JP2006211863A - Direct drive motor and bearing therefor - Google Patents

Direct drive motor and bearing therefor Download PDF

Info

Publication number
JP2006211863A
JP2006211863A JP2005023490A JP2005023490A JP2006211863A JP 2006211863 A JP2006211863 A JP 2006211863A JP 2005023490 A JP2005023490 A JP 2005023490A JP 2005023490 A JP2005023490 A JP 2005023490A JP 2006211863 A JP2006211863 A JP 2006211863A
Authority
JP
Japan
Prior art keywords
bearing
inner ring
direct drive
drive motor
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005023490A
Other languages
Japanese (ja)
Inventor
Yoshiaki Katsuno
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005023490A priority Critical patent/JP2006211863A/en
Publication of JP2006211863A publication Critical patent/JP2006211863A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/50Other types of ball or roller bearings
    • F16C19/505Other types of ball or roller bearings with the diameter of the rolling elements of one row differing from the diameter of those of another row
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direct drive motor capable of receiving radial load and moment load, receiving axial load in both directions, achieving reduction in space in the axial direction, reduction in torque, increase in speed, high rotation accuracy (low vibration), and high rigidity; and to provide a bearing for the direct drive motor. <P>SOLUTION: In a single row or a double row ball bearing, a rolling bearing supporting a rotor in a rolling-free state with respect to the stator of the direct drive motor includes an inner ring 102, an outer ring 101 arranged around the outer periphery of the inner ring 102, and a plurality of balls 103 freely rotatably assembled between the inner ring 102 and the outer ring 101. A sectioned dimension ratio (B/H) between an axially sectioned width B and a radially sectioned height H is set to be less than 0.63 (B/H<0.63) in case of a single row, and is set to be less than 1.2 (B2/H2<1.2) in case of a double row. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、減速機を介さずに負荷を直接的に駆動するダイレクトドライブモータに関する。また、本発明はダイレクトドライブモータの回転子を同モータの固定子に対して回転自在に支持するダイレクトドライブモータ用軸受に関する。   The present invention relates to a direct drive motor that directly drives a load without using a reduction gear. The present invention also relates to a direct drive motor bearing that rotatably supports a rotor of a direct drive motor with respect to a stator of the motor.

図30に、従来のダイレクトドライブモータの一例を示す。同図において、符号10はダイレクトドライブモータを示し、このダイレクトドライブモータ10は、固定子(ステータ)11及び回転子(ロータ)12を備えている。上記固定子11は円筒状に形成されたステータコア11aを有しており、このステータコア11aにはステータコイル11bが巻装されている。一方、回転子12はステータコア11aの外周に配置された円筒状のロータコア12aを有しており、ロータコア12aの内周面にはロータマグネット12bが取り付けられている。このロータマグネット12bは固定子11のステータコイル11bと対向しており、従って、固定子11のステータコイル11bに励磁電流が通電されると、ステータコイル11bとロータマグネット12bとの間に発生した回転力により回転子12が回転するようになっている。   FIG. 30 shows an example of a conventional direct drive motor. In the figure, reference numeral 10 denotes a direct drive motor. The direct drive motor 10 includes a stator (stator) 11 and a rotor (rotor) 12. The stator 11 has a stator core 11a formed in a cylindrical shape, and a stator coil 11b is wound around the stator core 11a. On the other hand, the rotor 12 has a cylindrical rotor core 12a disposed on the outer periphery of the stator core 11a, and a rotor magnet 12b is attached to the inner peripheral surface of the rotor core 12a. The rotor magnet 12b faces the stator coil 11b of the stator 11. Therefore, when an excitation current is applied to the stator coil 11b of the stator 11, the rotation generated between the stator coil 11b and the rotor magnet 12b. The rotor 12 is rotated by the force.

ダイレクトドライブモータ10は、また、固定子11に対して回転子12を回転自在に支持する転がり軸受13(この場合はクロスローラ軸受を示している)を備えている。この転がり軸受13は固定子11のステータコア11aに固定された内側軌道輪(以下「内輪」という)13aと、内輪13aの外周に配置された外側軌道輪(以下「外輪」という)13bと、内輪13aと外輪13bとの間に転動自在に組み込まれた複数の転動体13cとからなり、外輪13bは回転子12のロータコア12aに固定されている。なお、回転子12のロータコア12aにはパルサーリング14が取り付けられており、このパルサーリング14の凹凸を位置検出器15で検出することによって、回転子12の回転速度等が図示しない制御器により制御されるようになっている。   The direct drive motor 10 also includes a rolling bearing 13 (in this case, a cross roller bearing is shown) that rotatably supports the rotor 12 with respect to the stator 11. The rolling bearing 13 includes an inner race ring (hereinafter referred to as “inner ring”) 13 a fixed to the stator core 11 a of the stator 11, an outer race ring (hereinafter referred to as “outer ring”) 13 b disposed on the outer periphery of the inner ring 13 a, and an inner ring. The outer ring 13 b is fixed to the rotor core 12 a of the rotor 12, and includes a plurality of rolling elements 13 c that are rotatably incorporated between the outer ring 13 b and the outer ring 13 b. A pulsar ring 14 is attached to the rotor core 12a of the rotor 12, and the rotational speed of the rotor 12 is controlled by a controller (not shown) by detecting the unevenness of the pulsar ring 14 with a position detector 15. It has come to be.

ところで、このようなダイレクトドライブモータの回転子を固定子に対して回転自在に支持する転がり軸受に要求される機能としては、高回転精度であること、高剛性(特に、高モーメント剛性)であること、モータ構造を簡素化でき且つ省スペース化を図れること等が挙げられる。そのため、従来のダイレクトドライブモータでは、回転子を固定子に対して回転自在に支持する転がり軸受(以下「回転子支持用軸受」と称す)として、例えば特許文献1あるいは特許文献2に示されるようなクロスローラ軸受を用いている場合が多い。   By the way, as a function required for the rolling bearing which supports the rotor of such a direct drive motor rotatably with respect to the stator, it has high rotational accuracy and high rigidity (particularly, high moment rigidity). In addition, the motor structure can be simplified and space can be saved. Therefore, in a conventional direct drive motor, as a rolling bearing (hereinafter referred to as “rotor support bearing”) that rotatably supports a rotor with respect to a stator, for example, as shown in Patent Document 1 or Patent Document 2 Often, cross roller bearings are used.

クロスローラ軸受は、図27に示すように、内輪1と外輪2との間に組み込まれる転動体3として円筒状のころを用いているため、一つの転がり軸受でラジアル荷重と両方向のアキシアル荷重及びモーメント荷重を受けることができ、しかも省スペース化を図ることが可能である。しかし、内輪1及び外輪2の軌道溝1a,2aに対して転動体(ころ)3の転がり接触面が線接触となるため、転動体として玉を用いた玉軸受に比べ、軌道輪を回転させるのに比較的大きなトルクを要する。このため、軌道輪の回転性能が低く、軌道輪ところとの接触部に摩擦熱も発生し易いため、高速回転が要求される用途で使用するには困難である。さらに、軸やハウジングに組み込んだ際の微小な変形により、線接触部分の接触状態が不安定となり、その結果、トルクむら(トルク変動)が発生し易くなるなどの問題点もある。   As shown in FIG. 27, the cross roller bearing uses a cylindrical roller as the rolling element 3 incorporated between the inner ring 1 and the outer ring 2, so that the radial load and the axial load in both directions and It can receive moment load and can save space. However, since the rolling contact surface of the rolling element (roller) 3 is in line contact with the raceway grooves 1a and 2a of the inner ring 1 and the outer ring 2, the bearing ring is rotated as compared with a ball bearing using a ball as the rolling element. However, a relatively large torque is required. For this reason, since the rotation performance of the raceway is low, and frictional heat is likely to be generated at the contact portion with the raceway, it is difficult to use in applications where high-speed rotation is required. Further, there is a problem that the contact state of the line contact portion becomes unstable due to minute deformation when the shaft or the housing is incorporated, and as a result, torque unevenness (torque fluctuation) is likely to occur.

また、クロスローラ軸受をダイレクトドライブモータの回転子支持用軸受として使用する場合、高剛性化や高精度化(精密な回転振れ精度)を実現するために、軸受に予圧を付与することが多い。しかし、クロスローラ軸受に予圧を付与すると、軌道輪の回転性能や発熱性、トルク変動等がさらに低下する。そこで、例えば特許文献3あるいは特許文献4に示されるようなアンギュラ玉軸受を二列に組み合わせた二列組合せアンギュラ玉軸受(図28参照)や極薄肉のアンギュラ玉軸受または深溝玉軸受を二列に組み合わせたもの(図29参照)を、ダイレクトドライブモータの回転子支持用軸受として使用することが検討されている。
実公平1−44806号公報 特開昭63−213457号公報 実開平5−66327号公報 特開2003−278765号公報
In addition, when a cross roller bearing is used as a rotor support bearing for a direct drive motor, a preload is often applied to the bearing in order to achieve high rigidity and high accuracy (precision rotational runout accuracy). However, when a preload is applied to the cross roller bearing, the rotational performance, heat generation, torque fluctuation and the like of the raceway are further reduced. Therefore, for example, double row angular contact ball bearings (see FIG. 28) in which angular ball bearings as shown in Patent Document 3 or Patent Document 4 are combined in two rows, ultrathin angular ball bearings or deep groove ball bearings in two rows. It has been studied to use a combination (see FIG. 29) as a bearing for supporting a rotor of a direct drive motor.
Japanese Utility Model Publication No. 1-444806 JP 63-213457 A Japanese Utility Model Publication No. 5-66327 JP 2003-278765 A

しかしながら、二列組合せアンギュラ玉軸受をダイレクトドライブモータの回転子支持用軸受として用いると、軌道輪の回転性能や発熱性、トルク変動等を改善できるものの、単列の玉軸受に比べ、約2倍の軸方向スペースを必要とし、省スペース化に寄与しないという問題点がある。一方、図29に示されるような極薄肉の組合せ軸受をダイレクトドライブモータの回転子支持用軸受として用いると、省スペース化の点では有利であるが、内輪7及び外輪8のリング肉厚が非常に薄いため、所望の加工精度(特に、真円度)が得られ難い。また、内輪7及び外輪8の剛性も低いため、軸やハウジングに組み込んだ際(特に、すき間嵌合で組み込んだ際)に、軸受締込みナットや外輪押え等の周辺部品の押し付け力により容易に変形することがあり、組み込み精度の確保に手間を要するなどの問題もある。さらに、場合によっては組み込み時の変形により内輪7及び外輪8の軌道溝に歪みが生じ、内輪7及び外輪8の軌道溝と玉9との接触部に偏荷重が加わったり、玉9の円滑な転がり運動が阻害されることがある。   However, using double-row combination angular contact ball bearings as bearings for direct drive motor rotors can improve the rotational performance, heat generation, torque fluctuation, etc. of the bearing ring, but approximately twice that of single-row ball bearings. This requires a space in the axial direction and does not contribute to space saving. On the other hand, if an ultra-thin combined bearing as shown in FIG. 29 is used as a bearing for supporting a rotor of a direct drive motor, it is advantageous in terms of space saving, but the ring thickness of the inner ring 7 and the outer ring 8 is very large. Therefore, it is difficult to obtain desired processing accuracy (particularly roundness). In addition, the rigidity of the inner ring 7 and outer ring 8 is also low, so it is easy to press with peripheral parts such as bearing tightening nuts and outer ring pressers when assembled into a shaft or housing (especially when assembled with clearance fitting). There is also a problem that it may be deformed and it takes time and effort to ensure the accuracy of incorporation. Further, depending on the case, the deformation at the time of incorporation may cause distortion in the raceway grooves of the inner ring 7 and the outer ring 8, and an uneven load may be applied to the contact portion between the raceway grooves of the inner ring 7 and the outer ring 8 and the ball 9, Rolling movement may be inhibited.

本発明は、このような問題点に鑑みてなされたものであり、ラジアル荷重と両方向のアキシアル荷重及びモーメント荷重を受けることができると共に、軸方向の省スペース化、低トルク化、高速化、高回転精度(低振動)化、高剛性化を図ることのできるダイレクトドライブモータ及びダイレクトドライブモータ用軸受を提供することを目的とするものである。   The present invention has been made in view of such problems, and can receive radial load, axial load in both directions and moment load, and can save space in the axial direction, reduce torque, increase speed, An object of the present invention is to provide a direct drive motor and a bearing for the direct drive motor that can achieve high rotational accuracy (low vibration) and high rigidity.

上記の目的を達成するために、請求項1の発明に係るダイレクトドライブモータは、回転子と、該回転子の内側または外側に配置された固定子と、該固定子に対して前記回転子を回転自在に支持する転がり軸受とを備え、減速機を介さずに負荷を直接的に駆動するダイレクトドライブモータにおいて、前記転がり軸受が、内輪と、該内輪の外周に配置された外輪と、前記内輪と前記外輪との間に転動自在に組み込まれた複数の玉とを含む単列の玉軸受であって、その軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が(B/H)<0.63であることを特徴とする。   In order to achieve the above object, a direct drive motor according to the invention of claim 1 includes a rotor, a stator arranged inside or outside the rotor, and the rotor with respect to the stator. In a direct drive motor that includes a rolling bearing that is rotatably supported, and that directly drives a load without using a reduction gear, the rolling bearing includes an inner ring, an outer ring disposed on an outer periphery of the inner ring, and the inner ring. And a plurality of balls rotatably incorporated between the outer ring and the outer ring, and a cross-sectional dimension ratio (B / H) is (B / H) <0.63.

請求項2の発明に係るダイレクトドライブモータ用軸受は、内輪と、該内輪の外周に配置された外輪と、前記内輪と前記外輪との間に転動自在に組み込まれた複数の玉とを有する単列の玉軸受からなり、減速機を介さずに負荷を直接的に駆動するダイレクトドライブモータの回転子を回転自在に支持するダイレクトドライブモータ用軸受であって、前記玉軸受の軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が(B/H)<0.63であることを特徴とする。   A direct drive motor bearing according to a second aspect of the present invention includes an inner ring, an outer ring disposed on an outer periphery of the inner ring, and a plurality of balls that are rotatably incorporated between the inner ring and the outer ring. A direct drive motor bearing comprising a single-row ball bearing and rotatably supporting a rotor of a direct drive motor that directly drives a load without using a speed reducer, the axial cross-sectional width of the ball bearing The cross-sectional dimension ratio (B / H) between B and the radial cross-sectional height H is (B / H) <0.63.

請求項3の発明に係るダイレクトドライブモータは、回転子と、該回転子の内側または外側に配置された固定子と、該固定子に対して前記回転子を回転自在に支持する転がり軸受とを備え、減速機を介さずに負荷を直接的に駆動するダイレクトドライブモータにおいて、前記転がり軸受が、内輪と、該内輪の外周に配置された外輪と、前記内輪と前記外輪との間に転動自在に組み込まれた複数の玉とを含む複列玉軸受であって、その軸方向断面幅B2と半径方向断面高さH2との断面寸法比(B2/H2)が(B2/H2)<1.2であることを特徴とする。   According to a third aspect of the present invention, there is provided a direct drive motor comprising: a rotor; a stator disposed inside or outside the rotor; and a rolling bearing that rotatably supports the rotor with respect to the stator. In the direct drive motor that directly drives a load without using a reduction gear, the rolling bearing is configured to roll between an inner ring, an outer ring disposed on an outer periphery of the inner ring, and the inner ring and the outer ring. A double-row ball bearing including a plurality of freely incorporated balls, the cross-sectional dimension ratio (B2 / H2) between the axial cross-sectional width B2 and the radial cross-sectional height H2 is (B2 / H2) <1 .2.

請求項4の発明に係るダイレクトドライブモータ用軸受は、内輪と、該内輪の外周に配置された外輪と、前記内輪と前記外輪との間に転動自在に組み込まれた複数の玉とを有する複列玉軸受からなり、減速機を介さずに負荷を直接的に駆動するダイレクトドライブモータの回転子を回転自在に支持するダイレクトドライブモータ用軸受であって、前記複列玉軸受の軸方向断面幅B2と半径方向断面高さH2との断面寸法比(B2/H2)が(B2/H2)<1.2であることを特徴とする。   A direct drive motor bearing according to a fourth aspect of the present invention includes an inner ring, an outer ring disposed on an outer periphery of the inner ring, and a plurality of balls that are rotatably incorporated between the inner ring and the outer ring. A bearing for a direct drive motor comprising a double row ball bearing and rotatably supporting a rotor of a direct drive motor that directly drives a load without using a speed reducer, the axial section of the double row ball bearing The cross-sectional dimension ratio (B2 / H2) between the width B2 and the radial cross-sectional height H2 is (B2 / H2) <1.2.

請求項1及び2に係る発明について説明する。
ここで、図22及び図23は、それぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ38.1mm、軸受外径:φ47.625mm、軸受幅:4.762mm、前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに軸受内径を変化させた場合(即ち、(B/H)の値を変化させた場合)における内外軌道輪の半径方向の変形特性(図20参照:この場合は内輪を例示)と内外軌道輪の半径方向の断面二次モーメントI(図21参照:I=bh/12で計算)とを比較した結果を示している。
The invention according to claims 1 and 2 will be described.
Here, FIG. 22 and FIG. 23 show the standard thin ball bearings (bearing inner diameter: φ38.1 mm, bearing outer diameter: φ47.625 mm, bearing width: 4.762 mm, cross-sectional dimension ratio ( B / H) = 1) as a reference, the radius of the inner and outer races when the bearing inner diameter is changed without changing the bearing outer diameter and the bearing width (that is, when the value of (B / H) is changed). direction of deformation characteristics (refer to FIG. 20: this illustrates the inner ring in this case) and the radial moment of inertia of area I of the inner and outer raceway: indicates (see FIG. 21 I = bh for a 3/12) and result of comparison ing.

また、図24及び図25は、それぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ63.5mm、軸受外径:φ76.2mm、軸受幅:6.35mm、前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに軸受内径を変化させた場合(即ち、(B/H)の値を変化させた場合)における内外軌道輪の半径方向の変形特性と内外軌道輪の半径方向の断面二次モーメントIとを比較した結果を示している。   FIGS. 24 and 25 show ultra-thin ball bearings that are used as standard (bearing inner diameter: φ63.5 mm, bearing outer diameter: φ76.2 mm, bearing width: 6.35 mm, cross-sectional dimension ratio (B / H) = 1) as a reference, the radial direction of the inner and outer races when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width (that is, when the value of (B / H) is changed) 3 shows a result of comparison between the deformation characteristics of the inner ring and the secondary moment I in the radial direction of the inner and outer races.

いずれの軸受も(B/H)=0.63未満で、剛性の増加率勾配の変化が顕著に出ている。すなわち、断面二次モーメントIの増加は顕著になり、軌道輪の半径方向の変形量の減少は飽和状態となる。
従って、本発明では、従来の極薄肉軸受で問題となる軌道輪製作時の旋盤加工や研磨加工時の加工力による軌道輪の変形を防止することができ、真円度や偏肉等の軸受精度を向上させることができる。
In any of the bearings, (B / H) = 0.63, and the change in the rigidity increase rate gradient is noticeable. That is, the increase in the cross-sectional secondary moment I becomes remarkable, and the decrease in the amount of deformation in the radial direction of the raceway ring becomes saturated.
Therefore, in the present invention, it is possible to prevent the raceway ring from being deformed due to the lathe processing during the production of the raceway or the grinding force during the grinding process, which is a problem with the conventional ultra-thin bearing, and the bearing with roundness, uneven thickness, etc. Accuracy can be improved.

また、軸やハウジングに組み込んだ場合(特に、軸やハウジングとすき間嵌合で組み込んだ場合)、軸受締込みナットや外輪押え等で軸受を固定した時の軌道輪の変形(特に真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転精度不良、あるいは、発熱増大、摩耗や焼付き等の不具合を防止することができる。
つまり、従来使用されている極薄肉玉軸受に比較して、省スペース化と同時に高精度化を両立させることが可能である。また、各玉が軌道輪の軌道溝に対して常に二点で点接触するため、クロスローラ軸受のように、ころの転がり接触面が軌道溝に対して線接触するなどに起因するトルク増加やトルクむらの問題がなく、低発熱であり、摩耗の防止を実現することができる。
In addition, when incorporated in a shaft or housing (especially when assembled by clearance fitting with the shaft or housing), deformation of the bearing ring when the bearing is fixed with a bearing tightening nut or outer ring presser (especially roundness) (Deterioration) can be suppressed, and defects such as torque failure and rotation accuracy caused by deformation, increased heat generation, wear and seizure can be prevented.
That is, as compared with the conventionally used ultra-thin ball bearings, it is possible to achieve both space saving and high accuracy. In addition, since each ball always makes point contact with the raceway groove of the raceway at two points, torque increase due to the rolling contact surface of the roller making linear contact with the raceway groove like a cross roller bearing, etc. There is no problem of torque unevenness, low heat generation, and prevention of wear can be realized.

さらに、幅寸法が従来の標準単列玉軸受の約半分になることで、玉径も従来の玉軸受の半分程度になるが、逆に一列当たりの玉数が増加し、軸受剛性は従来の玉軸受よりも増大する。また、ダイレクトドライブモータ用においては、他の用途に比べ回転速度が低いので、今後の高速化傾向を考慮しても玉径を小さくしたことによる軸受の負荷容量の低下で、転がり疲れ寿命時間が実用上で問題となることはない。   Furthermore, when the width dimension is about half that of the conventional standard single row ball bearing, the ball diameter is also about half that of the conventional ball bearing, but conversely the number of balls per row increases, and the bearing rigidity is More than ball bearings. For direct drive motors, the rotational speed is lower than in other applications, so rolling fatigue life time is reduced due to a decrease in the bearing load capacity due to the reduced ball diameter, even in consideration of future high-speed trends. There is no problem in practical use.

なお、玉軸受が単列の場合は軸受に予圧を付与したりモーメント荷重を負荷したりすることが困難であるが、二列以上の複列の場合にはラジアル荷重、アキシアル荷重、モーメント荷重等を軸受に負荷することが可能である。
一方、国際標準化機構(ISO)で規定されている寸法系列が18(例えば6800)、19(例えば6901)、10(例えば6003)、02(例えば7205A)、03(例えば7307A)の標準玉軸受では、軸受内径寸法がφ5mm〜φ500mmにおいては、上述の断面寸法比(B/H)は0.63〜1.17に設定されている。
If the ball bearing is a single row, it is difficult to apply a preload to the bearing or apply a moment load. However, if the ball bearing is a double row or more, a radial load, an axial load, a moment load, etc. Can be loaded onto the bearing.
On the other hand, in the standard ball bearings whose dimension series defined by the International Organization for Standardization (ISO) are 18 (for example, 6800), 19 (for example, 6901), 10 (for example, 6003), 02 (for example, 7205A), 03 (for example, 7307A) When the inner diameter of the bearing is φ5 mm to φ500 mm, the cross-sectional dimension ratio (B / H) is set to 0.63 to 1.17.

したがって、これらの玉軸受の断面寸法比(B/H)の最大値1.17の約1/2倍、すなわち、0.63未満に設定することで、従来の標準単列玉軸受で最も幅狭の玉軸受より幅狭で、且つ従来の標準単列玉軸受の軸方向幅スペース以内に、請求項1及び2に記載の単列の玉軸受を二列組合せで配置することができる。
例えば、従来の玉軸受の断面寸法比(B/H)が(B/H)=0.9であれば、本発明の軸受の断面寸法比(B/H)を(B/H)=0.45とすればよい。また、組み合わせる二個の玉軸受の断面寸法比(B/H)を同一にする必要はなく、例えば片方を0.50、もう一方を0.40としてもよい。
Therefore, the width of the conventional standard single-row ball bearing is the largest in width by setting it to about 1/2 times the maximum value 1.17 of the sectional dimension ratio (B / H) of these ball bearings, that is, less than 0.63. The single-row ball bearings according to claim 1 and 2 can be arranged in a combination of two rows within a narrower width than a narrow ball bearing and within an axial width space of a conventional standard single-row ball bearing.
For example, if the sectional dimension ratio (B / H) of a conventional ball bearing is (B / H) = 0.9, the sectional dimension ratio (B / H) of the bearing of the present invention is (B / H) = 0. .45. Moreover, it is not necessary for the two ball bearings to be combined to have the same cross-sectional dimension ratio (B / H). For example, one of the ball bearings may be 0.50 and the other may be 0.40.

また、請求項3及び4に係る発明について、その作用を説明すると、例えば図16に示すように、外輪201の複列軌道溝201a,201bと内輪202の複列軌道溝202a,202bとの間に多数の玉203が転動自在に配設された複列の玉軸受200において、軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)を(B2/H2)<1.2としている。   Further, the operation of the invention according to claims 3 and 4 will be described. For example, as shown in FIG. 16, between the double row raceway grooves 201a and 201b of the outer ring 201 and the double row raceway grooves 202a and 202b of the inner ring 202, In the double-row ball bearing 200 in which a large number of balls 203 are rotatably arranged, an axial sectional width B2 and a radial sectional height H2 (= (outer ring outer diameter D2-inner ring inner diameter d2) / 2) and The cross-sectional dimension ratio (B2 / H2) is (B2 / H2) <1.2.

複列玉軸受において、断面寸法比(B2/H2)を以上のような設定とすることで、請求項1記載の単列の幅狭玉軸受を二列組合せとした場合と同様、従来の標準単列玉軸受の軸方向幅スペース内に請求項3記載の複列玉軸受を配置することが可能となり、また、予圧をかけたり、モーメント荷重を負荷したりすることも可能となる。その他の作用効果は請求項1記載の単列の幅狭玉軸受を二列組合せにした場合と同様である。   In the double row ball bearing, by setting the cross-sectional dimension ratio (B2 / H2) as described above, the conventional standard is the same as when the single row narrow ball bearing according to claim 1 is combined in two rows. The double-row ball bearing according to claim 3 can be disposed in the axial width space of the single-row ball bearing, and it is also possible to apply a preload or to apply a moment load. Other functions and effects are the same as those obtained when the single-row narrow ball bearing according to claim 1 is combined in two rows.

図26は、各種軸受の計算モーメント剛性の比較である。同一サイズ(計算例は、軸受名番7906A(接触角30°)相当で、内外径寸法が同じ場合:内輪内径φ30mm、外輪外径φ47mm)では、請求項1記載の単列の幅狭アンギュラ玉軸受(接触角30°:総玉軸受の計算例)を二列組合せ、且つ軌道輪の軌道溝曲率半径を変化させた本発明例A〜Eは、いずれも標準二列組合せアンギュラ玉軸受及びクロスローラ軸受に比べてモーメント剛性が大きくなっている。例えば、本発明例Bは、標準二列組合せアンギュラ玉軸受の1.9倍、クロスローラ軸受の2.4倍のモーメント剛性を保持させることが可能である。   FIG. 26 is a comparison of calculated moment stiffness of various bearings. The single-row narrow angular contact ball according to claim 1 having the same size (calculation example is equivalent to bearing name No. 7906A (contact angle 30 °) and the inner and outer diameters are the same: inner ring inner diameter φ30 mm, outer ring outer diameter φ47 mm). The present invention examples A to E in which the bearings (contact angle 30 °: calculation example of the total ball bearing) are combined in two rows and the raceway groove radius of the race is changed are all standard double row angular contact ball bearings and crosses Moment rigidity is larger than that of roller bearings. For example, the present invention example B can maintain a moment rigidity of 1.9 times that of a standard two-row angular contact ball bearing and 2.4 times that of a cross roller bearing.

なお、それぞれの設計予圧すき間は、本発明例A〜E、標準二列組合せアンギュラ玉軸受は−0.010mm、クロスローラ軸受は−0.001mmと実用上の標準的な値として計算している(クロスローラ軸受で−0.001mmより小さい予圧設計をした場合、軸受トルクが過大となり、実用上使用不可となる場合がある)。
なお、本発明に係る幅狭玉軸受の適正な玉径は、シール等の装着有無により変化するが、剛性を増加させるため、極端に玉径を小さくすると、玉と軌道輪の軌道溝との接触部間の面圧が増加し、耐圧痕性が低下するため、おおむね、軸受幅(B)又は(B2/2)の30〜90%が望ましい。
Each design preload clearance is calculated as a practical standard value of Examples A to E of the present invention, -0.010 mm for the standard two-row combination angular contact ball bearing, and -0.001 mm for the cross roller bearing. (If a preload design smaller than -0.001 mm is used with a cross roller bearing, the bearing torque becomes excessive and may become unusable in practice).
The appropriate ball diameter of the narrow ball bearing according to the present invention varies depending on whether or not a seal or the like is attached, but in order to increase rigidity, if the ball diameter is extremely reduced, the ball and the raceway groove of the bearing ring Since the surface pressure between the contact portions is increased and the pressure scar resistance is lowered, generally 30 to 90% of the bearing width (B) or (B2 / 2) is desirable.

さらに、本発明をアンギュラ玉軸受に適用した場合、軸受の接触角は必要な剛性(例えば、モーメント剛性)及び要求トルクにより選ばれるが、おおむね10°〜60°の範囲が望ましい。
さらに、荷重の方向や大きさに合わせて、必要に応じて、組み合わせた各軸受の接触角あるいは複列軸受の場合は各列間の接触角を変えても構わない。
さらには、内輪軌道溝及び外輪軌道溝の曲率半径は、要求される剛性やトルク特性に応じて、51〜60%Da(Da:玉径)、好ましくは52〜56%Da、より好ましくは52〜54%Da程度とする。また、内輪軌道溝の曲率半径と外輪軌道溝の曲率半径は同一でなくともよいし、組み合わされる単列軸受間や複列軸受の各列間で異なっていてもよい。
Furthermore, when the present invention is applied to an angular ball bearing, the contact angle of the bearing is selected according to the required rigidity (for example, moment rigidity) and the required torque, but is preferably in the range of approximately 10 ° to 60 °.
Furthermore, according to the direction and magnitude of the load, the contact angle of the combined bearings or the contact angle between the rows in the case of a double row bearing may be changed as necessary.
Furthermore, the curvature radii of the inner ring raceway groove and the outer ring raceway groove are 51 to 60% Da (Da: ball diameter), preferably 52 to 56% Da, more preferably 52, depending on the required rigidity and torque characteristics. About 54% Da. Further, the radius of curvature of the inner ring raceway grooves and the radius of curvature of the outer ring raceway grooves may not be the same, or may be different between single row bearings combined or between rows of double row bearings.

請求項1〜4の発明によれば、ラジアル荷重と両方のアキシアル荷重及びモーメント荷重を受けることができると共に、軸方向の省スペース化、低トルク化、高速化、高回転精度(低振動)化、高剛性化を図ることができるので、ダイレクトドライブモータの高速化、位置決め精度の向上及びコンパクト化を同時に図ることできる。   According to the first to fourth aspects of the present invention, it is possible to receive radial loads, both axial loads and moment loads, and to save space in the axial direction, lower torque, higher speed, and higher rotational accuracy (lower vibration). Since high rigidity can be achieved, it is possible to simultaneously increase the speed of the direct drive motor, improve the positioning accuracy, and make it compact.

以下、本発明の実施の形態を図面に基づいて説明する。なお、図30に示したものと同一部分には同一符号を付し、その部分の詳細な説明は割愛する。
図1は、本発明の第1の実施形態に係るダイレクトドライブモータの概略構成を示す部分断面図である。同図に示されるように、本発明の第1の実施形態に係るダイレクトドライブモータの固定子11と回転子12との間には、二つの単列玉軸受100を背面合せで組み合わせてなる二列組合せ玉軸受16が回転子支持用軸受として設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 30 identical to those shown in FIG. 30 are assigned the same reference codes as in FIG. 30, and detailed descriptions thereof are omitted.
FIG. 1 is a partial cross-sectional view showing a schematic configuration of a direct drive motor according to a first embodiment of the present invention. As shown in the figure, two single row ball bearings 100 are combined in a back-to-back manner between the stator 11 and the rotor 12 of the direct drive motor according to the first embodiment of the present invention. A row combination ball bearing 16 is provided as a rotor support bearing.

二列組合せ玉軸受16を構成する各単列玉軸受100は、図2に示すように、外輪101の軌道溝101aと内輪102の軌道溝102aとの間に多数の玉103が転動自在に配設された単列の総玉のアンギュラ玉軸受において、軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)を(B/H)<0.63としている。
ここで、第1の実施形態では、図3に示すように、二つの単列アンギュラ玉軸受100を二列背面組合せとし、7208A(接触角30°)の二列組合せアンギュラ玉軸受と置き換える場合を例に採る。
As shown in FIG. 2, each single row ball bearing 100 constituting the two-row combination ball bearing 16 has a large number of balls 103 that can freely roll between a raceway groove 101 a of the outer ring 101 and a raceway groove 102 a of the inner ring 102. In the single-row all-round angular contact ball bearing arranged, the cross-sectional dimension ratio (B /) between the axial cross-sectional width B and the radial cross-sectional height H (= (outer ring outer diameter D−inner ring inner diameter d) / 2). H) is (B / H) <0.63.
Here, in the first embodiment, as shown in FIG. 3, two single-row angular contact ball bearings 100 are used as a double-row back side combination and replaced with a double-row combination angular contact ball bearing of 7208A (contact angle 30 °). Take an example.

7208Aのアンギュラ玉軸受は、内輪内径φ40mm、外輪外径φ80mm、軸方向断面幅(軸受単体幅)Bが18mmであるので、断面寸法比(B/H)=0.9である。したがって、本実施形態のアンギュラ玉軸受100では、断面寸法比(B/H)=0.45(内輪内径及び外輪外径はそのままで、軸方向断面幅(軸受単体幅)を9mmとした)としている。これにより、ラジアル荷重と両方向のアキシアル荷重及びモーメント荷重を受けることができると共に、軸方向寸法で1/2の省スペース化、低トルク化及び更なる高剛性化を図ることができる。   The 7208A angular contact ball bearing has an inner ring inner diameter φ40 mm, an outer ring outer diameter φ80 mm, and an axial sectional width (bearing single body width) B of 18 mm, so the sectional dimension ratio (B / H) = 0.9. Therefore, in the angular ball bearing 100 of the present embodiment, the sectional dimension ratio (B / H) = 0.45 (the inner ring inner diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing single body width) is 9 mm). Yes. As a result, it is possible to receive a radial load, an axial load in both directions, and a moment load, and to achieve a space saving of 1/2 in the axial dimension, a reduction in torque, and a further increase in rigidity.

もちろん、必要に応じて、アンギュラ玉軸受100の断面寸法比(B/H)を0.45未満或いは0.45を超える(但し(B/H)<0.63)ように設定しても構わない。因みに、アンギュラ玉軸受100の接触角は例えば30°としている。
なお、本実施形態では、玉103のピッチ円直径は次式(1)のとおりとしているが、一列当たりの玉数を増やして更にモーメント剛性を増加させたい場合は、次式(2)を採用して、玉103のピッチ円直径を外輪側にずらして図4に示す構造としてもよいし、必要に応じて次式(3)を採用して逆に玉103のピッチ円直径を内輪102側にずらしてもよい(図示せず)。
玉のピッチ円直径=(内輪内径+外輪外径)/2 …(1)
玉のピッチ円直径>(内輪内径+外輪外径)/2 …(2)
玉のピッチ円直径<(内輪内径+外輪外径)/2 …(3)
Of course, if necessary, the sectional dimension ratio (B / H) of the angular ball bearing 100 may be set to be less than 0.45 or more than 0.45 (provided that (B / H) <0.63). Absent. Incidentally, the contact angle of the angular ball bearing 100 is, for example, 30 °.
In this embodiment, the pitch circle diameter of the balls 103 is as shown in the following formula (1). However, when it is desired to increase the moment rigidity by increasing the number of balls per row, the following formula (2) is adopted. Then, the pitch circle diameter of the ball 103 may be shifted to the outer ring side, and the structure shown in FIG. 4 may be adopted. If necessary, the following equation (3) is adopted to conversely change the pitch circle diameter of the ball 103 to the inner ring 102 side. It may be shifted to (not shown).
Ball pitch circle diameter = (inner ring inner diameter + outer ring outer diameter) / 2 (1)
Ball pitch circle diameter> (inner ring inner diameter + outer ring outer diameter) / 2 (2)
Ball pitch circle diameter <(inner ring inner diameter + outer ring outer diameter) / 2 (3)

また、必要に応じて、図5に示すように、組み合わされる左右の玉軸受の玉ピッチ円直径を同一値とせずともよいし、組み合わされる左右の玉軸受の玉103の径を同一値としなくてもよい。加えて、組み合わせる2個の玉軸受の断面寸法比(B/H)は同一でなく、例えば玉径の小さい方を(B/H)=0.28、玉径の大きい方を(B/H)=0.62としても構わない。更に、玉103の軸方向ピッチも軸方向中心でなくともよく、シールや保持器の装着有無やモーメントの作用点間距離の確保等のために玉103の軸方向ピッチを軸方向にずらしてもよい。   Further, if necessary, as shown in FIG. 5, the ball pitch circle diameters of the left and right ball bearings to be combined may not be the same value, and the diameters of the balls 103 of the left and right ball bearings to be combined may not be the same value. May be. In addition, the sectional dimension ratio (B / H) of the two ball bearings to be combined is not the same. For example, the smaller ball diameter is (B / H) = 0.28, and the larger ball diameter is (B / H). ) = 0.62. Further, the axial pitch of the balls 103 may not be the center of the axial direction, and the axial pitch of the balls 103 may be shifted in the axial direction in order to secure the distance between the application points of the moment and the moment of attachment of the seal and the cage. Good.

図6は、軸方向の一方の端部に環状シール体104を装着したアンギュラ玉軸受100を二列背面組み合わせたものである。
軸方向の一方の端部に環状シール体104を装着したアンギュラ玉軸受100を二列組み合わせて機械等に取り付けた後(シール取り付け面を外側に向けて組み合わせる)は、軸受使用中に外部からの異物やごみ等の侵入及び封入グリースの外部への洩れを防止することが可能である。環状シール体104は、この実施の形態では、外輪101のシール溝104aに押し込んで挿入する非接触型(内輪102と非接触)で金属芯金105の補強タイプのゴムシール(例えばニトリルゴム、アクリルゴム、フッ素ゴム等)106とし、組み合わせ端面と反対側のみ環状シール体104を装着して省スペース化を図っている。
FIG. 6 shows a combination of two rows of angular ball bearings 100 each having an annular seal body 104 mounted at one end in the axial direction.
After the angular ball bearings 100 having the annular seal body 104 mounted on one end in the axial direction are combined in two rows and attached to a machine or the like (combined with the seal mounting surface facing outward), the external ball bearing 100 is in use. It is possible to prevent entry of foreign matter, dust, etc. and leakage of the enclosed grease to the outside. In this embodiment, the annular seal body 104 is a non-contact type (non-contact with the inner ring 102) which is inserted into the seal groove 104a of the outer ring 101 and is a reinforcement type rubber seal (for example, nitrile rubber, acrylic rubber). , Fluoro rubber, etc.) 106, and an annular seal body 104 is attached only on the side opposite to the combined end face to save space.

図7は、軸方向の両端部に環状シール体104を装着したアンギュラ玉軸受100を示したものである。
軸方向の両端部に環状シール体104を装着したアンギュラ玉軸受100を機械等に取り付けた後は、軸受使用中に外部からの異物やごみ等の侵入を防止すると共に、軸受取扱い時や軸やハウジングヘの組込み時においても、異物やごみ等の侵入及び封入グリースの外部への洩れを防止することが可能となる。組み合わせについては、二列でモーメント剛性を増加させるためには、モーメントの作用点距離が大きくとれる背面組み合わせ(図3等で接触角がハの字の向きとなっている)を採用するのが望ましい。
FIG. 7 shows an angular ball bearing 100 in which annular seal bodies 104 are mounted at both ends in the axial direction.
After the angular ball bearing 100 with the annular seal body 104 mounted on both ends in the axial direction is attached to a machine or the like, it prevents foreign matter and dust from entering from outside during use of the bearing, Even when it is assembled into the housing, it is possible to prevent intrusion of foreign matter, dust, etc. and leakage of the enclosed grease to the outside. As for the combination, in order to increase the moment stiffness in two rows, it is desirable to adopt a backside combination (the contact angle is in the direction of the letter C in FIG. 3 and the like) that allows the moment action point distance to be increased. .

更に剛性が必要な場合は、図8及び図9に示すように、3列以上の多列組み合わせとしても構わないし、何らかの理由(例えば、軸受組込み時にミスアライメント発生が避けられず、軸受の内部荷重負荷を極力抑えたい場合等)で、モーメント剛性を小さくしたい場合は、図10に示すように、正面組み合わせ(接触角の向きが逆ハの字)等の配列としてもよい。
更には、モーメント荷重や両方向のアキシアル荷重を負荷するためには、二列以上の組合せ軸受とする必要があるが、荷重条件や方向に応じて使用条件上で可能であれば、単列軸受で使用しても構わない。
If further rigidity is required, as shown in FIGS. 8 and 9, a multi-row combination of three or more rows may be used. For some reason (for example, misalignment is unavoidable when the bearing is installed, the internal load of the bearing is For example, when it is desired to suppress the load as much as possible and to reduce the moment rigidity, an arrangement such as a frontal combination (the contact angle direction is reverse C) may be used as shown in FIG.
Furthermore, in order to load a moment load or an axial load in both directions, it is necessary to use two or more rows of combined bearings. You can use it.

また、本実施形態では、アンギュラ玉軸受としているが、深みぞ玉軸受等その他の玉軸受としてもよい。環状シール体は、図6及び図7で示した非接触型ではなく、接触型の金属芯金補強タイプのゴムシール(ゴム材質は、例えばニトリルゴム、アクリルゴム、フッ素ゴム等)でもよいし、外輪101のシール溝に加締め加工する金属シールド板でも構わない。また、環状シール体を内輪102側のシール溝に押し込んで挿入したり、又は加締め加工で取り付けるようにしてもよい(外輪と接触又は非接触する構造)。   In this embodiment, the angular ball bearing is used, but other ball bearings such as a deep groove ball bearing may be used. The annular seal body is not the non-contact type shown in FIGS. 6 and 7, but may be a contact type metal core reinforced rubber seal (the rubber material is, for example, nitrile rubber, acrylic rubber, fluoro rubber, etc.), or the outer ring A metal shield plate that is caulked in the seal groove 101 may be used. Further, the annular seal body may be inserted by being inserted into the seal groove on the inner ring 102 side, or may be attached by caulking (a structure in contact with or non-contact with the outer ring).

内輪102、外輪101及び玉103の材料は、標準的な使用条件では軸受鋼(例えば、SUJ2、SUJ3など)とするが、使用環境に応じて、例えば真空用途などでは、耐食材料であるステンレス系材料(例えば、SUS440C等のマルテンサイト系ステンレス鋼材やSUS304等のオーステナイト系ステンレス鋼材、SUS630等の析出硬化系ステンレス鋼材など)、チタン合金やセラミック系材料(例えば、Si、SiC、Al、ZrO等)を採用してもよい。 The material of the inner ring 102, the outer ring 101, and the ball 103 is a bearing steel (eg, SUJ2, SUJ3, etc.) under standard use conditions, but depending on the use environment, for example, a stainless steel that is a corrosion-resistant material in vacuum applications. Materials (for example, martensitic stainless steel materials such as SUS440C, austenitic stainless steel materials such as SUS304, precipitation hardening stainless steel materials such as SUS630, etc.), titanium alloys and ceramic materials (for example, Si 3 N 4 , SiC, Al 2) O 3 , ZrO 2, etc.) may be employed.

潤滑方法も特に限定されず、一般的な使用環境では、鉱油系グリースや合成油系(例えば、リチウム系、ウレア系等)のグリースや油を使用でき、真空用途などではフッ素系グリースまたはフッ素系の油、あるいはフッ素樹脂、MoSなどの固体潤滑剤を使用することができる。
図11は、軸方向の一方の端部(組合せ側端面と反対側の端部)に環状シール体104を装着し、且つ玉103を転動可能に保持する保持器110を備えたアンギュラ玉軸受100を二列背面組み合わせたものである。
The lubrication method is not particularly limited, and mineral oil grease or synthetic oil grease (for example, lithium or urea) or oil can be used in general usage environments, and fluorine grease or fluorine grease for vacuum applications. Or a solid lubricant such as fluorine resin or MoS 2 can be used.
FIG. 11 shows an angular contact ball bearing provided with an annular seal body 104 at one end in the axial direction (end opposite to the end face on the combination side) and a cage 110 that holds the ball 103 in a rollable manner. 100 is a combination of two rows on the back.

保持器110としては、例えば、図12〜図15(a)に示すように、円環部111と、該円環部111の一端部に周方向に略等間隔で複数箇所軸方向に突設された柱部112と、各柱部112間に形成されて玉103を周方向に転動可能に保持するポケット部113とを備えた柔軟性のある冠形保持器を採用している。保持器110の材質は、例えば、ポリアミド、ポリアセタール、ポリフェニレンサルファイド等の合成樹脂材とし、必要に応じて、合成樹脂材にガラス繊維や炭素繊維等の補強材を混入した材料を用いる。   As the cage 110, for example, as shown in FIGS. 12 to 15 (a), an annular portion 111 and one end portion of the annular portion 111 project in the axial direction at a plurality of locations at substantially equal intervals in the circumferential direction. A flexible crown-shaped cage including the pillars 112 and pockets 113 formed between the pillars 112 to hold the balls 103 so as to roll in the circumferential direction is employed. The material of the cage 110 is, for example, a synthetic resin material such as polyamide, polyacetal, or polyphenylene sulfide, and a material in which a reinforcing material such as glass fiber or carbon fiber is mixed into the synthetic resin material is used as necessary.

また、この実施の形態では、軸受の負荷容量や剛性を上げるために、隣り合う玉103間の円周方向ピッチは極力小さくし、できる限り玉数を多くしている。更に、玉103の軸方向ピッチをできるだけ組合せ側端面の反対側にずらし(図11参照:X>X)、保持器110の円環部111が軸受組合せ端面側になるように配置しており、モーメント剛性を上げるための作用点間距離を大きくとれるようにしている。 In this embodiment, in order to increase the load capacity and rigidity of the bearing, the circumferential pitch between adjacent balls 103 is made as small as possible, and the number of balls is increased as much as possible. Further, the pitch of the balls 103 in the axial direction is shifted as much as possible to the opposite side of the end face on the combination side (see FIG. 11: X 1 > X 2 ), and the annular portion 111 of the cage 110 is arranged on the end face side of the bearing combination. Therefore, the distance between the operating points for increasing the moment rigidity can be increased.

なお、総玉軸受の場合も、環状シール体の装着の有無等、必要に応じて同様に玉の軸方向ピッチを幅中央ではなく、軸方向の左右いずれかの方向(軸受合わせ端面側、あるいは反対側)にずらしても構わない。
保持器付きの軸受は、回転が一方向の連続回転や大きなモーメント荷重が加わる条件等、各玉の接触角の変化による公転速度のばらつきが発生しやすい条件等で、総玉軸受を使用した場合の玉間の接触や玉つまりが生じやすい用途で低トルク、低発熱等の点で、より良い効果を発揮する。
In the case of a full ball bearing, the axial pitch of the balls is not the center of the width in the same way as necessary, such as whether or not an annular seal body is mounted. It may be shifted to the opposite side.
When bearings with cages are used with full-ball bearings under conditions that tend to cause variations in revolution speed due to changes in contact angle of each ball, such as continuous rotation in one direction or a large moment load. It is more effective in terms of low torque, low heat generation, etc.

更に、本実施形態では、ポケット部113の入り口部を玉径より若干小さくして引っかかり(パチン代)を設ければ、内輪102及び外輪101に組み込む際、玉103の脱落がなく軸受の組立が容易である。
保持器の形状は、本実施形態に限定されず、各玉103間に配置するセパレータタイプの保持器の他、いずれの方式でもよい。また、材料も合成樹脂材ではなく、金属材料でも構わない。
Furthermore, in this embodiment, if the entrance portion of the pocket portion 113 is slightly smaller than the ball diameter and is provided with a hook (pachin allowance), the ball 103 can be assembled without being dropped when the inner ring 102 and the outer ring 101 are assembled. Easy.
The shape of the cage is not limited to this embodiment, and any system other than the separator type cage disposed between the balls 103 may be used. Also, the material may be a metal material instead of a synthetic resin material.

また、図15(b)は図15(a)と基本構造は同様な冠形保持器であるが、円環部111の少なくとも円周方向の一箇所で互いに隣り合うポケット部113間を予め切断して、各切断面間に所定のすき間を持たせた構造としている。
このような構造を採用することで、保持器と軌道輪との熱膨張係数差及び保持器の寸法精度や真円度のばらつきにより、転動体ピッチ円径と保持器のピッチ円径がずれた場合でも、片持ち形状であることによる半径方向の柔軟性と、各切断面間のすき間による円周方向の弾力的変形(円周方向の柔軟性)を兼ね備えることとなるため、玉103とポケット部113間の突っ張り力を緩衝して、保持器の損傷や摩耗を防止すると共に、玉103とポケット部113内面とのすべり接触抵抗によるトルクむらや発熱をより軽減することができる。
15 (b) is a crown-shaped cage having the same basic structure as FIG. 15 (a), but the pocket portion 113 adjacent to each other at least at one place in the circumferential direction of the annular portion 111 is cut in advance. And it is set as the structure which gave the predetermined clearance gap between each cut surface.
By adopting such a structure, the rolling element pitch circle diameter and the cage pitch circle diameter have shifted due to differences in the thermal expansion coefficient between the cage and the raceway and variations in the dimensional accuracy and roundness of the cage. Even in this case, the ball 103 and the pocket have both the flexibility in the radial direction due to the cantilever shape and the elastic deformation in the circumferential direction (the flexibility in the circumferential direction) due to the gaps between the cut surfaces. The tension force between the portions 113 can be buffered to prevent the cage from being damaged and worn, and torque unevenness and heat generation due to sliding contact resistance between the balls 103 and the pocket portions 113 can be further reduced.

また、本発明の玉軸受は、構造上、使用玉径が小さくなるため、保持器の円環部111の半径方向の厚みは厚くできず(図11からも理解できるように、保持器は内輪外径と外輪内径との間の空隙部に適度なすき間を設けて位置決めさせる必要があり、この内輪外径と外輪内径との間の空隙部は玉径と略比例関係にあるので狭い)、更に、幅狭構造により、軸方向の間隙部も狭く、軸方向厚みも薄くせざるを得ない。このため、標準サイズの軸受より保持器の円環部が極めて小さく、真円度等の寸法精度を出しにくくなるので、円環部111を図15(b)のようにした保持器構造は、特に、上述した保持器の損傷や摩耗防止効果及びトルクむらや発熱の軽減に関して効果が得られる。   In addition, since the ball bearing of the present invention has a structurally small ball diameter, the radial thickness of the annular portion 111 of the cage cannot be increased (as can be understood from FIG. 11, the cage is an inner ring). It is necessary to position the gap between the outer diameter and the inner diameter of the outer ring by providing an appropriate gap, and the gap between the outer diameter of the inner ring and the inner diameter of the outer ring is substantially proportional to the ball diameter and is narrow) Furthermore, due to the narrow structure, the gap in the axial direction is also narrow and the axial thickness has to be reduced. For this reason, since the annular portion of the cage is extremely smaller than a standard size bearing and it is difficult to obtain dimensional accuracy such as roundness, the cage structure having the annular portion 111 as shown in FIG. In particular, an effect is obtained with respect to the above-described cage damage and wear prevention effect, and torque unevenness and reduction of heat generation.

また、対象とする用途は、軸受のdmn値(dm:転がり軸受の転動体ピッチ円直径(mm)とn:回転速度(min−1)との積)がせいぜい20万〜30万以下の場合が多く、これらの用途に本発明を適用する場合、図15(b)のような保持器構造としても、遠心力による悪影響は発生しない。なお、必要に応じて、円環部111の切断箇所は円周方向で2カ所以上としても構わない。この場合、切断箇所は、可能な限り円周方向で等分とすることが望ましい。また、これらの軸受を使用したダイレクトドライブモータをロボット等に適用する場合、剛性を大きくするために、通常、予圧をかけて使用するが、条件に応じて、或いはその他の用途等ですき間で使用してもよい。 Also, the intended application is when the dmn value of the bearing (dm: product of rolling element pitch circle diameter (mm) of rolling bearing and n: rotational speed (min −1 )) is 200,000 to 300,000 or less at most. In many cases, when the present invention is applied to these uses, even if the cage structure as shown in FIG. If necessary, the circular portion 111 may have two or more cut portions in the circumferential direction. In this case, it is desirable that the cut portions are equally divided in the circumferential direction as much as possible. In addition, when applying a direct drive motor using these bearings to a robot, etc., it is usually used with a preload to increase rigidity, but it is used depending on conditions or for other purposes. May be.

次に、図16を参照して、本発明の第2の実施形態の一例である複列玉軸受を説明する。
この複列総玉アンギュラ玉軸受200は、外輪201の複列軌道溝201a,201bと内輪202の複列軌道溝202a,202bとの間に多数の玉203が転動自在に配設され、軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)が(B2/H2)<1.2とされており、玉ピッチ円直径が半径方向断面高さの中央に設定されている。
ここで、この実施の形態では、複列玉軸受200を7208A(接触角30°)の二列組合せアンギュラ玉軸受に置き換えた場合を例に採る。
Next, with reference to FIG. 16, the double row ball bearing which is an example of the 2nd Embodiment of this invention is demonstrated.
In this double row full ball angular contact ball bearing 200, a large number of balls 203 are arranged between the double row raceway grooves 201a and 201b of the outer ring 201 and the double row raceway grooves 202a and 202b of the inner ring 202 so as to roll freely. The cross-sectional dimension ratio (B2 / H2) between the cross-sectional width B2 and the radial cross-sectional height H2 (= (outer ring outer diameter D2—inner ring inner diameter d2) / 2) is (B2 / H2) <1.2. The ball pitch circle diameter is set at the center of the radial section height.
Here, in this embodiment, a case where the double row ball bearing 200 is replaced with a double row angular contact ball bearing of 7208A (contact angle 30 °) is taken as an example.

7208Aは、内輪内径φ40mm、外輪外径φ80mm、軸方向断面幅(軸受単体幅)Bが18mmであるので、断面寸法比(B/H)=0.9である。したがって、本実施形態のアンギュラ玉軸受200では、断面寸法比(B2/H2)=0.90(内輪内径及び外輪外径はそのままで、軸方向断面幅(軸受単体幅)B2を18mmとした)としている。これにより、ラジアル荷重及びモーメント荷重を受けることができると共に両方向のアキシアル荷重を受けることができるのは勿論のこと、軸方向寸法で1/2の省スペース化、低トルク化及び更なる高剛性化を図ることができる。   7208A has an inner ring inner diameter φ40 mm, an outer ring outer diameter φ80 mm, and an axial sectional width (bearing single body width) B of 18 mm, so the sectional dimension ratio (B / H) = 0.9. Therefore, in the angular ball bearing 200 of the present embodiment, the cross-sectional dimension ratio (B2 / H2) = 0.90 (the inner ring inner diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing unit width) B2 is 18 mm). It is said. As a result, it is possible to receive radial load and moment load, as well as axial load in both directions, as well as space saving by 1/2 in the axial dimension, lower torque and higher rigidity. Can be achieved.

もちろん、必要に応じて、断面寸法比(B2/H2)を0.90未満或いは0.90を超える(但し、(B2/H2)<1.2)ように設定してもよい。因みに、アンギュラ玉軸受200の接触角は、例えば30°としている。なお、図17は、モーメント剛性をあげるため、複列総玉アンギュラ玉軸受200で玉ピッチ円直径を外輪側にずらした例であり、図18は、複列総玉アンギュラ玉軸受200で各列の玉径や玉ピッチ円直径を変えた例であり、図19は、軸方向の両端部に環状シール体104を装着した複列総玉アンギュラ玉軸受200で、モーメント剛性をあげるため、玉ピッチ円直径を外輪側にずらした例である。
いずれの例の場合も、環状シール体、保持器等の構造や装着の有無の他、構造に関する適用例は、上記第1の実施形態で記載した単列玉軸受に準ずる。また、上記第1の実施形態と同様に、予圧及びすき間のいずれの条件で使用してもよい。
Of course, if necessary, the cross-sectional dimension ratio (B2 / H2) may be set to be less than 0.90 or more than 0.90 (provided that (B2 / H2) <1.2). Incidentally, the contact angle of the angular ball bearing 200 is, for example, 30 °. 17 shows an example in which the ball pitch circle diameter is shifted to the outer ring side in the double row full ball angular contact ball bearing 200 in order to increase the moment rigidity, and FIG. 18 shows each row in the double row full ball angular contact ball bearing 200. 19 is an example in which the ball diameter and the ball pitch circle diameter are changed. FIG. 19 is a double row full-ball angular contact ball bearing 200 in which the annular seal body 104 is mounted at both ends in the axial direction. This is an example in which the diameter of the circle is shifted to the outer ring side.
In any case, in addition to the structure of the annular seal body, the cage, etc., whether or not it is mounted, application examples related to the structure are the same as those of the single row ball bearing described in the first embodiment. Moreover, you may use on any conditions of a preload and a clearance gap like the said 1st Embodiment.

本発明の一実施形態に係るダイレクトドライブモータの概略構成を示す部分断面図である。It is a fragmentary sectional view showing a schematic structure of a direct drive motor concerning one embodiment of the present invention. 二列組合せ玉軸受を構成する単列玉軸受の一部を示す断面図である。It is sectional drawing which shows a part of single row ball bearing which comprises a two-row combination ball bearing. 図1のダイレクトドライブモータにおける回転子支持用軸受の一実施例を示す断面図である。FIG. 2 is a cross-sectional view showing an embodiment of a rotor support bearing in the direct drive motor of FIG. 1. 玉のピッチ円直径を外輪側にずらした場合の二列組合せ玉軸受を示す断面図である。It is sectional drawing which shows the double row combination ball bearing at the time of shifting the pitch circle diameter of a ball | bowl to the outer ring | wheel side. 玉のピッチ円直径が異なる二つの単列玉軸受でダイレクトドライブモータの回転子支持用軸受を構成した場合の実施例を示す図である。It is a figure which shows the Example at the time of comprising the rotor support bearing of a direct drive motor with two single row ball bearings from which the pitch circle diameters of a ball differ. 環状シール体を有する二つの単列玉軸受でダイレクトドライブモータの回転子支持用軸受を構成した場合の実施例を示す図である。It is a figure which shows the Example at the time of comprising the rotor support bearing of a direct drive motor with two single row ball bearings which have an annular seal body. 環状シール体を有する一つの単列玉軸受でダイレクトドライブモータの回転子支持用軸受を構成した場合の実施例を示す図である。It is a figure which shows the Example at the time of comprising the rotor support bearing of a direct drive motor with one single row ball bearing which has an annular seal body. 三つの単列玉軸受を組み合わせてダイレクトドライブモータの回転子支持用軸受を構成した場合の実施例を示す図である。It is a figure which shows the Example at the time of comprising the rotor support bearing of a direct drive motor combining three single row ball bearings. 四つの単列玉軸受を組み合わせてダイレクトドライブモータの回転子支持用軸受を構成した場合の実施例を示す図である。It is a figure which shows the Example at the time of comprising the rotor support bearing of a direct drive motor combining four single row ball bearings. 図2の単列玉軸受を正面合せで二列組合せとした場合の実施例を示す図である。It is a figure which shows the Example at the time of using the single row ball bearing of FIG. 保持器を有する二つの単列玉軸受でダイレクトドライブモータの回転子支持用軸受を構成した場合の実施例を示す図である。It is a figure which shows the Example at the time of comprising the rotor support bearing of a direct drive motor with the two single row ball bearings which have a holder | retainer. 図11に示す冠形保持器の断面図である。It is sectional drawing of the crown shaped holder | retainer shown in FIG. 図12に示す冠形保持器の一部を示す斜視図である。It is a perspective view which shows a part of crown-shaped holder | retainer shown in FIG. 図12の冠形保持器を図中矢印B方向から見た図である。It is the figure which looked at the crown-shaped cage of FIG. 12 from the arrow B direction in the figure. (a)は図12の冠形保持器を図中矢印A方向から見た図、(b)は(a)の変形例を示す図である。(A) is the figure which looked at the crown shaped holder | retainer of FIG. 12 from the arrow A direction in the figure, (b) is a figure which shows the modification of (a). 複列玉軸受でダイレクトドライブモータの回転子支持用軸受を構成した場合の実施例を示す図である。It is a figure which shows the Example at the time of comprising the rotor support bearing of a direct drive motor with a double row ball bearing. 玉のピッチ円直径を外輪側にずらした場合の複列玉軸受を示す断面図である。It is sectional drawing which shows the double row ball bearing at the time of shifting the pitch circle diameter of a ball | bowl to the outer ring | wheel side. 図16に示す実施例の変形例を示す図である。It is a figure which shows the modification of the Example shown in FIG. 環状シール体を有する複列玉軸受でダイレクトドライブモータの回転子支持用軸受を構成した場合の実施例を示す図である。It is a figure which shows the Example at the time of comprising the rotor support bearing of a direct drive motor with the double row ball bearing which has an annular seal body. 内輪の半径方向の変形量を説明するための説明図である。It is explanatory drawing for demonstrating the deformation amount of the radial direction of an inner ring | wheel. 内輪の断面二次モーメントの計算方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of the cross-sectional secondary moment of an inner ring | wheel. 断面寸法比(B/H)と半径方向の軌道輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the bearing ring of radial direction. 断面寸法比(B/H)と断面二次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and a cross-sectional secondary moment I. 断面寸法比(B/H)と半径方向の軌道輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the bearing ring of radial direction. 断面寸法比(B/H)と断面二次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and a cross-sectional secondary moment I. 各種軸受での計算モーメント剛性の比較を示すグラフ図である。It is a graph which shows the comparison of the calculated moment rigidity in various bearings. クロスローラ軸受の一部を示す断面図である。It is sectional drawing which shows a part of cross roller bearing. 二列組合せアンギュラ玉軸受の一部を示す断面図である。It is sectional drawing which shows a part of two-row combination angular contact ball bearing. 極薄肉断面の単列アンギュラ玉軸受を二列に組み合わせてなる二列組合せアンギュラ玉軸受の一部を示す断面図である。It is sectional drawing which shows a part of double row combination angular contact ball bearing which combines the single row angular contact ball bearing of an ultra-thin section in two rows. 従来のダイレクトドライブモータの概略構成を示す部分断面図である。It is a fragmentary sectional view which shows schematic structure of the conventional direct drive motor.

符号の説明Explanation of symbols

11 固定子
11a ステータコア
11b ステータコイル
12 回転子
12a ロータコア
12b ロータマグネット
13 転がり軸受
14 パルサーリング
15 位置検出器
16 回転子支持用軸受
100 単列玉軸受
101 外輪
101a 外輪軌道溝
102 内輪
102a 内輪軌道溝
103 玉
104 環状シール体
110 保持器
DESCRIPTION OF SYMBOLS 11 Stator 11a Stator core 11b Stator coil 12 Rotor 12a Rotor core 12b Rotor magnet 13 Rolling bearing 14 Pulsar ring 15 Position detector 16 Rotor support bearing 100 Single row ball bearing 101 Outer ring 101a Outer ring raceway groove 102 Inner ring raceway 103 Ball 104 Annular seal body 110 Cage

Claims (4)

回転子と、該回転子の内側または外側に配置された固定子と、該固定子に対して前記回転子を回転自在に支持する転がり軸受とを備え、減速機を介さずに負荷を直接的に駆動するダイレクトドライブモータにおいて、前記転がり軸受が、内輪と、該内輪の外周に配置された外輪と、前記内輪と前記外輪との間に転動自在に組み込まれた複数の玉とを含む単列の玉軸受であって、その軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が(B/H)<0.63であることを特徴とするダイレクトドライブモータ。   A rotor, a stator disposed inside or outside the rotor, and a rolling bearing that rotatably supports the rotor with respect to the stator, and directly loading a load without using a reduction gear. In the direct drive motor that drives the inner ring, the rolling bearing includes an inner ring, an outer ring disposed on the outer periphery of the inner ring, and a plurality of balls that are rotatably incorporated between the inner ring and the outer ring. A direct drive comprising a row of ball bearings, wherein a sectional dimension ratio (B / H) between an axial sectional width B and a radial sectional height H is (B / H) <0.63 motor. 内輪と、該内輪の外周に配置された外輪と、前記内輪と前記外輪との間に転動自在に組み込まれた複数の玉とを有する単列の玉軸受からなり、減速機を介さずに負荷を直接的に駆動するダイレクトドライブモータの回転子を回転自在に支持するダイレクトドライブモータ用軸受であって、前記玉軸受の軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が(B/H)<0.63であることを特徴とするダイレクトドライブモータ用軸受。   It consists of a single-row ball bearing having an inner ring, an outer ring disposed on the outer periphery of the inner ring, and a plurality of balls that are rotatably incorporated between the inner ring and the outer ring, without using a reduction gear. A direct drive motor bearing that rotatably supports a rotor of a direct drive motor that directly drives a load, wherein a cross-sectional dimension ratio between an axial sectional width B and a radial sectional height H of the ball bearing ( (B / H) is (B / H) <0.63. 回転子と、該回転子の内側または外側に配置された固定子と、該固定子に対して前記回転子を回転自在に支持する転がり軸受とを備え、減速機を介さずに負荷を直接的に駆動するダイレクトドライブモータにおいて、前記転がり軸受が、内輪と、該内輪の外周に配置された外輪と、前記内輪と前記外輪との間に転動自在に組み込まれた複数の玉とを含む複列玉軸受であって、その軸方向断面幅B2と半径方向断面高さH2との断面寸法比(B2/H2)が(B2/H2)<1.2であることを特徴とするダイレクトドライブモータ。   A rotor, a stator disposed inside or outside the rotor, and a rolling bearing that rotatably supports the rotor with respect to the stator, and directly loading a load without using a reduction gear. In the direct drive motor that drives the inner ring, the rolling bearing includes an inner ring, an outer ring disposed on an outer periphery of the inner ring, and a plurality of balls that are rotatably incorporated between the inner ring and the outer ring. A direct drive motor having a cross-sectional dimension ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 is (B2 / H2) <1.2. . 内輪と、該内輪の外周に配置された外輪と、前記内輪と前記外輪との間に転動自在に組み込まれた複数の玉とを有する複列玉軸受からなり、減速機を介さずに負荷を直接的に駆動するダイレクトドライブモータの回転子を回転自在に支持するダイレクトドライブモータ用軸受であって、前記複列玉軸受の軸方向断面幅B2と半径方向断面高さH2との断面寸法比(B2/H2)が(B2/H2)<1.2であることを特徴とするダイレクトドライブモータ用軸受。   A double-row ball bearing having an inner ring, an outer ring disposed on the outer periphery of the inner ring, and a plurality of balls that are rotatably incorporated between the inner ring and the outer ring. A direct drive motor bearing that rotatably supports a rotor of a direct drive motor that directly drives the cross-sectional dimension ratio between the axial sectional width B2 and the radial sectional height H2 of the double row ball bearing A bearing for a direct drive motor, wherein (B2 / H2) is (B2 / H2) <1.2.
JP2005023490A 2005-01-31 2005-01-31 Direct drive motor and bearing therefor Withdrawn JP2006211863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023490A JP2006211863A (en) 2005-01-31 2005-01-31 Direct drive motor and bearing therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023490A JP2006211863A (en) 2005-01-31 2005-01-31 Direct drive motor and bearing therefor

Publications (1)

Publication Number Publication Date
JP2006211863A true JP2006211863A (en) 2006-08-10

Family

ID=36968084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023490A Withdrawn JP2006211863A (en) 2005-01-31 2005-01-31 Direct drive motor and bearing therefor

Country Status (1)

Country Link
JP (1) JP2006211863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025709A (en) * 2014-07-18 2016-02-08 日本精工株式会社 Direct drive motor, method for manufacturing direct drive motor, conveyance device, inspection device, machine tool, and semiconductor manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025709A (en) * 2014-07-18 2016-02-08 日本精工株式会社 Direct drive motor, method for manufacturing direct drive motor, conveyance device, inspection device, machine tool, and semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
US9151324B2 (en) Double-row angular ball bearing
US20090131235A1 (en) Ball Bearing for Spindle Turning Device of Machine Tool and Spindle Turning Device of Machine Tool Using the Same
JP3207410U (en) Rolling bearing
JP2006329420A (en) Bearing device for robot arm joint part, and ball bearing
JP5092383B2 (en) Ball bearing for machine tool main spindle
JP2006105384A (en) Double row ball bearing
JP4715961B2 (en) Rotary table device for machine tools
JP4743176B2 (en) Combination ball bearings and double row ball bearings
JP2011153683A (en) Angular ball bearing
JPH09291942A (en) Radial rolling bearing
JP5651966B2 (en) Roller bearing
JP2006214456A (en) Roller bearing
JP5233199B2 (en) Angular contact ball bearings
JP2006153094A (en) Ball bearing and rotary table device for machine tool using ball bearing
JP2006211863A (en) Direct drive motor and bearing therefor
JP2006046380A (en) Ball bearing
JP3252587B2 (en) Ball bearing device
JP2008032148A (en) Rolling bearing, sealing member for rolling bearing, and rotating shaft supporting structure of wind power generator
JP2006170335A (en) Ball bearing for ct scanner device and ct scanner device
JP2014105809A (en) Retainer for rolling bearing
JP2005239258A (en) Cap attaching jig and ball bearing used for the jig
JP2006097872A (en) Bearing unit
JP5397508B2 (en) Ball bearing for machine tool main spindle
JP2009092162A (en) Roller bearing
JP2003120684A (en) Thrust roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100409