JP2006097872A - Bearing unit - Google Patents

Bearing unit Download PDF

Info

Publication number
JP2006097872A
JP2006097872A JP2004287777A JP2004287777A JP2006097872A JP 2006097872 A JP2006097872 A JP 2006097872A JP 2004287777 A JP2004287777 A JP 2004287777A JP 2004287777 A JP2004287777 A JP 2004287777A JP 2006097872 A JP2006097872 A JP 2006097872A
Authority
JP
Japan
Prior art keywords
bearing
ball
outer ring
axial
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004287777A
Other languages
Japanese (ja)
Inventor
Yoshiaki Katsuno
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004287777A priority Critical patent/JP2006097872A/en
Publication of JP2006097872A publication Critical patent/JP2006097872A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/042Housings for rolling element bearings for rotary movement
    • F16C35/045Housings for rolling element bearings for rotary movement with a radial flange to mount the housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing unit capable of not only receiving radial load, axial load in both directions and moment load, but also miniaturizing an axial space, reducing torque, improving rigidity, and being easily handled. <P>SOLUTION: In this bearing unit comprising a rolling bearing 100, a housing 18 for supporting an end part of a shaft 17 through the rolling bearing 100, and an outer ring pressor 15 for pressing and fixing the rolling bearing to the housing 18, the rolling bearing 100 is a single row ball bearing having a cross-sectional dimension ratio (B/H) of axial cross-sectional width B and radial cross-sectional height H satisfying (B/H)<0.63. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば産業機械、ロボット、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置等に用いられる軸受ユニットに関する。   The present invention relates to a bearing unit used in, for example, industrial machines, robots, medical equipment, semiconductor / liquid crystal manufacturing apparatuses, optical and optoelectronic apparatuses, and the like.

一つの転がり軸受でラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられるものとしては、クロスローラ軸受(例えば特許文献1及び特許文献2参照)、4点接触玉軸受(例えば特許文献3及び特許文献4参照)が知られている。
クロスローラ軸受は、図30に示すように、内輪1と外輪2の間に円筒形の多数のころ3が転動自在に配設されており、4点接触玉軸受は、図31に示すように、内輪4と外輪5との間に多数の玉6が転動自在に配設されている。また、転がり軸受を組み合わせることで、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けるものとしては、2列組合せ深みぞ玉軸受や、図32に示すように、内輪7と外輪8との間に複数の玉9が転動可能に配設されたアンギュラ玉軸受を組み合わせた2列組合せアンギュラ玉軸受等がある(例えば特許文献5及び特許文献6参照)。
A single roller bearing that can receive a radial load, an axial load in both directions, and a moment load includes a cross roller bearing (see, for example, Patent Document 1 and Patent Document 2), and a four-point contact ball bearing (for example, Patent Document 3 and Patent Document). 4) is known.
In the cross roller bearing, as shown in FIG. 30, a large number of cylindrical rollers 3 are rotatably arranged between the inner ring 1 and the outer ring 2, and the four-point contact ball bearing is as shown in FIG. In addition, a large number of balls 6 are arranged between the inner ring 4 and the outer ring 5 so as to freely roll. In addition, the combination of rolling bearings that can receive radial load, axial load in both directions, and moment load includes two-row combination deep groove ball bearings, or between inner ring 7 and outer ring 8 as shown in FIG. There are two-row combination angular contact ball bearings in which angular contact ball bearings in which a plurality of balls 9 are arranged so as to be able to roll (see, for example, Patent Document 5 and Patent Document 6).

しかしながら、クロスローラ軸受の場合は、転動体が円筒形のころ3で、且つ軌道溝1a,2aに対してころ3の転がり接触面が線接触しているので、トルクが大きく、しかも、軸やハウジングに組み込んだ時のわずかな変形により、前記線接触部分の接触状態が不均一となり、トルクむらが発生しやすい。
4点接触玉軸受では、転動体が玉6なので、純アキシアル荷重を受ける場合又はラジアル荷重よりアキシアル荷重が優勢な場合、同寸法のクロスローラ軸受よりトルクが小さい一方で、アキシアル荷重に対してラジアル荷重が優勢な場合、又は純ラジアル荷重を受ける場合、各玉6は軌道溝4a,5aと4点で接触するため、玉6と軌道溝4a,5aとのスピン滑りが大きく、トルクが大きい。
However, in the case of a cross roller bearing, since the rolling element is a cylindrical roller 3 and the rolling contact surface of the roller 3 is in line contact with the raceway grooves 1a and 2a, the torque is large, and the shaft and Due to slight deformation when assembled in the housing, the contact state of the line contact portion becomes non-uniform and torque unevenness is likely to occur.
In a four-point contact ball bearing, since the rolling element is a ball 6, when receiving a pure axial load or when an axial load is dominant over a radial load, the torque is smaller than that of a cross roller bearing of the same size, but the radial load is smaller than the axial load. When the load is dominant, or when receiving a pure radial load, each ball 6 contacts the raceway grooves 4a and 5a at four points, so that the spin slip between the ball 6 and the raceway grooves 4a and 5a is large and the torque is large.

また、アーム形ロボットの旋回関節部等にクロスローラ軸受や4点接触玉軸受を使用する場合、アーム先端での部品保持時のオーバーハング荷重等によるアーム先端部のたわみを極力小さくするために、軸受内部にあらかじめ、予圧をかけてモーメント剛性を増加させる対策もとられるが、これらの軸受で予圧をかけると、トルクが極端に増加し、駆動モータの高馬力化やトルクむらを含む回転不良等の問題が発生しやすくなる。   In addition, when using a cross roller bearing or a four-point contact ball bearing for the swivel joint of an arm-type robot, etc., in order to minimize the deflection of the arm tip due to an overhang load etc. when holding parts at the arm tip, Measures to increase the moment rigidity by applying preload to the bearings in advance are taken, but if preload is applied with these bearings, the torque will increase extremely, and the drive motor will have high horsepower and rotation failure including torque unevenness etc. The problem is likely to occur.

2列組合せ玉軸受の場合は、それぞれの単列軸受において、玉と内外輪の軌道溝間は2点接触であるので低トルク化は図れるものの、単列軸受の2倍の軸方向幅スペースが必要となり、コンパクト化の点で、クロスローラ軸受や4点接触玉軸受に劣る。また、標準のアンギュラ玉軸受の場合、封入グリースを外部に漏らさないことや異物やごみ等を軸受内部に混入させないためのシールが装着されていない等の問題もあり、仮にシールを装着すると、今まで以上に軸方向幅が増加してしまう。   In the case of a double row ball bearing, each single row bearing has a two-point contact between the balls and the raceway grooves of the inner and outer rings, so the torque can be reduced, but the axial width space is twice that of the single row bearing. Necessary and inferior to cross roller bearings and 4-point contact ball bearings in terms of compactness. In addition, standard angular contact ball bearings also have problems such as preventing grease from leaking to the outside and not having a seal to prevent foreign matter and dust from entering the bearing. As a result, the axial width increases.

図34は、2列組合せアンギュラ玉軸受を回転軸の端部に装着した従来の軸受ユニットの一例を示すものである。
この軸受ユニットは、ラジアル荷重、両方向のアキシャル荷重及びモーメント荷重を負荷するために2列組合せとされ、外輪8及び内輪7はそれぞれ外輪押え15や内輪間座16a及び軸受ナット16bを介して軸17やハウジング18に固定されているが、軸受にシールの装着がないため、軸受両端側のハウジング18内径部に外部からの異物や油の侵入を防止するためのオイルシール19を装着する必要があり、軸方向のスペースがかなり長くなっている。
FIG. 34 shows an example of a conventional bearing unit in which a two-row combination angular ball bearing is mounted on the end of the rotating shaft.
This bearing unit is combined in two rows to apply radial load, axial load in both directions, and moment load. The outer ring 8 and the inner ring 7 are respectively connected to a shaft 17 via an outer ring retainer 15, an inner ring spacer 16a and a bearing nut 16b. Although the seal is not attached to the bearing 18, it is necessary to attach an oil seal 19 for preventing foreign matter and oil from entering from the inside diameter of the housing 18 on both ends of the bearing. The axial space is quite long.

更に、2列組合せ玉軸受で、省スペース化を目的として、極薄肉の深みぞ玉軸受やアンギュラ玉軸受(図33参照)を組み合わせたものがあり、一例として、図35に示すように、内輪7及び外輪8はそれぞれ内輪押え10や外輪押え11を介して軸12やハウジング13にボルト14を利用して締結され、外輪押え11は外輪8の外径面の一部、内輪押え10は軸12の外径面の一部に嵌合して、軸12を介して軸受と芯がずれないように位置決めされている。   Furthermore, there are two-row combination ball bearings that combine ultra-thin deep groove ball bearings and angular contact ball bearings (see FIG. 33) for the purpose of space saving. As an example, as shown in FIG. 7 and the outer ring 8 are fastened to the shaft 12 and the housing 13 with bolts 14 via the inner ring presser 10 and the outer ring presser 11, respectively. The outer ring presser 11 is a part of the outer diameter surface of the outer ring 8, and the inner ring presser 10 is a shaft. 12 is fitted to a part of the outer diameter surface of 12 and positioned so that the bearing and the core are not displaced via the shaft 12.

これらの極薄肉の2列組合せ玉軸受を組み込んだ軸受ユニットは省スペース化の点では有利であるが、内外輪7,8のリング肉厚が非常に薄く、内外輪7,8の剛性が低いため、加工精度が出にくく、且つ軸12やハウジング13に組み込んだ際、内輪押え10や外輪押え11等の押し付け力により変形しやすく、組み込み精度の確保に手間を要する等の問題がある。   Bearing units incorporating these ultra-thin two-row combination ball bearings are advantageous in terms of space saving, but the inner and outer rings 7, 8 have a very thin ring wall and the inner and outer rings 7, 8 have low rigidity. Therefore, there is a problem that machining accuracy is difficult to be obtained, and when incorporated in the shaft 12 or the housing 13, the inner ring presser 10 or the outer ring presser 11 is easily deformed by a pressing force, and it takes time to secure the assembly accuracy.

また、場合によっては、組み込み時の変形により内外輪7,8の軌道溝が歪み、各玉9と軌道溝との接触部間で偏荷重が加わったり、玉9の円滑な転がり運動が阻害されることがある。
実公平1−44806号公報 特開昭63−213457号公報 特開平11−62990号公報 特開2003−139145号公報 実開平5−66327号公報 特開2003−278765号公報
Further, depending on the case, the raceway grooves of the inner and outer rings 7 and 8 are distorted due to deformation at the time of incorporation, and an uneven load is applied between the contact portions between the balls 9 and the raceway grooves, or the smooth rolling motion of the balls 9 is hindered. Sometimes.
Japanese Utility Model Publication No. 1-444806 Japanese Unexamined Patent Publication No. 63-213457 Japanese Patent Laid-Open No. 11-62990 JP 2003-139145 A Japanese Utility Model Publication No. 5-66327 JP 2003-278765 A

本発明はこのような不都合を解消するためになされたものであり、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられるのは勿論のこと、軸方向の省スペース化及び低トルク化を図ることができると共に、更なる高剛性化を図ることができ、更には組込性の容易化及び設計の簡素化を図ることができる軸受ユニットを提供することを目的とする。   The present invention has been made to eliminate such inconveniences, and of course can receive a radial load, an axial load in both directions, and a moment load, and can save space and reduce torque in the axial direction. An object of the present invention is to provide a bearing unit that can achieve higher rigidity and can be easily assembled and simplified in design.

上記目的を達成するために、請求項1に係る発明は、転がり軸受と、該転がり軸受を介して軸の端部を支持するハウジングと、該ハウジングに前記転がり軸受を押し付け固定する外輪押えとを備えた軸受ユニットであって、
前記転がり軸受が、軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が(B/H)<0.63とされた単列玉軸受であることを特徴とする。
In order to achieve the above object, an invention according to claim 1 includes a rolling bearing, a housing that supports an end portion of the shaft via the rolling bearing, and an outer ring presser that presses and fixes the rolling bearing to the housing. A bearing unit comprising:
The rolling bearing is a single row ball bearing in which a sectional dimension ratio (B / H) between an axial sectional width B and a radial sectional height H is (B / H) <0.63. To do.

請求項2に係る発明は、転がり軸受と、該転がり軸受を介して軸の端部を支持するハウジングと、該ハウジングに前記転がり軸受を押し付け固定する外輪押えとを備えた軸受ユニットであって、
前記転がり軸受が、軸方向断面幅B2と半径方向断面高さH2との断面寸法比(B2/H2)が(B2/H2)<1.2とされた複列玉軸受であることを特徴とする。
請求項3に係る発明は、請求項1又は2において、前記転がり軸受の外輪及び内輪の少なくとも一方の軸方向端部に環状シール体を設けたことを特徴とする。
The invention according to claim 2 is a bearing unit comprising a rolling bearing, a housing that supports the end of the shaft via the rolling bearing, and an outer ring presser that presses and fixes the rolling bearing to the housing.
The rolling bearing is a double row ball bearing in which a cross-sectional dimension ratio (B2 / H2) between an axial cross-sectional width B2 and a radial cross-sectional height H2 is (B2 / H2) <1.2. To do.
The invention according to claim 3 is characterized in that, in claim 1 or 2, an annular seal body is provided at an axial end of at least one of the outer ring and the inner ring of the rolling bearing.

請求項1に係る発明では、例えば図4及び図22を参照して、軸受ユニットに組み込まれる転がり軸受が、外輪101の軌道溝101aと内輪102の軌道溝102aとの間に多数の玉103が転動自在に配設された単列の玉軸受100であり、軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)が(B/H)<0.63とされている。   In the invention according to claim 1, for example, with reference to FIGS. 4 and 22, the rolling bearing incorporated in the bearing unit has a large number of balls 103 between the raceway groove 101 a of the outer ring 101 and the raceway groove 102 a of the inner ring 102. This is a single-row ball bearing 100 that is arranged so as to be freely rollable, and has a cross-sectional dimension ratio of an axial cross-sectional width B and a radial cross-sectional height H (= (outer ring outer diameter D−inner ring inner diameter d) / 2) ( B / H) is (B / H) <0.63.

そして、この単列玉軸受100を、図5に示すように、2列組合せとしてハウジング18に挿入し、内輪102を内輪間座16a及び軸受ナット16bを介して軸17に固定すると共に、外輪押え15をハウジング18のフランジ部18a側から挿入して、外輪101を軸方向に押し付け固定し、軸受両端側のハウジング18内径部に外部からの異物や油の侵入を防止するためのオイルシール19を装着している。   Then, as shown in FIG. 5, the single row ball bearing 100 is inserted into the housing 18 as a two-row combination, and the inner ring 102 is fixed to the shaft 17 via the inner ring spacer 16a and the bearing nut 16b. 15 is inserted from the flange portion 18a side of the housing 18, the outer ring 101 is pressed and fixed in the axial direction, and an oil seal 19 for preventing foreign matter and oil from entering the housing 18 inner diameter portions on both ends of the bearing is provided. Wearing.

ここで、国際標準化機構(ISO)で規定されている寸法系列が18(例えば6800)、19(例えば6901)、10(例えば6003)、02(例えば7205A)、03(例えば7307A)の標準玉軸受では、軸受内径寸法がφ5mm〜φ100mmにおいては、上述の断面寸法比(B/H)は0.82〜1.17に設定されている。
また、軸受内径寸法がφ5mm〜φ500mmにおいては、上述の断面寸法比(B/H)は0.63〜1.17に設定されている。
Here, standard ball bearings whose dimension series prescribed by the International Organization for Standardization (ISO) are 18 (for example, 6800), 19 (for example, 6901), 10 (for example, 6003), 02 (for example, 7205A), 03 (for example, 7307A) Then, when the bearing inner diameter is φ5 mm to φ100 mm, the above-mentioned cross-sectional dimension ratio (B / H) is set to 0.82 to 1.17.
Further, when the bearing inner diameter is φ5 mm to φ500 mm, the above-mentioned cross-sectional dimension ratio (B / H) is set to 0.63 to 1.17.

したがって、これらの玉軸受の断面寸法比(B/H)の最大値1.17の約1/2倍、すなわち、0.63未満に設定することで、従来の標準単列玉軸受で最も幅狭の玉軸受より幅狭で、且つ従来の標準単列玉軸受の軸方向幅スペース以内に、請求項1に係る玉軸受を2列組み合わせて配置することができる。
また、組み合わせる2個の玉軸受の断面寸法比(B/H)を同一にする必要はなく、例えば片方を0.62、もう一方を0.58としてもよい。組み合わせる両軸受を同一幅とした場合は、前記断面寸法比(B/H)を0.60以下にするのが望ましい。
Therefore, the width of the conventional standard single-row ball bearing is the largest in width by setting it to about 1/2 times the maximum value 1.17 of the sectional dimension ratio (B / H) of these ball bearings, that is, less than 0.63. The ball bearings according to claim 1 can be arranged in combination of two rows within a narrower width than the narrow ball bearing and within the axial width space of the conventional standard single row ball bearing.
Moreover, it is not necessary for the two ball bearings to be combined to have the same cross-sectional dimension ratio (B / H). For example, one may be 0.62 and the other may be 0.58. When both combined bearings have the same width, it is desirable that the cross-sectional dimension ratio (B / H) is 0.60 or less.

ここで、図25及び図26はそれぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ38.1mm,軸受外径:φ47.625mm,軸受幅:4.762mm,前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合(即ち、(B/H)の値を変化させた場合)の内外輪リングの半径方向の変形特性(図23参照:内輪を例示)及び半径方向の断面2次モーメントI(図24参照:I=bh3 /12で計算)を比較した結果を示している。 Here, FIG. 25 and FIG. 26 are each a standard thin ball bearing (bearing inner diameter: φ38.1 mm, bearing outer diameter: φ47.625 mm, bearing width: 4.762 mm, cross-sectional dimension ratio (B / H) = 1) as a reference, the radius of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width (that is, when the value of (B / H) is changed) direction of deformation characteristics (Figure 23 see the inner ring of illustration) and radial cross-sectional secondary moment I: shows the result of comparison (see FIG. 24 calculated as I = bh 3/12).

また、図27及び図28についてもそれぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ63.5mm,軸受外径:φ76.2mm,軸受幅:6.35mm,前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合(即ち、(B/H)の値を変化させた場合)の内外輪リングの半径方向の変形特性及び半径方向の断面2次モーメントIを比較した結果を示している。   27 and 28 are also used as standard thin ball bearings (bearing inner diameter: φ63.5 mm, bearing outer diameter: φ76.2 mm, bearing width: 6.35 mm, cross-sectional dimension ratio (B / H) = 1) as a reference, the radius of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width (that is, when the value of (B / H) is changed) The result of having compared the deformation characteristic of a direction and the cross-sectional secondary moment I of the radial direction is shown.

いずれの軸受も(B/H)=0.63未満で、剛性の増加率勾配の変化が顕著に出ている。すなわち、断面2次モーメントIの増加は顕著になり、半径方向の内外輪リングの変形量の減少は飽和状態となる。
従って、請求項1に係る発明では、従来の極薄肉軸受で問題となる内外輪製作時の旋盤加工や研磨加工時の加工力による軸受変形を防止することができ、真円度や偏肉等の軸受精度を向上させることができる。
In any of the bearings, (B / H) = 0.63, and the change in the rigidity increase rate gradient is noticeable. That is, the increase in the secondary moment I of the cross section becomes significant, and the decrease in the deformation amount of the inner and outer ring in the radial direction becomes saturated.
Therefore, in the invention according to claim 1, it is possible to prevent the bearing from being deformed due to the lathe machining during inner and outer ring production and the machining force during polishing, which is a problem with the conventional ultra-thin bearing, and the roundness, uneven thickness, etc. The bearing accuracy can be improved.

また、軸やハウジングに組み込んだ場合(特に、軸やハウジングとすきま嵌合で組み込んだ場合)、内輪押えや外輪押え等で軸受を固定した時の内外輪の変形(特に真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転精度不良、あるいは、発熱増大、摩耗や焼付き等の不具合を防止することができる。
なお、単列玉軸受は、1列では、予圧をかけたりモーメント荷重を負荷することは困難であるが、2列以上の多列組合せとすることで、ラジアル荷重、アキシアル荷重及びモーメント荷重を負荷することが可能となる。
Deformation of inner and outer rings when bearings are fixed with inner ring retainers and outer ring retainers (especially when they are assembled with a clearance fit with the shaft or housing). In addition, it is possible to prevent torque defects and rotational accuracy defects caused by deformation, or problems such as increased heat generation, wear and seizure.
Single-row ball bearings are difficult to apply preload or moment load in one row, but by combining multiple rows of two or more rows, radial load, axial load and moment load can be applied. It becomes possible to do.

また、各玉が内外輪の軌道溝に対して常に2点で接触するので、4点接触玉軸受のような玉の大きなスピンによるトルクの増加を抑制することができ、更には、クロスローラ軸受に比べて転がり抵抗が低くなるので低トルク化を実現することができる。
更に、幅寸法が従来の標準単列玉軸受の約半分となることで、玉径も従来の玉軸受の半分程度となるが、逆に1列あたりの玉数が増加し、軸受剛性は従来の玉軸受に対して増加する。
Further, since each ball always contacts the inner and outer ring raceway grooves at two points, an increase in torque due to a large spin of the ball such as a four-point contact ball bearing can be suppressed. Since the rolling resistance is lower than that, torque can be reduced.
Furthermore, when the width dimension is about half that of the conventional standard single row ball bearing, the ball diameter is also about half that of the conventional ball bearing, but conversely, the number of balls per row is increased, and the bearing rigidity is conventional. Increased against ball bearings.

また、旋回ロボットのアーム継ぎ手部分等に適用する場合では、低速の揺動回転がほとんどであるので、玉径を小さくしたことにより軸受の負荷容量が低下しても、転がり疲れ寿命時間が実用上で問題となることはない。
その他の産業機械、ロボット、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置などでも、回転速度が低い用途や揺動回転用途が多いので、転がり疲れ寿命時間が問題となることはほとんどない。
以上より、請求項1に係る幅狭の単列玉軸受を用い、更にハウジングや外輪押え等の部品と共に軸受ユニット化することで、従来の軸受ユニットと比べて省スペース化を図ることができると共に、機械等への組込性の容易化や設計の簡素化を図ることができる。
In addition, when applied to the arm joint of a turning robot, etc., low-speed oscillating rotation is almost the case, so even if the bearing load capacity is reduced by reducing the ball diameter, the rolling fatigue life time is practical. There is no problem.
Other industrial machines, robots, medical equipment, semiconductor / liquid crystal manufacturing equipment, optical and optoelectronic equipment, etc. have many applications with low rotational speed and rocking rotation, so rolling fatigue life time is rarely a problem. .
As described above, by using the narrow single-row ball bearing according to claim 1 and further forming a bearing unit together with parts such as a housing and an outer ring presser, space can be saved as compared with a conventional bearing unit. In addition, it is possible to facilitate the incorporation into a machine or the like and to simplify the design.

請求項2に係る発明は、例えば図17及び図18を参照して説明すると、転がり軸受が、外輪201の複列軌道溝201a,201bと内輪202の複列軌道溝202a,202bとの間に多数の玉203が転動自在に配設された複列の玉軸受200であり、軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)が(B2/H2)<1.2とされている。   When the invention according to claim 2 is described with reference to FIGS. 17 and 18, for example, the rolling bearing is provided between the double row raceway grooves 201a and 201b of the outer ring 201 and the double row raceway grooves 202a and 202b of the inner ring 202. This is a double row ball bearing 200 in which a large number of balls 203 are arranged so as to be able to roll, and an axial sectional width B2 and a radial sectional height H2 (= (outer ring outer diameter D2-inner ring inner diameter d2) / 2) and The cross-sectional dimension ratio (B2 / H2) is (B2 / H2) <1.2.

そして、この複列玉軸受200をハウジング18に挿入し、内輪202を内輪間座16a及び軸受ナット16bを介して軸17に固定すると共に、外輪押え15をハウジング18のフランジ部18a側から挿入して、外輪201を軸方向に押し付け固定し、軸受両端側のハウジング18内径部に外部からの異物や油の侵入を防止するためのオイルシール19を装着している。   The double-row ball bearing 200 is inserted into the housing 18, the inner ring 202 is fixed to the shaft 17 via the inner ring spacer 16 a and the bearing nut 16 b, and the outer ring presser 15 is inserted from the flange portion 18 a side of the housing 18. Thus, the outer ring 201 is pressed and fixed in the axial direction, and an oil seal 19 is attached to the inner diameter portion of the housing 18 at both ends of the bearing to prevent entry of foreign matter and oil from the outside.

複列玉軸受において、断面寸法比(B2/H2)を以上のような設定とすることで、請求項1に係る単列の幅狭玉軸受を2列組合せとした場合と同様、従来の標準単列玉軸受の軸方向幅スペース内に請求項2に係る複列玉軸受を配置することが可能となり、また、予圧をかけたり、モーメント荷重を負荷すること等も可能となる。その他の作用効果は請求項1に係る単列の幅狭玉軸受を2列組合せとした場合と同様である。   In the double row ball bearing, by setting the cross-sectional dimension ratio (B2 / H2) as described above, the conventional standard is the same as when the single row narrow ball bearing according to claim 1 is combined in two rows. The double-row ball bearing according to claim 2 can be disposed in the axial width space of the single-row ball bearing, and it is also possible to apply a preload or apply a moment load. Other functions and effects are the same as in the case where the single row narrow ball bearings according to claim 1 are combined in two rows.

図29は、各種軸受の計算モーメント剛性の比較である。
同一サイズ(計算例は、軸受名番7906A(接触角30°)相当で、内外径寸法が同じ場合:内輪内径φ30mm、外輪外径φ47mm)では、請求項1に係る単列の幅狭アンギュラ玉軸受(接触角30°:総玉軸受の計算例)を2列組合せ、且つ内外輪の軌道溝曲率を変化させた本発明例A〜Eは、いずれもクロスローラ軸受、標準2列組合せアンギュラ玉軸受及び4点接触玉軸受に比べてモーメント剛性が高くなっており、例えば本発明例Bは、クロスローラ軸受の2.4倍、従来の標準2列組合せアンギュラ玉軸受の1.9倍、4点接触玉軸受の3.3倍のモーメント剛性を保持させることが可能である。
FIG. 29 is a comparison of calculated moment stiffness of various bearings.
For the same size (calculation example is equivalent to bearing name No. 7906A (contact angle 30 °) and the inner and outer diameter dimensions are the same: inner ring inner diameter φ30 mm, outer ring outer diameter φ47 mm), single row narrow angular balls according to claim 1 The invention examples A to E in which the bearings (contact angle 30 °: calculation example of the total ball bearing) are combined in two rows and the raceway groove curvature of the inner and outer rings are changed are all cross roller bearings, standard double row angular contact balls The moment rigidity is higher than that of the bearing and the four-point contact ball bearing. For example, the present invention example B is 2.4 times that of the cross roller bearing, 1.9 times that of the conventional standard two-row combination angular ball bearing, 4 times It is possible to maintain a moment rigidity 3.3 times that of a point contact ball bearing.

なお、それぞれの設計予圧すき間は、本発明例A〜E、標準2列組合せアンギュラ玉軸受及び4点接触玉軸受は−0.010mm、クロスローラ軸受は−0.001mmと実用上の標準的な値として計算している。
また、本発明の軸受ユニットに使用される幅狭玉軸受の適正な玉径は、シール等の装着有無により変化するが、剛性を増加させるため、極端に玉径を小さくすると、玉と内外輪の軌道溝との接触部間の面圧が増加し、耐圧痕性が低下する虞れがあるため、おおむね、軸受幅(B)又は(B2/2)の30〜90%が望ましい。
The design preload clearances are -0.010 mm for the invention examples A to E, standard two-row combination angular contact ball bearings and 4-point contact ball bearings, and -0.001 mm for the cross roller bearings, which are standard in practical use. Calculated as a value.
In addition, the appropriate ball diameter of the narrow ball bearing used in the bearing unit of the present invention varies depending on whether or not a seal or the like is mounted. However, in order to increase rigidity, if the ball diameter is extremely reduced, the ball and the inner and outer rings Since the surface pressure between the contact portions with the raceway grooves increases and the pressure scar resistance may be lowered, generally 30 to 90% of the bearing width (B) or (B2 / 2) is desirable.

更に、本発明の軸受ユニットに使用される転がり軸受としてアンギュラ玉軸受に適用した場合、軸受の接触角は必要な剛性(例えば、モーメント剛性)及び要求トルクにより選ばれるが、おおむね10〜60°の範囲が望ましい。
更に、荷重の方向や大きさに合わせて、必要に応じて、組み合わせた各軸受の接触角を変えてもかまわない。
更には、内外輪の軌道溝の曲率半径は、要求される剛性やトルク特性に応じて、51〜60%Da(Da:玉径)、好ましくは52〜56%Da、より好ましくは52〜54%Da程度とする。また、内外輪のそれぞれの軌道溝曲率半径は同一でなくともよいし、組み合される軸受間や複列玉軸受の各列間で異なっていてもよい。
Furthermore, when applied to an angular ball bearing as a rolling bearing used in the bearing unit of the present invention, the contact angle of the bearing is selected depending on the required rigidity (for example, moment rigidity) and the required torque, but is generally 10 to 60 °. A range is desirable.
Furthermore, the contact angle of the combined bearings may be changed as necessary according to the direction and size of the load.
Furthermore, the radius of curvature of the raceway grooves of the inner and outer rings is 51 to 60% Da (Da: ball diameter), preferably 52 to 56% Da, more preferably 52 to 54, depending on required rigidity and torque characteristics. About% Da. Further, the radius of curvature of the raceway grooves of the inner and outer rings may not be the same, or may be different between the combined bearings or between the rows of the double row ball bearings.

本発明によれば、軸受ユニットに組み込まれる転がり軸受を、単列玉軸受の場合に、軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)を(B/H)<0.63とし、複列玉軸受の場合に、軸方向断面幅B2と半径方向断面高さH2との断面寸法比(B2/H2)を(B2/H2)<1.2とすることで、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けることができると共に、軸方向の省スペース化、低トルク化及び更なる高剛性化を図ることができ、更には、周辺構造設計の簡素化及び組込性の容易化を図ることができる。   According to the present invention, when the rolling bearing incorporated in the bearing unit is a single row ball bearing, the sectional dimension ratio (B / H) between the axial sectional width B and the radial sectional height H is (B / H). ) <0.63, and in the case of a double row ball bearing, the sectional dimension ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 should be (B2 / H2) <1.2. Can receive radial load, axial load in both directions, and moment load, and can save space in the axial direction, reduce torque and increase rigidity, and simplify peripheral structure design. In addition, ease of incorporation can be achieved.

以下、本発明の実施の形態を図を参照して説明する。図1は本発明の第1の態様の実施の形態の一例である軸受ユニットを説明するための一部を破断した図、図2は図1の左側面図、図3はフランジ部の変形例、図4は図1の軸受ユニットに組み込まれる単列玉軸受を説明するための要部断面図、図5〜図16は単列玉軸受の変形例を示す図、図17は本発明の第2の態様の実施の形態の一例である軸受ユニットを説明するための一部を破断した図、図18は図17の軸受ユニットに組み込まれる複列玉軸受の要部断面図、図19〜図21は複列玉軸受の変形例を説明するための要部断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partially broken view for explaining a bearing unit as an example of an embodiment of the first aspect of the present invention, FIG. 2 is a left side view of FIG. 1, and FIG. 4 is a cross-sectional view of a main part for explaining a single row ball bearing incorporated in the bearing unit of FIG. 1, FIGS. 5 to 16 are views showing modifications of the single row ball bearing, and FIG. FIG. 18 is a partially broken view for explaining a bearing unit which is an example of an embodiment of the embodiment of FIG. 2, FIG. 18 is a cross-sectional view of the main part of a double row ball bearing incorporated in the bearing unit of FIG. 21 is a sectional view of an essential part for explaining a modification of the double row ball bearing.

本発明の第1の態様の実施の形態の一例である軸受ユニット20は、図1及び図4に示すように、転がり軸受が、外輪101の軌道溝101aと内輪102の軌道溝102aとの間に多数の玉103が転動自在に配設された単列の総玉のアンギュラ玉軸受100とされ、軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)が(B/H)<0.63とされている。   As shown in FIGS. 1 and 4, the bearing unit 20, which is an example of an embodiment of the first aspect of the present invention, has a rolling bearing between the raceway groove 101 a of the outer ring 101 and the raceway groove 102 a of the inner ring 102. A single row of angular contact ball bearings 100, in which a large number of balls 103 are rotatably arranged, have an axial sectional width B and a radial sectional height H (= (outer ring outer diameter D−inner ring inner diameter d). ) / 2) and the cross-sectional dimension ratio (B / H) is (B / H) <0.63.

そして、この単列玉軸受100を、図1及び図5に示すように、2列正面組合せ(接触角が逆ハの字形)としてハウジング18に挿入し、内輪102を内輪間座16a及び軸受ナット16bを介して軸17に固定すると共に、外輪押え15をハウジング18のフランジ部18a側から挿入して、外輪101を軸方向に押し付け固定し、軸受両端側のハウジング18内径部に外部からの異物や油の侵入を防止するためのオイルシール19を装着している。   Then, as shown in FIGS. 1 and 5, the single row ball bearing 100 is inserted into the housing 18 as a two-row front combination (contact angle is a reverse C shape), and the inner ring 102 is inserted into the inner ring spacer 16a and the bearing nut. The outer ring retainer 15 is inserted from the flange portion 18a side of the housing 18 and is fixed by pressing the outer ring 101 in the axial direction. And an oil seal 19 for preventing intrusion of oil.

また、ハウジング18のフランジ部18aが機械台座24等にボルト21によって固定され、外輪押え15のフランジ部15aがハウジング18のフランジ部18aにボルト23によって固定されている。なお、図1及び図2において符号22は、ボルト21の頭部を挿通させるために外輪押え15のフランジ部15aに設けられた挿通穴である。
更に、この実施の形態では、互いに隣り合う外輪101間に予めΔaのすきまを設けると共に、ハウジング18のフランジ部18aと外輪押え15のフランジ部15aとの間に適正なすぎまΔS(ΔS>Δa)を設けてある。
Further, the flange portion 18 a of the housing 18 is fixed to the machine base 24 or the like by bolts 21, and the flange portion 15 a of the outer ring retainer 15 is fixed to the flange portion 18 a of the housing 18 by bolts 23. 1 and 2, reference numeral 22 denotes an insertion hole provided in the flange portion 15 a of the outer ring presser 15 for inserting the head of the bolt 21.
Further, in this embodiment, a clearance Δa is provided in advance between the adjacent outer rings 101, and the gap between the flange portion 18a of the housing 18 and the flange portion 15a of the outer ring retainer 15 is too appropriate ΔS (ΔS> Δa). ) Is provided.

そして、ボルト23をすきまΔaがなくなるまで締め込むことで、軸受に適正な予圧が付与され、低振動及び高回転精度を確保することができる。予圧量の増減はすきまΔaの値の大小で調整可能である。
なお、大きな剛性を要求されない場合は予圧を付与せずにすきま設定とした軸受を使用しても良い。また、ハウジング18のフランジ部18aの形状は特に限定されず、例えば図3に示すような角型形状等を採用しても良い。更に、軸受に環状シール体を用いた場合や外部からの異物や油の侵入が少ない等の条件の場合には、軸受の両端側に装着されたオイルシール19の一方或いは両方を取り除いた構造としても構わない。この場合、軸受ユニットの軸方向スペースを更に短くすることができる。
Then, by tightening the bolt 23 until the clearance Δa disappears, an appropriate preload is applied to the bearing, and low vibration and high rotation accuracy can be ensured. The increase / decrease of the preload amount can be adjusted by the magnitude of the clearance Δa.
In the case where high rigidity is not required, a bearing having a clearance set without applying preload may be used. Further, the shape of the flange portion 18a of the housing 18 is not particularly limited, and for example, a square shape as shown in FIG. Furthermore, in the case where an annular seal body is used for the bearing or in the case where there is little invasion of foreign matter or oil from the outside, one or both of the oil seals 19 attached to both ends of the bearing are removed. It doesn't matter. In this case, the axial space of the bearing unit can be further shortened.

ここで、この実施の形態では、アンギュラ玉軸受100を2列正面組合せとし、図34に示す7208A(接触角30°)の2列組合せアンギュラ玉軸受と置き換える場合を例に採る。
7208Aのアンギュラ玉軸受は、内輪内径φ40mm、外輪外径φ80mm、軸方向断面幅(軸受単体幅)Bが18mmであるので、断面寸法比(B/H)=0.9である。したがって、本実施形態のアンギュラ玉軸受100では、断面寸法比(B/H)=0.45(内輪内径及び外輪外径はそのままで、軸方向断面幅(軸受単体幅)を9mmとした)としている。
Here, in this embodiment, a case where the angular ball bearing 100 is a two-row front combination and replaced with a double-row angular contact ball bearing of 7208A (contact angle 30 °) shown in FIG. 34 is taken as an example.
The 7208A angular contact ball bearing has an inner ring inner diameter φ40 mm, an outer ring outer diameter φ80 mm, and an axial sectional width (bearing single body width) B of 18 mm, so the sectional dimension ratio (B / H) = 0.9. Therefore, in the angular ball bearing 100 of the present embodiment, the sectional dimension ratio (B / H) = 0.45 (the inner ring inner diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing single body width) is 9 mm). Yes.

これにより、ラジアル荷重と両方向のアキシアル荷重及びモーメント荷重を受けることができるのは勿論のこと、軸方向寸法で1/2の省スペース化、低トルク化及び更なる高剛性化を図ることができ、更には、周辺構造設計の簡素化及び組込性の容易化を図ることができる。
もちろん、必要に応じて、軸受ユニットに使用する転がり軸受として、アンギュラ玉軸受100の断面寸法比(B/H)を0.45未満或いは0.45を超える(但し(B/H)<0.63)ように設定してもかまわない。因みにアンギュラ玉軸受100の接触角は例えば30°としている。
As a result, radial load, axial load in both directions, and moment load can be received, as well as 1/2 space saving in axial dimension, lower torque, and higher rigidity can be achieved. Furthermore, it is possible to simplify the peripheral structure design and facilitate the incorporation.
Of course, as necessary, as a rolling bearing used in the bearing unit, the cross-sectional dimension ratio (B / H) of the angular ball bearing 100 is less than 0.45 or more than 0.45 (provided that (B / H) <0. 63) It may be set as follows. Incidentally, the contact angle of the angular ball bearing 100 is, for example, 30 °.

なお、本実施形態では、玉103のピッチ円直径は次式(1)のとおりとしているが、軸受1列あたりの玉数を増やして更にモーメント剛性を増加させたい場合は、次式(2)を採用して、玉103のピッチ円直径を外輪側にずらして図6に示す構造としてもよいし、必要に応じて次式(3)を採用して逆に玉103のピツチ円直径を内輪102側にずらしてもよい(図示せず)。
玉のピッチ円直径=(内輪内径+外輪外径)/2 …(1)
玉のピッチ円直径>(内輪内径+外輪外径)/2 …(2)
玉のピッチ円直径<(内輪内径+外輪外径)/2 …(3)
In this embodiment, the pitch circle diameter of the balls 103 is as shown in the following formula (1). However, when it is desired to increase the moment rigidity by increasing the number of balls per row of the bearing, the following formula (2) is used. The pitch circle diameter of the ball 103 may be shifted to the outer ring side and the structure shown in FIG. 6 may be adopted, or the following equation (3) may be adopted as necessary to change the pitch circle diameter of the ball 103 to the inner ring. You may shift to 102 side (not shown).
Ball pitch circle diameter = (inner ring inner diameter + outer ring outer diameter) / 2 (1)
Ball pitch circle diameter> (inner ring inner diameter + outer ring outer diameter) / 2 (2)
Ball pitch circle diameter <(inner ring inner diameter + outer ring outer diameter) / 2 (3)

また、必要に応じて、図7に示すように、組み合わされる左右の玉軸受の玉ピッチ円直径を同―値とせずともよいし、組み合わされる左右の玉軸受の玉103の径を同一値としなくてもよい。加えて、組み合わせる2個の玉軸受の断面寸法比(B/H)は同一でなく、例えば玉径の小さい方を(B/H)=0.28、玉径の大きい方を(B/H)=0.62としても構わない。更に、玉103の軸方向ピッチも軸方向中心でなくともよく、シールや保持器の装着有無やモーメントの作用点間距離の確保等のために玉103の軸方向ピッチを軸方向にずらしてもよい。   If necessary, as shown in FIG. 7, the ball pitch circle diameters of the left and right ball bearings to be combined may not be the same value, and the diameters of the balls 103 of the left and right ball bearings to be combined should be the same value. It does not have to be. In addition, the sectional dimension ratio (B / H) of the two ball bearings to be combined is not the same. For example, the smaller ball diameter is (B / H) = 0.28, and the larger ball diameter is (B / H). ) = 0.62. Further, the axial pitch of the balls 103 may not be the center of the axial direction, and the axial pitch of the balls 103 may be shifted in the axial direction in order to secure the distance between the application points of the moment and the moment of attachment of the seal and the cage. Good.

図8は、軸方向の一方の端部に環状シール体104を装着したアンギュラ玉軸受100を2列正面組み合わせとしたものである。
軸方向の一方の端部に環状シール体104を装着したアンギュラ玉軸受100を2列組み合わせて機械等に取り付けた後(シール取り付け面を外側に向けて組み合わせる)は、軸受使用中に外部からの異物やごみ等の侵入及び封入グリースの外部への洩れを防止することが可能である。
環状シール体104は、この実施の形態では、外輪101のシール溝104aに押し込んで挿入する非接触型(内輪102と非接触)で金属芯金105の補強タイプのゴムシール(例えばニトリルゴム・アクリルゴムやフッ素ゴム)106とし、組み合わせ端面と反対側のみ環状シール体104を装着して省スペース化を図っている。
FIG. 8 shows a two-row front combination of angular ball bearings 100 having an annular seal body 104 mounted at one end in the axial direction.
After the angular ball bearings 100 having the annular seal body 104 mounted on one end in the axial direction are combined in two rows and attached to a machine or the like (combined with the seal mounting surface facing outward), the external ball bearing 100 is used while the bearing is in use. It is possible to prevent entry of foreign matter, dust, etc. and leakage of the enclosed grease to the outside.
In this embodiment, the annular seal body 104 is a non-contact type (non-contact with the inner ring 102) inserted into the seal groove 104a of the outer ring 101 and a reinforcing rubber seal (for example, nitrile rubber / acrylic rubber) of the metal core 105. Or fluorine rubber) 106, and an annular seal body 104 is attached only on the side opposite to the combined end face to save space.

図9は、軸方向の両端部に環状シール体104を装着したアンギュラ玉軸受100を示したものである。
軸方向の両端部に環状シール体104を装着したアンギュラ玉軸受100を機械等に取り付けた後は、軸受使用中に外部からの異物やごみ等の侵入を防止すると共に、軸受取扱い時や軸やハウジングヘの組込み時においても、異物やごみ等の侵入及び封入グリースの外部への洩れを防止することが可能となる。
FIG. 9 shows an angular ball bearing 100 in which annular seal bodies 104 are mounted at both ends in the axial direction.
After the angular ball bearing 100 with the annular seal body 104 mounted on both ends in the axial direction is attached to a machine or the like, it prevents foreign matter and dust from entering from outside during use of the bearing, Even when it is assembled into the housing, it is possible to prevent intrusion of foreign matter, dust, etc. and leakage of the enclosed grease to the outside.

更に剛性が必要な場合は、図10及び図11に示すように、軸受ユニットに使用する転がり軸受として、3列以上の多列組み合わせとしても構わない。
更には、モーメント荷重や両方のアキシアル荷重を負荷するためには、2列以上の組み合わせ軸受とする必要があるが、荷重条件や方向に応じて使用条件上で可能であれば、単列軸受で使用してもかまわない。
When further rigidity is required, as shown in FIGS. 10 and 11, a rolling bearing used for the bearing unit may be a multi-row combination of three or more rows.
Furthermore, in order to apply moment load or both axial loads, it is necessary to use two or more rows of combined bearings. You can use it.

また、本実施形態では、軸受ユニットに使用する転がり軸受をアンギュラ玉軸受としているが、深みぞ玉軸受等その他の玉軸受としてもよい。環状シール体は、図8及び図9で示した非接触型ではなく、接触型の金属芯金補強タイプのゴムシール(ゴム材質は、例えばニトリルゴム・アクリルゴムやフッ素ゴム)でもよいし、外輪101のシール溝に加締め加工する金属シールド板でもかまわない。また、環状シール体を内輪102側のシール溝に押し込んで挿入したり、又は加締め加工で取り付けるようにしてもよい(外輪と接触又は非接触する構造)。   In this embodiment, the rolling bearing used in the bearing unit is an angular ball bearing, but other ball bearings such as a deep groove ball bearing may be used. The annular seal body is not the non-contact type shown in FIGS. 8 and 9, but may be a contact type metal core reinforced rubber seal (the rubber material is, for example, nitrile rubber, acrylic rubber or fluororubber), or the outer ring 101. A metal shield plate that is swaged into the seal groove may be used. Further, the annular seal body may be inserted by being inserted into the seal groove on the inner ring 102 side, or may be attached by caulking (a structure in contact with or non-contact with the outer ring).

内輪102、外輪101及び玉103の材料は、標準的な使用条件では軸受鋼(例えば、SUJ2、SUJ3など)とするが、使用環境に応じて、例えば真空用途などでは、耐食材料であるステンレス系材料(例えば、SUS440C等のマルテンサイト系ステンレス鋼材やSUS304等のオーステナイト系ステンレス鋼材、SUS630等の析出硬化系ステンレス鋼材など)、チタン合金やセラミック系材料(例えば、Si3 4 、SiC、Al2 3 、ZrO2 等)を採用してもよい。
潤滑方法も特に限定されず、一般的な使用環境では、鉱油系グリースや合成油系(例えば、リチウム系、ウレア系等)のグリースや油を使用でき、真空用途などではフッ素系グリースまたはフッ素系の油、あるいはフッ素樹脂、MoS2 などの固体潤滑剤を使用することができる。
The material of the inner ring 102, the outer ring 101, and the ball 103 is a bearing steel (eg, SUJ2, SUJ3, etc.) under standard use conditions, but depending on the use environment, for example, a stainless steel that is a corrosion-resistant material in vacuum applications. Materials (for example, martensitic stainless steel materials such as SUS440C, austenitic stainless steel materials such as SUS304, precipitation hardening stainless steel materials such as SUS630), titanium alloys and ceramic materials (for example, Si 3 N 4 , SiC, Al 2) O 3 , ZrO 2, etc.) may be employed.
The lubrication method is not particularly limited, and mineral oil grease or synthetic oil grease (for example, lithium or urea) or oil can be used in general usage environments, and fluorine grease or fluorine grease for vacuum applications. Or a solid lubricant such as fluorine resin or MoS 2 can be used.

図12は、軸方向の一方の端部(組合せ側端面と反対側の端部)に環状シール体104を装着し、且つ玉103を転動可能に保持する保持器110を備えたアンギュラ玉軸受100を2列正面組み合わせとしたものである。
保持器110としては、例えば、図13〜図16(a)に示すように、円環部111と、該円環部111の一端部に周方向に略等間隔で複数箇所軸方向に突設された柱部112と、各柱部112間に形成されて玉103を周方向に転動可能に保持するポケット部113とを備えた柔軟性のある冠形保持器を採用している。
保持器110の材質は、例えば、ポリアミド、ポリアセタール、ポリフェニレンサルファイド等の合成樹脂材とし、必要に応じて、合成樹脂材にガラス繊維や炭素繊維等の補強材を混入した材料を用いる。
FIG. 12 shows an angular contact ball bearing equipped with a retainer 110 that is mounted with an annular seal body 104 at one end in the axial direction (end opposite to the end face on the combination side) and holds the ball 103 in a rollable manner. 100 is a two-row front combination.
As the retainer 110, for example, as shown in FIGS. 13 to 16A, an annular portion 111 and one end portion of the annular portion 111 project in the axial direction at a plurality of locations at substantially equal intervals in the circumferential direction. A flexible crown-shaped cage including the pillars 112 and pockets 113 formed between the pillars 112 to hold the balls 103 so as to roll in the circumferential direction is employed.
The material of the cage 110 is, for example, a synthetic resin material such as polyamide, polyacetal, or polyphenylene sulfide, and a material in which a reinforcing material such as glass fiber or carbon fiber is mixed into the synthetic resin material is used as necessary.

また、この実施の形態では、軸受の負荷容量や剛性を上げるために、隣り合う玉103間の円周方向ピッチは極力小さくし、できる限り玉数を多くしている。更に、玉103の軸方向ピッチをできるだけ組合せ側端面の反対側にずらし(図12:X1 >X2 )、保持器110の円環部111が軸受組合せ端面側になるように配置している。
なお、総玉軸受の場合も、環状シール体の装着の有無等、必要に応じて同様に玉の軸方向ピッチを幅中央ではなく、軸方向の左右いずれかの方向(軸受合わせ端面側、あるいは反対側)にずらしてもかまわない。
In this embodiment, in order to increase the load capacity and rigidity of the bearing, the circumferential pitch between adjacent balls 103 is made as small as possible, and the number of balls is increased as much as possible. Further, the pitch in the axial direction of the balls 103 is shifted as much as possible to the opposite side of the end face on the combination side (FIG. 12: X 1 > X 2 ), and the ring portion 111 of the cage 110 is arranged so as to be on the end face side of the bearing combination. .
In the case of a full ball bearing, the axial pitch of the balls is not the center of the width in the same way as necessary, such as whether or not an annular seal body is mounted. It can be shifted to the opposite side.

保持器付きの軸受は、回転が1方向の連続回転や大きなモーメント荷重が加わる条件等、各玉の接触角の変化による公転速度のばらつきが発生しやすい条件等で、総玉軸受を使用した場合の玉間の接触や玉つまりが生じやすい用途で低トルク、低発熱等の点で、より良い効果を発揮する。
更に、本実施形態のように、ポケット部113の入り口部を玉径より若干小さくして引っかかり(パチン代)を設ければ、内輪102及び外輪101に組み込む際、玉103の脱落がなく軸受の組立が容易である。
When a ball bearing with a cage is used as a full ball bearing under conditions where the rotation speed tends to vary due to changes in the contact angle of each ball, such as continuous rotation in one direction or a large moment load. It is more effective in terms of low torque, low heat generation, etc.
Further, as in this embodiment, if the entrance portion of the pocket portion 113 is slightly smaller than the diameter of the ball and is provided with a catch (pachin allowance), the ball 103 will not drop off when assembled into the inner ring 102 and the outer ring 101. Easy to assemble.

保持器の形状は、本実施形態に限定されず、各玉103間に配置するセパレータタイプの保持器の他、いずれの方式でもよい。また、材料も合成樹脂材ではなく、金属材料でもかまわない。
また、図16(b)は図16(a)と基本構造は同様な冠形保持器であるが、円環部111の少なくとも円周方向の一箇所で互いに隣り合うポケット部113間を予め切断して、各切断面間に所定のすき間を持たせた構造としている。
The shape of the cage is not limited to this embodiment, and any system other than the separator type cage disposed between the balls 103 may be used. Also, the material may be a metal material instead of a synthetic resin material.
16 (b) is a crown-shaped cage having the same basic structure as FIG. 16 (a), but the pocket portions 113 adjacent to each other at least at one place in the circumferential direction of the annular portion 111 are cut in advance. And it is set as the structure which gave the predetermined clearance gap between each cut surface.

このような構造を採用することで、保持器と内外輪との熱膨張係数差及び保持器の寸法精度や真円度のばらつきにより、転動体ピッチ円径と保持器のポケットピッチ円径がずれた場合でも、片持ち形状であることによる半径方向の柔軟性と、各切断面間のすき間による円周方向の弾力的変形(円周方向の柔軟性)を兼ね備えることとなるため、玉103とポケット部113間の突っ張り力を緩衝して、保持器の損傷や摩耗を防止すると共に、玉103とポケット部113内面とのすべり接触抵抗によるトルクむらや発熱をより軽減することができる。   By adopting such a structure, the rolling element pitch circle diameter deviates from the pocket pitch circle diameter of the cage due to differences in the thermal expansion coefficient between the cage and the inner and outer rings and variations in the dimensional accuracy and roundness of the cage. Even in this case, the ball 103 has both the flexibility in the radial direction due to the cantilever shape and the elastic deformation in the circumferential direction (the flexibility in the circumferential direction) due to the gaps between the cut surfaces. The tension force between the pocket portions 113 can be buffered to prevent the cage from being damaged or worn, and the torque unevenness and heat generation due to the sliding contact resistance between the balls 103 and the inner surfaces of the pocket portions 113 can be further reduced.

また、本発明の玉軸受は、構造上、使用玉径が小さくなるため、保持器の円環部111の半径方向の厚みは厚くできず(図12からも理解できるように、保持器は内輪外径と外輪内径との間の空隙部に適度なすき間を設けて位置決めさせる必要があり、この内輪外径と外輪内径との間の空隙部は玉径と略比例関係にあるので狭い)、更に、幅狭構造により、軸方向の間隙部も狭く、軸方向厚みも薄くせざるを得ない。   In addition, since the ball bearing of the present invention has a structurally small ball diameter, the radial direction thickness of the annular portion 111 of the cage cannot be increased (as can be understood from FIG. 12, the cage is an inner ring). It is necessary to position the gap between the outer diameter and the inner diameter of the outer ring by providing an appropriate gap, and the gap between the outer diameter of the inner ring and the inner diameter of the outer ring is substantially proportional to the ball diameter and is narrow) Furthermore, due to the narrow structure, the gap in the axial direction is narrow and the axial thickness is inevitably reduced.

このため、標準サイズの軸受より保持器の円環部が極めて小さく、真円度等の寸法精度を出しにくくなるので、円環部111を図16(b)のようにした保持器構造は、特に上述した保持器の損傷や摩耗防止効果及びトルクむらや発熱の軽減効果が得られる。
また、対象とする用途は、軸受のdmn値(dm:転がり軸受の転動体ピッチ円直径(mm)とn:回転速度(min-1)との積)がせいぜい20万〜30万以下の場合が多く、これらの用途に本発明を適用する場合、図16(b)のような保持器構造としても、遠心力による悪影響は発生しない。なお、必要に応じて、円環部111の切断箇所は円周方向で2カ所以上としても構わない。この場合、切断箇所は、可能な限り円周方向で等分とすることが望ましい。
For this reason, since the annular portion of the cage is extremely smaller than a standard size bearing and it is difficult to obtain dimensional accuracy such as roundness, the cage structure with the annular portion 111 as shown in FIG. In particular, the above-described cage damage and wear prevention effect and torque unevenness and heat generation reduction effect can be obtained.
Also, the intended application is when the dmn value of the bearing (dm: product of rolling element pitch circle diameter (mm) of rolling bearing and n: rotational speed (min -1 )) is 200,000 to 300,000 or less at most In many cases, when the present invention is applied to these uses, even if the cage structure as shown in FIG. If necessary, the circular portion 111 may have two or more cut portions in the circumferential direction. In this case, it is desirable that the cut portions are equally divided in the circumferential direction as much as possible.

次に、図17及び図18を参照して、本発明の第2の態様の実施の形態の一例である軸受ユニットを説明する。
本発明の第2の態様の実施の形態の一例である軸受ユニット30は、図17及び図18に示すように、転がり軸受が、外輪201の複列軌道溝201a,201bと内輪202の複列軌道溝202a,202bとの間に多数の玉203が転動自在に配設された複列総玉アンギュラ玉軸受200とされており、軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)が(B2/H2)<1.2とされ、玉ピッチ円直径が半径方向断面高さの中央に設定されている。
Next, with reference to FIG.17 and FIG.18, the bearing unit which is an example of embodiment of the 2nd aspect of this invention is demonstrated.
As shown in FIGS. 17 and 18, the bearing unit 30, which is an example of an embodiment of the second aspect of the present invention, has rolling bearings with double row raceway grooves 201 a and 201 b of the outer ring 201 and double rows of the inner ring 202. A double row full ball angular contact ball bearing 200 in which a large number of balls 203 are movably disposed between the raceway grooves 202a and 202b is provided. The axial sectional width B2 and the radial sectional height H2 (= ( The cross-sectional dimension ratio (B2 / H2) to the outer ring outer diameter D2—the inner ring inner diameter d2) / 2) is set to (B2 / H2) <1.2, and the ball pitch circle diameter is set at the center of the radial cross-sectional height. ing.

そして、この複列玉軸受200をハウジング18に挿入し、内輪202を内輪間座16a及び軸受ナット16bを介して軸17に固定すると共に、外輪押え15をハウジング18のフランジ部18a側から挿入して、外輪201を軸方向に押し付け固定し、軸受両端側のハウジング18内径部に外部からの異物や油の侵入を防止するためのオイルシール19を装着している。   The double-row ball bearing 200 is inserted into the housing 18, the inner ring 202 is fixed to the shaft 17 via the inner ring spacer 16 a and the bearing nut 16 b, and the outer ring presser 15 is inserted from the flange portion 18 a side of the housing 18. Thus, the outer ring 201 is pressed and fixed in the axial direction, and an oil seal 19 is attached to the inner diameter portion of the housing 18 at both ends of the bearing to prevent entry of foreign matter and oil from the outside.

また、ハウジング18のフランジ部18aと外輪押え15のフランジ部15aとの間には適正なすぎま(図示せず)を設けてあり、ボルト23を適正なトルクで締め込むことで軸受が変形することなく固定される。なお、軸受には予め予圧を設定してもよく、或いはすきま設定としてもよい。
ここで、この実施の形態では、複列玉軸受200とし、7208A(接触角30°)の2列組合せアンギュラ玉軸受から置き換えた場合を例に採る。
Further, an appropriate gap (not shown) is provided between the flange portion 18a of the housing 18 and the flange portion 15a of the outer ring retainer 15, and the bearing is deformed by tightening the bolt 23 with an appropriate torque. It is fixed without. Note that a preload may be set for the bearing in advance, or a clearance may be set.
Here, in this embodiment, the double-row ball bearing 200 is replaced with a double-row combination angular ball bearing of 7208A (contact angle 30 °).

7208Aは、内輪内径φ40mm、外輪外径φ80mm、軸方向断面幅(軸受単体幅):Bが18mmであるので、断面寸法比(B/H)=0.9である。したがって、本実施形態の軸受ユニット30に使用されるアンギュラ玉軸受200では、断面寸法比(B2/H2)=0.90(内輪外径及び外輪外径はそのままで、軸方向断面幅(軸受単体幅):B2を18mmとした)としている。   7208A has an inner ring inner diameter φ40 mm, an outer ring outer diameter φ80 mm, and an axial cross-sectional width (bearing single body width): B is 18 mm, so the cross-sectional dimension ratio (B / H) = 0.9. Therefore, in the angular ball bearing 200 used for the bearing unit 30 of the present embodiment, the cross-sectional dimension ratio (B2 / H2) = 0.90 (the inner ring outer diameter and the outer ring outer diameter remain the same, and the axial sectional width (the bearing unit) Width): B2 is 18 mm).

これにより、ラジアル荷重と両方向のアキシアル荷重及びモーメント荷重を受けることができるのは勿論のこと、軸方向寸法で1/2の省スペース化、低トルク化及び更なる高剛性化を図ることができ、更には、周辺構造設計の簡素化及び組込性の容易化を図ることができる。
もちろん、必要に応じて、上記断面寸法比(B2/H2)を0.90未満或いは0.90を超える(但し、(B2/H2)<1.2)ように設定してもよい。因みにアンギュラ玉軸受200の接触角は、例えば30°としている。
As a result, radial load, axial load in both directions, and moment load can be received, as well as 1/2 space saving in axial dimension, lower torque, and higher rigidity can be achieved. Furthermore, it is possible to simplify the peripheral structure design and facilitate the incorporation.
Of course, if necessary, the cross-sectional dimension ratio (B2 / H2) may be set to be less than 0.90 or more than 0.90 (however, (B2 / H2) <1.2). Incidentally, the contact angle of the angular ball bearing 200 is, for example, 30 °.

図19は、モーメント剛性を上げるため、複列総玉アンギュラ玉軸受200で玉ピッチ円直径を外径側にずらした例であり、図20は、複列総玉アンギュラ玉軸受200で各列の玉径や玉ピッチ円直径を変えた例であり、図21は、軸方向の両端部に環状シール体104を装着した複列総玉アンギュラ玉軸受200で、モーメント剛性を上げるため、玉ピッチ円直径を外径側にずらした例である。
なお、第2の態様の実施の形態のいずれの例の場合も、環状シール体、保持器等の構造や装着の有無の他、構造や軸受材料、潤滑方法等に関する適用例は、上記第1の態様の実施の形態で記載した単列玉軸受に準ずる。
FIG. 19 shows an example in which the ball pitch circle diameter is shifted to the outer diameter side in the double row full ball angular contact ball bearing 200 in order to increase the moment rigidity, and FIG. 20 shows each row in the double row full ball angular contact ball bearing 200. FIG. 21 shows an example in which the ball diameter and the ball pitch circle diameter are changed. FIG. 21 shows a ball pitch circle in order to increase the moment rigidity in the double-row all-ball angular ball bearing 200 in which the annular seal bodies 104 are mounted at both ends in the axial direction. This is an example in which the diameter is shifted to the outer diameter side.
In any case of the embodiment of the second aspect, in addition to the structure of the annular seal body, the cage, etc. and whether or not it is mounted, application examples relating to the structure, bearing material, lubrication method, etc. According to the single row ball bearing described in the embodiment of the aspect.

本発明の第1の態様の実施の形態の一例である軸受ユニットを説明するための一部を破断した図である。It is the figure which fractured | ruptured one part for demonstrating the bearing unit which is an example of embodiment of the 1st aspect of this invention. 図1の左側面図である。It is a left view of FIG. フランジ部の変形例である。It is a modification of a flange part. 図1の軸受ユニットに組み込まれる単列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the single row ball bearing integrated in the bearing unit of FIG. 図4の単列玉軸受を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 4 with 2 rows. 単列玉軸受の変形例を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the 2nd modification of the single row ball bearing. 単列玉軸受の変形例と図4の単列玉軸受とを2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the modification of the single row ball bearing, and the single row ball bearing of FIG. 単列玉軸受の変形例を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the 2nd modification of the single row ball bearing. 単列玉軸受の変形例を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the modification of a single row ball bearing. 図4の単列玉軸受を3列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 4 with 3 rows. 図4の単列玉軸受を4列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 4 with 4 rows. 単列玉軸受の変形例を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the 2nd modification of the single row ball bearing. 保持器の径方向に沿う断面図である。It is sectional drawing in alignment with the radial direction of a holder | retainer. 保持器を径方向内側から見た部分斜視図である。It is the fragmentary perspective view which looked at the holder | retainer from radial direction inner side. 図13の矢印B方向から見た図である。It is the figure seen from the arrow B direction of FIG. (a)は図13の矢印A方向から見た図、(b)は(a)の変形例を示す図である。(A) is the figure seen from the arrow A direction of FIG. 13, (b) is a figure which shows the modification of (a). 本発明の第2の態様の実施の形態の一例である軸受ユニットを説明するための一部を破断した図である。It is the figure which fractured | ruptured part for demonstrating the bearing unit which is an example of embodiment of the 2nd aspect of this invention. 図17の軸受ユニットに組み込まれる複列玉軸受の要部断面図である。It is principal part sectional drawing of the double row ball bearing integrated in the bearing unit of FIG. 複列玉軸受の変形例を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the modification of a double row ball bearing. 複列玉軸受の変形例を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the modification of a double row ball bearing. 複列玉軸受の変形例を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the modification of a double row ball bearing. 請求項1に係る発明の軸受ユニットを説明するための一部を破断した図である。It is the figure which fractured | ruptured one part for demonstrating the bearing unit of the invention which concerns on Claim 1. FIG. 内輪の半径方向の変形量を説明するための説明図である。It is explanatory drawing for demonstrating the deformation amount of the radial direction of an inner ring | wheel. 内輪の断面2次モーメントの計算方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of the cross-sectional secondary moment of an inner ring | wheel. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner and outer ring | wheels of a radial direction. 断面寸法比(B/H)と断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and a cross-sectional secondary moment I. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner and outer ring | wheels of a radial direction. 断面寸法比(B/H)と断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and a cross-sectional secondary moment I. 各種軸受での計算モーメント剛性の比較を示すグラフ図である。It is a graph which shows the comparison of the calculated moment rigidity in various bearings. クロスローラ軸受の要部断面図である。It is principal part sectional drawing of a cross-roller bearing. 4点接触玉軸受の要部断面図である。It is principal part sectional drawing of a 4-point contact ball bearing. 従来の2列組合せアンギュラ玉軸受の要部断面図である。It is principal part sectional drawing of the conventional 2 row combination angular contact ball bearing. 従来の極薄肉断面の2列組合せアンギュラ玉軸受の要部断面図である。It is principal part sectional drawing of the conventional 2 row combination angular contact ball bearing of an ultra-thin wall section. 従来の軸受ユニットを説明するための一部を破断した図である。It is the figure which fractured | ruptured one part for demonstrating the conventional bearing unit. 従来の極薄肉断面の2列組合せアンギュラ玉軸受を軸に取り付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the conventional 2 rows combination angular contact ball bearing of the ultra-thin wall section to the axis | shaft.

符号の説明Explanation of symbols

15 外輪押え
17 軸
18 ハウジング
20,30 軸受ユニット
100 単列玉軸受(転がり軸受)
101 外輪
102 内輪
104 環状シール体
200 複列玉軸受(転がり軸受)
201 外輪
202 内輪
15 Outer ring presser 17 Shaft 18 Housing 20, 30 Bearing unit 100 Single row ball bearing (rolling bearing)
101 outer ring 102 inner ring 104 annular seal body 200 double row ball bearing (rolling bearing)
201 outer ring 202 inner ring

Claims (3)

転がり軸受と、該転がり軸受を介して軸の端部を支持するハウジングと、該ハウジングに前記転がり軸受を押し付け固定する外輪押えとを備えた軸受ユニットであって、
前記転がり軸受が、軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が(B/H)<0.63とされた単列玉軸受であることを特徴とする軸受ユニット。
A bearing unit comprising: a rolling bearing; a housing that supports an end of the shaft via the rolling bearing; and an outer ring presser that presses and fixes the rolling bearing to the housing.
The rolling bearing is a single row ball bearing in which a sectional dimension ratio (B / H) between an axial sectional width B and a radial sectional height H is (B / H) <0.63. Bearing unit.
転がり軸受と、該転がり軸受を介して軸の端部を支持するハウジングと、該ハウジングに前記転がり軸受を押し付け固定する外輪押えとを備えた軸受ユニットであって、
前記転がり軸受が、軸方向断面幅B2と半径方向断面高さH2との断面寸法比(B2/H2)が(B2/H2)<1.2とされた複列玉軸受であることを特徴とする軸受ユニット。
A bearing unit comprising: a rolling bearing; a housing that supports an end of the shaft via the rolling bearing; and an outer ring presser that presses and fixes the rolling bearing to the housing.
The rolling bearing is a double row ball bearing in which a cross-sectional dimension ratio (B2 / H2) between an axial cross-sectional width B2 and a radial cross-sectional height H2 is (B2 / H2) <1.2. Bearing unit.
前記転がり軸受の外輪及び内輪の少なくとも一方の軸方向端部に環状シール体を設けたことを特徴とする請求項1又は2に記載した軸受ユニット。   The bearing unit according to claim 1, wherein an annular seal body is provided at at least one axial end of the outer ring and the inner ring of the rolling bearing.
JP2004287777A 2004-09-30 2004-09-30 Bearing unit Pending JP2006097872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287777A JP2006097872A (en) 2004-09-30 2004-09-30 Bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287777A JP2006097872A (en) 2004-09-30 2004-09-30 Bearing unit

Publications (1)

Publication Number Publication Date
JP2006097872A true JP2006097872A (en) 2006-04-13

Family

ID=36237878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287777A Pending JP2006097872A (en) 2004-09-30 2004-09-30 Bearing unit

Country Status (1)

Country Link
JP (1) JP2006097872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128448A (en) * 2006-11-24 2008-06-05 Ntn Corp Tandem double-row angular ball bearing
JP2008169998A (en) * 2006-09-13 2008-07-24 Nsk Ltd Duplex ball bearing and double-row ball bearing
JP2011141038A (en) * 2011-03-22 2011-07-21 Nsk Ltd Ball bearing and robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169998A (en) * 2006-09-13 2008-07-24 Nsk Ltd Duplex ball bearing and double-row ball bearing
JP2008128448A (en) * 2006-11-24 2008-06-05 Ntn Corp Tandem double-row angular ball bearing
JP4680169B2 (en) * 2006-11-24 2011-05-11 Ntn株式会社 Tandem type double row angular contact ball bearing
JP2011141038A (en) * 2011-03-22 2011-07-21 Nsk Ltd Ball bearing and robot

Similar Documents

Publication Publication Date Title
KR101057311B1 (en) Ball bearing for spindle turning of machine tool and spindle spindle of machine tool using same
US20040146231A1 (en) Angular contact ball bearing and spindle device
US9151324B2 (en) Double-row angular ball bearing
JP3207410U (en) Rolling bearing
JP2006329420A (en) Bearing device for robot arm joint part, and ball bearing
JP2006105384A (en) Double row ball bearing
JP4743176B2 (en) Combination ball bearings and double row ball bearings
JP5092383B2 (en) Ball bearing for machine tool main spindle
JP5187279B2 (en) Rolling bearing
JP2011153683A (en) Angular ball bearing
JP4715961B2 (en) Rotary table device for machine tools
JP5233199B2 (en) Angular contact ball bearings
JP2006046380A (en) Ball bearing
JP2011247358A (en) Duplex ball bearing and double-row ball bearing
JP2006097872A (en) Bearing unit
JP5034962B2 (en) Rolling bearing
JP2006153094A (en) Ball bearing and rotary table device for machine tool using ball bearing
JP2014219101A (en) Angular ball bearing
JP2005239258A (en) Cap attaching jig and ball bearing used for the jig
JP2006105385A (en) Ball bearing
JP2006170335A (en) Ball bearing for ct scanner device and ct scanner device
JP2011226614A (en) Rolling bearing
JP2006211863A (en) Direct drive motor and bearing therefor
JP5397508B2 (en) Ball bearing for machine tool main spindle
JP3200125U (en) Angular contact ball bearings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630