conventional double-row combination anguilla ball bearing with an ultra-thin wall section is mounted on a shaft.
[図 36]従来の 2列組合せ円すいころ軸受の要部断面図である。  FIG. 36 is a cross-sectional view of a main part of a conventional two-row combined tapered roller bearing.
圆 37]従来のアンギユラ玉軸受を示す説明図である。 圆 37] An explanatory view showing a conventional anguilla ball bearing.
圆 38]本発明の第 3の実施形態における第 1の実施態様の一例である単列アンギュ ラ玉軸受を説明するための要部断面図である。 FIG. 38 is a cross-sectional view of an essential part for explaining a single-row angular contact ball bearing which is an example of the first embodiment in the third embodiment of the present invention.
[図 39]図 38の単列アンギユラ玉軸受を 2列組み合わせた状態を示す要部断面図で ある。  FIG. 39 is a cross-sectional view of the principal part showing a state in which two rows of single row anguilla ball bearings of FIG. 38 are combined.
[図 40]断面寸法比 (BZH)と半径方向の内外輪の変形量との関係を示すグラフ図で ある。  FIG. 40 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the amount of deformation of the inner and outer rings in the radial direction.
[図 41]断面寸法比(BZH)と断面 2次モーメント Iとの関係を示すグラフ図である。 圆 42]内輪の半径方向の変形量を説明するための説明図である。  FIG. 41 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the cross-sectional secondary moment I.圆 42] An explanatory diagram for explaining the amount of deformation of the inner ring in the radial direction.
圆 43]内輪の断面 2次モーメントの計算方法を説明するための説明図である。 [43] FIG. 43 is an explanatory diagram for explaining a method of calculating a cross-sectional secondary moment of the inner ring.
[図 44]断面寸法比 (BZH)と半径方向の内外輪の変形量との関係を示すグラフ図で ある。  FIG. 44 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the amount of deformation of the inner and outer rings in the radial direction.
[図 45]断面寸法比(BZH)と断面 2次モーメント Iとの関係を示すグラフ図である。 圆 46]各種軸受での計算モーメント剛性の比較を示すグラフ図である。 [図 47]第 3の実施形態における第 1の実施態様の単列アンギユラ玉軸受を説明する ための要部断面図である。 FIG. 45 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the cross-sectional secondary moment I. [46] It is a graph showing a comparison of calculated moment stiffness in various bearings. FIG. 47 is an essential part cross-sectional view for explaining a single-row anguilla ball bearing of the first embodiment in the third embodiment.
圆 48]本発明の第 3の実施形態における第 1の実施態様の単列アンギユラ玉軸受を 説明するための要部断面図である。 FIG. 48 is a cross-sectional view of an essential part for explaining the single-row anguilla ball bearing of the first embodiment in the third embodiment of the present invention.
圆 49]本発明の第 3の実施形態における第 1の実施態様の単列アンギユラ玉軸受の 変形例を説明するための要部断面図である。 FIG. 49 is a cross-sectional view of a principal part for explaining a modification of the single row anguilla ball bearing of the first embodiment in the third embodiment of the present invention.
圆 50]本発明の第 3の実施形態における第 1の実施態様の他の変形例の単列アンギ ユラ玉軸受を説明するための要部断面図である。 FIG. 50 is a cross-sectional view of an essential part for explaining a single-row angular ball bearing according to another modification of the first embodiment in the third embodiment of the present invention.
圆 51]本発明の第 3の実施形態における第 1の実施態様の単列アンギユラ玉軸受の 他の例を示す単列玉軸受を 2列組み合わせた状態を示す要部断面図である。 [51] FIG. 51 is a cross-sectional view of a main part showing a state in which two rows of single row ball bearings showing another example of the single row anguilla ball bearing of the first embodiment in the third embodiment of the present invention are combined.
圆 52]保持器の径方向に沿う断面図である。 [52] FIG. 52 is a cross-sectional view of the cage along the radial direction.
圆 53]保持器を径方向内側カゝら見た部分斜視図である。 [53] FIG. 53 is a partial perspective view of the cage as seen from the radially inner side.
圆 54]本発明の第 3の実施形態における第 2の実施態様の複列アンギユラ玉軸受を 説明するための要部断面図である。 [54] FIG. 54 is an essential part cross-sectional view for describing a double-row anguilla ball bearing according to a second embodiment of the third embodiment of the present invention.
[図 55]従来の深みぞ玉軸受を示す断面図である。  FIG. 55 is a cross-sectional view showing a conventional deep groove ball bearing.
[図 56]図 55の保持器を示す斜視図である。  FIG. 56 is a perspective view showing the retainer of FIG. 55.
[図 57]図 55の B— B線上の断面図である。  FIG. 57 is a cross-sectional view taken along the line BB in FIG. 55.
[図 58]図 55の A— A線上の断面図である。  FIG. 58 is a cross-sectional view taken along the line AA in FIG. 55.
圆 59]従来のアンギユラ玉軸受を示す断面図である。 [59] FIG. 59 is a cross-sectional view showing a conventional angular contact ball bearing.
[図 60]図 59の保持器を示す側面図である。  FIG. 60 is a side view showing the retainer of FIG. 59.
圆 61]本発明の第 4の実施形態における第 1の実施態様の一例である背面組合せと した組合せ玉軸受を説明するための要部断面図である。 FIG. 61 is a cross-sectional view of an essential part for explaining a combination ball bearing as a back combination which is an example of the first embodiment in the fourth embodiment of the present invention.
[図 62]断面寸法比 (BZH)と半径方向の内外輪の変形量との関係を示すグラフ図で ある。  FIG. 62 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the amount of deformation of the inner and outer rings in the radial direction.
[図 63]断面寸法比 (BZH)と断面 2次モーメント Iとの関係を示すグラフ図である。  FIG. 63 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the cross-sectional secondary moment I.
[図 64]内輪の半径方向の変形量を説明するための説明図である。  FIG. 64 is an explanatory diagram for explaining the amount of deformation in the radial direction of the inner ring.
圆 65]内輪の断面 2次モーメントの計算方法を説明するための説明図である。 [65] FIG. 65 is an explanatory diagram for explaining a method of calculating a sectional second moment of the inner ring.
[図 66]断面寸法比 (BZH)と半径方向の内外輪の変形量との関係を示すグラフ図で ある。 FIG. 66 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the amount of deformation of the inner and outer rings in the radial direction. is there.
[図 67]断面寸法比 (BZH)と断面 2次モーメント Iとの関係を示すグラフ図である。  FIG. 67 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the cross-sectional secondary moment I.
[図 68]各種軸受での計算モーメント剛性の比較を示すグラフ図である。  FIG. 68 is a graph showing a comparison of calculated moment stiffness for various bearings.
[図 69]保持器の径方向に沿う断面図である。  FIG. 69 is a cross-sectional view taken along the radial direction of the cage.
[図 70]保持器を径方向内側カゝら見た部分斜視図である。  FIG. 70 is a partial perspective view of the cage as seen from the radially inner side.
[図 71]図 69の矢印 Y方向から見た矢視図である。  FIG. 71 is an arrow view seen from the arrow Y direction of FIG. 69.
[図 72]図 69の Z— Z線上の断面図である。  FIG. 72 is a cross-sectional view taken along the line ZZ in FIG. 69.
[図 73]保持器が軸方向移動した場合の作用を説明する説明図である。  FIG. 73 is an explanatory diagram for explaining the operation when the cage is moved in the axial direction.
[図 74] (a)は図 69の矢印 X方向力も見た矢視図、 (b)は (a)の変形例を示す矢視図 である。  74 (a) is an arrow view showing the force in the direction of arrow X in FIG. 69, and (b) is an arrow view showing a modification of (a).
[図 75]図 61にグリースを封入した状態を示す要部断面図である。  FIG. 75 is an essential part cross-sectional view showing a state in which grease is enclosed in FIG. 61.
[図 76]正面組合せとした組合せ軸受を示す要部断面図である。  FIG. 76 is a cross-sectional view of relevant parts showing a combined bearing in front combination.
[図 77]環状シール体の他の例を示す要部断面図である。  FIG. 77 is a cross-sectional view of a principal part showing another example of an annular seal body.
[図 78]本発明の第 4の実施形態における第 5の実施態様の一例である複列アンギュ ラ玉軸受を説明するための要部断面図である。  FIG. 78 is a cross-sectional view of an essential part for explaining a double-row angular contact ball bearing which is an example of a fifth embodiment in the fourth embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 以下、図 1〜図 24を参照して本発明の第 1の実施形態における実施態様を説明す る。 [0031] Embodiments in the first embodiment of the present invention will be described below with reference to Figs.
図 1は、本発明に係る工作機械の主軸旋回装置を例えば 5軸加工マシユングセン タに適用した場合の第 1の実施形態 (請求項 1又は 3に対応)を示す要部を断面とし た側面図である。  FIG. 1 is a side view in cross section of a main portion showing a first embodiment (corresponding to claim 1 or 3) when the spindle turning device of a machine tool according to the present invention is applied to, for example, a 5-axis machining center. It is.
図中、 30は工作機械の主軸旋回装置であって、マシユングセンタの固定部に固定 された基台 31と、この基台 31に回転自在に支持された旋回台座 32と、この旋回台 座 32に装着された主軸本体 33とを備えている。  In the figure, 30 is a spindle turning device for a machine tool. A base 31 fixed to a fixed part of the machining center, a turning base 32 rotatably supported by the base 31, and this turning base And a main spindle body 33 attached to 32.
[0032] 基台 31は、左端面中央力も右側に凹設した旋回台座 32を収容する収容凹部 34を 有し、この収容凹部 34内に、旋回台座 32が本発明による主軸旋回部用玉軸受 35を 介して回転自在に支持されて 、る。 [0032] The base 31 has a housing recess 34 for housing a swivel pedestal 32 in which the central force on the left end surface is also recessed on the right side. The swivel pedestal 32 is a ball bearing for a main shaft swivel unit according to the present invention. It is supported rotatably via 35.
ここで、旋回台座 32は、基台 31の左端面と対向して左端に平坦な取付面 36を形 成した円板部 37と、この円板部 37の右端から突出して主軸旋回部用玉軸受 35の内 輪を保持する段部 38及びウォームホイール 39を嵌合保持する段部 40を形成し、中 央部の右端力も左方に重量を軽減するための凹部 41を形成した突出部 42とを有す る。 Here, the swivel base 32 forms a flat mounting surface 36 at the left end opposite the left end surface of the base 31. A disc portion 37 formed, a step portion 38 that protrudes from the right end of the disc portion 37 and holds the inner ring of the main shaft turning portion ball bearing 35 and a step portion 40 that fits and holds the worm wheel 39, The central right end force also has a protrusion 42 formed with a recess 41 to reduce the weight to the left.
[0033] そして、段部 38に主軸旋回部用玉軸受 35の内輪を係合させた状態で、ウォームホ ィール 39に一体に形成された内輪押え 43をボルト 44で締め付けることにより、段部 38に主軸旋回部用玉軸受 35の内輪が固定されている。  [0033] Then, in a state where the inner ring of the main shaft turning part ball bearing 35 is engaged with the step part 38, the inner ring presser 43 formed integrally with the worm wheel 39 is tightened with the bolt 44, whereby the step part 38 is fixed. The inner ring of the spindle bearing ball bearing 35 is fixed.
一方、主軸旋回部用玉軸受 35の外輪は、基台 31の収容凹部 34に形成した段部 4 5に嵌合され、基台 31の左端面側に配設された外輪押え 46を例えば旋回台座 32の 円板部 37に形成した透孔(図示せず)を通じて挿入したボルト 47によってボルト締め することにより、基台 31に固定されている。  On the other hand, the outer ring of the spindle turning ball bearing 35 is fitted into a step 45 formed in the receiving recess 34 of the base 31, and the outer ring presser 46 disposed on the left end surface side of the base 31 is turned, for example. The pedestal 32 is fixed to the base 31 by bolting with bolts 47 inserted through through holes (not shown) formed in the disc portion 37 of the base 32.
[0034] また、ウォームホイール 39には、モータ等の回転駆動源に連結されたウォーム 48が 嚙合され、このウォーム 48を回転駆動することにより、旋回台座 32を例えば後述する 主軸本体 33の工具取付面を垂直下方 0° としたときに、主軸本体 33を前後方向に ± 100° 程度旋回 (揺動)させる。  [0034] The worm wheel 39 is coupled with a worm 48 coupled to a rotational drive source such as a motor. By rotating the worm 48, the swivel base 32 is attached to a tool body of a spindle body 33 described later, for example. When the surface is set to 0 ° vertically downward, the main spindle body 33 is swung (oscillated) about ± 100 ° in the longitudinal direction.
さらに、主軸本体 33は、エンドミルやドリル等の治工具(図示せず)を取付ける工具 取付面 51を下方として工具を回転させる回転駆動源を内装した主軸 52と、この主軸 52の側面に一体に形成された旋回台座 32の円板部 37の取付面 36にボルト締めさ れた取付板部 53とを有する。  Further, the main spindle body 33 is integrated with a main spindle 52 equipped with a rotation drive source for rotating a tool with a tool mounting surface 51 for attaching a tool (not shown) such as an end mill or a drill, and a side surface of the main spindle 52 integrally. And a mounting plate portion 53 bolted to the mounting surface 36 of the disc portion 37 of the formed swivel base 32.
[0035] 次に、上記第 1の実施形態の動作を説明する。  Next, the operation of the first embodiment will be described.
今、例えば、図 1に示すように、主軸本体 33が工具取付面 51を垂直下方 0° に位 置決めした状態で、主軸 52の工具取付面 51にエンドミルやドリル等の治工具を取付 けて、内蔵する回転駆動源によって高速回転駆動させた状態で、治工具と被削材( ワーク)とを相対移動させることにより、立形マシユングセンタとして切削加工を行うこ とがでさる。  Now, for example, as shown in FIG. 1, with the spindle body 33 positioned with the tool mounting surface 51 positioned vertically downward 0 °, a tool such as an end mill or a drill is mounted on the tool mounting surface 51 of the spindle 52. Thus, cutting can be performed as a vertical machining center by moving the jig and workpiece (workpiece) relative to each other while being driven to rotate at high speed by a built-in rotation drive source.
[0036] この切削加工が終了した後に、図示しない回転駆動源によってウォーム 48を例え ば正転させて、旋回台座 32を手前方向に + 90° 旋回させることにより、主軸本体 33 を手前方向に + 90° 旋回させて治工具が手前を向く状態となり、この状態で治工具 と被削材 (ワーク)とを相対移動させることにより、横型マシユングセンタとして切削加 ェを行うことができる。 [0036] After this cutting process is completed, the main shaft body 33 is moved forward by rotating the swivel pedestal 32 by + 90 ° by rotating the worm seat 32 forward by rotating the worm 48 forward, for example, by a rotational drive source (not shown). Turn the tool 90 ° to bring the tool to the front. By moving the workpiece and the workpiece (workpiece) relative to each other, cutting can be performed as a horizontal machining center.
同様に、回転駆動源によってウォーム 48を逆転駆動して、旋回台座例えば旋回台 座 32及び主軸本体 33を後ろ側に 90° 旋回させて力 治工具と被削材 (ワーク)と を相対移動させることにより、横形マシユングセンタとして切削加工を行うことができる  Similarly, the worm 48 is driven in the reverse direction by the rotation drive source, and the swivel base, for example, the swivel base 32 and the main spindle body 33 are rotated 90 ° rearward to relatively move the power tool and the work material (workpiece). As a result, cutting can be performed as a horizontal machining center.
[0037] このように、主軸旋回装置 30の主軸旋回部に本発明による主軸旋回部用玉軸受 3 5を適用することにより、後述するように、主軸旋回部用玉軸受 35がラジアル荷重と 両方向のアキシャル荷重、モーメント荷重を受けられるのは勿論のこと、高精度化(高 回転精度化)、高剛性化、低トルク化及び低発熱化を図ることができると共に、更なる 省スペース化を図ることができるので、主軸旋回装置 30自体も省スペース化を図るこ とがでさる。 [0037] In this way, by applying the spindle turning ball bearing 35 according to the present invention to the spindle turning portion of the spindle turning device 30, the spindle turning ball bearing 35 has both a radial load and a bidirectional direction, as will be described later. As well as being able to receive the axial load and moment load, it is possible to achieve higher accuracy (higher rotational accuracy), higher rigidity, lower torque and lower heat generation, and further space saving Therefore, the spindle turning device 30 itself can also save space.
なお、上記第 1の実施形態においては、旋回台座 32をウォームギヤで回転駆動す る場合について説明したが、これに限定されるものではなぐ傘歯車機構や他の歯車 機構を適用して回転駆動することができ、さらには図 2に示すように、ウォームホイ一 ル 39及びウォーム 48を省略して、基台 31の収容凹部 34の内周面に配設したステー タ 61と、これに対向する旋回台座 32の突出部 42の外周面に配設したロータ 62とで 構成されるダイレクトモータ 63で旋回台座 32を直接旋回駆動するようにしてもょ 、。 この図 2の場合には、主軸旋回部用玉軸受 35として後述する図 12に示す片側シー ル及び保持器付き玉軸受を適用するのが好ましい。また、旋回台座 32は、主軸旋回 部用玉軸受 35及びロータ 62を保持する基部 64と、この基部 64にボルト締めされる 主軸旋回部用玉軸受 35の内輪押えを兼ねる取付板部 65とで構成されている。  In the first embodiment, the case where the swivel base 32 is rotationally driven by the worm gear has been described. However, the invention is not limited to this, and the rotational base 32 is rotationally driven by applying another bevel gear mechanism or other gear mechanism. Further, as shown in FIG. 2, the worm wheel 39 and the worm 48 are omitted, and the stator 61 disposed on the inner peripheral surface of the housing recess 34 of the base 31 and the swivel opposite thereto are arranged. The turning base 32 may be directly driven to turn by a direct motor 63 composed of a rotor 62 disposed on the outer peripheral surface of the projecting portion 42 of the base 32. In the case of FIG. 2, it is preferable to apply a ball bearing with a single-side seal and cage shown in FIG. In addition, the swivel base 32 includes a base 64 that holds the main spindle turning ball bearing 35 and the rotor 62, and a mounting plate 65 that also serves as an inner ring presser of the main spindle turning ball bearing 35 that is bolted to the base 64. It is configured.
[0038] ここで、ダイレクトモータ 63は図 2に示すァウタロータ型に構成する場合に限らず、 突出部 42の凹部 41内周面にロータを配設し、このロータの内側にステータを配設す るインナロータ型に構成するようにしてもよい。 Here, the direct motor 63 is not limited to the configuration of the outer rotor type shown in FIG. 2, but a rotor is disposed on the inner peripheral surface of the recess 41 of the protrusion 42, and a stator is disposed on the inner side of the rotor. An inner rotor type may be used.
また、第 1の実施形態においては、基台 31に形成した収容凹部 34内に旋回台座 3 2を回転自在に支持する場合について説明したが、これに限定されるものではなぐ 基台 31の外側に旋回台座 32を本発明による主軸旋回部用玉軸受 35を介して回転 自在に支持するようにしてもょ 、。 In the first embodiment, the case where the swivel base 32 is rotatably supported in the housing recess 34 formed in the base 31 has been described. However, the present invention is not limited to this. The swivel base 32 is rotated through the ball bearing 35 for the main spindle revolving unit according to the present invention. Let's support it freely.
[0039] さらに、第 1の実施形態においては、マシユングセンタに本発明を適用した場合に ついて説明したが、これに限定されるものではなぐ旋盤、フライス盤、研削盤、ラップ 盤等にマシユングセンタ機能を付加するために主軸を旋回させる主軸旋回装置を備 えた任意の複合型の工作機械に本発明を適用し得るものである。  [0039] Furthermore, in the first embodiment, the case where the present invention is applied to a machining center has been described. However, the present invention is not limited to this, and is not limited to lathes, milling machines, grinding machines, lapping machines, etc. The present invention can be applied to an arbitrary composite type machine tool provided with a spindle turning device for turning the spindle to add a center function.
さらにまた、主軸旋回装置 30としては、上記構成に限定されるものではなぐ主軸 本体 33を主軸旋回部用玉軸受を介して支持するようにした構成であれば任意の構 成を採用することができる。  Furthermore, the main spindle turning device 30 is not limited to the above-described configuration, and any configuration may be adopted as long as the main spindle body 33 is supported via the main spindle turning portion ball bearing. it can.
[0040] 次に、上記主軸旋回装置 30の主軸旋回部に適用する本発明による主軸旋回部用 玉軸受 35の具体例について説明する。  [0040] Next, a specific example of the ball bearing 35 for the spindle turning portion according to the present invention applied to the spindle turning portion of the spindle turning device 30 will be described.
主軸旋回部用玉軸受 35には、(a)主軸旋回装置 30の旋回台座 32上に設置され た主軸本体 33を高精度 (振れ精度)で回転させること、 (b)主軸本体 33を低トルクで スムーズに揺動回転させること、 (c)ワーク加工時の荷重に対する主軸本体全体の変 位を少なくする(高剛性)ことが要求される。また、主軸旋回部用玉軸受 35には、主 軸関連部品の重量によるモーメント荷重や旋回加減速時に発生するイナーシャ荷重 に加え、加工条件に応じて発生するラジアル荷重、アキシャル荷重及びモーメント荷 重が単独で作用したり、或 、はこれらの荷重が複合的に作用したりする。  For the ball bearing 35 for the spindle turning part, (a) the spindle body 33 installed on the turning pedestal 32 of the spindle turning device 30 is rotated with high accuracy (runout accuracy), and (b) the spindle body 33 is driven with low torque. (C) It is required to reduce the displacement of the entire spindle body with respect to the load during machining (high rigidity). In addition to the moment load due to the weight of the spindle related parts and the inertia load generated during turning acceleration / deceleration, the radial bearing, axial load and moment load generated according to the machining conditions are applied to the ball bearing 35 for the spindle turning part. It can act alone or these loads can act in combination.
[0041] 本発明に係る主軸旋回部用玉軸受の第 1実施形態 (請求項 1に対応)を図 3に示 す。同図に示す主軸旋回部用玉軸受(単列玉軸受) 100は、外輪 101の軌道溝 101 aと内輪 102の軌道溝 102aとの間に多数の玉 103が転動自在に配設された単列の 総玉のアンギユラ玉軸受 100において、軸方向断面幅 Bと半径方向断面高さ H ( = ( 外輪外径 D—内輪内径 d) /2)との断面寸法比(BZH)を (BZH) < 0. 63として 、 る。この理由は、前述した課題を解決する手段の項で図 29を参照して詳細に説明し たので、ここでの記載は割愛する。  [0041] FIG. 3 shows a first embodiment (corresponding to claim 1) of a ball bearing for a spindle turning part according to the present invention. The main shaft turning part ball bearing (single row ball bearing) 100 shown in the figure has a large number of balls 103 rotatably arranged between a raceway groove 101a of the outer ring 101 and a raceway groove 102a of the inner ring 102. In the single-row all-round angular contact ball bearing 100, the sectional dimension ratio (BZH) between the axial sectional width B and the radial sectional height H (= (outer ring outer diameter D—inner ring inner diameter d) / 2) is expressed as (BZH ) <0. 63 The reason for this has been described in detail with reference to FIG. 29 in the means for solving the above-mentioned problem, and is not described here.
[0042] ここで、この実施の形態では、図 4に示すように、アンギユラ玉軸受 100を 2列背面 組合せとし、 7940A (接触角 30° )の 2列組合せアンギユラ玉軸受と置き換える場合 を例に採る。  [0042] Here, in this embodiment, as shown in Fig. 4, an anguilla ball bearing 100 is used as a two-row rear combination, and is replaced with a 7940A (contact angle 30 °) two-row combination angio ball bearing. take.
7940Aのアンギユラ玉軸受は、内輪内径 d : 0> 200mm、外輪外径 D: Φ 280mm、 軸方向断面幅(軸受単体幅) Bが 38mmであるので、断面寸法比(BZH) =0. 95で ある。したがって、本実施形態のアンギユラ玉軸受 100では、断面寸法比(BZH) = 0. 475 (内輪内径及び外輪外径はそのままで、軸方向断面幅 (軸受単体幅) Bを 19 mmとした)としている。これにより、ラジアル荷重と両方向のアキシャル荷重、モーメ ント荷重を受けられるのは勿論のこと、高精度化 (高回転精度化)、高剛性化、低トル ク化及び低発熱化を図ることができると共に、軸方向寸法で 1Z2の省スペース化を 図ることができる。 7940A Anguilla ball bearing has an inner ring inner diameter d: 0> 200mm, outer ring outer diameter D: Φ 280mm, Axial cross-sectional width (bearing unit width) B is 38 mm, so the cross-sectional dimension ratio (BZH) is 0.95. Therefore, in the angular contact ball bearing 100 of this embodiment, the cross-sectional dimension ratio (BZH) = 0.475 (the inner ring inner diameter and outer ring outer diameter remain the same, and the axial sectional width (bearing unit width) B is 19 mm). Yes. As a result, radial load, axial load in both directions, and moment load can be received, as well as high accuracy (high rotation accuracy), high rigidity, low torque and low heat generation. At the same time, 1Z2 can be saved in the axial dimension.
[0043] もちろん、必要に応じて、アンギユラ玉軸受 100の断面寸法比(BZH)を 0. 475未 満或いは 0. 475を超える(但し (BZH)く 0. 63)ように設定しても力まわない。因み にアンギユラ玉軸受 100の接触角は例えば 30° としている。  [0043] Of course, if necessary, even if the cross-sectional dimension ratio (BZH) of the angiular ball bearing 100 is set to less than 0.475 or more than 0.475 (however, (BZH) is 0.63). It does n’t turn. Incidentally, the contact angle of the anguilla ball bearing 100 is, for example, 30 °.
なお、本実施形態では、玉 103のピッチ円直径は次式(1)の通りとしている力 軸 受 1列あたりの玉数を増やしてさらにモーメント剛性を増加させたい場合は、次式 (2) を採用して、玉 103のピッチ円直径を外輪側にずらして図 5に示す構造としてもよ!ヽ し、必要に応じて次式(3)を採用して逆に玉 103のピッチ円直径を内輪 102側にずら してもよい(図示せず)。  In this embodiment, the pitch circle diameter of the balls 103 is as shown in the following formula (1). If you want to increase the moment stiffness by increasing the number of balls per row of force bearings, the following formula (2) The pitch circle diameter of the ball 103 can be shifted to the outer ring side to create the structure shown in Fig. 5! If necessary, the pitch circle diameter of the ball 103 can be reversed by using the following formula (3). May be shifted to the inner ring 102 side (not shown).
玉のピッチ円直径 = (内輪内径 +外輪外径) Z2 - (1)  Ball pitch circle diameter = (inner ring inner diameter + outer ring outer diameter) Z2-(1)
玉のピッチ円直径 > (内輪内径 +外輪外径) Z2 --- (2)  Ball pitch circle diameter> (inner ring inner diameter + outer ring outer diameter) Z2 --- (2)
玉のピッチ円直径く(内輪内径 +外輪外径) Z2 --- (3)  Ball pitch diameter (inner ring inner diameter + outer ring outer diameter) Z2 --- (3)
また、必要に応じて、図 6に示すように、組み合わされる左右の玉軸受の玉ピッチ円 直径を同一値とせずともよいし、組み合わされる左右の玉軸受における玉 103の径を 同一値としなくてもよい。カロえて、組み合わせる 2個の玉軸受の断面寸法比(BZH) は同一でなぐ例えば玉径の小さい方を (BZH) =0. 35、玉径の大きい方を (BZH ) =0. 60としても構わない。さらに、玉 103の軸方向ピッチも軸方向中心でなくともよ ぐシールや保持器の装着有無やモーメントの作用点間距離の確保等のために玉 1 03の軸方向ピッチを軸方向にずらしてもよ 、。  If necessary, as shown in FIG. 6, the ball pitch circle diameters of the combined left and right ball bearings do not have to be the same value, and the diameters of the balls 103 in the combined left and right ball bearings do not have to be the same value. May be. If the ball bearings have the same cross-sectional dimension ratio (BZH), for example, (BZH) = 0.35 for the smaller ball diameter and (BZH) = 0.60 for the larger ball diameter. I do not care. Further, the axial pitch of the ball 103 may not be centered in the axial direction, and the axial pitch of the ball 103 may be shifted in the axial direction in order to secure the distance between the action points of the seal and the cage, or to install the ball. Yo ...
[0044] 図 7は、軸方向の一方の端部に環状シール体 104を装着したアンギユラ玉軸受 10 0を 2列背面組み合わせたものである。 [0044] FIG. 7 shows a back row combination of an anguilla ball bearing 100 having an annular seal body 104 attached to one end in the axial direction.
軸方向の一方の端部に環状シール体 104を装着したアンギユラ玉軸受 100を 2列 組み合わせて機械等に取付けた後(シール取り付け面を外側に向けて組み合わせる )は、軸受使用中に外部力 の異物やごみ等の侵入及び封入グリースの外部への洩 れを防止することが可能である。環状シール体 104は、この実施の形態では、外輪 1 01のシール溝 104aに押し込んで挿入する非接触型(内輪 102と非接触)で金属芯 金 105の補強タイプのゴムシール(例えば-トリルゴム'アクリルゴムやフッ素ゴム) 10 6とし、組み合わせ端面と反対側のみ環状シール体 104を装着して省スペース化を 図っている。 Two rows of anguilla ball bearings 100 with an annular seal 104 attached to one end in the axial direction After being combined and mounted on a machine (with the seal mounting surface facing outward), it is possible to prevent foreign matter and dust from entering the bearing and leakage of the enclosed grease to the outside while using the bearing. is there. In this embodiment, the annular seal body 104 is a non-contact type (non-contact with the inner ring 102) inserted into the seal groove 104a of the outer ring 101, and a reinforcing rubber seal (for example, -tolyl rubber'acrylic) of the metal core 105. (Rubber or fluororubber) 10 6 and an annular seal 104 is attached only on the side opposite to the combined end face to save space.
[0045] 図 8は、軸方向の両端部に環状シール体 104を装着したアンギユラ玉軸受 100を 示したものである。  FIG. 8 shows an anguilla ball bearing 100 in which annular seal bodies 104 are mounted at both ends in the axial direction.
軸方向の両端部に環状シール体 104を装着したアンギユラ玉軸受 100を機械等に 取付けた後は、軸受使用中に外部力もの異物やごみ等の侵入を防止すると共に、軸 受取扱 、時や軸ゃノヽウジングへの組込み時にお!、ても、異物やごみ等の侵入及び 封入グリースの外部への洩れを防止することが可能となる。組合せについては、 2列 でモーメント剛性を増カロさせるためには、モーメントの作用点距離が大きくとれる背面 組合せ(図 4等で接触角がハの字の向きとなって 、る)を採用するのが望ま 、。  After mounting an anguillar ball bearing 100 with annular seals 104 on both ends in the axial direction to a machine, etc., while using the bearing, it prevents foreign matter and dust from entering the bearing while handling the bearing. Even when it is installed in the shaft housing, it is possible to prevent foreign matter and dust from entering and leakage of the enclosed grease to the outside. As for the combination, in order to increase the moment stiffness in two rows, the back side combination (the contact angle is in the direction of the letter C in Fig. 4 etc.) that can take the distance of the moment's action point is adopted. Is desired.
[0046] 更に剛性が必要な場合は、図 9及び図 10に示すように、 3列以上の多列組合せと しても構わないし、何らかの理由(例えば、軸受組込み時にミスァライメント発生が避 けられず、軸受の内部荷重負荷を極力抑えたい場合等)で、モーメント剛性を小さく したい場合は、図 11に示すように、正面組み合わせ (接触角の向きが逆ハの字)等 の配列としてもよい。 [0046] If more rigidity is required, a multi-row combination of three or more rows may be used as shown in FIGS. 9 and 10, and for some reason (for example, misalignment can be avoided when incorporating a bearing). If you want to reduce the moment rigidity, for example, if you want to reduce the internal load load of the bearing as much as possible), as shown in Fig. 11, the front combination (contact angle direction is reversed) may be used. .
更には、モーメント荷重や両方のアキシャル荷重を付加するためには、 2列以上の 組み合わせ軸受とする必要があるが、荷重条件や方向に応じて使用条件上で可能 であれば、単列軸受で使用しても力まわない。  Furthermore, in order to apply a moment load or both axial loads, it is necessary to use two or more rows of combined bearings. It doesn't work even if you use it.
[0047] また、本実施形態では、アンギユラ玉軸受としているが、深溝玉軸受等その他の玉 軸受としてもよい。環状シール体は、図 7及び図 8で示した非接触型ではなぐ接触 型の金属芯金補強タイプのゴムシール (ゴム材質は、例えば-トリルゴム ·アクリルゴ ムゃフッ素ゴム)でもよ 、し、外輪 101のシール溝に加締め加工する金属シールド板 でもかまわない。また、環状シール体を内輪 102側のシール溝に押し込んで挿入し たり、又は加締め加工で取付けるようにしたりしてもよ!ヽ(外輪と接触又は非接触する 構造)。 [0047] In the present embodiment, the angular ball bearing is used, but other ball bearings such as a deep groove ball bearing may be used. The annular seal body may be a contact-type metal core reinforced rubber seal (for example, -tolyl rubber, acrylic rubber or fluororubber), which is not the non-contact type shown in FIGS. You can also use a metal shield plate that is crimped into the seal groove. Also, insert the annular seal body by pushing it into the seal groove on the inner ring 102 side. Or it may be attached by caulking! ヽ (structure that contacts or does not contact the outer ring).
[0048] 内輪 102、外輪 101及び玉 103の材料は、標準的な使用条件では軸受鋼 (例えば 、 SUJ2、 SUJ3など)とする力 使用環境に応じて、耐食材料であるステンレス系材料 (例えば、 SUS440C等のマルテンサイト系ステンレス鋼材や SUS304等のオーステ ナイト系ステンレス鋼材、 SUS630等の析出硬化系ステンレス鋼材など)、チタン合 金やセラミック系材料 (例えば、 Si N 、 SiC、 Al O 、 ZrO等)を採用してもよい。  [0048] The material of the inner ring 102, the outer ring 101, and the ball 103 is a force that is a bearing steel (eg, SUJ2, SUJ3, etc.) under standard use conditions. Depending on the usage environment, a stainless steel material (for example, a corrosion resistant material) Martensitic stainless steel materials such as SUS440C, austenitic stainless steel materials such as SUS304, precipitation hardened stainless steel materials such as SUS630), titanium alloys and ceramic materials (eg, Si N, SiC, Al 2 O, ZrO, etc.) May be adopted.
3 4 2 3 2  3 4 2 3 2
[0049] 潤滑方法も特に限定されず、一般的な使用環境では、鉱油系グリースや合成油系  [0049] The lubrication method is not particularly limited, and in a general use environment, a mineral oil-based grease or a synthetic oil-based grease is used.
(例えば、リチウム系、ウレァ系等)のグリースや油を使用でき、高温環境用途などで はフッ素系グリース又はフッ素系の油、或いはフッ素榭脂、 MoSなどの固体潤滑剤  Grease and oil (for example, lithium-based, urea-based, etc.) can be used. For high-temperature environment applications, fluorine-based grease or fluorine-based oil, or fluorine lubricant, solid lubricant such as MoS
2  2
を使用することができる。  Can be used.
図 12は、軸方向の一方の端部 (組合せ側端面と反対側の端部)に環状シール体 1 04を装着し、且つ玉 103を転動可能に保持する保持器 110を備えたアンギユラ玉軸 受 100を 2列背面組み合わせたものである。  FIG. 12 shows an anguilla ball equipped with an annular seal body 104 at one end in the axial direction (the end opposite to the end surface on the combination side) and a retainer 110 that holds the ball 103 in a rollable manner. This is a combination of 100 bearings and 2 backs.
[0050] 保持器 110としては、例えば、図 13〜図 16 (a)に示すように、円環部 111と、該円 環部 111の一端部に周方向に略等間隔で複数箇所軸方向に突設された柱部 112と 、各柱部 112間に形成されて玉 103を周方向に転動可能に保持するポケット部 113 とを備えた柔軟性のある冠形保持器を採用している。保持器 110の材質は、例えば、 ポリアミド、ポリアセタール、ポリフエ-レンサルファイド等の合成樹脂材とし、必要に 応じて、合成樹脂材にガラス繊維や炭素繊維等の補強材を混入した材料を用いる。  For example, as shown in FIGS. 13 to 16 (a), the cage 110 includes an annular portion 111 and a plurality of axial directions at substantially equal intervals in the circumferential direction at one end portion of the annular portion 111. And adopting a flexible crown-shaped cage having a column portion 112 projecting from the column portion 112 and a pocket portion 113 formed between the column portions 112 to hold the ball 103 so as to be able to roll in the circumferential direction. Yes. The material of the cage 110 is, for example, a synthetic resin material such as polyamide, polyacetal, or polyphenylene sulfide, and a material in which a reinforcing material such as glass fiber or carbon fiber is mixed into the synthetic resin material is used as necessary.
[0051] また、この実施の形態では、軸受の負荷容量や剛性を上げるために、隣り合う玉 10 3間の円周方向ピッチは極力小さくし、できる限り玉数を多くしている。さらに、玉 103 の軸方向ピッチをできるだけ組合せ側端面の反対側にずらし(図 12 :X >X )、保  [0051] In this embodiment, in order to increase the load capacity and rigidity of the bearing, the circumferential pitch between adjacent balls 103 is made as small as possible and the number of balls is increased as much as possible. Further, the axial pitch of the balls 103 is shifted to the opposite side of the end face on the combination side as much as possible (Fig. 12: X> X)
1 2 持器 110の円環部 111が軸受組合せ端面側になるように配置しており、モーメント剛 性を上げるための作用点間距離を大きくとれるようにしている。  1 2 The ring part 111 of the cage 110 is arranged so as to be on the end face side of the bearing combination, so that the distance between the operating points for increasing the moment rigidity can be increased.
なお、総玉軸受の場合も、環状シール体の装着の有無等、必要に応じて同様に玉 の軸方向ピッチを幅中央ではなぐ軸方向の左右何れかの方向(軸受合わせ端面側 、あるいは反対側)にずらしても力まわない。 [0052] 保持器付きの軸受は、回転が 1方向の連続回転や大きなモーメント荷重が加わる 条件等、各玉の接触角の変化による公転速度のばらつきが発生しやすい条件等で、 総玉軸受を使用した場合の玉間の接触や玉つまりが生じやすい用途で低トルク、低 発熱等の点で、より良い効果を発揮する。 In the case of a full ball bearing, the ball pitch in the axial direction is not the center of the width in the same way as necessary, such as whether or not an annular seal body is attached (bearing end face side or opposite). To the side) does not work. [0052] A bearing with a cage is used for all ball bearings under conditions where the revolution speed is likely to vary due to changes in the contact angle of each ball, such as the condition of continuous rotation in one direction and the application of a large moment load. It is more effective in terms of low torque and low heat generation in applications where contact between balls or clogging is likely to occur when used.
さらに、本実施形態では、ポケット部 113の入り口部を玉径より若干小さくして引つ 力かり(バチン代)を設ければ、内輪 102及び外輪 101に組込む際、玉 103の脱落が なく軸受の組立が容易である。  Furthermore, in this embodiment, if the entrance portion of the pocket portion 113 is slightly smaller than the ball diameter and a pulling force (batching allowance) is provided, the ball 103 will not drop out when assembled into the inner ring 102 and the outer ring 101. Is easy to assemble.
[0053] 保持器の形状は、本実施形態に限定されず、各玉 103間に配置するセパレータタ イブの保持器の他、何れの方式でもよい。また、材料も合成樹脂材ではなぐ金属材 料でもかまわない。 [0053] The shape of the cage is not limited to this embodiment, and any type other than the separator-type cage disposed between the balls 103 may be used. The material may also be a metal material that is not a synthetic resin material.
また、図 16 (b)は図 16 (a)と基本構造は同様な冠形保持器であるが、円環部 111 の少なくとも円周方向の一箇所で互いに隣り合うポケット部 113間を予め切断して、 各切断面間に所定のすき間を持たせた構造としている。  FIG. 16 (b) is a crown-shaped cage having the same basic structure as FIG. 16 (a), but the adjacent pocket portions 113 are cut in advance at least at one location in the circumferential direction of the annular portion 111. And it is set as the structure which gave the predetermined clearance gap between each cut surface.
[0054] このような構造を採用することで、保持器と内外輪との熱膨張係数差及び保持器の 寸法精度や真円度のばらつき (特に、軸受サイズが大きい実施形態のような場合)に より、転動体ピッチ円径と保持器のピッチ円径がずれた場合でも、片持ち形状である ことによる半径方向の柔軟性と、各切断面間のすき間による円周方向の弾力的変形 (円周方向の柔軟性)を兼ね備えることとなるため、玉 103とポケット部 113間の突つ 張り力を緩衝して、保持器の損傷や摩耗を防止すると共に、玉 103とポケット部 113 内面とのすべり接触抵抗によるトルクむらや発熱をより軽減することができる。  [0054] By adopting such a structure, the difference in the thermal expansion coefficient between the cage and the inner and outer rings and the variation in the dimensional accuracy and roundness of the cage (particularly in the case of an embodiment with a large bearing size). Therefore, even if the rolling element pitch circle diameter deviates from the pitch circle diameter of the cage, the radial flexibility due to the cantilever shape and the elastic deformation in the circumferential direction due to the gap between the cut surfaces ( (Flexibility in the circumferential direction), the cushioning force between the ball 103 and the pocket 113 is buffered to prevent the cage from being damaged or worn, and the ball 103 and the pocket 113 Torque unevenness and heat generation due to sliding contact resistance can be further reduced.
[0055] また、本発明の主軸旋回部用玉軸受は、構造上、使用玉径カ 、さくなるため、保持 器の円環部 111の半径方向の厚みは厚くできず(図 12からも理解できるように、保持 器は内輪外径と外輪内径との間の空隙部に適度なすき間を設けて位置決めさせる 必要があり、この内輪外径と外輪内径との間の空隙部は玉径と略比例関係にあるの で狭い)、更に、幅狭構造により、軸方向の間隙部も狭ぐ軸方向厚みも薄くせざるを 得ない。このため、標準サイズの軸受より保持器の円環部が極めて小さぐ真円度等 の寸法精度を出しに《なるので、円環部 111を図 16 (b)のようにした保持器構造は 、特に上述した保持器の損傷や摩耗防止効果及びトルクむらや発熱の軽減に関して 効果が得られる。 [0055] In addition, since the ball bearing for the spindle turning part of the present invention is structurally small in diameter, the thickness of the annular part 111 of the cage in the radial direction cannot be increased (also understood from FIG. 12). Therefore, the cage needs to be positioned with an appropriate gap in the gap between the outer diameter of the inner ring and the inner diameter of the outer ring. The gap between the outer diameter of the inner ring and the inner diameter of the outer ring is approximately the same as the ball diameter. Furthermore, due to the proportional relationship, it is narrow), and due to the narrow structure, the axial gap and the axial thickness must be reduced. For this reason, since the circular part of the cage is extremely small compared to a standard size bearing, the dimensional accuracy such as roundness is given <<, so the cage structure with the annular part 111 as shown in Fig. 16 (b) is In particular, with respect to the above-mentioned cage damage and wear prevention effect and torque unevenness and heat generation reduction An effect is obtained.
[0056] また、対象とする用途は、旋回回転であり、保持器に遠心力が連続的に加わるわけ ではない。したがって、これらの用途に本発明を適用する場合、図 16 (b)のような保 持器構造としても、遠心力による悪影響は発生しない。なお、必要に応じて、円環部 111の切断箇所は円周方向で 2力所以上としても構わない。この場合、切断箇所は、 可能な限り円周方向で等分とすることが望ましい。また、これらの玉軸受を工作機械 の主軸旋回装置に適用する場合、剛性を大きくするために、通常、予圧をかけて使 用するが、条件に応じて、或いはその他の用途等ですき間を持たせて使用してもよ い。  [0056] In addition, the intended application is swivel rotation, and the centrifugal force is not continuously applied to the cage. Therefore, when the present invention is applied to these uses, even if the cage structure as shown in FIG. If necessary, the cut portion of the annular part 111 may be two or more places in the circumferential direction. In this case, it is desirable that the cut points be equally divided in the circumferential direction as much as possible. In addition, when these ball bearings are applied to the spindle turning device of a machine tool, they are usually used with a preload to increase the rigidity, but there are gaps depending on the conditions or other uses. You can use it.
[0057] さらに、図 17を参照して、前述した第 1の実施の形態の変形例 (請求項 2に対応)を 説明する。  Furthermore, with reference to FIG. 17, a modification of the first embodiment described above (corresponding to claim 2) will be described.
この変形例では、図 1に示す単列の総玉のアンギユラ玉軸受で構成される単列玉 軸受 100の片側に環状シール体 120を設けると共に、多数の玉 103を円周方向に 位置決めする保持器 130を配設している。  In this modification, an annular seal body 120 is provided on one side of a single-row ball bearing 100 constituted by a single-row all-ball annulus ball bearing shown in FIG. 1, and a plurality of balls 103 are positioned in the circumferential direction. A vessel 130 is provided.
すなわち、図 17に示すように、外輪 101及び内輪 102の例えば右側の片側端面に 環状シール体 120を収容するシール収容溝 121及び 122が配設されている。  That is, as shown in FIG. 17, seal housing grooves 121 and 122 for housing the annular seal body 120 are disposed, for example, on one end face on the right side of the outer ring 101 and the inner ring 102.
[0058] 環状シール体 120は逆 L字状に形成した金属芯金 125で補強した補強タイプのゴ ムシール(例えば-トリルゴム 'アクリルゴムやフッ素ゴム) 126で構成されている。ゴム シール 126は、外周部に外輪 101と嵌合する嵌合部 126aが形成され、内周部に内 輪 102と接触するリップ部 126bが形成されている。 The annular seal body 120 is constituted by a reinforced rubber seal (for example, -tolyl rubber 'acrylic rubber or fluororubber) 126 reinforced with a metal core 125 formed in an inverted L shape. The rubber seal 126 has a fitting portion 126a that fits the outer ring 101 on the outer peripheral portion, and a lip portion 126b that contacts the inner ring 102 on the inner peripheral portion.
外輪 101のシール収容溝 121は、外輪 101の軌道溝 101aに連接する傾斜内周面 101bの右端側に比較的浅い段部 121aと、この段部 121aの底部に円周方向に形 成された環状シール体 120の嵌合部 126aを押し込んで挿入する浅 、嵌合凹部 121 bとを有する構成とされている。また、内輪 102のシール収容溝 122は、内輪の軌道 溝 102aの左右両端に連接する円筒外周面 102bにおける軌道溝 102aの右側の右 端側に比較的深 、段部 122aと、この段部 122aの底面に円周方向に形成した環状 シール体 120の内周面に形成されたリップ部 126bが接触する浅 、収容凹部 122bと を有する構成とされている。 [0059] さらに、保持器 130は、玉 103を収容するポケット部 131を挟んで軸方向に延長す る一対の円環状部 132a及び 132bを有し、これら円環状部 132a及び 132bが内輪 1 02の円筒外周面 102bを案内面として装着されている。 The seal receiving groove 121 of the outer ring 101 is formed in a circumferential direction on the right end side of the inclined inner peripheral surface 101b that is connected to the raceway groove 101a of the outer ring 101, and in the circumferential direction at the bottom of the step part 121a. A shallow portion into which the fitting portion 126a of the annular seal body 120 is pushed and inserted, and a fitting concave portion 121b. Further, the seal housing groove 122 of the inner ring 102 is relatively deep on the right end side on the right side of the raceway groove 102a on the cylindrical outer peripheral surface 102b connected to the left and right ends of the raceway groove 102a of the inner ring. A shallow lip portion 126b formed on the inner peripheral surface of the annular seal body 120 formed in the circumferential direction is formed on the bottom surface of the inner surface of the cylindrical seal member 120, and a housing concave portion 122b. [0059] Furthermore, the retainer 130 has a pair of annular portions 132a and 132b extending in the axial direction with the pocket portion 131 that accommodates the ball 103 interposed therebetween, and these annular portions 132a and 132b are the inner rings 10 2. The cylindrical outer peripheral surface 102b is mounted as a guide surface.
そして、環状シール体 120側の円環状部 132bには内輪 102の円筒外周面 102bと シール収容溝 122との交点に形成される交点エッジ部 123と対向する内周面に交点 エッジ部 123との接触を回避する断面半円形の凹状溝部 133が円周方向に形成さ れている。  An annular portion 132b on the side of the annular seal body 120 has an intersection edge portion 123 on the inner circumferential surface facing the intersection edge portion 123 formed at the intersection between the cylindrical outer circumferential surface 102b of the inner ring 102 and the seal housing groove 122. A concave groove 133 having a semicircular cross section that avoids contact is formed in the circumferential direction.
[0060] この保持器 130は、切削により製作された銅合金などの金属材料、ポリアミド、ポリ ァセタール、ポリフエ-レンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK )等の合成樹脂材料、さらにはガラス繊維やカーボン繊維等の補強材を添加した強 化材入り合成樹脂材料等で製作されている。保持器 130を榭脂材料で形成する場 合には、切削成形及び射出成形の何れをも適用することができる。  [0060] This cage 130 is made of a metal material such as a copper alloy manufactured by cutting, a synthetic resin material such as polyamide, polyacetal, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or glass. Manufactured with a synthetic resin material with reinforcing material added with reinforcing materials such as fiber and carbon fiber. When the cage 130 is formed of a resin material, either cutting molding or injection molding can be applied.
このように、保持器 130の案内面の右端側に形成された交点エッジ部 123と対向す る内周面に凹状溝部 133が円周方向に形成されているので、この交点エッジ部 123 が保持器 130の内周面と接触することを確実に防止することができ、環状シール体 1 20側の円環状部 132bの幅を広くして断面積を大きくすることにより強度を確保しな がら、保持器 130の摩耗を確実に防止することができる。  Thus, since the concave groove 133 is formed in the circumferential direction on the inner peripheral surface facing the intersection edge portion 123 formed on the right end side of the guide surface of the cage 130, the intersection edge portion 123 is retained. It is possible to reliably prevent contact with the inner peripheral surface of the vessel 130, while widening the width of the annular portion 132b on the annular seal body 120 side and increasing the cross-sectional area while ensuring the strength, Wear of the cage 130 can be reliably prevented.
[0061] また、案内面の一部に設けられた凹状溝部 133には、グリース潤滑の場合、ダリー スを保持する貯留部としての役割を果たすことができ、加えて案内面近傍に位置する ため、案内面に適度に潤滑油を供給する効果もあり、潤滑特性の面からも、長期に 亘つて耐摩耗性を保持することができる。この効果は、後述する図 20に示すように、 円環状部 132a及び 132bの双方に凹状溝部 133及び 134を形成した場合にはより 顕著になる。  [0061] Further, the concave groove 133 provided in a part of the guide surface can serve as a reservoir for holding a dull in the case of grease lubrication, and in addition, is located in the vicinity of the guide surface. In addition, there is an effect of appropriately supplying lubricating oil to the guide surface, and the wear resistance can be maintained for a long time from the viewpoint of the lubrication characteristics. This effect becomes more conspicuous when concave grooves 133 and 134 are formed in both annular portions 132a and 132b as shown in FIG. 20 described later.
通常、玉軸受 100の少なくとも片側に環状シール体 120を配設する場合には、外 輪 101の内径面や内輪 102の外径面を保持器 130の案内面とする力 この案内面と シール収容溝 122とが接する位置に交点エッジ部 123が形成されるため、この交点 エッジ部 123と保持器 130の円環状部 132bとの接触によるエッジ当りによって保持 器 130が摩耗することになる。 [0062] この保持器 130の摩耗を防止するには、従来は、内輪案内としたときに、図 18に示 すように、保持器 130の交点エッジ部 123側における円環状部 132bの軸方向長さ 即ち幅を短くして、円環状部 132bと交点エッジ部 123とが接触しな 、ようにすること が考えられている。 Normally, when the annular seal body 120 is disposed on at least one side of the ball bearing 100, the force that uses the inner diameter surface of the outer ring 101 and the outer diameter surface of the inner ring 102 as the guide surface of the retainer 130. Since the intersection edge portion 123 is formed at a position where the groove 122 is in contact with the groove 122, the cage 130 is worn due to the contact between the intersection edge portion 123 and the annular portion 132b of the cage 130. [0062] In order to prevent the wear of the cage 130, conventionally, when the inner ring guide is used, as shown in FIG. 18, the axial direction of the annular portion 132b on the intersection edge portion 123 side of the cage 130 It is considered that the length or width is shortened so that the annular portion 132b and the intersection edge portion 123 do not contact each other.
し力しながら、本実施例のように幅狭の玉軸受 100の場合には、円環状部 132bの 幅が非常に薄くなり、十分な強度を確保することができないという問題がある。  However, in the case of the narrow ball bearing 100 as in this embodiment, there is a problem that the width of the annular portion 132b becomes very thin and sufficient strength cannot be secured.
[0063] このためには、図 19に示すように円環状部 132bの幅を長くして強度を確保する必 要があるが、この場合には、上述したように、円環状部 132bの内周面と交点エッジ部 123とが対向することになるため、玉軸受 100の回転中に保持器 130が案内側軌道 輪に対して傾いた場合に、円環状部 132bの内周面が交点エッジ部 123にエッジ当 りすることになり保持器 130が摩耗してしまう。  For this purpose, as shown in FIG. 19, it is necessary to increase the width of the annular portion 132b to ensure the strength. In this case, as described above, the inner portion of the annular portion 132b is increased. Since the circumferential surface and the intersection edge portion 123 face each other, when the cage 130 is inclined with respect to the guide-side raceway while the ball bearing 100 is rotating, the inner circumferential surface of the annular portion 132b is the intersection edge. The cage 130 will wear due to the edge hitting the part 123.
特に、シール収容溝 121及び 122は、切削加工後の熱処理面であることが多いの で面粗度が悪ぐ且つ保持器 130と接触する交線部分にはバリが形成されやすいの で、摩耗が発生しやすい。  In particular, since the seal receiving grooves 121 and 122 are often heat-treated surfaces after cutting, the surface roughness is poor and burrs are likely to be formed at the intersections where they contact the cage 130. Is likely to occur.
[0064] さらに、本発明による玉軸受 100は、構造上、軸受の玉ピッチ円径に対して、玉径 が非常に小さくなるので、それに対応して、保持器 130の円環状部 132bの断面も小 さくなり、保持器 130の半径方向強度(円環状部 132bの半径方向強度)も小さくなる 。これに加え、本発明による玉軸受 100の用途はその使用条件から、軸受回転時に 、大きなモーメント荷重が付加され易ぐ軸受が傾き易い。そのため、各玉 103の接 触角の変化により、各玉 103の公転速度がバラツキ、玉 103とポケット部 131との間 の突っ張り力による保持器 130の変形も大きくなるため、さらにエッジ当りし易くなり、 接触部の面圧も増加して摩耗が進行し易 ヽ。  [0064] Further, the ball bearing 100 according to the present invention has a structure in which the ball diameter is very small with respect to the ball pitch circle diameter of the bearing, and accordingly, the cross section of the annular portion 132b of the cage 130 is correspondingly reduced. And the radial strength of the cage 130 (radial strength of the annular portion 132b) is also reduced. In addition to this, the application of the ball bearing 100 according to the present invention tends to tilt the bearing because a large moment load is easily applied during rotation of the bearing due to its usage conditions. Therefore, due to the change in the contact angle of each ball 103, the revolution speed of each ball 103 varies, and the deformation of the cage 130 due to the tensile force between the ball 103 and the pocket 131 increases, which makes it easier to hit the edge. The contact surface pressure also increases and wear tends to progress.
[0065] し力しながら、上述したように、本実施形態では、図 17に示すように、保持器 130の 環状シール体 120側の円環状部 132bの幅を広くして断面積を増加させながらシー ル収容溝 122と案内面となる円筒外周面 102bとの境界部の交点エッジ部 123に接 触する可能性のある部分に凹状溝部 133が形成されているので、保持器 130が傾い たとしても、交点エッジ部 123と凹状溝部 133との間に十分な間隔を確保することが できるので、凹状溝部 133と交点エッジ部 123との接触を確実に防止することができ 、保持器 130の摩耗を確実に防止することができる。 However, as described above, in the present embodiment, as shown in FIG. 17, the width of the annular portion 132b on the annular seal body 120 side of the cage 130 is increased to increase the cross-sectional area. However, since the concave groove 133 is formed in a portion that may come into contact with the intersection edge 123 of the boundary between the seal housing groove 122 and the cylindrical outer peripheral surface 102b serving as the guide surface, the cage 130 is inclined. However, since a sufficient space can be secured between the intersection edge portion 123 and the concave groove portion 133, the contact between the concave groove portion 133 and the intersection edge portion 123 can be reliably prevented. Thus, wear of the cage 130 can be reliably prevented.
[0066] なお、上記変形例では、玉軸受 100の右側に環状シール体 120を配設した場合に ついて説明したが、これに限定されるものではなぐ玉軸受 100の左側に環状シール 体 120を配設するようにしてもよく、さらには両側に環状シール体 120を配設するよう にしてもよい。 In the above modification, the case where the annular seal body 120 is disposed on the right side of the ball bearing 100 has been described. However, the present invention is not limited to this, and the annular seal body 120 is disposed on the left side of the ball bearing 100. It may be arranged, and furthermore, the annular seal body 120 may be arranged on both sides.
また、上記変形例では、円環状部 132bに形成する凹状溝部 133を断面半円形状 に形成した場合について説明したが、これに限定されるものではなぐ断面四角形状 、断面三角形状、断面楕円状等の交点エッジ部 123との接触を回避できる形状であ れば任意の形状とすることができる。  In the above modification, the case where the concave groove 133 formed in the annular portion 132b is formed in a semicircular cross section has been described. However, the present invention is not limited to this. Any shape can be used as long as it can avoid contact with the intersection edge portion 123 such as.
[0067] さらに、上記変形例では、環状シール体 120が内輪シール収容溝 122と接触する 場合について説明したが、これに限定されるものではなぐ図 6に示す内輪シール収 容溝 122と接触しな 、非接触ゴムシール型 (金属芯金着き)や外輪シール溝に加締 める金属シールを適用することができる。 Furthermore, in the above-described modification, the case where the annular seal body 120 is in contact with the inner ring seal housing groove 122 has been described. However, the present invention is not limited to this and is in contact with the inner ring seal housing groove 122 shown in FIG. In addition, a non-contact rubber seal type (attached to the metal core) or a metal seal that is swaged to the outer ring seal groove can be applied.
さらにまた、上記変形例では、保持器 130の案内面を内輪 102の外周面とした場 合について説明したが、これに限定されるものではなぐ外輪 101の内周面を案内面 とするようにしてもよい。  Furthermore, in the above-described modification, the case where the guide surface of the cage 130 is the outer peripheral surface of the inner ring 102 has been described, but the inner peripheral surface of the outer ring 101 is not limited to this and is used as the guide surface. May be.
[0068] なおさらに、上記変形例では、保持器 130の円環状部 132a及び 132bのうち環状 シール体 120側の円環状部 132bに凹状溝部 133を形成した場合にっ 、て説明し た力 これに限定されるものではなぐ図 20に示すように、環状シール体 120とは反 対側の円環状部 132aにも円環状部 132bの凹状溝部 133と各玉 103の中心を通る 垂直面を挟む面対称位置に凹状溝部 134を設けるようにしてもよい。このように、凹 状溝部を左右の円環状部 132a及び 132bに形成すると、組み付け時に保持器 130 の凹状溝部の形成位置を確認することなぐ任意の方向から組み付けることができ、 組み付け作業を向上させることができる。  [0068] Furthermore, in the above modification, the force described in the case where the concave groove portion 133 is formed in the annular portion 132b on the annular seal body 120 side of the annular portions 132a and 132b of the cage 130. As shown in FIG. 20, the annular portion 132a opposite to the annular seal body 120 is sandwiched between the concave groove portion 133 of the annular portion 132b and the vertical surface passing through the center of each ball 103, as shown in FIG. You may make it provide the concave groove part 134 in a plane symmetrical position. As described above, when the concave groove portions are formed in the left and right annular portions 132a and 132b, the concave groove portions of the retainer 130 can be assembled from any direction without being confirmed at the time of assembly, thereby improving the assembling work. be able to.
[0069] 次に、図 21を参照して、本発明の第 2の実施形態 (請求項 4又は 5に対応)におけ る実施態様の一例である工作機械の主軸旋回部用複列玉軸受を説明する。  Next, referring to FIG. 21, a double row ball bearing for a spindle turning part of a machine tool, which is an example of an embodiment of the second embodiment (corresponding to claim 4 or 5) of the present invention. Will be explained.
この複列総玉アンギユラ玉軸受 200は、外輪 201の複列軌道溝 201a, 201bと内 輪 202の複列軌道溝 202a, 202bとの間に多数の玉 203が転動自在に配設され、 軸方向断面幅 B2と半径方向断面高さ H2 (= (外輪外径 D2—内輪内径 d2) Z2)と の断面寸法比(B2ZH2)が(B2ZH2X 1. 2とされており、玉ピッチ円直径が半径 方向断面高さの中央に設定されている。この理由は、前述した課題を解決する手段 の項で図 30を参照して詳細に説明したので、ここでの記載は割愛する。 This double row full ball anguilla ball bearing 200 has a large number of balls 203 arranged between the double row raceway grooves 201a and 201b of the outer ring 201 and the double row raceway grooves 202a and 202b of the inner ring 202, The cross-sectional dimension ratio (B2ZH2) to the axial cross-section width B2 and radial cross-section height H2 (= (outer ring outer diameter D2—inner ring inner diameter d2) Z2) is (B2ZH2X 1.2), and the ball pitch circle diameter is This is set at the center of the height in the radial direction because the reason for this has been described in detail with reference to FIG.
[0070] ここで、この実施の形態では、複列玉軸受 200を 7940A (接触角 30° )の 2列組合 せアンギユラ玉軸受に置き換えた場合を例に採る。 Here, in this embodiment, a case where the double-row ball bearing 200 is replaced with a 7940A (contact angle 30 °) two-row combined angular ball bearing is taken as an example.
7940Aは、内輪内径 d: Φ 200πιπι、外輪外径 D: Φ 280mm、軸方向断面幅(軸 受単体幅): Bが 38mmであるので、断面寸法比(BZH) =0. 95である。したがって 、本実施形態のアンギユラ玉軸受 200では、断面寸法比(B2ZH2) =0. 95 (内輪 外径及び外輪外径はそのままで、軸方向断面幅 (軸受単体幅): B2を 38mmとした) としている。これにより、ラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受 けられるのは勿論のこと、高精度化 (高回転精度化)、高剛性化、低トルク化及び低 発熱化を図ることができると共に、軸方向寸法で 1Z2の省スペース化を図ることがで きる。  7940A has an inner ring inner diameter d: Φ 200πιπι, an outer ring outer diameter D: Φ 280 mm, an axial sectional width (bearing single body width): B is 38 mm, and therefore the sectional dimension ratio (BZH) = 0.95. Therefore, in the angular contact ball bearing 200 of this embodiment, the cross-sectional dimension ratio (B2ZH2) = 0.95 (the inner ring outer diameter and outer ring outer diameter remain the same, and the axial section width (bearing unit width): B2 is 38 mm) It is said. As a result, radial load, axial load in both directions, and moment load can be received, as well as high accuracy (high rotation accuracy), high rigidity, low torque and low heat generation. In addition, space saving of 1Z2 can be achieved in the axial dimension.
[0071] もちろん、必要に応じて、断面寸法比(B2ZH2)を 0. 95未満或いは 0. 95を超え る(但し、(B2ZH2)く 1. 2)ように設定してもよい。因みにアンギユラ玉軸受 200の 接触角は、例えば 30° としている。  Of course, if necessary, the cross-sectional dimension ratio (B2ZH2) may be set to be less than 0.95 or more than 0.95 (however, (B2ZH2) is 1. 2). Incidentally, the contact angle of the anguilla ball bearing 200 is, for example, 30 °.
なお、図 22は、モーメント剛性を上げるため、複列総玉アンギユラ玉軸受 200で玉 ピッチ円直径を外径側にずらした例であり、図 23は、複列総玉アンギユラ玉軸受 200 で各列の玉径ゃ玉ピッチ円直径を変えた例であり、図 24は、軸方向の両端部に環 状シール体 104を装着した複列総玉アンギユラ玉軸受 200で、モーメント剛性を上げ るため、玉ピッチ円直径を外径側にずらした例である。  Fig. 22 shows an example in which the ball pitch circle diameter is shifted to the outer diameter side with a double-row full ball anguilla ball bearing 200 in order to increase the moment rigidity. Fig. 24 shows an example of changing the ball diameter of the row and the ball pitch circle diameter. Fig. 24 shows a double row full ball anguilla ball bearing 200 fitted with annular seals 104 at both ends in the axial direction. This is an example in which the ball pitch circle diameter is shifted to the outer diameter side.
[0072] 何れの例の場合も、環状シール体、保持器等の構造や装着の有無の他、構造に 関する適用例は、上記第 1の実施形態で記載した単列玉軸受に準ずる。また、上記 第 1の実施態様と同様に、予圧及びすきまの何れの条件で使用してもよい。  [0072] In any of the examples, in addition to the structure of the annular seal body, the cage, and the like and whether or not it is mounted, the application example related to the structure is the same as the single row ball bearing described in the first embodiment. Further, similarly to the first embodiment, it may be used under any conditions of preload and clearance.
次に、本発明の第 3の実施形態における実施態様の一例である工作機械の主軸 旋回部、その他の工作機械、産業機械、ロボット、医療機器、半導体 Z液晶製造装 置、光学及びオプトエレクトロニクス装置等に用いられる玉軸受に関し、特にラジアル 荷重と両方向のアキシャル荷重、特に大きなモーメント荷重が負荷として作用される アンギユラ玉軸受を説明する。 一般に、アンギユラ玉軸受には深みぞ玉軸受のよう なシールは装着されていない。したがって、例えば図 37に示すように、ハウジング 71 と軸 72との間に単列のアンギユラ玉軸受 73A, 73Bを 2列に並設し、内輪 73aを間座 で構成される内輪押え 74及び軸受ナット 75で固定すると共に、外輪 73bを外輪抑え 76で固定した場合、アンギユラ玉軸受 73A, 73Bの接触角を表す接触点の法線方 向の延長線 L1は、内輪 73a及び外輪 73bのみぞ肩部 73c及び 73dを通り、軸 72又 は内輪押え 74ゃノ、ウジング 71、又は外輪押え 76を通過するようになる。 Next, the spindle turning part of a machine tool, which is an example of the embodiment of the third embodiment of the present invention, other machine tools, industrial machines, robots, medical equipment, semiconductor Z liquid crystal manufacturing equipment, optics, and optoelectronic equipment Especially for ball bearings An anguillare ball bearing in which a load and an axial load in both directions, especially a large moment load, acts as a load will be described. Generally, an anguilla ball bearing is not equipped with a seal like a deep groove ball bearing. Therefore, for example, as shown in FIG. 37, single row angular contact ball bearings 73A and 73B are arranged in two rows between the housing 71 and the shaft 72, and the inner ring presser 74 and the bearing which are constituted by the inner ring 73a. When the outer ring 73b is fixed with the outer ring retainer 76 while being fixed with the nut 75, the extension line L1 in the normal direction of the contact point representing the contact angle of the angular bearings 73A, 73B is only the shoulder of the inner ring 73a and the outer ring 73b. Passing through the parts 73c and 73d, the shaft 72 or the inner ring presser 74 is passed, the udging 71 or the outer ring presser 76 is passed.
[0073] アンギユラ玉軸受 73A, 73Bに外部荷重が負荷として付加されたとき、内輪 73a及 び外輪 73b間に介装された玉でなる転動体 73eと内輪 73a及び外輪 73bのみぞ間 の接触部に生じる所謂転動体荷重は、図 37で矢視するように、接触角を表す接触部 の法線方向で、転動体 73eから内輪 73a及び外輪 73bのみぞ接触部間に向力つて 発生する。特に、モーメント荷重の比率が大きい場合、一部の転動体 73e (主として 1 80° 対向位置)の転動体荷重が極端に大きくなる。  [0073] When an external load is applied to the anguilla ball bearings 73A and 73B as a load, the contact portion between the rolling elements 73e, the inner ring 73a, and the outer ring 73b formed by balls interposed between the inner ring 73a and the outer ring 73b 37, the so-called rolling element load generated in the normal direction of the contact portion representing the contact angle is generated between the rolling element 73e and the inner ring 73a and the outer ring 73b in the direction between the contact parts. In particular, when the ratio of moment load is large, the rolling element load of some of the rolling elements 73e (mainly at a position opposite to 1 80 °) becomes extremely large.
[0074] 図 37に示すようにシールを有さな 、アンギユラ玉軸受では、図 37 (a)に示すように 接触角が 30° 程度である場合には、転動体荷重の方向は、アンギユラ玉軸受 73A, 73Bの双方とも内輪 73aのみぞ肩部 73cを通り、軸 72の軸受装着部を通ることになり 、図 37 (b)のように、接触角が 60° 程度である場合には、転動体荷重の方向は、ァ ンギユラ玉軸受 73Aでは内輪 73aのみぞ肩部 73cを通り、軸 72の内輪押えとなる段 部 73fを通ることになり、アンギユラ玉軸受 73Bでは内輪 73aのみぞ肩部 73cを通り、 内輪押え 74を通って軸 72の軸受装着部に達することになる。  [0074] In an anguilla ball bearing without a seal as shown in Fig. 37, when the contact angle is about 30 ° as shown in Fig. 37 (a), the direction of the rolling element load is an anguilla ball. Both of the bearings 73A and 73B pass through the groove 73c of the inner ring 73a and the bearing mounting portion of the shaft 72.When the contact angle is about 60 ° as shown in FIG. The direction of the rolling element load is through the shoulder 73c of the inner ring 73a in the angular ball bearing 73A and through the step 73f that serves as the inner ring presser of the shaft 72, and in the shoulder of the inner ring 73a in the angular bearing 73B. It passes through 73c, passes through the inner ring retainer 74, and reaches the bearing mounting portion of the shaft 72.
[0075] このように、シールを有さないアンギユラ玉軸受 73A, 73Bでは、内輪 73a及び外輪 73bがこれらと接触する軸 72ゃノヽウジング 71及び内輪押え 74や外輪押え 76によつ てバックアップされて 、るので、内輪 73a及び外輪 73bのみぞ肩部 73c及び 73dのみ で転動体荷重を負担するわけではな 、ので、みぞ肩部 73c及び 73dが変形すること はなく転動体荷重を支持することができる。  [0075] Thus, in the angular bearings 73A and 73B having no seal, the inner ring 73a and the outer ring 73b are backed up by the shaft 72 and the inner ring retainer 71 and the inner ring retainer 74 and the outer ring retainer 76 that are in contact with them. Therefore, only the shoulders 73c and 73d of the inner ring 73a and the outer ring 73b do not bear the rolling element load. Therefore, the groove shoulders 73c and 73d do not deform and support the rolling element load. Can do.
このため、特開 2006— 105385号公報(以下、特許文献 3と称す)に記載されてい るように、外輪の軌道溝と内輪の軌道溝との間に多数の玉が転動自在に配設された 単列の玉軸受において、軸方向断面幅 Bと半径方向断面高さ Hとの断面寸法比(B /H)が(BZH) <0. 63とする幅狭のアンギユラ玉軸受でも、シールを設けない場合 には内輪又は外輪のみぞ肩部のみで転動体荷重を負担することはなぐみぞ肩部が 変形することはなく転動体荷重を支持することができる。 Therefore, as described in JP-A-2006-105385 (hereinafter referred to as Patent Document 3), a large number of balls are rotatably arranged between the outer ring raceway groove and the inner ring raceway groove. Was In single-row ball bearings, a seal is provided even for narrow-angle anguillar ball bearings in which the cross-sectional dimension ratio (B / H) between the axial cross-section width B and the radial cross-section height H is (BZH) <0.63 If not, bearing the rolling element load only at the shoulder of the inner ring or outer ring can support the rolling element load without deformation of the shoulder.
[0076] し力しながら、特許文献 3に開示されている幅狭のアンギユラ玉軸受で、その図 10 に示されているように、シール付きアンギユラ玉軸受として接触角を大きくすると、玉 の接触部における法線方向の延長線がシールを収容するみぞ部を通ることになり、 ノ ックアップされていない内輪のみぞ肩部のみで転動体荷重を負担することになり、 玉と内輪及び外輪のみぞ接触部の弾性変形に加えてみぞ肩部の弾性変形が生じ、 剛性の低下を招く。また、転動体荷重が大きい場合にはみぞ肩部に破断や欠けが生 じてしまうなどの未解決の課題がある。  [0076] However, when the contact angle of the narrow anguilla ball bearing disclosed in Patent Document 3 is increased as a sealed anguilla ball bearing as shown in FIG. The extension line in the normal direction of the part passes through the groove part that accommodates the seal, the inner ring groove that is not knocked up bears the rolling element load only in the shoulder part, and the ball, inner ring, and outer ring only In addition to the elastic deformation of the contact part, elastic deformation of the groove shoulder part occurs, leading to a decrease in rigidity. In addition, when the rolling element load is large, there are unsolved problems such as breakage or chipping in the groove shoulder.
[0077] そこで、本発明の第 3の実施形態は上記従来例の未解決の課題に着目してなされ たものであり、シールを収納するみぞ等を形成した場合に、内輪及び外輪の少なくと も一方のみぞ肩部のみで転動体荷重を負担することがな 、ようにしたアンギユラ玉軸 受を提供することを目的として!、る。  [0077] Therefore, the third embodiment of the present invention has been made paying attention to the unsolved problems of the above conventional example, and when forming a groove or the like for storing the seal, at least the inner ring and the outer ring are reduced. On the other hand, the purpose of the present invention is to provide an anguilla ball bearing that does not bear the rolling element load only at the shoulder.
上記目的を達成するために、本発明の第 3の実施形態における第 1の実施態様は 、少なくとも円周方向の一部に内輪みぞ肩部よりも径の小さい凹段部が形成された内 輪、及び少なくとも円周方向の一部に外輪みぞ肩部よりも径の大きい凹段部が形成 された外輪の、少なくとも一方を備え、前記外輪の軌道溝と前記内輪の軌道溝との間 に多数の玉が転動自在に配設された幅狭の単列のアンギユラ玉軸受において、前 記玉と前記外輪及び内輪の接触部における法線方向の延長線が前記凹段部に干 渉しな 、ように接触角を設定したことを特徴として 、る。  In order to achieve the above object, the first embodiment of the third embodiment of the present invention is an inner ring in which a concave step having a diameter smaller than that of the inner ring groove shoulder is formed at least in a part of the circumferential direction. , And at least one of the outer rings in which a concave step portion having a diameter larger than the shoulder portion of the outer ring groove is formed at least in a part in the circumferential direction, and a large number of grooves are provided between the race grooves of the outer ring and the race grooves of the inner ring. In the narrow single-row anguilla ball bearing in which the balls of the ball are freely rollable, the normal line extending at the contact portion between the ball and the outer ring and the inner ring does not interfere with the concave step. The feature is that the contact angle is set as follows.
[0078] また、第 3の実施形態における第 2の実施態様は、少なくとも円周方向の一部に内 輪みぞ肩部よりも径の小さい凹段部が形成された内輪、及び少なくとも円周方向の 一部に外輪みぞ肩部よりも径の大きい凹段部が形成された外輪の、少なくとも一方を 備え、前記外輪の軌道溝と前記内輪の軌道溝との間に多数の玉が転動自在に配設 された幅狭の複列のアンギユラ玉軸受において、前記玉と前記外輪及び内輪の接触 部における法線方向の延長線が前記凹段部に干渉しないように接触角を設定したこ とを特徴としている。 [0078] Further, the second embodiment of the third embodiment includes an inner ring in which a concave step portion having a diameter smaller than that of the inner ring groove shoulder is formed at least in a part of the circumferential direction, and at least the circumferential direction. At least one of the outer rings in which a concave step portion having a diameter larger than the shoulder portion of the outer ring groove is formed, and a large number of balls can freely roll between the race groove of the outer ring and the race groove of the inner ring. In the narrow double-row anguillare ball bearing disposed in the contact angle, the contact angle is set so that the normal extension line at the contact portion between the ball, the outer ring and the inner ring does not interfere with the concave stepped portion. It is characterized by.
[0079] さらに、第 3の実施形態における第 3の実施態様は、上記第 1又は第 2の実施態様 において、前記凹段部は、環状シール体を挿入するみぞ及び対向するシールラビリ ンス部で構成されて 、ることを特徴として 、る。  [0079] Further, a third embodiment of the third embodiment is the same as the first or second embodiment, wherein the concave step portion is constituted by a groove into which an annular seal body is inserted and an opposing seal labyrinth portion. It has been characterized by
さらにまた、第 3の実施形態における第 4の実施態様は、上記第 1乃至第 3の何れ 力 1つに係る実施態様において、前記内輪及び外輪の何れか一方の凹段部に、環 状シール体が挿入され、該環状シール体は、挿入される側に対応する内輪及び外 輪の凹段部に対して、接触及び非接触の何れかとなるように構成されていることを特 徴としている。  Furthermore, a fourth embodiment of the third embodiment is the embodiment according to any one of the first to third forces described above, wherein an annular seal is formed on the concave step portion of either the inner ring or the outer ring. The body is inserted, and the annular seal body is configured to be in contact or non-contact with the concave step portion of the inner ring and the outer ring corresponding to the inserted side. .
[0080] ここで、幅狭のアンギユラ玉軸受としては、標準アンギユラ玉軸受(78xx、 79xx、 7 Oxx、 72xx、 73xxシリーズ等)に当てはまらないサイズ、すなわち、少なくとも例えば 単列アンギユラ玉軸受の場合、軸方向断面幅 Bと半径方向断面高さ Hとの断面寸法 比(BZH)が(BZH) <0. 63とする幅狭の単列アンギユラ玉軸受であり、複列アン ギユラ玉軸受の場合、軸方向断面幅 B2と半径方向断面高さ H2との断面寸法比 (B2 /H2)が(B2ZH2) < 1. 2とする幅狭の複列アンギユラ玉軸受である。  [0080] Here, the narrow anguilla ball bearing is a size that does not fit the standard anguilla ball bearing (78xx, 79xx, 7 Oxx, 72xx, 73xx series, etc.), that is, at least for example, a single row anguilla ball bearing In the case of a single-row angular ball bearing with a narrow cross-section dimension ratio (BZH) of (BZH) <0.63, and a double-row angular ball bearing, This is a narrow double-row annulus ball bearing in which the cross-sectional dimension ratio (B2 / H2) between the axial cross-sectional width B2 and the radial cross-sectional height H2 is (B2ZH2) <1.2.
[0081] 更に、アンギユラ玉軸受の接触角としては、内輪及び外輪のみぞ肩の高さ'玉径と 軸受幅の比率 ·シールみぞの形状や大きさによって変わる力 概ね 60° 以下、望ま しくは 50° 以下、さらに望ましくは 40° 以下がよいが、 20° 未満の場合は、許容ァ キシャル荷重や許容モーメント荷重が低下するので好ましくない。  [0081] Further, as the contact angle of the anguilla ball bearing, the height of the shoulder of the inner ring and the outer ring 'ratio of the ball diameter and the bearing width · The force that varies depending on the shape and size of the seal groove is approximately 60 ° or less, preferably 50 ° or less, more preferably 40 ° or less, but less than 20 ° is not preferable because the allowable axial load and allowable moment load decrease.
第 3の実施形態によれば、幅狭の単列アンギユラ玉軸受及び複列アンギユラ玉軸 受の場合に、玉と前記外輪及び内輪との接触部における法線方向の延長線が前記 凹段部に干渉しな 、ように接触角を設定したので、内輪及び外輪の少なくとも一方の みぞ肩部のみで転動体荷重を負担することを確実に防止して、シールを有する幅狭 のアンギユラ玉軸受で、みぞ肩部が変形することはなく転動体荷重を支持することが できるという効果が得られる。  According to the third embodiment, in the case of a narrow single row anguilla ball bearing and a double row anguilla ball bearing, the extension line in the normal direction at the contact portion between the ball and the outer ring and the inner ring is the concave stepped portion. Since the contact angle is set so that it does not interfere with the bearing, it is possible to reliably prevent the rolling element load from being borne only by the shoulders of at least one of the inner ring and the outer ring, and a narrow anguilla ball bearing with a seal. In addition, the groove shoulder does not deform, and the effect of supporting the rolling element load is obtained.
[0082] 以下、第 3の実施形態における第 1の実施態様を図を参照して詳細に説明する。  Hereinafter, a first embodiment in the third embodiment will be described in detail with reference to the drawings.
図 38は第 3の実施形態における第 1の実施態様の一例である単列玉軸受を説明 するための要部断面図、図 39は図 38の単列玉軸受を 2列組み合わせた状態を示す 要部断面図である。 FIG. 38 is a cross-sectional view of an essential part for explaining a single row ball bearing as an example of the first embodiment in the third embodiment, and FIG. 39 shows a state in which two rows of single row ball bearings of FIG. 38 are combined. It is principal part sectional drawing.
第 3の実施形態における第 1の実施態様の一例である単列玉軸受 100は、図 38に 示すように、外輪 101の軌道溝 101aと内輪 102の軌道溝 102aとの間に多数の玉 10 3が転動自在に配設された単列のアンギユラ玉軸受 100において、軸方向断面幅 B と半径方向断面高さ H (= (外輪外径 D—内輪内径 d) /2)との断面寸法比 (BZH) を(B/H)く 0. 63としている。  As shown in FIG. 38, a single row ball bearing 100, which is an example of the first embodiment in the third embodiment, includes a large number of balls 10 between the raceway groove 101a of the outer ring 101 and the raceway groove 102a of the inner ring 102. In the single row anguillar ball bearing 100 in which 3 is freely rotatable, the sectional dimension of the axial sectional width B and the radial sectional height H (= (outer ring outer diameter D—inner ring inner diameter d) / 2) The ratio (BZH) is set to (B / H) 0.63.
[0083] ここで、この実施の形態では、図 39に示すように、アンギユラ玉軸受 100を 2列背面 組合せとし、 7208A (接触角 30° )の 2列組合せアンギユラ玉軸受と置き換える場合 を例に採る。 [0083] Here, in this embodiment, as shown in Fig. 39, an anguilla ball bearing 100 is used as a two-row rear combination, and is replaced with a two-row combination anguilla ball bearing of 7208A (contact angle 30 °) as an example. take.
7208Aのアンギユラ玉軸受は、内輪内径 φ 40mm,外輪外径 φ 80mm,軸方向 断面幅(軸受単体幅) Bが 18mmであるので、断面寸法比(BZH) =0. 9である。し たがって、本実施形態のアンギユラ玉軸受 100では、断面寸法比(BZH) =0. 45 ( 内輪内径及び外輪外径はそのままで、軸方向断面幅 (軸受単体幅)を 9mmとした)と している。これにより、ラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受 けることができると共に、軸方向寸法で 1Z2の省スペース化、低トルク化及び更なる 高剛性ィ匕を図ることができる。  The 7208A anguilla ball bearing has an inner ring inner diameter of 40 mm, an outer ring outer diameter of 80 mm, and an axial sectional width (bearing unit width) B of 18 mm, so the sectional dimension ratio (BZH) = 0.9. Therefore, in the angular contact ball bearing 100 of this embodiment, the cross-sectional dimension ratio (BZH) = 0.45 (the inner ring inner diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing unit width) is 9 mm). is doing. As a result, it is possible to receive radial load, axial load in both directions, and moment load, as well as to save 1Z2 in axial dimension, lower torque, and further increase rigidity.
[0084] もちろん、必要に応じて、アンギユラ玉軸受 100の断面寸法比(BZH)を 0. 45未 満或いは 0. 45を超える(但し (BZH)く 0. 63)ように設定しても力まわない。 [0084] Of course, if necessary, the cross-sectional dimension ratio (BZH) of the anguilla ball bearing 100 may be set to less than 0.45 or more than 0.45 (however, (BZH) is less than 0.63). It does n’t turn.
このように、 B/H< 0. 63とする理由は以下の通りである。  Thus, the reason why B / H <0.63 is as follows.
図 40及び図 41はそれぞれ標準的に使用されている極薄肉玉軸受(軸受内径: φ 3 8. lmm,軸受外径: 47. 625mm,軸受幅: 4. 762mm,前記断面寸法比(BZ H) = 1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合( 即ち、(BZH)の値を変化させた場合)の内外輪リングの半径方向の変形特性(図 4 2参照:内輪を例示)及び半径方向の断面 2次モーメント I (図 43参照: I=bh3 /12で 計算)を比較した結果を示して 、る。 Figures 40 and 41 show the standard thin ball bearings (Bearing inner diameter: φ 3 8. lmm, Bearing outer diameter: 47.625mm, Bearing width: 4.762mm, Cross sectional dimension ratio (BZ H ) = Based on 1), the radial deformation characteristics of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width (ie, when the value of (BZH) is changed) (FIG. 4 2 see: the inner ring of illustration) and radial cross-sectional secondary moment I: shows the result of comparison (Figure 43 refer calculated as I = bh 3/12), Ru.
[0085] また、図 44及び図 45についてもそれぞれ標準的に使用されている極薄肉玉軸受( 軸受内径: Φ 63. 5mm,軸受外径: φ 76. 2mm,軸受幅: 6. 35mm,前記断面寸 法比 (BZH) = 1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化さ せた場合 (即ち、(BZH)の値を変化させた場合)の内外輪リングの半径方向の変形 特性及び半径方向の断面 2次モーメント Iを比較した結果を示して 、る。 [0085] In addition, for FIG. 44 and FIG. 45, the ultra-thin ball bearings that are used as standard (bearing inner diameter: Φ 63.5 mm, bearing outer diameter: φ 76.2 mm, bearing width: 6. 35 mm, Based on the cross-sectional dimension ratio (BZH) = 1), change the bearing inner diameter without changing the bearing outer diameter and bearing width. The results of comparing the radial deformation characteristics of the inner and outer ring rings and the radial moment of inertia I of the inner and outer rings when the value of (BZH) is changed are shown.
何れの軸受も(BZH) =0. 63未満で、剛性の増加率勾配の変化が顕著に出てい る。すなわち、断面 2次モーメント Iの増加は顕著になり、半径方向の内外輪リングの 変形量の減少は飽和状態となる。  All bearings have (BZH) = less than 0.63, and the change in the gradient of increase in rigidity is remarkable. That is, the increase in the secondary moment I of the cross section becomes significant, and the decrease in the deformation amount of the inner and outer ring in the radial direction becomes saturated.
[0086] 従って、本実施形態では、従来の極薄肉軸受で問題となる内外輪製作時の旋盤加 ェゃ研磨加工時の加工力による軸受変形を防止することができ、真円度や偏肉等の 軸受精度を向上させることができる。  Therefore, in this embodiment, it is possible to prevent bearing deformation due to the processing force during lathe machining and polishing during inner and outer ring production, which is a problem with conventional ultra-thin wall bearings. The bearing accuracy can be improved.
また、軸ゃノヽウジングに組み込んだ場合 (特に、軸やハウジングとすきま嵌合で組 み込んだ場合)、内輪押えや外輪押え等で軸受を固定した時の内外輪の変形 (特に 真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転 精度不良、あるいは、発熱増大、摩耗や焼付き等の不具合を防止することができる。  Also, when the shaft is installed in the housing (especially when it is assembled with a shaft or housing by clearance fitting), deformation of the inner and outer rings when the bearing is fixed with inner ring retainers or outer ring retainers (especially roundness) Deterioration of torque) and poor rotation accuracy due to deformation, increased heat generation, wear and seizure, and the like can be prevented.
[0087] なお、単列玉軸受は、 1列では、予圧をかけたりモーメント荷重を負荷することは困 難であるが、 2列以上の多列組合せとすることで、ラジアル荷重、アキシャル荷重及 びモーメント荷重を負荷することが可能となる。  [0087] Note that it is difficult to apply preload or moment load to single row ball bearings in one row, but by combining multiple rows of two or more rows, radial load, axial load and And moment load can be applied.
また、各玉が内外輪の軌道溝に対して常に 2点で接触するので、 4点接触玉軸受 のように、玉の大きなスピンによるトルクの増加を抑制することができ、更には、クロス ローラ軸受に比べて転がり抵抗が低くなるので低トルク化を実現することができる。  In addition, each ball always contacts the inner and outer ring raceway grooves at two points, so that it is possible to suppress an increase in torque due to a large spin of the ball as in the case of a four-point contact ball bearing. Since the rolling resistance is lower than that of the bearing, a reduction in torque can be realized.
[0088] 更に、幅寸法が従来の標準単列玉軸受の約半分となることで、玉径も従来の玉軸 受の半分程度となるが、逆に 1列あたりの玉数が増加し、軸受剛性は従来の玉軸受 に対して増加する。また、旋回ロボットのアーム継ぎ手部分等に適用する場合では、 低速の揺動回転がほとんどであるので、玉径を小さくしたことにより軸受の負荷容量 が低下しても、転がり疲れ寿命時間が実用上で問題となることはない。  [0088] Furthermore, since the width dimension is about half that of the conventional standard single row ball bearing, the ball diameter is also about half that of the conventional ball bearing, but conversely, the number of balls per row increases, Bearing rigidity is increased compared to conventional ball bearings. Also, when applied to the arm joint of a turning robot, etc., since the rotation speed is mostly low, rolling fatigue life time is practical even if the load capacity of the bearing is reduced by reducing the ball diameter. There is no problem.
その他の産業機械、工作機械、ロボット、医療機器、半導体 Z液晶製造装置、光学 及びオプトエレクトロニクス装置などでも、回転数が低 、用途ゃ揺動回転用途が多い ので、転がり疲れ寿命時間が問題となることはほとんどない。  Other industrial machines, machine tools, robots, medical equipment, semiconductor Z liquid crystal manufacturing equipment, optics and optoelectronic equipment, etc. have a low rotation speed, and many applications are oscillating rotation. There is hardly anything.
[0089] 図 46は、各種軸受の計算モーメント剛性の比較である。同一サイズ (計算例は、軸 受名番 7906A (接触角 30° )相当で、内外径寸法が同じ場合:内輪内径 φ 30mm 、外輪外径 φ 47mm)では、請求項 1に係る単列の幅狭アンギユラ玉軸受 (接触角 3 0° :軸受の計算例)を 2列組合せ、且つ内外輪の軌道溝曲率半径 (Daは玉径)を変 化させた本発明例 A〜Eは、いずれもクロスローラ軸受、標準 2列組合せアンギユラ玉 軸受及び 4点接触玉軸受に比べてモーメント剛性が高くなつており、例えば本発明 例 Bは、クロスローラ軸受の 2. 4倍、従来の標準 2列組合せアンギユラ玉軸受の 1. 9 倍、 4点接触玉軸受の 3. 3倍のモーメント剛性を保持させることが可能である。 [0089] FIG. 46 is a comparison of the calculated moment stiffness of various bearings. Same size (calculation example is equivalent to bearing name 7906A (contact angle 30 °) and the inner and outer diameters are the same: inner ring inner diameter φ 30mm For outer ring outer diameter φ 47mm), single row narrow anguillar ball bearings (contact angle 30 °: calculation example of bearing) according to claim 1 are combined in two rows, and raceway radius of curvature of inner and outer rings (Da is In the present invention examples A to E in which the ball diameter is changed, the moment rigidity is higher than that of the cross roller bearing, the standard two-row combined angular contact ball bearing and the four-point contact ball bearing. B can hold moment rigidity 2.4 times that of a cross roller bearing, 1.9 times that of a conventional standard two-row combination anguilla ball bearing, and 3.3 times that of a 4-point contact ball bearing.
[0090] なお、それぞれの設計予圧すきまは、本発明例 A〜E、標準 2列組合せアンギユラ 玉軸受及び 4点接触玉軸受は 0. 010mm,クロスローラ軸受は 0. 001mmと実 用上の標準的な値として計算している。 [0090] The design preload clearance for each of the invention examples A to E, standard two-row combination anguilla ball bearing and 4-point contact ball bearing is 0.001 mm, and cross roller bearing is 0.001 mm. It is calculated as a typical value.
また、本実施形態における幅狭玉軸受の適正な玉径は、シール等の装着有無によ り変化するが、剛性を増力 tlさせるため、極端に玉径を小さくすると、玉と内外輪の軌 道溝との接触部間の面圧が増加し、耐圧痕性が低下する虞れがあるため、概ね、軸 受幅(B)又は(B2Z2)の 30〜90%が望まし!/、。  In addition, the appropriate ball diameter of the narrow ball bearing in the present embodiment varies depending on whether or not a seal or the like is mounted. However, in order to increase the rigidity tl, if the ball diameter is extremely small, the ball and inner / outer ring raceways are reduced. Since the contact pressure between the contact parts with the road groove increases and the pressure dent may be lowered, generally 30 to 90% of the bearing width (B) or (B2Z2) is desired! /.
[0091] そして、本実施形態では、単列玉軸受 100の片側に環状シール体 120を設けると 共に、多数の玉 103を円周方向に位置決めする保持器 130を配設して 、る。 In this embodiment, an annular seal body 120 is provided on one side of the single row ball bearing 100, and a cage 130 for positioning a large number of balls 103 in the circumferential direction is provided.
すなわち、図 38に示すように、外輪 101及び内輪 102の例えば右側の片側端面に 環状シール体 120を収容するシール収容溝 121及び 122が配設されている。  That is, as shown in FIG. 38, seal housing grooves 121 and 122 for housing the annular seal body 120 are disposed on one end face on the right side of the outer ring 101 and the inner ring 102, for example.
環状シール体 120は逆 L字状に形成した金属芯金 125で補強した補強タイプのゴ ムシール(例えば-トリルゴム 'アクリルゴムやフッ素ゴム) 126で構成されている。ゴム シール 126は、外周部に外輪 101と嵌合する嵌合部 126aが形成され、内周部に内 輪 101と接触するリップ部 126bが形成されている。  The annular seal body 120 is composed of a reinforced rubber seal 126 (for example, -tolyl rubber, acrylic rubber or fluororubber) reinforced with a metal core 125 formed in an inverted L shape. The rubber seal 126 has a fitting portion 126a that fits the outer ring 101 on the outer peripheral portion, and a lip portion 126b that contacts the inner ring 101 on the inner peripheral portion.
[0092] 外輪 101のシール収容溝 121は、外輪 101の軌道溝 101aに連接する傾斜内周面 101bの右端側に比較的浅い段部 121aと、この段部 121aの底部に円周方向に形 成された環状シール体 120の嵌合部 126aを押し込んで挿入する浅 、嵌合凹部 121 bとを有する構成とされて ヽる。 [0092] The seal housing groove 121 of the outer ring 101 has a relatively shallow step portion 121a on the right end side of the inclined inner peripheral surface 101b connected to the raceway groove 101a of the outer ring 101, and a circumferential shape at the bottom portion of the step portion 121a. A shallow portion into which the fitting portion 126a of the formed annular seal body 120 is pushed and inserted, and a fitting concave portion 121b, are provided.
また、内輪 102のシール収容溝 122は、内輪の軌道溝 102aの左右両端に連接す る円筒外周面 102bにおける軌道溝 102aの右側のみぞ肩部 102cの右端側に比較 的深 、段部 122aと、この段部 122aの底面に円周方向に形成した環状シール体 12 0の内周面に形成されたリップ部 126bが接触する浅い収容凹部 122bとを有する構 成とされている。 Further, the seal receiving groove 122 of the inner ring 102 is relatively deeper than the right end of the groove 102a on the right side of the raceway groove 102a on the cylindrical outer peripheral surface 102b connected to the left and right ends of the raceway groove 102a of the inner ring. The annular seal body 12 formed in the circumferential direction on the bottom surface of the stepped portion 122a The lip portion 126b formed on the inner peripheral surface of 0 has a shallow receiving recess 122b that contacts the lip portion 126b.
[0093] さらに、保持器 130は、玉 103を収容するポケット部 131を挟んで軸方向に延長す る一対の円環状部 132a及び 132bを有し、これら円環状部 132a及び 132bが内輪 1 02の円筒外周面 102bを案内面として装着されている。  Furthermore, the retainer 130 has a pair of annular portions 132a and 132b extending in the axial direction across the pocket portion 131 that accommodates the ball 103, and these annular portions 132a and 132b are the inner rings 10 2. The cylindrical outer peripheral surface 102b is mounted as a guide surface.
そして、環状シール体 120側の円環状部 132bには内輪 102の円筒外周面 102bと シール収容溝 122との交点に形成される交点エッジ部 123と対向する内周面に交点 エッジ部 123との接触を回避する断面半円形の凹状溝部 133が円周方向に形成さ れている。  An annular portion 132b on the side of the annular seal body 120 has an intersection edge portion 123 on the inner circumferential surface facing the intersection edge portion 123 formed at the intersection between the cylindrical outer circumferential surface 102b of the inner ring 102 and the seal housing groove 122. A concave groove 133 having a semicircular cross section that avoids contact is formed in the circumferential direction.
[0094] この保持器 130は、切削により製作された銅合金などの金属材料、ポリアミド、ポリ ァセタール、ポリフエ-レンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK )等の合成樹脂材料、さらにはガラス繊維やカーボン繊維等の補強材を添加した強 化材入り合成樹脂材料等で製作されている。保持器 130を榭脂材料で形成する場 合には、切削成形及び射出成形の何れをも適用することができる。  [0094] The cage 130 is made of a metal material such as a copper alloy manufactured by cutting, a synthetic resin material such as polyamide, polyacetal, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or glass. Manufactured with a synthetic resin material with reinforcing material added with reinforcing materials such as fiber and carbon fiber. When the cage 130 is formed of a resin material, either cutting molding or injection molding can be applied.
このように、保持器 130の案内面の右端側に形成された交点エッジ部 123と対向す る内周面に凹状溝部 133が円周方向に形成されているので、この交点エッジ部 123 が保持器 130の内周面と接触することを確実に防止することができ、環状シール体 1 20側の円環状部 132bの幅を広くして断面積を大きくすることにより強度を確保しな がら、保持器 130の摩耗を確実に防止することができる。  Thus, since the concave groove 133 is formed in the circumferential direction on the inner peripheral surface facing the intersection edge portion 123 formed on the right end side of the guide surface of the cage 130, the intersection edge portion 123 is retained. It is possible to reliably prevent contact with the inner peripheral surface of the vessel 130, while widening the width of the annular portion 132b on the annular seal body 120 side and increasing the cross-sectional area while ensuring the strength, Wear of the cage 130 can be reliably prevented.
[0095] また、案内面の一部に設けられた凹状溝部 133には、グリース潤滑の場合、ダリー スを保持する貯留部としての役割を果たすことができ、加えて案内面近傍に位置する ため、案内面に適度に潤滑油を供給する効果もあり、潤滑特性の面からも、長期に 亘つて耐摩耗性を保持することができる。この効果は、後述する図 49に示すように、 円環状部 132a及び 132bの双方に凹状溝部 133及び 134を形成した場合にはより 顕著になる。  [0095] In addition, in the case of grease lubrication, the concave groove 133 provided in a part of the guide surface can play a role as a reservoir for holding a dull, and in addition, is located in the vicinity of the guide surface. In addition, there is an effect of appropriately supplying lubricating oil to the guide surface, and the wear resistance can be maintained for a long time from the viewpoint of the lubrication characteristics. This effect becomes more conspicuous when concave grooves 133 and 134 are formed in both annular portions 132a and 132b as shown in FIG.
通常、玉軸受 100の少なくとも片側に環状シール体 120を配設する場合には、外 輪 101の内径面や内輪 102の外径面を保持器 130の案内面とする力 この案内面と シール収容溝 122とが接する位置に交点エッジ部 123が形成されるため、この交点 エッジ部 123と保持器 130の円環状部 132bとの接触によるエッジ当りによって保持 器 130が摩耗することになる。 Normally, when the annular seal body 120 is disposed on at least one side of the ball bearing 100, the force that uses the inner diameter surface of the outer ring 101 and the outer diameter surface of the inner ring 102 as the guide surface of the retainer 130. Since the intersection edge portion 123 is formed at the position where the groove 122 contacts, this intersection Due to the contact between the edge portion 123 and the annular portion 132b of the cage 130, the cage 130 is worn.
[0096] この保持器 130の摩耗を防止するには、従来は、内輪案内としたときに、図 47に示 すように、保持器 130の交点エッジ部 123側における円環状部 132bの軸方向長さ 即ち幅を短くして、円環状部 132bと交点エッジ部 123とが接触しな 、ようにすること が考えられている。 [0096] In order to prevent the wear of the cage 130, conventionally, when the inner ring guide is used, as shown in Fig. 47, the axial direction of the annular portion 132b on the intersection edge portion 123 side of the cage 130 is shown. It is considered that the length or width is shortened so that the annular portion 132b and the intersection edge portion 123 do not contact each other.
し力しながら、本実施例のように幅狭の玉軸受 100の場合には、円環状部 132bの 幅が非常に薄くなり、十分な強度を確保することができないという問題がある。  However, in the case of the narrow ball bearing 100 as in this embodiment, there is a problem that the width of the annular portion 132b becomes very thin and sufficient strength cannot be secured.
[0097] このためには、図 48に示すように円環状部 132bの幅を長くして強度を確保する必 要があるが、この場合には、上述したように、円環状部 132bの内周面と交点エッジ部 123とが対向することになるため、玉軸受 100の回転中に保持器 130が案内側軌道 輪に対して傾いた場合に、円環状部 132bの内周面が交点エッジ部 123にエッジ当 りすることになり保持器 130が摩耗してしまう。  For this purpose, as shown in FIG. 48, it is necessary to increase the width of the annular portion 132b to ensure the strength. In this case, as described above, the inner portion of the annular portion 132b is increased. Since the circumferential surface and the intersection edge portion 123 face each other, when the cage 130 is inclined with respect to the guide-side raceway while the ball bearing 100 is rotating, the inner circumferential surface of the annular portion 132b is the intersection edge. The cage 130 will wear due to the edge hitting the part 123.
特に、シール収容溝 121及び 122は、切削加工後の熱処理面であることが多いの で面粗度が悪ぐ且つ保持器 130と接触する交線部分にはバリが形成されやすいの で、摩耗が発生しやすい。  In particular, since the seal receiving grooves 121 and 122 are often heat-treated surfaces after cutting, the surface roughness is poor and burrs are likely to be formed at the intersections where they contact the cage 130. Is likely to occur.
[0098] さらに、本発明による玉軸受 100は、構造上、軸受の玉ピッチ円径に対して、玉径 が非常に小さくなるので、それに対応して、保持器 130の円環状部 132bの断面も小 さくなり、保持器 130の半径方向強度(円環状部 132bの半径方向強度)も小さくなる 。これに加え、本発明による玉軸受 100の用途はその使用条件から、軸受回転時に 、大きなモーメント荷重が付加され易ぐ軸受が傾き易い。そのため、各玉 103の接 触角の変化により、各玉 103の公転速度がバラツキ、玉 103とポケット部 131との間 の突っ張り力による保持器 130の変形も大きくなるため、さらにエッジ当りし易くなり、 接触部の面圧も増加して摩耗が進行し易 ヽ。  [0098] Further, the ball bearing 100 according to the present invention has a structure in which the ball diameter is very small with respect to the ball pitch circle diameter of the bearing, and accordingly, the cross-section of the annular portion 132b of the cage 130 is correspondingly reduced. And the radial strength of the cage 130 (radial strength of the annular portion 132b) is also reduced. In addition to this, the application of the ball bearing 100 according to the present invention tends to tilt the bearing because a large moment load is easily applied during rotation of the bearing due to its usage conditions. Therefore, due to the change in the contact angle of each ball 103, the revolution speed of each ball 103 varies, and the deformation of the cage 130 due to the tensile force between the ball 103 and the pocket 131 increases, which makes it easier to hit the edge. The contact surface pressure also increases and wear tends to progress.
[0099] し力しながら、上述したように、本実施形態では、図 38に示すように、保持器 130の 環状シール体 120側における円環状部 132bの幅を広くして断面積を増力!]させなが らシール収容溝 122と案内面となる円筒面 102bとの境界部の交点エッジ部 123に 接触する可能性のある部分に凹状溝 133が形成されているので、保持器 130が傾い たとしても、交点エッジ部 123と凹状溝 133との間に十分な間隔を確保することがで きるので、凹状溝 133と交点エッジ部 123との接触を確実に防止することができ、保 持器 130の摩耗を確実に防止することができる。 また、本実施形態では、玉 103の 外輪 101の軌道溝 101aに接触する接触部 P1及び内輪 102の軌道溝 102aに接触 する接触部 P2における法線方向の延長線 L1が収容凹部 122bと干渉することのな いように、接触角 Θ力 に設定されている。このため、延長線 L1と平行で収容凹 部 122bと接する平行線 L2との距離 Δが Δ >0とされている。ここで、接触角 Θは、内 輪及び外輪のみぞ肩の高さ'玉径と軸受幅の比率'シールの収容凹部 122bの形状 や大きさによって変わる力 概ね 60° 以下、望ましくは 50° 以下、さらに望ましくは 4 0° 以下がよいが、 20° 未満の場合は、許容アキシャル荷重や許容モーメント荷重 が低下するので好ましくな 、。 [0099] However, as described above, in this embodiment, as shown in FIG. 38, the width of the annular portion 132b on the annular seal body 120 side of the cage 130 is increased to increase the cross-sectional area! However, since the concave groove 133 is formed at a portion where the seal receiving groove 122 and the cylindrical surface 102b serving as the guide surface may come into contact with the intersection edge portion 123, the cage 130 is inclined. Even so, a sufficient distance can be secured between the intersection edge portion 123 and the concave groove 133, so that the contact between the concave groove 133 and the intersection edge portion 123 can be reliably prevented and maintained. The wear of the vessel 130 can be reliably prevented. Further, in this embodiment, the normal line extension line L1 at the contact portion P1 that contacts the raceway groove 101a of the outer ring 101 of the ball 103 and the contact portion P2 that contacts the raceway groove 102a of the inner ring 102 interferes with the housing recess 122b. To avoid this, the contact angle is set to Θ force. For this reason, the distance Δ between the parallel line L2 parallel to the extension line L1 and in contact with the receiving recess 122b is set to Δ> 0. Here, the contact angle Θ is the height of the groove of the inner ring and outer ring, the ratio of the ball diameter to the bearing width, and the force that varies depending on the shape and size of the seal receiving recess 122b. More desirably, 40 ° or less is preferable, but if it is less than 20 °, the allowable axial load and allowable moment load are reduced, which is preferable.
[0100] このように、接触角 Θを設定することにより、転動体荷重の付加方向となる接触部 P 1及び P2の法線方向の延長線 L1が環状シール体 120を収納する収容凹部 122bに 対して距離 Δ ( >0)だけ離れた位置を通ることになり、転動体荷重を内輪のみぞ肩 部のみで負担することを確実に防止して、図 38で鎖線図示の内輪押え 140でバック アップされる内輪 102及び内輪 102に嵌挿された軸(図示せず)で転動体荷重を受 けることができ、みぞ肩部 102cが変形して剛性の低下を招くことなく転動体荷重を受 けることができる。したがって、幅狭のアンギユラ玉軸受で、大きなモーメント荷重が付 カロされた場合でもみぞ肩部 102cで破断や欠けが生じることがなぐ軸受寿命を長期 ィ匕することができる。 なお、上記実施形態では、玉軸受 100の右側に環状シール体 120を配設した場合について説明した力 これに限定されるものではなぐ玉軸受 10 0の左側に環状シール体 120を配設するようにしてもよぐさらには両側に環状シー ル体 120を配設するようにしてもょ 、。  [0100] In this way, by setting the contact angle Θ, the extension line L1 in the normal direction of the contact portions P1 and P2, which is the direction in which the rolling element load is applied, becomes the accommodation recess 122b that accommodates the annular seal body 120 On the other hand, it passes through a position separated by a distance Δ (> 0), and it is reliably prevented that the rolling element load is borne only by the shoulder of the inner ring groove, and the inner ring presser 140 shown by the chain line in FIG. The rolling element load can be received by the inner ring 102 and the shaft (not shown) fitted to the inner ring 102 to be raised, and the groove shoulder 102c is deformed to receive the rolling element load without causing a decrease in rigidity. Can Therefore, even when a narrow anguilla ball bearing is subjected to a large moment load, it is possible to extend the life of the bearing without causing breakage or chipping at the groove shoulder 102c. In the above embodiment, the force described in the case where the annular seal body 120 is disposed on the right side of the ball bearing 100 is not limited thereto. The annular seal body 120 is disposed on the left side of the ball bearing 100. However, it is also possible to arrange an annular seal body 120 on both sides.
[0101] また、上記変形例では、円環状部 132bに形成する凹状溝 133を断面半円形状に 形成した場合について説明したが、これに限定されるものではなぐ断面四角形状、 断面三角形状、断面楕円状等の交点エッジ部 123との接触を回避できる形状であれ ば任意の形状とすることができる。  [0101] Further, in the above-described modification, the case where the concave groove 133 formed in the annular portion 132b is formed in a semicircular cross section is described. However, the present invention is not limited to this. Any shape can be used as long as it can avoid contact with the intersection edge portion 123 such as an elliptical cross section.
さらに、上記変形例では、環状シール体 120が内輪シール収容溝 122と接触する 場合について説明した力 これに限定されるものではなぐ図 50に示す内輪シール 収容溝 122と接触しな ヽ非接触ゴムシール型 (金属芯金付き)や外輪シール溝にカロ 締める金属シールを適用することができる。 Further, in the above modification, the annular seal body 120 contacts the inner ring seal housing groove 122. The force described in this case is not limited to this. The inner ring seal shown in Fig. 50 does not come into contact with the receiving groove 122 ヽ Apply a non-contact rubber seal type (with a metal core) or a metal seal that is tightened in the outer ring seal groove. Can do.
[0102] さらにまた、上記実施形態では、保持器 130の案内面を内輪 102の外周面とした 場合について説明したが、これに限定されるものではなぐ外輪 101の内周面を案内 面とするようにしてもよい。  [0102] Furthermore, in the above-described embodiment, the case where the guide surface of the retainer 130 is the outer peripheral surface of the inner ring 102 has been described, but the inner peripheral surface of the outer ring 101 is not limited to this and is used as the guide surface. You may do it.
なおさらに、上記実施形態では、保持器 130の円環状部 132a及び 132bのうち環 状シール体 120側の円環状部 132bに凹状溝 133を形成した場合にっ 、て説明し た力 これに限定されるものではなぐ図 49に示すように、環状シール体 120とは反 対側の円環状部 132aにも円環状部 132bの凹状溝 133と各玉 103の中心を通る垂 直面を挟む面対称位置に凹状溝部 134を設けるようにしてもよい。このように、凹状 溝部を左右の円環状部 132a及び 132bに形成すると、組み付け時に保持器 130の 凹状溝部の形成位置を確認することなぐ任意の方向から組み付けることができ、組 み付け作業を向上させることができる。  Furthermore, in the above embodiment, the force described in the case where the concave groove 133 is formed in the annular portion 132b on the annular seal body 120 side among the annular portions 132a and 132b of the cage 130 is not limited to this. As shown in FIG. 49, the annular seal part 120a opposite to the annular seal body 120 is symmetrical with respect to the concave groove 133 of the annular part 132b and the vertical plane passing through the center of each ball 103. A concave groove 134 may be provided at the position. In this way, when the concave groove is formed in the left and right annular portions 132a and 132b, it can be assembled from any direction without confirming the position of the concave groove of the retainer 130 during assembly, improving the assembly work. Can be made.
[0103] また、保持器は、本実施例以外に、図 51に示すように、軸方向の一方の端部 (組合 せ側端面と反対側の端部)に環状シール体 104を装着し、且つ玉 103を転動可能に 保持する保持器 110を備えたアンギユラ玉軸受 100を 2列背面組合せした場合に、 図 52及び図 53に示すように、円環部 111と、この円環部 111の一端部に円周方向 に略等間隔で複数個所軸方向に突設された柱部 112と、各柱部 112間に形成され て玉 103を周方向に転動可能に保持するポケット部 113とを備えた柔軟性のある内 輪外径面、外輪内径面を案内面としない片持ちリング構造の保持器すなわち内輪- 外輪と非接触となる玉案内冠形保持器 110を採用してもよい。このように単列玉軸受 を 2列組み合わせた場合には、図 51に示すように、玉 103の軸方向ピッチをできるだ け組合せ側端面の反対側にずらせば (X >X )、保持器リング部の軸方向肉厚が厚  [0103] Further, in addition to the present embodiment, as shown in Fig. 51, the cage has an annular seal body 104 attached to one end in the axial direction (the end opposite to the end face on the combination side), In addition, when an anguilla ball bearing 100 equipped with a cage 110 that holds the ball 103 in a rollable manner is combined in the back of two rows, as shown in FIGS. 52 and 53, an annular portion 111 and the annular portion 111 A plurality of pillars 112 projecting in a plurality of axial directions at substantially equal intervals in the circumferential direction at one end of each of them, and a pocket part 113 formed between the pillars 112 to hold the balls 103 so as to be rollable in the circumferential direction. Even with a flexible inner ring outer diameter surface and a cantilevered ring structure cage that does not use the outer ring inner diameter surface as a guide surface, that is, a ball guide crown-shaped cage 110 that does not contact the inner ring-outer ring. Good. When two single-row ball bearings are combined in this way, as shown in Fig. 51, if the axial pitch of the balls 103 is shifted as much as possible to the opposite side of the end face on the combination side (X> X), the cage Thickness in the axial direction of the ring
1 2  1 2
くなる構造にでき、且つモーメント剛性を上げるための作用点間距離を大きくとること ができる。また、保持器のない総玉のアンギユラ玉軸受を適用してもよい。  The distance between the operating points can be increased to increase the moment rigidity. Further, a full ball anguilla ball bearing without a cage may be applied.
[0104] なお、上記実施形態では、玉 103のピッチ円直径は次式 (4)の通りとしているが、 軸受 1列あたりの玉数を増やして更にモーメント剛性を増加させたい場合は、次式(5 )を採用して、玉 103のピッチ円直径を外輪側にずらした構造としてもよいし、必要に 応じて次式 (6)を採用して逆に玉 103のピッチ円直径を内輪 102側にずらしてもょ ヽ (図示せず)。 [0104] In the above embodiment, the pitch circle diameter of the balls 103 is as shown in the following equation (4). However, if it is desired to further increase the moment stiffness by increasing the number of balls per row, (Five ), The pitch circle diameter of the ball 103 may be shifted to the outer ring side, and if necessary, the pitch circle diameter of the ball 103 is moved to the inner ring 102 side by using the following equation (6). Even if you shift it (not shown).
玉のピッチ円直径 = (内輪内径 +外輪外径) Z2 - -- (4)  Ball pitch circle diameter = (inner ring inner diameter + outer ring outer diameter) Z2--(4)
玉のピッチ円直径 > (内輪内径 +外輪外径) Z2 - -- (5)  Ball pitch circle diameter> (inner ring inner diameter + outer ring outer diameter) Z2--(5)
玉のピッチ円直径く(内輪内径 +外輪外径) Z2 - -- (6)  Ball pitch circle diameter (inner ring inner diameter + outer ring outer diameter) Z2--(6)
また、必要に応じて、組み合わされる左右の玉軸受の玉ピッチ円直径を同一値とせ ずともよいし、組み合わされる左右の玉軸受の玉 103の径を同一値としなくてもよい。 加えて、組み合わせる 2個の玉軸受の断面寸法比(BZH)は同一でなぐ例えば玉 径の小さい方を (BZH) =0. 28、玉径の大きい方を (BZH) =0. 62としても構わな い。更に、玉 103の軸方向ピッチも軸方向中心でなくともよぐシールや保持器の装 着有無やモーメントの作用点間距離の確保等のために玉 103の軸方向ピッチを軸方 向にずらしてもよい。  Further, if necessary, the ball pitch circle diameters of the left and right ball bearings to be combined need not be the same value, and the diameters of the balls 103 of the left and right ball bearings to be combined need not be the same value. In addition, the cross-sectional dimension ratio (BZH) of the two ball bearings to be combined is not the same. For example, the smaller ball diameter is (BZH) = 0.28 and the larger ball diameter is (BZH) = 0.62. I do not care. In addition, the axial pitch of the balls 103 is shifted in the axial direction in order to secure the distance between the application points of the seals and cages and the moment action point, even if the axial pitch of the balls 103 is not centered in the axial direction. Also good.
[0105] 次に、図 54を参照して、第 3の実施形態における第 2の実施態様の一例である複 列アンギユラ玉軸受を説明する。  [0105] Next, with reference to FIG. 54, a double-row anguilla ball bearing which is an example of the second embodiment of the third embodiment will be described.
この複列アンギユラ玉軸受 200は、外輪 201の複列軌道溝 201a, 201bと内輪 202 の複列軌道溝 202a, 202bとの間に多数の玉 203が転動自在に配設され、軸方向 断面幅 B2と半径方向断面高さ H2 (= (外輪外径 D2—内輪内径 d2) /2)との断面 寸法比(B2ZH2)が(B2ZH2X 1. 2とされており、玉ピッチ円直径が半径方向断 面高さの中央に設定されて 、る。  This double-row anguilla ball bearing 200 has a large number of balls 203 rotatably arranged between the double-row raceway grooves 201a and 201b of the outer ring 201 and the double-row raceway grooves 202a and 202b of the inner ring 202. The cross-sectional dimension ratio (B2ZH2) between the width B2 and the radial section height H2 (= (outer ring outer diameter D2—inner ring inner diameter d2) / 2) is (B2ZH2X1.2), and the ball pitch circle diameter is radial. It is set at the center of the section height.
[0106] そして、外輪 201及び内輪 202の左右側面に夫々第 3の実施形態における第 1の 実施態様と同様のシール収容溝 121及び 122が形成され、これらシール収容溝 121 及び 122に環状シール体 120が左右対象に収容されている。 Then, seal housing grooves 121 and 122 similar to those of the first embodiment in the third embodiment are formed on the left and right side surfaces of the outer ring 201 and the inner ring 202, respectively, and annular seal bodies are formed in these seal housing grooves 121 and 122, respectively. 120 are housed in the left and right objects.
ここで、この実施の形態では、複列玉軸受 200を 7208A (接触角 35° )の 2列組合 せアンギユラ玉軸受と置き換えた場合を例に採る。  Here, in this embodiment, a case where the double row ball bearing 200 is replaced with a 7208A (contact angle 35 °) two-row combined angular ball bearing is taken as an example.
7208Aは、内輪内径 φ 40mm,外輪外径 φ 80mm,軸方向断面幅(軸受単体幅) : Bが 18mmであるので、断面寸法比(BZH) =0. 9である。したがって、本実施形 態のアンギユラ玉軸受 200では、断面寸法比(B2ZH2) =0. 90 (内輪内径及び外 輪外径はそのままで、軸方向断面幅 (軸受単体幅): B2を 18mmとした)としている。 これにより、ラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受けることが できるのは勿論のこと、軸方向寸法で 1Z2の省スペース化、低トルク化及び更なる高 剛性ィ匕を図ることができる。 The 7208A has an inner ring inner diameter of 40 mm, an outer ring outer diameter of 80 mm, and an axial sectional width (bearing unit width): B is 18 mm, so the sectional dimension ratio (BZH) is 0.9. Therefore, in the angular contact ball bearing 200 of this embodiment, the cross-sectional dimension ratio (B2ZH2) = 0.90 (inner ring inner diameter and outer The outer diameter of the ring remains the same, but the axial cross-sectional width (bearing unit width): B2 is 18 mm). As a result, it is possible to receive radial load, axial load in both directions, and moment load, as well as to save 1Z2 space in the axial dimension, lower torque, and higher rigidity.
[0107] もちろん、必要に応じて、断面寸法比(B2ZH2)を 0. 90未満或いは 0. 90を超え る(但し、(B2ZH2X 1. 2)ように設定してもよい。 Of course, if necessary, the cross-sectional dimension ratio (B2ZH2) may be set to be less than 0.90 or more than 0.90 (however, (B2ZH2X1.2).
そして、アンギユラ玉軸受 200の接触角は、前述した第 3の実施形態における第 1 の実施態様と同様に例えば 35° に設定され、玉 203の外輪 201及び内輪 202の軌 道溝 201a, 201b及び 202a, 202bとの接触部 PI及び P2の法線方向の延長線 LI が収容凹部 122bに対して所定距離 Δ ( >0)だけ離れた位置を通るように設定され ている。  Then, the contact angle of the anguilla ball bearing 200 is set to 35 °, for example, similarly to the first embodiment in the third embodiment described above, and the raceway grooves 201a, 201b of the outer ring 201 and the inner ring 202 of the ball 203 and The extension lines LI in the normal direction of the contact portions PI and P2 with 202a and 202b are set so as to pass through a position separated by a predetermined distance Δ (> 0) from the receiving recess 122b.
[0108] この第 3の実施形態における第 2の実施態様でも、接触部 P1及び Ρ2の法線方向 の延長線 L 1がシール収容溝 122の収容凹部 122bに対して干渉することがな 、よう に接触角 Θが設定されているので、大きな転動体荷重が付加されたときに、この転動 体荷重をみぞ肩部のみで負担することはなぐ内輪押えでバックアップされた内輪 20 2及びこれに嵌挿される軸(図示せず)で受けることができ、みぞ肩部の変形を抑制し てみぞ肩部の破断や欠けを確実に防止することができ、幅狭の複列アンギユラ軸受 の寿命を長期化することができる。  [0108] In the second embodiment of the third embodiment as well, the extension line L1 in the normal direction of the contact portion P1 and the flange 2 does not interfere with the housing recess 122b of the seal housing groove 122. Since the contact angle Θ is set for the inner ring 20 2 and the inner ring backed up by the inner ring presser, it is not necessary to bear this rolling element load only at the groove shoulder when a large rolling element load is applied. It can be received by a shaft to be inserted (not shown), and can prevent deformation of the groove shoulder and prevent breakage or chipping of the groove shoulder, thereby improving the life of the narrow double row anguilla bearing. Can be prolonged.
[0109] なお、この第 3の実施形態における第 2の実施態様でも、モーメント剛性を上げるた め、複列アンギユラ玉軸受 200で玉ピッチ円直径を外径側にずらしたり、複列アンギ ユラ玉軸受 200で各列の玉径ゃ玉ピッチ円直径を変えたりしてもよい。  In the second embodiment of the third embodiment as well, in order to increase the moment rigidity, the ball pitch circle diameter is shifted to the outer diameter side with the double-row anguilla ball bearing 200, or the double-row anguilla ball In the bearing 200, the ball diameter of each row may be changed.
また、保持器のな 、複列総玉アンギユラ玉軸受でもよ 、。  Also, double row full ball anguilla ball bearings are also available without cage.
何れの例の場合も、環状シール体、保持器等の構造や装着の有無の他、構造に 関する適用例は、上記第 3の実施形態における第 1の実施態様で記載した単列玉軸 受に準ずる。また、上記第 3の実施形態における第 1の実施態様と同様に、予圧及び すきまの何れの条件で使用してもょ 、。  In any of the examples, in addition to the structure of the annular seal body, the cage, etc. and whether or not it is mounted, the application example related to the structure is the single row ball bearing described in the first embodiment of the third embodiment. According to Further, as in the first embodiment in the third embodiment, it may be used under any conditions of preload and clearance.
[0110] また、上記第 3の実施形態における第 1の実施態様においては、内輪 102側のみ ぞ肩部 102cに連接して環状シール体 120を収容する嵌合凹部 121b及び収容凹部 122bを形成した場合について説明した力 これに限定されるものではなぐ図 38で 玉 103の中心を通る垂直線で左右反転させた形状として外輪 101及び内輪 102の みぞ肩部に連接して環状シール体 120を収容する収容凹部を形成した場合にも本 発明を適用することができる。ここで、環状シール体 120は、左右両側に設けるように してちよい。 [0110] Further, in the first embodiment of the third embodiment, the fitting recess 121b and the housing recess for housing the annular seal body 120 connected to the shoulder portion 102c only on the inner ring 102 side. The force described in the case of forming 122b is not limited to this. In FIG. 38, an annular seal is connected to the groove shoulders of the outer ring 101 and the inner ring 102 as a shape reversed left and right by a vertical line passing through the center of the ball 103. The present invention can also be applied to the case where an accommodation recess for accommodating the body 120 is formed. Here, the annular seal body 120 may be provided on both the left and right sides.
[0111] さらに、上記第 3の実施形態における第 1及び第 2の実施態様においては、環状シ ール体 120を収容する嵌合凹部 121b及び収容凹部 122bが円周方向の全周に亘 つて形成されている場合について説明した力 これに限定されるものではなぐ円周 方向の一部に凹段部が形成されている場合にも本発明を適用し得るものである。さら にまた、凹段部としては環状シール体 120を収容するためのものに限らず、任意の用 途に使用する凹段部を適用することができる。  [0111] Further, in the first and second embodiments of the third embodiment, the fitting recess 121b for housing the annular seal body 120 and the housing recess 122b extend over the entire circumference in the circumferential direction. The force described for the case where it is formed The present invention can be applied to the case where the concave step portion is formed in a part of the circumferential direction. Furthermore, the concave step portion is not limited to the one for accommodating the annular seal body 120, and a concave step portion used for any application can be applied.
[0112] 次に、本発明の第 4の実施形態の一例である工作機械の主軸旋回部や回転テー ブル、産業機械、ロボットの関節部や旋回機構部、医療機器、半導体 Z液晶製造装 置、光学及びオプトエレクトロニクス装置等に用いられる組合せ玉軸受ゃ複列玉軸受 に関し、特にラジアル荷重と両方向のアキシャル荷重、特に大きなモーメント荷重が 負荷として作用される用途に使用される玉軸受を説明する。  [0112] Next, a spindle turning part and a rotary table of a machine tool, an industrial machine, a joint part and a turning mechanism part of a robot, a medical device, and a semiconductor Z liquid crystal manufacturing apparatus, which are examples of the fourth embodiment of the present invention. The ball bearings used in applications in which radial loads and axial loads in both directions, particularly large moment loads, act as loads, will be described with regard to combination ball bearings used in optical and optoelectronic devices.
通常、玉軸受、例えば深みぞ玉軸受などでは、図 55に示すように、内輪 82及び外 輪 81の軌道面間に玉 83が回転自在に挟持され、封入グリースの保持及び外部への 洩れ防止、あるいは外部から軸受内部への異物侵入防止等の目的で、内輪 82及び 外輪 81間の軸方向端面にシール 85を装着している。また、玉 83を保持する玉案内 保持器 84としては、図 56に示すように、リング部 86aに所要数のポケット部 86bを形 成した冠形 (片持ちリング構造)の玉案内合成樹脂保持器が標準的に採用されてい る。  Normally, in ball bearings such as deep groove ball bearings, as shown in Fig. 55, the balls 83 are rotatably held between the raceways of the inner ring 82 and the outer ring 81 to hold the sealed grease and prevent leakage to the outside. Alternatively, a seal 85 is attached to the end surface in the axial direction between the inner ring 82 and the outer ring 81 for the purpose of preventing foreign matter from entering the bearing from the outside. As shown in Fig. 56, the ball guide retainer 84 for holding the ball 83 has a crown-shaped (cantilever ring structure) ball guide synthetic resin holding the required number of pockets 86b on the ring 86a. Standard equipment is used.
[0113] この玉案内保持器 84は、図 56に示すように、通常、玉 83を保持するポケット内面 8 6cは、玉 83の曲率より僅かに大きな曲率を持った球面形状に形成されており、保持 器 84の半径方向の動き量は、図 57に示すように、玉 83とポケット内径側端面間のす きま AR、又は玉 83とポケット外径側端面間のすきま ARの何れか小さい方で位置 [0113] As shown in Fig. 56, the ball guide retainer 84 has a pocket inner surface 86c that normally holds the ball 83, and is formed in a spherical shape having a curvature slightly larger than the curvature of the ball 83. As shown in Fig. 57, the movement amount of the cage 84 in the radial direction is the smaller of the clearance AR between the ball 83 and the pocket inner diameter end surface or the clearance AR between the ball 83 and the pocket outer diameter side end surface. In position
1 2 1 2
決めされる。 また、保持器 84の軸方向の動き量は、図 58に示すように、一方向はリング側ポケッ ト内面 86cと玉 83とのすきま A Sで位置決めされ、もう一方向は、ポケット柱部 86dの It is decided. In addition, as shown in FIG. 58, the axial movement amount of the cage 84 is determined by the clearance AS between the ring-side pocket inner surface 86c and the ball 83 in one direction, and in the other direction by the pocket column portion 86d.
1  1
先端に形成した玉係止部 86eと玉 83とのすきま Δ Sによって位置決めされる。  It is positioned by the clearance ΔS between the ball locking portion 86e formed at the tip and the ball 83.
2  2
[0114] また、保持器 84は、通常、射出成形で製作されるが、型から保持器を分離する時 は、軸方向に離形する構成 (所謂アキシャルドロー型)となっている。このとき、ポケッ ト面の内径 φ dと、一対の玉係止部 86e間の距離即ち口元径寸法 Hとの関係が φ d  [0114] The cage 84 is usually manufactured by injection molding. When the cage is separated from the mold, the cage 84 is separated in the axial direction (so-called axial draw type). At this time, the relationship between the inner diameter φ d of the pocket surface and the distance between the pair of ball engaging portions 86e, that is, the diameter H of the mouth is φ d
P P  P P
>Hとなるため、離型時に玉係止部 86eはポケットを形成するための成形型部材 (球 面状の部材)が通過する際、変形を伴う。所謂無理抜きの形を取らざるを得ない。 したがって、玉係止部 86eは離型の際、破損や亀裂、あるいは機能上問題となる大 きな塑性変形を残さないような柔軟性を保持することが必要である。  Therefore, when the mold is released, the ball engaging portion 86e is deformed when a molding die member (spherical member) for forming a pocket passes therethrough. You have to take the so-called unreasonable form. Therefore, it is necessary for the ball engaging portion 86e to retain flexibility so as not to leave breakage, cracks, or a large plastic deformation that may cause a functional problem when released.
[0115] また、玉係止部 86eは、その対向する玉係止部 86e間の口元外径 Hに対する玉径 φ D力 S φ D >Hの関係でもあり、軸受に保持器 84を組込む際即ち玉 83をポケット a a [0115] In addition, the ball engaging portion 86e has a relationship of the ball diameter φ D force S φ D> H with respect to the outer diameter H of the mouth between the opposing ball engaging portions 86e. When the cage 84 is assembled to the bearing, Ie ball 83 pocket aa
部 86bに挿入する際に、玉係止部 86e間を通過する時も、玉係止部 86eの破損や欠 け等が生じないことが必要であり、組込後は保持器 84が軸方向に玉 83から抜けない ような構造としている。  When inserting into the part 86b, it is necessary that the ball engaging part 86e is not damaged or missing when passing between the ball engaging parts 86e. The structure is such that it cannot be removed from the ball 83.
通常の一般的な回転条件では、保持器 84が玉 83から抜ける可能性は少ないが、 軸受回転中の振動が大きい条件、あるいはモーメント荷重やその他の要因による外 輪 81及び内輪 82間の傾き等で、保持器 84の玉係止部 86eに偏荷重が加わる用途 では、外れやすくなるため、保持器 84の軸方向の脱落 (抜け)を抑制する強度を保 持することが必要である。  Under normal general rotation conditions, the cage 84 is unlikely to come out of the ball 83, but the vibration during rotation of the bearing is large, or the inclination between the outer ring 81 and the inner ring 82 due to moment load or other factors. Therefore, in applications where an eccentric load is applied to the ball locking portion 86e of the cage 84, it is easy to come off, so it is necessary to maintain a strength that prevents the cage 84 from falling off in the axial direction.
[0116] 仮に、少なくとも一部のポケット部 86bで、軸方向に玉 83が外れた場合、円周方向 の隣り合う玉同士が接触し、玉間の滑り接触により発熱が生じたり摩耗が発生し、場 合によっては焼き付き '玉の破損に至る。保持器 84にも脱落個所の偏当りにより、損 耗ゃ欠けが発生するなどの不具合が生じる。 [0116] If at least some of the pockets 86b dislodge the balls 83 in the axial direction, adjacent balls in the circumferential direction come into contact with each other, and heat generation or wear occurs due to sliding contact between the balls. In some cases, seizure will result in damage to the balls. The cage 84 also suffers from defects such as wear and chipping due to the uneven contact of the drop-off point.
上述したような用途において、両者の相反する要求を満足するためには、適正な保 持器榭脂材料の選定'ガラス繊維などの強化材の含有量の選定や最適な玉係止部 86eの口元径寸法 Hの選定など、最終的な仕様設計確立に至るまでにはいくつかの 問題点を解決する必要がある。 [0117] 一方、アンギユラ玉軸受の場合、図 59及び図 60に示すように、一般的には両側リ ング構造の所謂もみぬき保持器 87が使用されることが多いが、最近、特開 2004— 3 33588号公報(以下、特許文献 4と称す)に示すような幅狭玉軸受の場合には、玉軸 受の軸方向の幅をより狭くするための方策として、冠形片持ちリング構造の玉案内保 持器が提案されている。 In order to satisfy the conflicting requirements of the above-mentioned applications, select the appropriate cage resin material, select the content of reinforcing materials such as glass fiber, and select the optimal ball locking part 86e. Several problems must be solved before the final specification design is established, such as the selection of the diameter H. [0117] On the other hand, in the case of an anguilla ball bearing, as shown in FIGS. 59 and 60, a so-called rice bran cage 87 having a double-sided ring structure is generally used. — 3 In the case of a narrow ball bearing as shown in Japanese Patent No. 33588 (hereinafter referred to as Patent Document 4), a crown-shaped cantilever ring structure is used as a measure to further reduce the axial width of the ball bearing. A ball guide cage has been proposed.
し力しながら、特許文献 4に開示されている幅狭のアンギユラ玉軸受では、軸方向 省スペース化の目的で軸受の軸方向幅を狭くするという理由から、特に玉径が小さく ならざるを得ず、保持器の断面肉厚も薄ぐリング部の円環強度が小さくなり保持器 が変形し易 、ため、上述した軸方向への保持器の抜けが生じやす 、と 、う未解決の 課題がある。  However, in the narrow anguilla ball bearing disclosed in Patent Document 4, the ball diameter must be particularly small because the axial width of the bearing is narrowed for the purpose of space saving in the axial direction. In addition, since the annular strength of the ring portion is reduced because the cross-sectional thickness of the cage is thin and the cage is easily deformed, the cage is likely to be pulled out in the axial direction as described above. There is.
[0118] 特に、上述した用途では、大きなモーメント荷重が負荷として作用して運転する場 合が多ぐ各玉の負荷荷重のバラツキにより各玉公転速度に違いが生じ、その結果、 保持器への偏荷重が加わり保持器が変形、玉係止部への荷重負荷により保持器が 軸方向に抜ける可能性が懸念される。保持器強度を極端に大きくすると、上述したよ うに、成形型からの離型の際や、保持器組込みの際における玉の係止部通過時の 変形荷重により、係止部の破損や亀裂の発生や塑性変形を生じてしまう。  [0118] In particular, in the above-described applications, a large moment load often acts as a load, and the ball revolving speed varies due to variations in the load load of each ball. There is concern that the cage may be deformed due to an unbalanced load and the cage may be pulled out in the axial direction due to the load applied to the ball locking portion. When the cage strength is extremely increased, as described above, the locking portion may be damaged or cracked due to the deformation load when the ball passes through the locking portion when released from the mold or when the cage is incorporated. Occurrence and plastic deformation will occur.
[0119] そこで、本発明の第 4の実施形態は上記従来例の未解決の課題に着目してなされ たものであり、軸方向の省スペース化の目的で冠形保持器を採用した場合に、保持 器の軸方向の外れを発生させることがないと共に、玉の摩耗や損傷及び保持器を破 損させることなく安定した回転性能を発揮することができる玉軸受を提供することを目 的としている。  [0119] Therefore, the fourth embodiment of the present invention has been made by paying attention to the unsolved problems of the above-described conventional example, and when a crown-shaped cage is used for the purpose of space saving in the axial direction. An object of the present invention is to provide a ball bearing that does not cause the cage to be disengaged in the axial direction and that can exhibit stable rotational performance without causing wear or damage to the ball or damage to the cage. Yes.
上記目的を達成するために、本発明の第 4の実施形態における第 1の実施態様に 係る組合せ玉軸受は、幅狭玉軸受を 2列組合せて構成され、各幅狭玉軸受は、片側 にリング部を有し、当該リング部の他方側に玉を保持する所要数のポケット部を形成 した冠形の玉案内保持器をそのリング部側を組合せ面側に配置してなる組合せ玉軸 受であって、前記ポケット部は、前記リング部とは反対側の先端部に形成した玉の抜 け出しを防止する玉係止部を有し、前記ポケット部の曲率中心と前記玉係止部先端 との軸方向距離に対して、前記ポケット部の曲率中心と玉曲率中心とを一致させた状 態における対向する 2つの保持器におけるリング部端部間の軸方向すきまに、前記 ポケット部のポケット面と玉との軸方向すきまをカ卩えた値が小さくなるように設定したこ とを特徴としている。 To achieve the above object, the combination ball bearing according to the first embodiment of the fourth embodiment of the present invention is configured by combining two rows of narrow ball bearings, and each narrow ball bearing is arranged on one side. A combined ball bearing having a ring portion and a crown-shaped ball guide retainer having a required number of pocket portions for holding balls on the other side of the ring portion, the ring portion side being arranged on the combination surface side. The pocket portion has a ball locking portion that prevents a ball formed at a tip portion opposite to the ring portion from being pulled out, and the center of curvature of the pocket portion and the ball locking portion. The center of curvature of the pocket and the center of curvature of the pocket are matched to the axial distance from the tip. The axial clearance between the ring portion end portions of two opposing cages in the state is set so that the value obtained by adjusting the axial clearance between the pocket surface of the pocket portion and the ball is small. Yes.
[0120] また、本発明の第 4の実施形態における第 2の実施態様に係る組合せ玉軸受は、 上記第 1の実施態様に係る発明において、前記玉案内保持器は、合成樹脂材料で 成形されて 、ることを特徴として 、る。  [0120] Further, the combination ball bearing according to the second embodiment in the fourth embodiment of the present invention is the invention according to the first embodiment, wherein the ball guide retainer is formed of a synthetic resin material. It is characterized by that.
さらに、本発明の第 4の実施形態における第 3の実施態様に係る組合せ玉軸受は、 上記第 1又は第 2の実施態様に係る発明において、前記各幅狭玉軸受は、前記玉 案内保持器のリング部側と玉を介して反対側における内外輪軸方向端面部に環状 シール体が配設されて 、ることを特徴として!/、る。  Furthermore, the combination ball bearing according to the third embodiment of the fourth embodiment of the present invention is the invention according to the first or second embodiment, wherein each of the narrow ball bearings is the ball guide cage. An annular seal body is provided on the inner ring and the outer ring axial end surface on the opposite side of the ring part side and the ball. /
[0121] さらにまた、本発明の第 4の実施形態における第 4の実施態様に係る組合せ玉軸 受は、上記第 3の実施態様に係る発明において、前記環状シール体は、前記幅狭玉 軸受の外輪及び内輪の少なくとも一方に接触されていることを特徴としている。  [0121] Furthermore, the combined ball bearing according to the fourth embodiment of the fourth embodiment of the present invention is the invention according to the third embodiment, wherein the annular seal body is the narrow ball bearing. It is characterized by being in contact with at least one of the outer ring and the inner ring.
なおさらに、本発明の第 4の実施形態における第 5の実施態様に係る複列玉軸受 は、幅狭の複列玉軸受の構成を有し、夫々の列には、片側にリング部を有し、当該リ ング部の他方側に玉を保持する所要数のポケット部を形成した冠形の玉案内保持器 をそのリング部側を軸受の軸方向内側に対向させて配置してなる複列玉軸受であつ て、前記ポケット部は、前記リング部とは反対側の先端部に形成した玉の抜け出しを 防止する玉係止部を有し、前記ポケット部の曲率中心と前記玉係止部先端との軸方 向距離に対して、前記ポケット部の曲率中心と玉曲率中心とを一致させた状態にお ける対向する 2つの保持器におけるリング部端部間の軸方向すきまに、前記ポケット 部のポケット面と玉との軸方向すきまを加えた値力 S小さくなるように設定したことを特 徴としている。  Furthermore, the double row ball bearing according to the fifth embodiment of the fourth embodiment of the present invention has a narrow double row ball bearing configuration, and each row has a ring portion on one side. The crown-shaped ball guide retainer having the required number of pocket portions for holding balls on the other side of the ring portion is arranged in a double row with the ring portion facing the inner side in the axial direction of the bearing. In the ball bearing, the pocket portion has a ball locking portion that prevents a ball formed at a tip portion on the opposite side of the ring portion, and a center of curvature of the pocket portion and the ball locking portion. In the axial clearance between the two ring holder ends facing each other in a state where the center of curvature of the pocket and the center of curvature of the ball coincide with the axial distance from the tip, the pocket The value force S with the axial clearance between the pocket surface and the ball is set to be small. It is characterized by that.
[0122] また、本発明の第 4の実施形態における第 6の実施態様に係る複列玉軸受は、上 記第 5の実施の形態において、前記玉案内保持器は、合成樹脂材料で成形されて 、ることを特徴として 、る。  [0122] Further, in the double row ball bearing according to the sixth embodiment of the fourth embodiment of the present invention, in the fifth embodiment, the ball guide cage is formed of a synthetic resin material. It is characterized by that.
さらに、本発明の第 4の実施形態における第 7の実施態様に係る複列玉軸受は、上 記第 5又は 6の実施態様において、前記複列玉軸受は、前記玉案内保持器のリング 部側と玉を介して反対側における内外輪軸方向端面部に環状シール体が配設され ていることを特徴としている。 Furthermore, the double row ball bearing according to the seventh embodiment of the fourth embodiment of the present invention is the above-mentioned fifth or sixth embodiment, wherein the double row ball bearing is a ring of the ball guide retainer. An annular seal body is disposed on the inner side and outer ring axial end surface portions on the opposite side through the ball side and the ball side.
[0123] さらに、本発明の第 4の実施形態における第 8の実施態様に係る複列玉軸受は、上 記第 7の実施態様において、前記環状シール体は、前記幅狭玉軸受の外輪及び内 輪の少なくとも一方に接触されて 、ることを特徴として 、る。  [0123] Furthermore, the double row ball bearing according to the eighth embodiment of the fourth embodiment of the present invention is the above seventh embodiment, wherein the annular seal body includes the outer ring of the narrow ball bearing and It is characterized by being in contact with at least one of the inner rings.
本発明の第 4の実施形態によれば、幅狭玉軸受を 2列組合せた組合せ軸受、ある いは幅狭の複列玉軸受において、前記ポケット部の曲率中心と前記玉係止部先端と の軸方向距離に対して、前記ポケット部の曲率中心と玉曲率中心とを一致させた状 態における対向する 2つの保持器におけるリング部端部間の軸方向すきまに、前記 ポケット部のポケット面と玉との軸方向すきまをカ卩えた値が小さくなるように設定したの で、モーメント荷重による内外輪傾き等で、保持器が軸方向に移動した場合に、組み 合わせた他方の軸受の保持器端面に接触することにより、玉の大径部が玉係止部を 越えるまでずれることがなくなるので、玉及び保持器が相対的に脱落することを確実 に防止することができると!/、う効果が得られる。  According to the fourth embodiment of the present invention, in a combined bearing in which two rows of narrow ball bearings are combined or a double row ball bearing having a narrow width, the center of curvature of the pocket portion, the tip of the ball locking portion, The pocket surface of the pocket portion has a gap in the axial direction between the end portions of the ring portions of the two opposing cages in a state in which the center of curvature of the pocket portion and the center of curvature of the ball coincide with each other. Since the axial clearance between the ball and the ball is set to be small, when the cage moves in the axial direction due to inner / outer ring inclination due to moment load, etc., the other combined bearing is held. By contacting the bowl end surface, the ball does not slip until the large diameter part of the ball exceeds the ball locking part, so it is possible to reliably prevent the ball and the cage from falling off! /, Effect.
[0124] 以下、本発明の第 4の実施形態における実施態様を図を参照して説明する。  Hereinafter, an embodiment of the fourth embodiment of the present invention will be described with reference to the drawings.
図 61は本発明の第 4の実施形態における第 1の実施態様を示す単列玉軸受を 2列 組み合わせた状態を示す要部断面図、図 62は断面寸法比 (BZH)と半径方向の内 外輪の変形量との関係を示すグラフ図、図 63は断面寸法比 (BZH)と断面 2次モー メント Iとの関係を示すグラフ図、図 64は内輪の半径方向の変形量を説明するための 説明図、図 65は内輪の断面 2次モーメントの計算方法を説明するための説明図、図 66は断面寸法比 (BZH)と半径方向の内外輪の変形量との関係を示すグラフ図、 図 67は断面寸法比(BZH)と断面 2次モーメント Iとの関係を示すグラフ図、図 68は 各種軸受での計算モーメント剛性の比較を示すグラフ図、図 69は玉案内保持器を 示す断面図、図 70は保持器を径方向内側力も見た部分斜視図、図 71は図 69の矢 印 Y方向から見た矢視図、図 72は図 69の Z— Z線断面図、図 73は保持器が軸方向 に移動した場合の作用を説明する説明図、図 74は図 69の矢印 X方向力も見た矢視 図である。  FIG. 61 is a cross-sectional view of the principal part showing a state in which two single-row ball bearings according to the first embodiment of the fourth embodiment of the present invention are combined, and FIG. 62 is a cross-sectional dimension ratio (BZH) and radial inner dimensions. Fig. 63 is a graph showing the relationship between the deformation of the outer ring, Fig. 63 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the secondary moment I of the cross section, and Fig. 64 is for explaining the deformation in the radial direction of the inner ring. Fig. 65 is an explanatory diagram for explaining the method of calculating the secondary moment of inertia of the inner ring. Fig. 66 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the deformation amount of the inner and outer rings in the radial direction. Fig. 67 is a graph showing the relationship between the cross-sectional dimension ratio (BZH) and the cross-sectional secondary moment I, Fig. 68 is a graph showing a comparison of the calculated moment stiffness of various bearings, and Fig. 69 is a cross-section showing a ball guide cage. Fig. 70 is a partial perspective view of the cage as seen from the radial inner force.Fig. 71 is an arrow view as seen from the arrow Y direction of Fig. 69. 72 Z- Z line sectional view of FIG. 69, FIG. 73 is an explanatory diagram for explaining the operation when the retainer is moved in the axial direction, FIG. 74 is a palm view also seen the arrow X direction forces in Figure 69.
[0125] 本発明の組合せ軸受 100は、図 61に示すように、 2つの単列アンギユラ玉軸受 300 A及び 300Bを接触角がハの字を表すように 2列背面組合せた構成を有する。 [0125] The combination bearing 100 of the present invention includes two single-row anguilla ball bearings 300 as shown in FIG. It has a configuration in which A and 300B are combined in two rows so that the contact angle represents a square shape.
ここで、単列アンギユラ球軸受 300A及び 300Bの夫々は、図 61に示すように、外 輪 301の軌道溝 301aと内輪 302の軌道溝 302aとの間に多数の玉 303が転動自在 に配設された幅狭軸受の構成を有する。  Here, in each of the single-row angular bearings 300A and 300B, as shown in FIG. 61, a large number of balls 303 are arranged between the raceway groove 301a of the outer ring 301 and the raceway groove 302a of the inner ring 302 so as to be able to roll. It has a configuration of a narrow bearing provided.
また、内輪 302、外輪 301及び玉 303の材料は、標準的な使用条件では軸受鋼( 例えば、 SUJ2、 SUJ3など)とする力 使用環境に応じて、耐食材料であるステンレス 系材料(例えば、 SUS440C等のマルテンサイト系ステンレス鋼材や SUS304等の オーステナイト系ステンレス鋼材、 SUS630等の析出硬化系ステンレス鋼材など)、 チタン合金やセラミック系材料 (例えば、 Si N 、 SiC、 Al O 、 ZrO等)を採用して  In addition, the material of the inner ring 302, outer ring 301 and ball 303 is a bearing steel (eg, SUJ2, SUJ3, etc.) under standard operating conditions. Depending on the usage environment, the stainless steel material (eg, SUS440C) is a corrosion resistant material. Martensitic stainless steel such as SUS304, austenitic stainless steel such as SUS304, precipitation hardened stainless steel such as SUS630), titanium alloy and ceramic materials (eg Si N, SiC, Al O, ZrO etc.) The
3 4 2 3 2  3 4 2 3 2
ちょい。  A little.
[0126] 潤滑方法も特に限定されず、一般的な使用環境では、鉱油系グリースや合成油系  [0126] The lubrication method is not particularly limited, and in general use environment, mineral oil-based grease or synthetic oil-based
(例えば、リチウム系、ウレァ系等)のグリースや油を使用でき、高温環境用途などで はフッ素系グリース又はフッ素系の油、或いはフッ素榭脂、 MoS  Grease and oil (for example, lithium-based and urea-based) can be used. For high temperature environment applications, fluorine grease or fluorine oil, fluorine resin, MoS
2などの固体潤滑剤 を使用することができる。  Solid lubricants such as 2 can be used.
また、幅狭軸受とは、国際標準化機構 (ISO)で規定されている標準アンギユラ玉軸 受(78 X X、 79 X X、 70 X X、 72 X X、 73 X Xシリーズ等)に当てはまらないサイ ズの軸受であって、軸方向断面幅 Bと半径方向断面高さ H (= (外輪外径 D—内輪内 径 d) /2)との断面寸法比(BZH)を (BZH) < 0. 63とする軸受である。  Narrow bearings are bearings of a size that do not fit the standard angular bearings (78 XX, 79 XX, 70 XX, 72 XX, 73 XX series, etc.) specified by the International Organization for Standardization (ISO). Bearing with axial sectional width B and radial sectional height H (= (outer ring outer diameter D—inner ring inner diameter d) / 2) sectional dimension ratio (BZH) (BZH) <0.63 It is.
[0127] また、幅狭の複列玉軸受とは、軸方向断面幅 B2と半径方向断面高さ H2 (= (外輪 外径 D2—内輪内径 d2) Z2との断面寸法比(B2ZH2)が(B2ZH2) < 1. 2とする 幅狭の複列アンギユラ高玉軸受である。  [0127] In addition, a narrow double-row ball bearing has an axial cross-sectional width B2 and a radial cross-sectional height H2 (= (outer ring outer diameter D2—inner ring inner diameter d2) Z2 cross-sectional dimension ratio (B2ZH2) ( B2ZH2) <1. 2. This is a narrow double row anguilla high ball bearing.
例えば、従来の玉軸受として、 7208A (接触角 30度のアンギユラ玉軸受)の場合、 内輪内径 φ 40mm,外輪外径 φ 80mm,軸方向断面幅(軸受単体幅) Bが 18mmで あるので、断面寸法比(BZH) =0. 9である。  For example, in the case of 7208A (angular ball bearing with a contact angle of 30 degrees) as a conventional ball bearing, the inner ring inner diameter is φ40mm, the outer ring outer diameter is φ80mm, and the axial sectional width (bearing unit width) B is 18mm. The dimension ratio (BZH) is 0.9.
[0128] したがって、本実施形態のアンギユラ玉軸受 300A及び 300Bでは、断面寸法比(B /H) =0. 45 (内輪内径及び外輪外径はそのままで、軸方向断面幅 (軸受単体幅) を 9mmとした)としている。これにより、ラジアル荷重と両方向のアキシャル荷重、モー メント荷重を受けることができると共に、軸方向寸法で 1Z2の省スペース化が図れ、 単列の 7208Aと置き換えが可能となり、且つ低トルク化及び更なる高剛性ィ匕を図るこ とがでさる。 Therefore, in the angular contact ball bearings 300A and 300B of the present embodiment, the cross-sectional dimension ratio (B / H) = 0.45 (the inner ring inner diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing single body width) is 9mm). As a result, radial load, axial load in both directions, and moment load can be received, and space saving of 1Z2 in the axial dimension can be achieved. It can be replaced with a single row 7208A, and lower torque and higher rigidity can be achieved.
[0129] もちろん、必要に応じて、アンギユラ玉軸受 300の断面寸法比(BZH)を 0. 45未 満或いは 0. 45を超える(但し (BZH)く 0. 63)ように設定しても力まわない。  [0129] Of course, if necessary, the cross-sectional dimension ratio (BZH) of the anguilla ball bearing 300 may be set to less than 0.45 or more than 0.45 (however, (BZH) is less than 0.63). It does n’t turn.
このように、 B/H<0. 63とする理由は以下の通りである。  Thus, the reason for B / H <0.63 is as follows.
図 62及び図 63はそれぞれ標準的に使用されている極薄肉玉軸受(軸受内径: φ 3 8. lmm,軸受外径: 47. 625mm,軸受幅: 4. 762mm,前記断面寸法比(BZ H) = 1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合( 即ち、(BZH)の値を変化させた場合)の内外輪リングの半径方向の変形特性(図 6 4参照:内輪を例示)及び半径方向の断面 2次モーメント I (図 65参照: I = bh3 Z 12で 計算)を比較した結果を示して 、る。 Figures 62 and 63 show the standard thin ball bearings (inner diameter: φ 3 8. lmm, outer diameter of bearing: 47.625mm, bearing width: 4.762mm, cross-sectional dimension ratio (BZ H ) = Based on 1), the radial deformation characteristics of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width (ie, when the value of (BZH) is changed) (See Fig. 64: Example of inner ring) and the radial cross-sectional secondary moment I (see Fig. 65: I = bh 3 Z 12) is shown for comparison.
[0130] また、図 66及び図 67についてもそれぞれ標準的に使用されている極薄肉玉軸受( 軸受内径: Φ 63. 5mm,軸受外径: φ 76. 2mm,軸受幅: 6. 35mm,前記断面寸 法比 (BZH) = 1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化さ せた場合 (即ち、(BZH)の値を変化させた場合)の内外輪リングの半径方向の変形 特性及び半径方向の断面 2次モーメント Iを比較した結果を示して 、る。  [0130] Also, as shown in Figs. 66 and 67, the ultra-thin ball bearings used as standard (Bearing inner diameter: Φ 63.5 mm, Bearing outer diameter: φ 76.2 mm, Bearing width: 6. 35 mm, Inner and outer rings when the inner diameter of the bearing is changed (that is, the value of (BZH) is changed) without changing the outer diameter and width of the bearing, based on the cross-sectional dimension ratio (BZH) = 1). The results of comparing the radial deformation characteristics of the ring and the radial moment of inertia I are shown.
何れの軸受も(BZH) =0. 63未満で、剛性の増加率勾配の変化が顕著に出てい る。すなわち、断面 2次モーメント Iの増加は顕著になり、半径方向の内外輪リングの 変形量の減少は飽和状態となる。  All bearings have (BZH) = less than 0.63, and the change in the gradient of increase in rigidity is remarkable. That is, the increase in the secondary moment I of the cross section becomes significant, and the decrease in the deformation amount of the inner and outer ring in the radial direction becomes saturated.
[0131] 従って、本実施形態では、従来の極薄肉軸受で問題となる内外輪製作時の旋盤加 ェゃ研磨加工時の加工力による軸受変形を防止することができ、真円度や偏肉等の 軸受精度を向上させることができる。  [0131] Therefore, in this embodiment, it is possible to prevent bearing deformation due to the processing force during lathe machining and grinding during the production of inner and outer rings, which is a problem with conventional ultrathin bearings. The bearing accuracy can be improved.
また、軸ゃノヽウジングに組み込んだ場合 (特に、軸やハウジングとすきま嵌合で組 み込んだ場合)、内輪押えや外輪押え等で軸受を固定した時の内外輪の変形 (特に 真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転 精度不良、あるいは、発熱増大、摩耗や焼付き等の不具合を防止することができる。  Also, when the shaft is installed in the housing (especially when it is assembled with a shaft or housing by clearance fitting), deformation of the inner and outer rings when the bearing is fixed with inner ring retainers or outer ring retainers (especially roundness) Deterioration of torque) and poor rotation accuracy due to deformation, increased heat generation, wear and seizure, and the like can be prevented.
[0132] なお、単列玉軸受は、 1列では、予圧をかけたりモーメント荷重を負荷することは困 難であるが、 2列以上の多列組合せとすることで、ラジアル荷重、アキシャル荷重及 びモーメント荷重を負荷することが可能となる。 [0132] In single-row ball bearings, it is difficult to apply preload or moment load in one row, but by combining two or more rows, radial load, axial load and And moment load can be applied.
また、各玉が内外輪の軌道溝に対して常に 2点で接触するので、 4点接触玉軸受 のように、玉の大きなスピンによるトルクの増加を抑制することができ、更には、クロス ローラ軸受に比べて転がり抵抗が低くなるので低トルク化を実現することができる。  In addition, each ball always contacts the inner and outer ring raceway grooves at two points, so that it is possible to suppress an increase in torque due to a large spin of the ball as in the case of a four-point contact ball bearing. Since the rolling resistance is lower than that of the bearing, a reduction in torque can be realized.
[0133] 更に、幅寸法が従来の標準単列玉軸受の約半分となることで、玉径も従来の玉軸 受の半分程度となるが、逆に 1列あたりの玉数が増加し、軸受剛性は従来の玉軸受 に対して増加する。また、旋回ロボットのアーム継ぎ手部分等に適用する場合では、 低速の揺動回転がほとんどであるので、玉径を小さくしたことにより軸受の負荷容量 が低下しても、転がり疲れ寿命時間が実用上で問題となることはない。  [0133] Furthermore, the width is about half that of the conventional standard single row ball bearing, so the ball diameter is also about half that of the conventional ball bearing, but conversely, the number of balls per row increases, Bearing rigidity is increased compared to conventional ball bearings. Also, when applied to the arm joint of a turning robot, etc., since the rotation speed is mostly low, rolling fatigue life time is practical even if the load capacity of the bearing is reduced by reducing the ball diameter. There is no problem.
その他の産業機械、ロボットの関節部や旋回機構部、工作機械の回転テーブルや 主軸旋回機構部、医療機器、半導体 Z液晶製造装置、光学及びォプトヱレクトロニ タス装置などでも、回転数が低い用途や揺動回転用途が多いので、転がり疲れ寿命 時間が問題となることはほとんどない。  Other industrial machines, robot joints and swiveling mechanisms, rotating tables and spindle turning mechanisms for machine tools, medical equipment, semiconductor Z liquid crystal manufacturing equipment, optics and optoelectronics equipment, etc. have low rotation speeds. Since there are many applications and rocking and rotating applications, rolling fatigue life time is rarely a problem.
[0134] 図 68は、各種軸受の計算モーメント剛性の比較である。同一サイズ (計算例は、軸 受名番 7906A (接触角 30° )相当で、内外径寸法が同じ場合:内輪内径 φ 30mm 、外輪外径 φ 47mm)では、第 4の実施形態における第 1の実施態様に係る 2列組合 せの幅狭アンギユラ玉軸受 (接触角 30° :軸受の計算例)において、且つ内外輪の 軌道溝曲率半径 (Daは玉径)を変化させた本発明例 A〜Eは、何れもクロスローラ軸 受、標準 2列組合せアンギユラ玉軸受及び 4点接触玉軸受に比べてモーメント剛性 が高くなつており、例えば本発明例 Bは、クロスローラ軸受の 2. 4倍、従来の標準 2列 組合せアンギユラ玉軸受の 1. 9倍、 4点接触玉軸受の 3. 3倍のモーメント剛性を保 持させることが可會である。  [0134] Fig. 68 is a comparison of calculated moment stiffness of various bearings. For the same size (calculation example is equivalent to bearing name 7906A (contact angle 30 °) and the inner and outer diameter dimensions are the same: inner ring inner diameter φ 30 mm, outer ring outer diameter φ 47 mm), the first in the fourth embodiment Example A of the present invention in which the two-row combination narrow angular contact ball bearing (contact angle 30 °: calculation example of bearing) according to the embodiment and the raceway groove radius of curvature (Da is the ball diameter) of the inner and outer rings are changed. E has a higher moment stiffness than cross roller bearings, standard two-row combination anguillar ball bearings and 4-point contact ball bearings.For example, Example B of the present invention is 2.4 times the cross roller bearing, It is possible to maintain a moment stiffness 1.9 times that of conventional standard two-row combination anguillar ball bearings and 3.3 times that of 4-point contact ball bearings.
[0135] なお、それぞれの設計予圧すきまは、本発明例 A〜E、標準 2列組合せアンギユラ 玉軸受及び 4点接触玉軸受は 0. OlOmm,クロスローラ軸受は 0. 001mmと実 用上の標準的な値として計算している。  [0135] The design preload clearance for each of the invention examples A to E, standard two-row combined angular contact ball bearings and 4-point contact ball bearings is 0. OlOmm, and the cross roller bearing is 0.001mm. It is calculated as a typical value.
また、本実施形態における幅狭玉軸受の適正な玉径は、シール等の装着有無によ り変化するが、剛性を増力 tlさせるため、極端に玉径を小さくすると、玉と内外輪の軌 道溝との接触部間の面圧が増加し、耐圧痕性が低下する虞れがあるため、概ね、軸 受幅(B)の 30〜90%が望ましい。 In addition, the appropriate ball diameter of the narrow ball bearing in the present embodiment varies depending on whether or not a seal or the like is mounted. However, in order to increase the rigidity tl, if the ball diameter is extremely small, the ball and inner / outer ring raceways are reduced. Since the surface pressure between the contact parts with the road groove increases and the pressure dent resistance may decrease, 30 to 90% of the width (B) is desirable.
[0136] なお、接触角 Θは、大きなモーメント荷重を負荷した際に、内外輪みぞ肩部への玉 と内外輪みぞ接触部の乗り上げを抑えるため、概ね 60° 以下、望ましくは 50° 以下 、さらに望ましくは 40° 以下がよいが、 20° 未満の場合は、逆に許容アキシャル荷 重や許容モーメント荷重が低下するので好ましくな 、。  [0136] Note that the contact angle Θ is approximately 60 ° or less, preferably 50 ° or less in order to prevent the ball and the inner / outer ring groove contact portion from climbing onto the shoulder portion of the inner / outer ring groove when a large moment load is applied. 40 ° or less is more desirable, but if it is less than 20 °, the allowable axial load or allowable moment load will be reduced.
そして、本実施形態では、単列アンギユラ玉軸受 300A及び 300Bの組合せ面側に 多数の玉 303を円周方向に位置決めする玉案内保持器 310を配設し、組合せ面と は反対側に環状シール体 320を配設して 、る。  In this embodiment, a ball guide retainer 310 for positioning a large number of balls 303 in the circumferential direction is disposed on the combined surface side of the single-row angular bearings 300A and 300B, and an annular seal is provided on the opposite side to the combined surface. The body 320 is disposed.
[0137] 玉案内保持器 310は、例えば、図 69〜図 71に示すように、リング部 311と、このリン グ部 311の一端部に周方向に略等間隔で複数箇所軸方向に突設された柱部 312と 、各柱部 312間に形成されて玉 303を周方向に転動可能に保持する多数のポケット 部 313と、このポケット部 313のリング部 311とは反対側の先端部に形成された玉 30 3の抜け出しを防止する一対の玉係止部 314とを備えた柔軟性のある冠形保持器の 構成を有する。この保持器 310の材質は、例えば、ポリアミド、ポリアセタール、ポリフ ェ-レンサルファイド等の合成樹脂材とし、必要に応じて、合成樹脂材にガラス繊維 や炭素繊維等の補強材を混入した材料を用いる。  As shown in FIGS. 69 to 71, for example, the ball guide retainer 310 protrudes in the axial direction at a plurality of locations at substantially equal intervals in the circumferential direction on the ring portion 311 and one end portion of the ring portion 311. Pillar portions 312 formed between the pillar portions 312 and a plurality of pocket portions 313 formed between the pillar portions 312 so as to be able to roll the balls 303 in the circumferential direction, and tip portions of the pocket portions 313 opposite to the ring portions 311 And a pair of ball locking portions 314 for preventing the balls 303 formed from being pulled out from each other. The material of the cage 310 is, for example, a synthetic resin material such as polyamide, polyacetal, or polyphenylene sulfide, and a material in which a reinforcing material such as glass fiber or carbon fiber is mixed in the synthetic resin material is used as necessary. .
[0138] そして、玉案内保持器 310が、図 61に示すように、単列アンギユラ玉軸受 300A及 び 300Bに、リング部 311が組合せ面側となるように配置されている。  Then, as shown in FIG. 61, ball guide retainer 310 is arranged in single row anguilla ball bearings 300A and 300B so that ring portion 311 is on the combination surface side.
ここで、図 72に示すように、ポケット部 313の曲率中心 Oと玉係止部 314の先端との 軸方向距離 Lに対して、ポケット部 313曲率中心 Oと玉 303の曲率中心とを一致させ た状態における対向する 2つの保持器 310におけるリング部 311の端部間の軸方向 すきま Δ Gに、ポケット部 313のポケット面 313aと玉 303の軸方向すきま Δ Pを加えた 値 Δ G+ Δ Pが下記(7)式で表されるように小さくなるように設定されて!、る。  Here, as shown in FIG. 72, the center of curvature O of the pocket portion 313 and the center of curvature of the ball 303 coincide with the axial distance L between the center of curvature O of the pocket portion 313 and the tip of the ball locking portion 314. The value obtained by adding the axial clearance ΔP between the pocket surface 313a of the pocket portion 313 and the ball 303 to the axial clearance ΔG between the ends of the ring portion 311 in the two opposing cages 310 in the state ΔG + Δ P is set to be small as shown in the following formula (7)!
[0139] L> A G+ Δ Ρ (7)  [0139] L> A G + Δ Ρ (7)
このような寸法構成とすることで、モーメント荷重による内外輪傾き等で、図 73に示 すように、一方の単列アンギユラ玉軸受例えば 300Aで保持器 310が鎖線図示の状 態から実線図示の状態に軸方向に移動した際に、そのリング部 311が組合せた他方 の単列アンギユラ玉軸受 300Bの保持器 310のリング部 311に当接することにより、玉 303の大径部が玉係止部 314の先端を越えることがなく(すなわち、図 73中の Δが 正の値となる)、保持器 310の脱落即ち玉 303がポケット部 313から外れることを確実 に防止することができる (すなわち、図 73中の Δだけ余裕代が残る)。 With such a dimensional configuration, due to the inner and outer ring inclinations due to moment load, etc., as shown in FIG. 73, one single row angular contact ball bearing, for example, 300A, the cage 310 is shown in the solid line from the state shown in the chain line. When the ring portion 311 is moved in the axial direction, the ring portion 311 comes into contact with the ring portion 311 of the cage 310 of the other single-row anguilla ball bearing 300B. The large diameter portion of 303 does not exceed the tip of the ball locking portion 314 (that is, Δ in FIG. 73 becomes a positive value), and the cage 310 is dropped, that is, the ball 303 is released from the pocket portion 313. This can be reliably prevented (that is, a margin of Δ in FIG. 73 remains).
[0140] ここで、アンギユラ玉軸受 300A及び 300Bの保持器 310はともに略同一速度で公 転しており、両保持器 310の相対滑り速度は極めて小さぐ且つ両者は平坦な面で の接触となるので、接触部分の摩耗や破損は生じにくい。 [0140] Here, the cages 310 of the anguilla ball bearings 300A and 300B both revolve at substantially the same speed, and the relative sliding speed of the cages 310 is extremely small, and both are in contact with a flat surface. Therefore, it is difficult for the contact portion to be worn or damaged.
上記構成は、単列で軸受を使用する場合には効果を発揮することができないが、ァ ンギユラ玉軸受の場合、構造上から、単列では一方向のアキシャル荷重しか負荷で きないため、 2列以上の組合せで使用されることが殆どであり、実施した場合の適用 頻度は高い。  The above configuration cannot be effective when a single-row bearing is used. However, an angular ball bearing can only apply an axial load in one direction in the single-row structure. In most cases, it is used in a combination of more than one row, and the frequency of application when implemented is high.
[0141] 組合せ軸受 300で、上記(7)式の関係を有するように保持器 310を配置することに より、保持器 310の玉 303からの抜けを確実に防止することができると共に、保持器 3 10の玉係止部 314の形状設計の選択範囲を広げることができ、設計も容易となる。 また、この実施形態では、軸受の負荷容量や剛性を上げるために、隣合う玉 303間 の円周方向ピッチをできるだけ組合せ側端面の反対側にずらし (図 61 :X >X )、保  [0141] By disposing the cage 310 so as to have the relationship of the above formula (7) in the combined bearing 300, the cage 310 can be reliably prevented from coming off from the ball 303, and the cage 3 The range of selection of the shape design of the 10 ball locking portions 314 can be expanded, and the design becomes easy. In this embodiment, in order to increase the load capacity and rigidity of the bearing, the circumferential pitch between the adjacent balls 303 is shifted as much as possible to the opposite side of the end face on the combination side (FIG. 61: X> X).
1 2 持器 310のリング部 311が軸受組合せ端面側になるように配置しており、モーメント 剛性を上げるための作用点間距離を大きくとれるようにしている。  1 2 The ring part 311 of the cage 310 is arranged so as to be on the bearing combination end face side, so that the distance between the action points for increasing moment rigidity can be increased.
[0142] また、図 74 (b)は図 74 (a)と基本構造は同様な冠形保持器であるが、リング部 311 の少なくとも円周方向の一箇所で互いに隣り合うポケット部 313間を予め切断して、 各切断面間に所定のすき間を持たせた構造としている。  [0142] FIG. 74 (b) is a crown-shaped cage having the same basic structure as FIG. 74 (a), but the ring portion 311 has a gap between the pocket portions 313 adjacent to each other at least at one place in the circumferential direction. It has a structure in which a predetermined gap is provided between the cut surfaces by cutting in advance.
このような構造を採用することで、保持器と内外輪との熱膨張係数差及び保持器の 寸法精度や真円度のばらつきにより、転動体ピッチ円径と保持器のピッチ円径がず れた場合でも、片持ち形状であることによる半径方向の柔軟性と、各切断面間のすき 間による円周方向の弾力的変形(円周方向の柔軟性)を兼ね備えることとなるため、 玉 303とポケット部 313間の突っ張り力を緩衝して、保持器の損傷や摩耗を防止する と共に、玉 303とポケット部 313内面とのすべり接触抵抗によるトルクむらや発熱をよ り軽減することがでさる。  By adopting such a structure, the rolling element pitch circle diameter and the cage pitch circle diameter are shifted due to the difference in thermal expansion coefficient between the cage and the inner and outer rings and the variation in dimensional accuracy and roundness of the cage. Even in this case, both the radial flexibility due to the cantilever shape and the elastic deformation in the circumferential direction (circumferential flexibility) due to the gaps between the cut surfaces are combined. This prevents the cage from being damaged or worn by buffering the tension between the ball and the pocket 313, and also reduces torque unevenness and heat generation due to sliding contact resistance between the ball 303 and the pocket 313. .
[0143] また、本発明の玉軸受は、構造上、使用玉径カ 、さくなるため、保持器のリング部 3 11の半径方向の厚みは厚くできず(図 61からも理解できるように、保持器は内輪外 径と外輪内径との間の空隙部に適度なすき間を設けて位置決めさせる必要があり、 この内輪外径と外輪内径との間の空隙部は玉径と略比例関係にあるので狭い)、更 に、幅狭構造により、軸方向の間隙部も狭ぐ軸方向厚みも薄くせざるを得ない。この ため、標準サイズの軸受より保持器のリング部が極めて小さぐ真円度等の寸法精度 を出しに《なるので、リング部 311を図 74 (b)のようにした保持器構造は、特に上述 した保持器の損傷や摩耗防止効果及びトルクむらや発熱の軽減効果が得られる。 [0143] In addition, the ball bearing of the present invention is structurally small in the diameter of the ball used. The radial thickness of 11 cannot be increased (as can be understood from FIG. 61, the cage needs to be positioned with an appropriate gap in the gap between the outer diameter of the inner ring and the inner diameter of the outer ring. The gap between the outer diameter and the inner diameter of the outer ring is narrow because it is approximately proportional to the ball diameter. In addition, due to the narrow structure, the axial gap and the axial thickness must be reduced. . As a result, the cage ring part is extremely smaller than the standard size bearing, so that dimensional accuracy such as roundness can be obtained, so the cage structure with the ring part 311 as shown in Fig. 74 (b) is particularly The above-described cage damage and wear prevention effects, and torque unevenness and heat generation reduction effects can be obtained.
[0144] 次に、図 75に示すように、環状シール体 320は、この環状シール体 320が挿入さ れる側に対応する内輪 302、又は外輪 301に対して、接触又は非接触の構成とされ ている。この環状シール体 320は、両単列アンギユラ玉軸受 300A及び 300Bの保持 器 310のリング部 311と玉 303を介して反対側の内外輪軸方向端面部に配設されて いる。 Next, as shown in FIG. 75, the annular seal body 320 is configured to be in contact or non-contact with the inner ring 302 or the outer ring 301 corresponding to the side where the annular seal body 320 is inserted. ing. The annular seal body 320 is disposed on the opposite end surfaces of the inner and outer ring axial directions through the ring portion 311 and the ball 303 of the cage 310 of both single-row angular bearings 300A and 300B.
この環状シール体 320は、外輪 301及び内輪 302の軸方向端面部に形成されたシ ール収容溝 321及び 322に収容されている。  The annular seal body 320 is accommodated in seal housing grooves 321 and 322 formed in the axial end surfaces of the outer ring 301 and the inner ring 302.
[0145] 環状シール体 320は外輪 301のシール収容溝 321に形成された嵌合溝 321aに押 し込んで挿入する非接触型(内輪 302と非接触)で、逆 L状の金属芯金 325で補強し た補強タイプのゴムシール (例えば-トリルゴム ·アクリルゴムやフッ素ゴム) 326で構 成されている。 [0145] The annular seal body 320 is a non-contact type (non-contact with the inner ring 302) inserted into the fitting groove 321a formed in the seal housing groove 321 of the outer ring 301, and an inverted L-shaped metal core 325 Reinforced rubber seal (for example, -tolyl rubber, acrylic rubber or fluoro rubber) 326 reinforced with
ここで、単列アンギユラ玉軸受 300Aのゴムシール 326は、嵌合溝 321aに嵌合され る嵌合部 326aと、この嵌合部 326aから軸方向外側に湾曲しながら内輪 302側に延 長する環状板部 326bとを有する。また、単列アンギユラ玉軸受 300Bのゴムシール 3 26は単列アンギユラ玉軸受 300Aのゴムシール 326と組合せ面を挟んで面対称形状 とされている。  Here, the rubber seal 326 of the single row angular contact ball bearing 300A includes a fitting portion 326a fitted into the fitting groove 321a, and an annular shape extending from the fitting portion 326a toward the inner ring 302 while being curved outward in the axial direction. And a plate portion 326b. Further, the rubber seal 326 of the single row anguilla ball bearing 300B has a plane symmetrical shape with the rubber seal 326 of the single row anguilla ball bearing 300A sandwiching the combination surface.
[0146] このように、環状シール体 320のゴムシール 326を形成することにより、環状シール 体 320と玉 303との間の内部空間容積が保持でき、図 75に示すように玉 303の近傍 に相当量のグリースを封入することが可能である。また、玉 303とシール表面の距離 も近いのでシールに付着したグリースも回転によって循環され、転がり接触部の潤滑 に寄与できる。 また、単列アンギユラ玉軸受 300A及び 300Bの組合せ面側では、保持器 310のリ ング部 311によって、外輪 301の内径面とリング部 311の外径面間及び内輪 302の 外径面とリング部 311の内径面間の開口部が狭くなつており、ラビリンス機構を兼ね ている。このため、グリースの組合せ面への洩れを防止することができ、軸受を機械 に組込むまでの軸受の取扱が容易であると共に、上記実施形態の構成では、軸受 組込後はシール装着側が外端面、保持器 310のリング部 311側が 2個の軸受の対向 面となるのでグリースの洩れゃ軸受内部への異物 ·塵埃の侵入を確実に防ぐことがで きる。 [0146] By forming the rubber seal 326 of the annular seal body 320 in this way, the internal space volume between the annular seal body 320 and the ball 303 can be maintained, which corresponds to the vicinity of the ball 303 as shown in FIG. It is possible to enclose an amount of grease. In addition, since the distance between the ball 303 and the seal surface is close, the grease adhering to the seal is also circulated by rotation, which can contribute to lubrication of the rolling contact portion. Further, on the combined surface side of the single-row angular bearings 300A and 300B, the ring portion 311 of the cage 310 causes the outer diameter surface of the outer ring 301 and the outer diameter surface of the ring portion 311 and the outer diameter surface and the ring portion of the inner ring 302 by the ring portion 311. The opening between the inner diameter surfaces of 311 is narrow and doubles as a labyrinth mechanism. For this reason, the grease can be prevented from leaking to the combined surface, and the bearing can be easily handled until the bearing is assembled in the machine. In the configuration of the above embodiment, the seal mounting side is the outer end surface after the bearing is assembled. Since the ring 311 side of the cage 310 is an opposing surface of the two bearings, foreign matter and dust can be reliably prevented from entering the bearing if grease leaks.
[0147] なお、上記実施形態では、 2つの単列アンギユラ玉軸受 300A及び 300Bを接触角 がハの字形となる背面組合せする場合について説明した力 S、これに限定されるもの ではなぐ図 76に示すように、接触角が逆ハの字形となる正面組合せするようにして ちょい。  [0147] In the above embodiment, the force S described in the case where the two single-row anguilla ball bearings 300A and 300B are combined on the back surface with a contact angle of a square shape is shown in Fig. 76, which is not limited to this. As shown, make sure that the contact angle is in the shape of an inverted letter C.
また、上記実施形態では、環状シール体 320が内輪シール収容溝 322と接触しな い非接触型である場合について説明した力 これに限定されるものではなぐ図 77に 示す内輪シール収容溝 322に接触するリップ部 327を有する接触型の環状シール 体や外輪シール溝に加締める金属シールを適用することができる。また、上記の実 施例とは逆に内輪 302側に環状シール体 320を嵌合させ、外輪に対して接触又は 非接触の構造としてもよい。  Further, in the above embodiment, the force described for the case where the annular seal body 320 is a non-contact type that does not contact the inner ring seal housing groove 322 is not limited to this. The inner ring seal housing groove 322 shown in FIG. A contact-type annular seal body having a lip portion 327 to be contacted or a metal seal that is caulked in an outer ring seal groove can be applied. In contrast to the above-described embodiment, an annular seal body 320 may be fitted on the inner ring 302 side so as to be in contact or non-contact with the outer ring.
[0148] なお、上記実施形態では、玉 303のピッチ円直径は次式 (8)のとおりとしている力 軸受 1列あたりの玉数を増やして更にモーメント剛性を増加させたい場合は、次式(9 )を採用して、玉 303のピッチ円直径を外輪側にずらした構造としてもよいし、必要に 応じて次式(10)を採用して逆に玉 303のピッチ円直径を内輪 302側にずらしてもよ い(図示せず)。 [0148] In the above embodiment, the pitch circle diameter of the balls 303 is as shown in the following formula (8). When the number of balls per row of force bearings is increased to further increase the moment rigidity, the following formula ( 9) may be adopted to shift the pitch circle diameter of the ball 303 to the outer ring side, or the following equation (10) may be adopted if necessary to reverse the pitch circle diameter of the ball 303 to the inner ring 302 side. It may be shifted to (not shown).
玉のピッチ円直径 = (内輪内径 +外輪外径) Z2 - -- (8)  Ball pitch circle diameter = (inner ring inner diameter + outer ring outer diameter) Z2--(8)
玉のピッチ円直径 > (内輪内径 +外輪外径) Z2 - -- (9)  Ball pitch circle diameter> (inner ring inner diameter + outer ring outer diameter) Z2--(9)
玉のピッチ円直径 < (内輪内径 +外輪外径) Z2 〜(10)  Ball pitch circle diameter <(inner ring inner diameter + outer ring outer diameter) Z2 ~ (10)
また、必要に応じて、組み合わされる左右の玉軸受の玉ピッチ円直径を同一値とせ ずともよ 、し、組み合わされる左右の玉軸受の玉 303の径を同一値としなくてもよ 、。 加えて、組み合わせる 2個の玉軸受の断面寸法比(BZH)は同一でなぐ例えば玉 径の小さい方を (BZH) =0. 28、玉径の大きい方を (BZH) =0. 62としても構わな い。更に、玉 303の軸方向ピッチも軸方向中心でなくともよぐシールや保持器の装 着有無やモーメントの作用点間距離の確保等のために玉 103の軸方向ピッチを軸方 向にずらしてもよい。 If necessary, the ball pitch circle diameters of the left and right ball bearings to be combined need not be the same value, and the diameters of the balls 303 of the left and right ball bearings to be combined need not be the same value. In addition, the cross-sectional dimension ratio (BZH) of the two ball bearings to be combined is not the same. For example, the smaller ball diameter is (BZH) = 0.28 and the larger ball diameter is (BZH) = 0.62. I do not care. In addition, the axial pitch of the balls 103 is shifted in the axial direction in order to ensure that the axial pitch of the balls 303 is not centered in the axial direction and to secure the distance between the action points of the seals and cages and the moment. Also good.
[0149] また、前記の実施例では、モーメント剛性を大きくするため予圧すきまの組合せアン ギユラ玉軸受としているが、剛性や精度がさほど要求されない場合 (逆にさらなる低ト ルクゃ低昇温が要求される場合など)、必要に応じてすきまの組合せアンギユラ玉軸 受としてもよい。  [0149] In addition, in the above-described embodiment, a preloaded clearance combined angular ball bearing is used in order to increase the moment rigidity. However, when rigidity and accuracy are not so required (reversely, a lower torque requires a lower temperature rise). If necessary, a combination of clearance anguilla ball bearings may be used.
次に、図 78を参照して、本発明の第 4の実施形態における第 5の実施態様の一例 である複列アンギユラ玉軸受を説明する。  Next, with reference to FIG. 78, a double row anguilla ball bearing which is an example of the fifth embodiment of the fourth embodiment of the present invention will be described.
[0150] この複列アンギユラ玉軸受 400は、外輪 401の複列軌道溝 401aと互いに別体に形 成された 2個の内輪 402A及び 402Bの軌道溝 402aとの間に多数の玉 403が保持 器 410によって転動自在に保持され、軸方向断面幅 B2と半径方向断面高さ H2 ( = (外輪外径 D2—内輪内径 d2) /2)との断面寸法比(B2ZH2)が(B2ZH2) < 1. 2 とされている。 [0150] In this double row anguilla ball bearing 400, a number of balls 403 are held between the double row raceway groove 401a of the outer ring 401 and the raceway grooves 402a of the two inner rings 402A and 402B formed separately from each other. The section dimension ratio (B2ZH2) between the axial section width B2 and the radial section height H2 (= (outer ring outer diameter D2—inner ring inner diameter d2) / 2) is (B2ZH2) < 1.2.
ここで、保持器 410は前述した第 1の実施態様と同様の構成を有する冠形保持器と され、第 1の実施態様との対応部分には同一符号を付し、その詳細説明はこれを省 略するが、前述した第 1の実施態様における図 72に示すように、ポケット部 313の曲 率中心 Oと玉係止部 314の先端との軸方向距離 Lに対して、ポケット部 313曲率中心 Oと玉 403の曲率中心とを一致させた状態における対向する 2つの保持器 310にお けるリング部 311の端部間の軸方向すきま A Gに、ポケット部 313のポケット面 313a と玉 403の軸方向すきま Δ Pをカ卩えた値 Δ G+ Δ Pが小さくなるように設定されて!、る (L > A G+ Δ Ρ) 0 Here, the cage 410 is a crown-shaped cage having the same configuration as that of the first embodiment described above, and the same reference numerals are given to the corresponding parts to the first embodiment, and the detailed description thereof will be given here. Although omitted, as shown in FIG. 72 in the first embodiment described above, the pocket portion 313 curvature with respect to the axial distance L between the curvature center O of the pocket portion 313 and the tip of the ball locking portion 314. The axial clearance between the ends of the ring portions 311 of the two opposing cages 310 in a state where the center O and the center of curvature of the balls 403 coincide with each other in the axial clearance AG between the pocket surfaces 313a of the pocket portions 313 and the balls 403. The value obtained by adjusting the axial clearance Δ P Δ G + Δ P is set to be small !, (L> A G + Δ Ρ) 0
[0151] そして、外輪 401と内輪 402Α及び 402Βとの軸方向左右側端面に、夫々第 1の実 施態様と同様のシール収容溝 421と 422とが左右対称に形成され、これらのシール 収容溝 421及び 422に環状シール体 420が左右対称に収容されている。  [0151] Then, seal receiving grooves 421 and 422 similar to those in the first embodiment are formed symmetrically on the left and right end surfaces in the axial direction of the outer ring 401 and the inner rings 402 and 402, respectively. Annular seal body 420 is accommodated in 421 and 422 symmetrically.
この環状シール体 420は、保持器 410のリング部 311とは玉 403を介して反対側の 内外輪軸方向端面部に配設されている。 This annular seal body 420 is opposite to the ring portion 311 of the cage 410 via a ball 403. It is arrange | positioned at the inner- and outer-ring axial direction end surface part.
環状シール体 420は外輪 401のシール収容溝 421に形成された嵌合溝 421 aに押 し込んで挿入する非接触型(内輪 402A, 402Bと非接触)で、逆 L状の金属芯金 42 5で補強した補強タイプのゴムシール (例えば-トリルゴム ·アクリルゴムやフッ素ゴム) 426で構成されている。  The annular seal body 420 is a non-contact type (non-contact with the inner rings 402A and 402B) that is inserted into the fitting groove 421a formed in the seal receiving groove 421 of the outer ring 401, and an inverted L-shaped metal core 42 Reinforced type rubber seal reinforced in 5 (for example -tolyl rubber, acrylic rubber or fluororubber) 426.
[0152] ゴムシール 426は、嵌合溝 421aに嵌合される嵌合部 426aと、この嵌合部 426aか ら軸方向外側に湾曲しながら内輪 402A, 402B側に延長する環状板部 426bとを有 する。 [0152] The rubber seal 426 includes a fitting portion 426a fitted into the fitting groove 421a and an annular plate portion 426b extending from the fitting portion 426a toward the inner rings 402A and 402B while being curved outward in the axial direction. Yes.
ここで、この第 5の実施態様では、複列アンギユラ玉軸受 400を 7208A (接触角 30 ° )の 2列組合せアンギユラ玉軸受と置き換えた場合を例に採る。  Here, in the fifth embodiment, a case where the double-row angular ball bearing 400 is replaced with a double-row combined angular ball bearing 7208A (contact angle 30 °) is taken as an example.
7208Aは、内輪内径 φ 40mm,外輪外径 φ 80mm,軸方向断面幅(軸受単体幅) Bが 18mmであるので、断面寸法比(B/H) =0. 9である。したがって、本実施態様 の複列アンギユラ玉軸受 400では、断面寸法比(B2ZH2) =0. 90 (内輪軸方向断 面幅(軸受単体幅) B2を 18mmとした)としている。  7208A has an inner ring inner diameter of 40 mm, an outer ring outer diameter of φ80 mm, and an axial sectional width (bearing unit width) B of 18 mm, so the sectional dimension ratio (B / H) is 0.9. Therefore, in the double-row anguillar ball bearing 400 of this embodiment, the cross-sectional dimension ratio (B2ZH2) is set to 0.90 (the inner ring axial cross-sectional width (bearing unit width) B2 is set to 18 mm).
[0153] これにより、上記第 4の実施形態における第 1の実施態様と同様の効果が得られ、 ラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受けることができるのは勿 論のこと、軸方向寸法で 1Z2の省スペース化、低トルク化及び更なる高剛性化を図 ることがでさる。 As a result, the same effect as in the first embodiment in the fourth embodiment can be obtained, and it is needless to say that the radial load, the axial load in both directions, and the moment load can be received. It is possible to save 1Z2 in terms of dimensions, lower torque, and further increase rigidity.
勿論、必要に応じて、断面寸法比(B2ZH2)を 0. 90未満或いは 0. 90を超える( 但し、 B2/H2X 1. 2)ように設定してもよい。  Of course, if necessary, the cross-sectional dimension ratio (B2ZH2) may be set to be less than 0.90 or more than 0.90 (B2 / H2X 1.2).
[0154] そして、前述した第 4の実施形態における第 1の実施態様と同様に、前記ポケット部 313の曲率中心と前記玉係止部 314の先端との軸方向距離 Lに対して、ポケット部 3 13の曲率中心と玉 403の曲率中心とを一致させた状態における対向する 2つの保持 器 410におけるリング部 311の端部間の軸方向すきまに、ポケット部 313のポケット面 と玉 403との軸方向すきまをカ卩えた値が小さくなるように設定したので、モーメント荷 重による内外輪傾き等の影響で、玉及び保持器が相対的に脱落することを確実に防 止することができる。 Then, similarly to the first embodiment in the fourth embodiment described above, the pocket portion with respect to the axial distance L between the center of curvature of the pocket portion 313 and the tip of the ball engaging portion 314. 3 In the axial clearance between the ends of the ring 311 in the two opposing cages 410 with the center of curvature of 13 and the center of curvature of the ball 403 aligned, the pocket surface of the pocket 313 and the ball 403 Since the axial clearance is set to be small, the ball and cage can be reliably prevented from falling off due to the inner and outer ring tilts caused by the moment load.
[0155] なお、この第 4の実施形態における第 5の実施態様でも、モーメント剛性を上げるた め、複列アンギユラ玉軸受で玉ピッチ円直径を外輪外径側にずらしたり、複列アンギ ユラ玉軸受で各列の玉径ゃ玉ピッチ円直径を変えたりしてもよい。 [0155] In the fifth embodiment of the fourth embodiment, the moment rigidity is increased. For this reason, the ball pitch circle diameter may be shifted to the outer ring outer diameter side with a double row angular ball bearing, or the ball diameter or ball pitch circle diameter of each row may be changed with a double row angular ball bearing.
何れの場合も、環状シール体 420の構造や装着の有無、保持器等の構造等に関 する適用例は、上記第 1の実施態様で記載した単列玉軸受に準ずる。また、上記第 4の実施形態における第 1の実施態様と同様に、予圧及びすきまの何れの条件で使 用してちょい。  In any case, the application examples related to the structure of the annular seal body 420, whether or not it is mounted, the structure of the cage, and the like are based on the single row ball bearing described in the first embodiment. In addition, as in the first embodiment of the fourth embodiment, it should be used under either preload or clearance conditions.
産業上の利用の可能性 Industrial applicability
単列玉軸受の場合に、軸方向断面幅 Bと半径方向断面高さ Hとの断面比(BZH) を (BZH) <0. 63とし、複列玉軸受の場合に、軸方向断面幅 B2と半径方向断面高 さ H2との断面比(B2/ H2)が(B2ZH2) < 1. 2とすることで、ラジアル荷重と両方 向のアキシャル荷重、モーメント荷重を受けられるのは勿論のこと、高精度化(高回転 精度化)、高剛性化、低トルク化及び低発熱化を図ることができると共に、更なる省ス ペース化を図ることができる工作機械の主軸旋回部に用いられる主軸旋回部用玉軸 受を得ることができる。  In the case of a single row ball bearing, the sectional ratio (BZH) of the axial section width B to the radial section height H is (BZH) <0.63, and in the case of a double row ball bearing, the axial section width B2 And the radial cross-sectional height H2 (B2 / H2) is (B2ZH2) <1.2, it is possible to receive radial loads, axial loads in both directions, and moment loads. The spindle turning part used for the spindle turning part of machine tools that can achieve higher accuracy (higher rotation accuracy), higher rigidity, lower torque and lower heat generation, and further space saving. A ball bearing can be obtained.

Claims

請求の範囲 The scope of the claims
[1] 工作機械の主軸旋回部に用いられ、外輪の軌道溝と内輪の軌道溝との間に多数 の玉が転動自在に配設された単列の玉軸受であって、  [1] A single row ball bearing that is used for a main spindle turning portion of a machine tool, and in which a large number of balls are rotatably arranged between a raceway groove of an outer ring and a raceway groove of an inner ring,
軸方向断面幅 Bと半径方向断面高さ Hとの断面寸法比(BZH)が(BZH)く 0. 6 3であることを特徴とする工作機械の主軸旋回部用玉軸受。  A ball bearing for a turning part of a spindle of a machine tool, characterized in that a cross-sectional dimension ratio (BZH) between an axial sectional width B and a radial sectional height H is (BZH) <0.63.
[2] 前記外輪及び内輪間の少なくとも片側端面にシール収容溝部を夫々形成し、該シ ール収容溝部内に環状シール体を配設すると共に、前記多数の玉を円周方向に位 置決めする保持器を配設し、該保持器は前記多数の玉を保持するポケットの軸方向 両側に円環状部が形成され、該円環状部は内輪外周面及び外輪内周面の何れか 一方を案内面とし、当該案内面と前記シール収容溝部との交点エッジ部と対向する 位置に、当該交点エッジ部との接触を回避する凹状溝部を円周方向に形成したこと を特徴とする請求項 1に記載の工作機械の主軸旋回部用玉軸受。 [2] At least one side end surface between the outer ring and the inner ring is formed with a seal receiving groove portion, an annular seal body is disposed in the seal receiving groove portion, and the plurality of balls are positioned in the circumferential direction. An annular portion is formed on both sides in the axial direction of the pocket for holding the plurality of balls, and the annular portion has one of the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring. The concave groove portion that avoids contact with the intersection edge portion is formed in the circumferential direction at a position facing the intersection edge portion between the guide surface and the seal receiving groove portion as a guide surface. Ball bearings for spindle turning parts of machine tools as described in 1.
[3] 請求項 1又は 2に記載の主軸旋回部用玉軸受を、主軸を旋回させる主軸旋回部に 備えたことを特徴とする工作機械の主軸旋回装置。  [3] A spindle turning device for a machine tool, comprising the spindle turning ball bearing according to claim 1 or 2 in a spindle turning portion for turning the spindle.
[4] 工作機械の主軸旋回部に用いられ、外輪の軌道溝と内輪の軌道溝との間に多数 の玉が転動自在に配設された複列の玉軸受であって、  [4] A double row ball bearing that is used for a main spindle turning portion of a machine tool, and in which a large number of balls are rotatably arranged between a raceway groove of an outer ring and a raceway groove of an inner ring,
軸方向断面幅 B2と半径方向断面高さ H2との断面寸法比(B2ZH2)が(B2ZH2 ) < 1. 2であることを特徴とする工作機械の主軸旋回部用玉軸受。  A ball bearing for a spindle turning part of a machine tool, characterized in that a cross-sectional dimension ratio (B2ZH2) between the axial sectional width B2 and the radial sectional height H2 is (B2ZH2) <1.2.
[5] 請求項 4に記載の主軸旋回部用玉軸受を、主軸を旋回させる主軸旋回部に備えた ことを特徴とする工作機械の主軸旋回装置。  [5] A spindle turning device for a machine tool, characterized in that the spindle turning ball bearing according to claim 4 is provided in a spindle turning portion for turning the spindle.
PCT/JP2007/050343 2006-01-13 2007-01-12 Ball bearing for spindle pivot section of machine tool, and spindle pivot device of machine tool, using the same WO2007080980A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800008266A CN101341347B (en) 2006-01-13 2007-01-12 Ball bearing for spindle pivot part of machine tool and spindle pivot device of machine tool using the same
KR1020077030965A KR101057311B1 (en) 2006-01-13 2007-01-12 Ball bearing for spindle turning of machine tool and spindle spindle of machine tool using same
US11/996,510 US20090131235A1 (en) 2006-01-13 2007-01-12 Ball Bearing for Spindle Turning Device of Machine Tool and Spindle Turning Device of Machine Tool Using the Same
EP07706685.0A EP1972801B1 (en) 2006-01-13 2007-01-12 Ball bearing for spindle pivot section of machine tool, and spindle pivot device of machine tool, using the same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2006006378 2006-01-13
JP2006-006378 2006-01-13
JP2006122344 2006-04-26
JP2006-122344 2006-04-26
JP2006-213485 2006-08-04
JP2006213485 2006-08-04
JP2006247490 2006-09-13
JP2006-247490 2006-09-13
JP2006337342A JP5092383B2 (en) 2006-01-13 2006-12-14 Ball bearing for machine tool main spindle
JP2006-337342 2006-12-14
JP2006338552 2006-12-15
JP2006-338552 2006-12-15

Publications (1)

Publication Number Publication Date
WO2007080980A1 true WO2007080980A1 (en) 2007-07-19

Family

ID=38256384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050343 WO2007080980A1 (en) 2006-01-13 2007-01-12 Ball bearing for spindle pivot section of machine tool, and spindle pivot device of machine tool, using the same

Country Status (5)

Country Link
US (1) US20090131235A1 (en)
EP (1) EP1972801B1 (en)
KR (1) KR101057311B1 (en)
CN (1) CN101341347B (en)
WO (1) WO2007080980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208730A (en) * 2010-03-30 2011-10-20 Nsk Ltd Duplex ball bearing and double-row ball bearing

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343592A (en) * 2010-08-05 2012-02-08 鸿富锦精密工业(深圳)有限公司 Robot arm part
WO2012114790A1 (en) * 2011-02-25 2012-08-30 日本精工株式会社 Multi-row combination ball bearing
JP6180723B2 (en) * 2012-11-05 2017-08-16 Ntn株式会社 Double row rolling bearing
CN102996625A (en) * 2012-11-08 2013-03-27 哈尔滨轴承集团公司 Thin-wall angular contact full ball bearing and processing method thereof
CN103075417A (en) * 2013-01-18 2013-05-01 山东博特轴承有限公司 Double-row ball bearing for liquid crystal lens lapping machine
CN106329876A (en) * 2015-07-06 2017-01-11 上海鸣志电器股份有限公司 High axial bearing stepping linear motor
DE102015014087B4 (en) * 2015-11-03 2017-11-09 Sew-Eurodrive Gmbh & Co Kg transmission
TWI610753B (en) * 2016-07-28 2018-01-11 Main Science Machinery Company Ltd Five-axis machining head unit
CN107737952A (en) * 2017-09-29 2018-02-27 重庆市普创长顺机械有限公司 Main spindle box of numerical control system with indexing mechanism
CN107570733A (en) * 2017-09-29 2018-01-12 重庆市普创长顺机械有限公司 Main spindle box of numerical control system with embedded arrestment mechanism

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632744U (en) * 1992-09-29 1994-04-28 エヌティエヌ株式会社 Rolling bearing
JPH09177792A (en) * 1995-12-21 1997-07-11 Ntn Corp Cage for ball bearing and ball bearing
JP2001193744A (en) * 2000-01-05 2001-07-17 Nsk Ltd Rotation supporting device for spindle in machine tool
JP2002039171A (en) * 2000-07-26 2002-02-06 Nsk Ltd Bearing device
JP2004092687A (en) * 2002-08-29 2004-03-25 Nsk Ltd Double row angular ball bearing
JP2004190763A (en) * 2002-12-10 2004-07-08 Nsk Ltd Rotary supporting device for pulley
JP2005239258A (en) * 2004-02-27 2005-09-08 Nsk Ltd Cap attaching jig and ball bearing used for the jig

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2226498Y (en) * 1995-08-08 1996-05-08 北京轧机轴承公司 Internal retaining dust-proof cover type rolling guide bearing
US6715923B2 (en) * 2000-01-06 2004-04-06 Nsk Ltd. Double row bearing device
CN100343539C (en) * 2002-06-25 2007-10-17 日本精工株式会社 Double-row ball bearing for supporting pulley
JP2005163902A (en) * 2003-12-02 2005-06-23 Ntn Corp Seal structure of rolling bearing and spindle of machine tool
CN2744449Y (en) * 2004-10-30 2005-12-07 强鸿枭 Angular contact ball bearing symmetry type machine tool main axle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632744U (en) * 1992-09-29 1994-04-28 エヌティエヌ株式会社 Rolling bearing
JPH09177792A (en) * 1995-12-21 1997-07-11 Ntn Corp Cage for ball bearing and ball bearing
JP2001193744A (en) * 2000-01-05 2001-07-17 Nsk Ltd Rotation supporting device for spindle in machine tool
JP2002039171A (en) * 2000-07-26 2002-02-06 Nsk Ltd Bearing device
JP2004092687A (en) * 2002-08-29 2004-03-25 Nsk Ltd Double row angular ball bearing
JP2004190763A (en) * 2002-12-10 2004-07-08 Nsk Ltd Rotary supporting device for pulley
JP2005239258A (en) * 2004-02-27 2005-09-08 Nsk Ltd Cap attaching jig and ball bearing used for the jig

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1972801A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208730A (en) * 2010-03-30 2011-10-20 Nsk Ltd Duplex ball bearing and double-row ball bearing

Also Published As

Publication number Publication date
US20090131235A1 (en) 2009-05-21
CN101341347A (en) 2009-01-07
KR101057311B1 (en) 2011-08-17
EP1972801A4 (en) 2012-09-05
EP1972801B1 (en) 2016-03-16
EP1972801A1 (en) 2008-09-24
KR20080084893A (en) 2008-09-22
CN101341347B (en) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2007080980A1 (en) Ball bearing for spindle pivot section of machine tool, and spindle pivot device of machine tool, using the same
JP6728585B2 (en) Angular contact ball bearing
JP3207410U (en) Rolling bearing
JP5092383B2 (en) Ball bearing for machine tool main spindle
JP2006329420A (en) Bearing device for robot arm joint part, and ball bearing
JP2006105384A (en) Double row ball bearing
JP4743176B2 (en) Combination ball bearings and double row ball bearings
JP4715961B2 (en) Rotary table device for machine tools
WO2015129064A1 (en) Angular ball bearing
JP2011153683A (en) Angular ball bearing
JP5233199B2 (en) Angular contact ball bearings
JP2003042160A (en) Angular contact ball bearing and main bearing
JP2006153094A (en) Ball bearing and rotary table device for machine tool using ball bearing
JP2003166551A (en) Angular contact ball bearing
JP5397508B2 (en) Ball bearing for machine tool main spindle
JP5034962B2 (en) Rolling bearing
JP5644474B2 (en) Cylindrical roller bearings and spindles for machine tools
JP2011247358A (en) Duplex ball bearing and double-row ball bearing
JP3965252B2 (en) Bearing device and spindle device
JP2005061434A (en) Multi-point contacting ball bearing
JP3200125U (en) Angular contact ball bearings
JP2006097872A (en) Bearing unit
JP2011226614A (en) Rolling bearing
JPH1026141A (en) Holder of roller bearing
JP2011112195A (en) Ball bearing

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000826.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077030965

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11996510

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007706685

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE