JP2006329420A - Bearing device for robot arm joint part, and ball bearing - Google Patents

Bearing device for robot arm joint part, and ball bearing Download PDF

Info

Publication number
JP2006329420A
JP2006329420A JP2006115884A JP2006115884A JP2006329420A JP 2006329420 A JP2006329420 A JP 2006329420A JP 2006115884 A JP2006115884 A JP 2006115884A JP 2006115884 A JP2006115884 A JP 2006115884A JP 2006329420 A JP2006329420 A JP 2006329420A
Authority
JP
Japan
Prior art keywords
bearing
ball bearing
robot arm
ball
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006115884A
Other languages
Japanese (ja)
Inventor
Yoshiaki Katsuno
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006115884A priority Critical patent/JP2006329420A/en
Publication of JP2006329420A publication Critical patent/JP2006329420A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To receive a radial load, and an axial load and a moment load in both directions as a matter of course, and attain rigidity improvement, rotation accuracy improvement, cost reduction, torque reduction, heating reduction, and space saving. <P>SOLUTION: The bearing device for the robot arm joint part is provided with the joint part 23 of an articulated robot arm provided with a linkage 21 composed of a plurality of links 21a-21d, and a rolling bearing incorporated in the joint part 23. A single row ball bearing 100 wherein a cross sectional aspect ratio B/H of an axial cross sectional width B and a radial cross sectional height H is less than 0.63 is used as the rolling bearing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、各種産業機械等に用いられる多関節ロボットアームの関節部用軸受装置及び該関節部に組み込まれる玉軸受に関する。   The present invention relates to a bearing device for a joint part of a multi-joint robot arm used for various industrial machines and the like, and a ball bearing incorporated in the joint part.

複数のリンクによって構成されるリンク装置を備えた多関節ロボットアームは、省人化や自動化を目的として、産業機械の加工ライン、組立ライン或いは搬送工程の他、近年のデジタル機器の関連産業の盛況に伴い、半導体製造装置や液晶パネル製造装置のラインにも多く用いられている。
図31に、半導体製造工程におけるシリコンウェハ搬送用の多関節ロボットアームの一例を示す。
The articulated robot arm equipped with a link device composed of multiple links is a prosperous industry in recent years for digital equipment in addition to industrial machine processing lines, assembly lines or transport processes for the purpose of labor saving and automation. Along with this, they are also often used in semiconductor manufacturing equipment and liquid crystal panel manufacturing equipment lines.
FIG. 31 shows an example of an articulated robot arm for transferring a silicon wafer in a semiconductor manufacturing process.

この多関節ロボットアームは、例えば、4本のリンク21a〜21dを回り対偶(関節部)によって組み合わせたリンク装置21を備えている。リンク21a,21bは、それぞれ基端が駆動装置20に関節部(図示せず)を介して回動可能に連結されるとともに、先端が関節部22を介してリンク21c,21dに回動可能に連結されている。リンク21c,21dの先端は、それぞれ関節部23(図32参照)を介してシリコンウェハ24を支持する支持ハンド25に回動可能に連結されている。なお、各関節部には、所定の転がり軸受が組み込まれ、また、支持ハンド25及び関節部23は、シリコンウェハの処理を行うチャンバ内に入るようになっている。   The multi-joint robot arm includes a link device 21 that, for example, combines four links 21a to 21d by pairs (joint portions). Each of the links 21a and 21b has a base end rotatably connected to the drive device 20 via a joint (not shown) and a distal end rotatable to the links 21c and 21d via a joint 22. It is connected. The tips of the links 21c and 21d are rotatably connected to a support hand 25 that supports the silicon wafer 24 via joint portions 23 (see FIG. 32). A predetermined rolling bearing is incorporated in each joint part, and the support hand 25 and the joint part 23 enter a chamber for processing a silicon wafer.

駆動装置20内には、ダイレクトドライブモータ(図示せず)が軸方向に2列配置されており、2列のダイレクトドライブモータをそれぞれ同期した回転制御を行うことで、ロボットアーム全体の回転運動(図31の矢印A方向)と、リンク21aとリンク21bとの回転運動(図31の矢印B1及びB2方向)を行うことができる。この結果、支持ハンド25をアーム伸縮方向(X方向)、アーム旋回方向(θ方向)に自在に動作させることができる。   Two rows of direct drive motors (not shown) are arranged in the drive device 20 in the axial direction. By performing rotation control in synchronization with the two rows of direct drive motors, the rotational motion of the entire robot arm ( 31 (the direction of arrow A in FIG. 31) and the link 21a and the link 21b can be rotated (in the directions of arrows B1 and B2 in FIG. 31). As a result, the support hand 25 can be freely moved in the arm extending / contracting direction (X direction) and the arm turning direction (θ direction).

ところで、半導体製造工程や液晶パネル製造工程等においては、シリコンウェハや液晶パネル等を清浄環境や真空環境雰囲気に保たれた処理チャンバ内に出し入れするために、上述したロボットアームが用いられているが、これらの工程で外部環境とチャンバ内の隔離を迅速、且つ確実に行うために、チャンバのゲートの開口部面積をできるだけ小さくすることが必要である。即ち、ゲートの開口部面積が小さい方が、チャンバ内の雰囲気の変動を小さく抑えることができるとともに、ゲートの開閉時間が短くなって、短時間でチャンバ内の雰囲気を最適処理条件まで復帰させることができ、生産効率が向上するからである。   By the way, in the semiconductor manufacturing process, the liquid crystal panel manufacturing process, and the like, the above-described robot arm is used to put a silicon wafer, a liquid crystal panel, and the like into and out of a processing chamber maintained in a clean environment or a vacuum environment atmosphere. In order to quickly and surely isolate the outside environment and the inside of the chamber in these steps, it is necessary to make the opening area of the gate of the chamber as small as possible. In other words, the smaller the opening area of the gate, the smaller the variation in the atmosphere in the chamber, and the shorter the gate opening and closing time, the shorter the opening and closing time of the chamber allows the chamber atmosphere to be restored to the optimum processing conditions. This is because production efficiency is improved.

通常、シリコンウェハや液晶パネルは薄肉形状であるため、ゲートは上下方向が狭く、左右方向が広い形状となっている。従って、これらの部材を搬送するロボットアームも幅狭のゲートに干渉しないように、水平方向に薄肉構造の形状が望まれる。
一方、産業機械の加工ラインや組立ライン或いは搬送工程等においても、各工程のロボットアームがコンパクトになれば、ラインの面積も小さくなり、工程全体の省スペース化が図れる。また、上記のように、ロボットアームの水平方向の薄肉構造化が可能であれば、縦方向にロボットアームを2列以上並べて配置することで、特定の処理工程での部材の搬入・搬出を同時に行うことができ、作業工程のサイクルタイムの短縮化が可能となり、生産効率が大幅に向上する。
Usually, since a silicon wafer and a liquid crystal panel are thin-walled, the gate is narrow in the vertical direction and wide in the horizontal direction. Accordingly, it is desired that the robot arm carrying these members also has a thin-walled shape in the horizontal direction so as not to interfere with the narrow gate.
On the other hand, in a processing line, an assembly line, or a conveyance process of an industrial machine, if the robot arm in each process becomes compact, the area of the line can be reduced, and the entire process can be saved. As described above, if the robot arm can be thinned in the horizontal direction, two or more rows of robot arms are arranged in the vertical direction, so that the loading and unloading of members in a specific processing step can be performed simultaneously. This makes it possible to shorten the cycle time of the work process and greatly improves production efficiency.

従って、これらの用途に用いられる多関節ロボットアームの関節部に組み込まれる転がり軸受としては、高剛性化(特に、高モーメント剛性化)、高回転精度(アームの精密な位置決め精度の確保、低振動・低騒音化)、低コスト化の他に省スペース化が要求され、特に、支持ハンド25の関節部23の省スペース化が要求される。
ロボットアームの関節部に組み込まれる転がり軸受として、省スペース化を目的したものとしては、従来、例えば、薄肉2列組合せ玉軸受、4点接触玉軸受及びクロスローラ軸受等が提案されている。
Therefore, as a rolling bearing incorporated in the joint part of the articulated robot arm used for these applications, high rigidity (especially high moment rigidity), high rotation accuracy (ensuring high positioning accuracy of the arm, low vibration) In addition to low noise and low cost, space saving is required, and in particular, space saving of the joint portion 23 of the support hand 25 is required.
Conventionally, as a rolling bearing incorporated in the joint portion of the robot arm, for example, a thin two-row combination ball bearing, a four-point contact ball bearing, and a cross roller bearing have been proposed for the purpose of space saving.

(1)2列組合わせ玉軸受(例えば、特許文献1及び特許文献2参照)
まず、図33は、内輪7と外輪8との間に複数の玉9が転動可能に配設された標準のアンギュラ玉軸受を2列に組合わせた例であり、図32の関節部23に組み込まれたものと同様である。図32では、関節部23に標準の2列組合せアンギュラ玉軸受を組み込んでロボットアームの関節部用軸受装置を構成しており、モーメント荷重を受けたときの軸受のがたつきをなくしたり、傾きを小さくするために、2列のアンギュラ玉軸受の組合せ方向は背面組合せ(接触角はハの字となり、モーメントの作用点間距離が長くなる組合せ)とされ、高モーメント剛性化が図られている。また、軸受には、予圧を負荷させて、軸受のがたつきをなくしている。
(1) Two-row combination ball bearings (see, for example, Patent Document 1 and Patent Document 2)
First, FIG. 33 is an example in which standard angular ball bearings in which a plurality of balls 9 are rotatably arranged between the inner ring 7 and the outer ring 8 are combined in two rows. Is the same as that incorporated in In FIG. 32, a standard two-row angular contact ball bearing is incorporated in the joint 23 to constitute a robot arm joint bearing device, which eliminates rattling or tilting of the bearing when subjected to moment load. In order to reduce the contact angle, the combination direction of the two rows of angular contact ball bearings is the rear combination (the contact angle is a “C” and the distance between the action points of the moment is increased), and high moment rigidity is achieved. . Further, the bearing is loaded with a preload to eliminate rattling of the bearing.

しかしながら、標準玉軸受の2列組合わせの場合、当然に、単列軸受の2倍の軸方向スペースが必要となり、軸受の軸方向の薄肉化が図れず、省スペース化ができないばかりか、装置が大型化してコスト高になる。
そこで、軸受の省スペース化を目的として、極薄肉の深みぞ玉軸受やアンギュラ玉軸受(図34参照)を2列組み合わせたものが提案され、例えば、図35に示すように、内輪7及び外輪8はそれぞれ内輪押え10や外輪押え11を介して軸12やハウジング13にボルト14を利用して締結され、外輪押え11は外輪8の外径面の一部、内輪押え10は軸12の外径面の一部に嵌合して、軸12を介して軸受と芯がずれないように位置決めされている。
However, in the case of a two-row combination of standard ball bearings, naturally, twice as much axial space as that of a single-row bearing is required, the axial thickness of the bearing cannot be reduced, and space saving cannot be achieved. Increases in size and costs.
Therefore, for the purpose of space saving of the bearing, a combination of two rows of extremely thin deep groove ball bearings and angular contact ball bearings (see FIG. 34) has been proposed. For example, as shown in FIG. 8 is fastened to the shaft 12 and the housing 13 using bolts 14 via the inner ring presser 10 and the outer ring presser 11, respectively. The outer ring presser 11 is a part of the outer diameter surface of the outer ring 8, and the inner ring presser 10 is connected to the outer side of the shaft 12. The bearing is positioned so as not to deviate from the bearing via the shaft 12 by being fitted to a part of the radial surface.

このような極薄肉の2列組合せ玉軸受は省スペース化の点では有利であるが、内外輪7,8のリング肉厚が非常に薄く、内外輪7,8の剛性が低いため、加工精度が出にくく(特に、真円度)、且つ軸12やハウジング13に組み込んだ際(特に、軸12やハウジング13とすきま嵌合で組み込んだ際)、内輪押え10や外輪押え11等の押し付け力により変形しやすく、組み込み精度の確保に手間を要し、コスト高になる等の問題がある。また、場合によっては、組み込み時の変形により内外輪7,8の軌道溝が歪み、各玉9と軌道溝との接触部間で偏荷重が加わったり、玉9の円滑な転がり運動が阻害されることがある。   Although such an ultra-thin two-row combination ball bearing is advantageous in terms of space saving, the inner and outer rings 7 and 8 have a very thin ring wall and the inner and outer rings 7 and 8 have low rigidity. Is difficult to generate (especially roundness), and when it is assembled into the shaft 12 or the housing 13 (particularly when it is assembled by clearance fitting with the shaft 12 or the housing 13), the pressing force of the inner ring presser 10, the outer ring presser 11, etc. Therefore, there are problems such as being easily deformed, requiring time and effort for securing the mounting accuracy, and increasing the cost. Further, depending on the case, the raceway grooves of the inner and outer rings 7 and 8 are distorted due to deformation at the time of incorporation, and an uneven load is applied between the contact portions between the balls 9 and the raceway grooves, or the smooth rolling motion of the balls 9 is hindered. Sometimes.

(2)4点接触玉軸受(例えば、特許文献3及び特許文献4参照) 4点接触玉軸受は、図36に示すように、内輪4と外輪5との間に多数の玉6が転動自在に配設されており、一つの軸受でラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受けられ、また省スペース化が可能である。
4点接触玉軸受の場合、転動体が玉なので、純アキシャル荷重を受ける場合、又はラジアル荷重よりアキシャル荷重が優勢な場合、同寸法のアンギュラ玉軸受とトルクはほぼ同等であるが、アキシャル荷重に対してラジアル荷重が優勢な場合、又は純ラジアル荷重を受ける場合、各玉6は軌道溝4a,5aと4点で接触するため玉6と各軌道溝4a,5aとのスピン滑りが大きく、また、トルクも大きくなり、発熱や摩耗の問題が発生する。
また、アンギュラ玉軸受と同様に、高回転精度化(アームの精密な位置決め精度の確保、低振動・低騒音化)と高剛性化を図るために軸受に予圧をかけることが多いが、この場合、玉6が常に内外輪軌道溝4a,5aと4点で接触するため、トルクがさらに増加してしまう。
(2) Four-point contact ball bearing (see, for example, Patent Document 3 and Patent Document 4) As shown in FIG. 36, a four-point contact ball bearing has a large number of balls 6 rolling between the inner ring 4 and the outer ring 5. It is arranged freely, and can receive radial load, axial load in both directions, and moment load with a single bearing, and can save space.
In the case of a four-point contact ball bearing, the rolling element is a ball, so when receiving a pure axial load, or when the axial load is superior to the radial load, the torque is almost the same as that of the angular ball bearing of the same size. On the other hand, when the radial load is dominant, or when receiving a pure radial load, each ball 6 contacts the raceway grooves 4a and 5a at four points, and therefore the spin slip between the ball 6 and each raceway groove 4a and 5a is large. The torque also increases, causing problems of heat generation and wear.
Like angular contact ball bearings, preload is often applied to the bearings in order to achieve high rotational accuracy (ensuring precise positioning accuracy of the arm, low vibration and low noise) and high rigidity. Since the ball 6 always contacts the inner and outer ring raceway grooves 4a and 5a at four points, the torque further increases.

(3)クロスローラ軸受(例えば、特許文献5及び特許文献6参照)
クロスローラ軸受は、図37に示すように、内輪1と外輪2との間に円筒形の多数のころ3が転動自在に配設されており、一つの軸受でラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受けられ、また、省スペース化が可能である。
しかし、クロスローラ軸受は、転動体がころであり、軌道溝1a,2aに対してころ3の転がり接触面が線接触しているので、転動体として玉を用いた玉軸受に比べて、軌道輪を回転させるためのトルクが比較的大きくなる。
(3) Cross roller bearing (see, for example, Patent Document 5 and Patent Document 6)
As shown in FIG. 37, in the cross roller bearing, a large number of cylindrical rollers 3 are arranged between an inner ring 1 and an outer ring 2 so as to be able to roll, and a radial load and an axial load in both directions are provided by one bearing. It can receive moment load and can save space.
However, in the cross roller bearing, since the rolling element is a roller and the rolling contact surface of the roller 3 is in line contact with the raceway grooves 1a and 2a, the raceway is compared with a ball bearing using a ball as the rolling element. The torque for rotating the wheel becomes relatively large.

また、軸やハウジングに組み込んだ際のわずかな変形により、線接触部分の接触状態が不安定となり、トルクむらが発生しやすく、ロボットアームの誤作動や円滑な動きを阻害する虞れがある。
さらに、高回転精度化(アームの精密な位置決め精度の確保、低振動・低騒音化)や高剛性化を図るために軸受に予圧をかけることが多いが、この場合、上記の変形によるトルクの増大やトルク変動が発生しやすくなり、駆動モータの容量アップ等、スペースやコストの増大を招く原因になる。
In addition, slight deformation when incorporated in the shaft or the housing makes the contact state of the line contact portion unstable, and torque unevenness is likely to occur, which may hinder malfunction or smooth movement of the robot arm.
In addition, preload is often applied to the bearings in order to achieve high rotational accuracy (ensuring precise positioning accuracy of the arm, low vibration and noise) and high rigidity. Increases and torque fluctuations are likely to occur, leading to an increase in space and cost, such as an increase in drive motor capacity.

実開平5−66327号公報Japanese Utility Model Publication No. 5-66327 特開2003−278765号公報JP 2003-278765 A 特開平11−62990号公報Japanese Patent Laid-Open No. 11-62990 特開2003−139145号公報JP 2003-139145 A 実公平1−44806号公報Japanese Utility Model Publication No. 1-444806 特開昭63−213457号公報JP 63-213457 A

本発明はこのような不都合を解消するためになされたものであり、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられるのは勿論のこと、高剛性化、高回転精度化、低コスト化、低トルク化及び低発熱化を図ることができると共に、更なる省スペース化を図ることができるロボットアーム関節部用軸受装置及び玉軸受を提供することを目的とする。   The present invention has been made to eliminate such inconveniences, and can receive radial load, axial load in both directions, and moment load, as well as high rigidity, high rotational accuracy, low cost, An object of the present invention is to provide a robot arm joint unit bearing device and a ball bearing which can achieve low torque and low heat generation and can further save space.

上記目的を達成するために、請求項1に係る発明は、複数のリンクによって構成されるリンク装置を備えた多関節ロボットアームの関節部と、該関節部に組み込まれる転がり軸受とを具備するロボットアーム関節部用軸受装置であって、
前記転がり軸受として、軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が、(B/H)<0.63である単列の玉軸受を用いたことを特徴とする。
In order to achieve the above object, an invention according to claim 1 is a robot comprising a joint part of an articulated robot arm provided with a link device constituted by a plurality of links, and a rolling bearing incorporated in the joint part. A bearing device for an arm joint,
As the rolling bearing, a single-row ball bearing in which the sectional dimension ratio (B / H) between the axial sectional width B and the radial sectional height H is (B / H) <0.63 is used. Features.

請求項2に係る発明は、外輪の軌道溝と内輪の軌道溝との間に多数の玉が転動自在に配設され、複数のリンクによって構成されるリンク装置を備えた多関節ロボットアームの関節部に組み込まれる単列の玉軸受において、
軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が、(B/H)<0.63であることを特徴とする。
The invention according to claim 2 is an articulated robot arm including a link device in which a large number of balls are rotatably arranged between a raceway groove of an outer ring and a raceway groove of an inner ring, and includes a link device constituted by a plurality of links. In single-row ball bearings built into joints,
The sectional dimension ratio (B / H) between the axial sectional width B and the radial sectional height H is (B / H) <0.63.

請求項3に係る発明は、複数のリンクによって構成されるリンク装置を備えた多関節ロボットアームの関節部と、該関節部に組み込まれる転がり軸受とを具備するロボットアーム関節部用軸受装置であって、
前記転がり軸受として、軸方向断面幅B2と半径方向断面高さH2との断面寸法比(B2/H2)が、(B2/H2)<1.2である複列の玉軸受を用いたことを特徴とする。
The invention according to claim 3 is a bearing device for a robot arm joint part comprising a joint part of an articulated robot arm provided with a link device constituted by a plurality of links, and a rolling bearing incorporated in the joint part. And
As the rolling bearing, a double-row ball bearing in which the sectional dimension ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 is (B2 / H2) <1.2 is used. Features.

請求項4に係る発明は、外輪の複列軌道溝と内輪の複列軌道溝との間に多数の玉が転動自在に配設され、複数のリンクによって構成されるリンク装置を備えた多関節ロボットアームの関節部に組み込まれる複列の玉軸受において、
軸方向断面幅B2と半径方向断面高さH2との断面寸法比(B2/H2)が、(B2/H2)<1.2であることを特徴とする。
The invention according to claim 4 is provided with a multi-link device comprising a plurality of links in which a large number of balls are rotatably arranged between the double-row raceway grooves of the outer ring and the double-row raceway grooves of the inner ring. In double-row ball bearings incorporated in the joints of joint robot arms,
A sectional dimension ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 is (B2 / H2) <1.2.

請求項5に係る発明は、請求項2に係る発明において、前記外輪及び内輪間の少なくとも片側端面にシール収容溝部を夫々形成し、該シール収容溝部内に環状シール体を配設すると共に、前記多数の玉を円周方向に位置決めする保持器を配設し、該保持器は前記多数の玉を保持するポケットの軸方向両側に円環状部が形成され、該円環状部は内輪外周面及び外輪内周面の何れか一方を案内面とし、当該案内面と前記シール収容溝部との交点エッジ部と対向する位置に、当該交点エッジ部との接触を回避する凹状溝部を円周方向に形成したことを特徴とする。   The invention according to claim 5 is the invention according to claim 2, wherein a seal housing groove is formed on at least one side end surface between the outer ring and the inner ring, an annular seal body is disposed in the seal housing groove, A cage for positioning a number of balls in the circumferential direction is disposed, and the cage is formed with annular portions on both sides in the axial direction of the pockets for holding the plurality of balls, Any one of the inner peripheral surfaces of the outer ring is used as a guide surface, and a concave groove portion is formed in the circumferential direction at a position facing the intersection edge portion between the guide surface and the seal housing groove portion to avoid contact with the intersection edge portion. It is characterized by that.

請求項1又は2に係る発明では、ロボットアームの関節部に組み込まれる転がり軸受として、例えば、図2に示すように、外輪101の軌道溝101aと内輪102の軌道溝102aとの間に多数の玉103が転動自在に配設され、軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)が、(B/H)<0.63とされた玉軸受100が用いられる。   In the invention according to claim 1 or 2, as the rolling bearing incorporated in the joint portion of the robot arm, for example, as shown in FIG. 2, a large number of rolling bearings are provided between the raceway groove 101a of the outer ring 101 and the raceway groove 102a of the inner ring 102. The ball 103 is arranged so as to be able to roll, and the cross-sectional dimension ratio (B / H) between the axial cross-sectional width B and the radial cross-sectional height H (= (outer ring outer diameter D−inner ring inner diameter d) / 2) is A ball bearing 100 in which (B / H) <0.63 is used.

ここで、図26及び図27は、それぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ38.1mm,軸受外径:φ47.625mm,軸受幅:4.762mm,前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合(即ち、(B/H)の値を変化させた場合)の内外輪リングの半径方向の変形特性(図24参照:内輪を例示)及び半径方向の断面2次モーメントI(図25参照):I=bh3 /12)を比較した結果を示している。 Here, FIG. 26 and FIG. 27 show ultrathin ball bearings (bearing inner diameter: φ38.1 mm, bearing outer diameter: φ47.625 mm, bearing width: 4.762 mm, standard sectional ratio ( B / H) = 1) as a reference, the inner and outer ring rings of the inner and outer ring rings when the inner diameter of the bearing is changed without changing the outer diameter and the bearing width (that is, when the value of (B / H) is changed). radial deformation characteristic (see FIG. 24: illustrates the inner ring) and radial cross-sectional secondary moment I (see Figure 25): shows the I = bh 3/12) result of comparison.

また、図28及び図29についても、それぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ63.5mm,軸受外径:φ76.2mm,軸受幅:6.35mm,前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合(即ち、(B/H)の値を変化させた場合)の内外輪リングの半径方向の変形特性及び半径方向の断面2次モーメントIを比較した結果を示している。   Also for FIGS. 28 and 29, the standard thin ball bearings (bearing inner diameter: φ63.5 mm, bearing outer diameter: φ76.2 mm, bearing width: 6.35 mm, cross-sectional dimension ratio ( B / H) = 1) as a reference, the inner and outer ring rings of the inner and outer ring rings when the inner diameter of the bearing is changed without changing the outer diameter and the bearing width (that is, when the value of (B / H) is changed). The result of having compared the deformation characteristic of radial direction and the cross-sectional secondary moment I of radial direction is shown.

いずれの場合も、(B/H)=0.63未満で、剛性の増加率勾配の変化が顕著に出ている。すなわち、断面2次モーメントIの増加は顕著になり、半径方向の内外輪リングの変形量の減少は飽和状態となる。
従って、本発明では、従来の極薄肉軸受で問題となる内外輪製作時の旋盤加工や研磨加工時の加工力による軸受変形を防止することができ、真円度や偏肉等の軸受精度を向上させることができる。
In either case, (B / H) is less than 0.63, and the change in the rigidity increase rate gradient is noticeable. That is, the increase in the secondary moment I of the cross section becomes significant, and the decrease in the deformation amount of the inner and outer ring in the radial direction becomes saturated.
Therefore, in the present invention, bearing deformation such as roundness and uneven thickness can be prevented by preventing lathe processing during inner and outer ring production and processing force during polishing, which is a problem with conventional ultra-thin bearings. Can be improved.

また、軸やハウジングに組み込んだ場合(特に、軸やハウジングとすきま嵌合で組み込んだ場合)、内輪押えや外輪押え等で軸受を固定したときの内外輪の変形(特に真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転精度不良の他、発熱増大や摩耗、焼付き等の不具合を防止することができる。
つまり、従来使用されている極薄肉玉軸受に比較して、省スペース化と同時に高回転精度化を両立させることが可能である。
In addition, when incorporated in a shaft or housing (especially when assembled by clearance fitting with the shaft or housing), deformation of the inner and outer rings when the bearing is fixed with an inner ring retainer or outer ring retainer (especially worse roundness) In addition to torque failure and rotational accuracy failure caused by deformation, problems such as increased heat generation, wear, and seizure can be prevented.
That is, as compared with the conventionally used ultra-thin ball bearings, it is possible to achieve both space saving and high rotational accuracy.

また、各玉が内外輪の軌道溝に対して常に2点で接触するので、クロスローラ軸受のように、軌道溝に対して、ころの転がり接触面が線接触すること等によるトルク増加やトルクむらの問題がなく、低発熱であり、摩耗を防止することができる。
さらに、幅寸法が従来の標準単列玉軸受の約半分となることで、玉径も従来の玉軸受の半分程度となるが、逆に1列あたりの玉数が増加し、軸受剛性は従来の玉軸受に対して増加する。
In addition, each ball always contacts the inner and outer ring raceway grooves at two points. As in the case of a cross roller bearing, the increase in torque and torque caused by the roller contact surface of the roller making linear contact with the raceway groove. There is no problem of unevenness, low heat generation, and wear can be prevented.
Furthermore, when the width dimension is about half that of the conventional standard single-row ball bearing, the ball diameter is also about half that of the conventional ball bearing. Increased against ball bearings.

さらに、ロボットアームの関節部に組み込む場合においては、他の用途に比べて、低速回転、または揺動回転条件が大部分の比率を占めているので、玉径を小さくしたことにより軸受の負荷容量が低下しても転がり疲れ寿命時間が実用上で問題となることはない。
なお、単列玉軸受は、1列では、予圧をかけたりモーメント荷重を負荷することは困難であるが、2列以上の多列組合せとすることで、ラジアル荷重、両方向のアキシヤル荷重及びモーメント荷重を負荷することが可能となる。
Furthermore, when incorporated in the joint part of a robot arm, the load capacity of the bearing is reduced by reducing the ball diameter, since the low-speed rotation or oscillating rotation conditions occupy most of the ratio compared to other applications. The rolling fatigue life time does not become a practical problem even if the decrease is reduced.
Single-row ball bearings are difficult to apply preload or moment load in one row, but by combining two or more rows, radial load, axial load in both directions and moment load It becomes possible to load.

一方、国際標準化機構(ISO)で規定されている寸法系列が18(例えば6810)、19(例えば6912)、10(例えば7010A)、02(例えば7214A)、03(例えば7313A)の標準玉軸受では、軸受内径寸法がφ5mm〜φ500mmにおいては、上述の断面寸法比(B/H)は0.63〜1.17に設定されている。   On the other hand, in the standard ball bearings whose dimension series prescribed by the International Organization for Standardization (ISO) are 18 (for example, 6810), 19 (for example, 6912), 10 (for example, 7010A), 02 (for example, 7214A), 03 (for example, 7313A) When the inner diameter of the bearing is φ5 mm to φ500 mm, the cross-sectional dimension ratio (B / H) is set to 0.63 to 1.17.

したがって、これらの玉軸受の断面寸法比(B/H)の最大値1.17の約1/2倍、すなわち0.63未満に設定することで、従来の標準単列玉軸受で最も幅狭の玉軸受より幅狭で、且つ従来の標準単列玉軸受の軸方向スペース以内に、請求項1又は2に係る玉軸受を2列組み合わせて配置することができる。
例えば、従来の玉軸受の断面寸法比(B/H)が(B/H)=0.9であれば、本発明の軸受の断面寸法比(B/H)を(B/H)=0.45とすればよい。また、本例の場合、組み合わせる2個の玉軸受るおける軸受の断面寸法比(B/H)を同一にする必要はなく、例えば、片方を0.50、もう一方を0.40としてもよい。
Therefore, the width of the cross-sectional dimension ratio (B / H) of these ball bearings is set to about 1/2 times the maximum value of 1.17, that is, less than 0.63. The ball bearings according to claim 1 or 2 can be arranged in combination with each other within a space narrower than that of the conventional ball bearing and within an axial space of a conventional standard single row ball bearing.
For example, if the sectional dimension ratio (B / H) of a conventional ball bearing is (B / H) = 0.9, the sectional dimension ratio (B / H) of the bearing of the present invention is (B / H) = 0. .45. In the case of this example, the sectional dimension ratio (B / H) of the two ball bearings to be combined need not be the same. For example, one may be 0.50 and the other may be 0.40. .

請求項3又は4に係る発明では、ロボットアームの関節部に組み込まれる転がり軸受として、例えば、図20に示すように、外輪201の複列軌道溝201a,201bと内輪202の複列軌道溝202a,202bとの間に多数の玉203が転動自在に配設され、軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)が、(B2/H2)<1.2とされた複列玉軸受200が用いられる。   In the invention according to claim 3 or 4, as the rolling bearing incorporated in the joint portion of the robot arm, for example, as shown in FIG. 20, the double row raceway grooves 201a and 201b of the outer ring 201 and the double row raceway groove 202a of the inner ring 202 are provided. , 202b, a large number of balls 203 are rotatably arranged, and the cross-sectional dimension of the axial cross-sectional width B2 and the radial cross-sectional height H2 (= (outer ring outer diameter D2-inner ring inner diameter d2) / 2). A double row ball bearing 200 in which the ratio (B2 / H2) is (B2 / H2) <1.2 is used.

複列玉軸受において、断面寸法比(B2/H2)を以上のような設定とすることで、請求項1又は2に係る単列の幅狭玉軸受を2列組合わせとした場合と同様、従来の標準単列玉軸受の軸方向幅スペース内に請求項3又は4に係る複列玉軸受を配置することが可能となり、また、予圧をかけたり、モーメント荷重を負荷すること等も可能となる。その他の作用効果は請求項1又は2に係る単列の幅狭玉軸受を2列組合わせとした場合と同様である。   In the double row ball bearing, by setting the cross-sectional dimension ratio (B2 / H2) as described above, the single row narrow ball bearing according to claim 1 or 2 is combined into two rows, It becomes possible to arrange the double-row ball bearing according to claim 3 or 4 in the axial width space of the conventional standard single-row ball bearing, and it is also possible to apply a preload or apply a moment load. Become. Other functions and effects are the same as in the case where the single row narrow ball bearings according to claim 1 or 2 are combined in two rows.

図30は、各種軸受の計算モーメント剛性の比較である。同一サイズ(計算例は、軸受名番7906A(接触角30°)相当で、内外径寸法が同じ場合:内輪内径φ30mm、外輪外径φ47mm)では、請求項1又は2に係る単列の幅狭アンギュラ玉軸受(接触角30°:総玉軸受の計算例)を2列組合わせ、且つ内外輪の軌道溝曲率半径を変化させた本発明例A〜Eは、いずれもクロスローラ軸受、標準2列組合わせアンギュラ玉軸受及び4点接触玉軸受に比べてモーメント剛性が大きくなっている。例えば、本発明例Bは、クロスローラ軸受の2.4倍、標準2列組合わせアンギュラ玉軸受の1.9倍、4点接触玉軸受の3.3倍のモーメント剛性を保持させることが可能である。   FIG. 30 is a comparison of calculated moment stiffness of various bearings. When the same size (calculation example is equivalent to bearing name No. 7906A (contact angle 30 °) and the inner and outer diameter dimensions are the same: inner ring inner diameter φ30 mm, outer ring outer diameter φ47 mm), the width of the single row according to claim 1 or 2 is narrow. Inventive examples A to E in which angular contact ball bearings (contact angle 30 °: calculation example of total ball bearing) are combined in two rows and the raceway radius of curvature of the inner and outer rings are changed are cross roller bearings, standard 2 The moment rigidity is larger than that of the row combination angular contact ball bearing and the 4-point contact ball bearing. For example, the present invention example B can maintain moment rigidity 2.4 times that of a cross roller bearing, 1.9 times that of a standard two-row angular contact ball bearing, and 3.3 times that of a 4-point contact ball bearing. It is.

なお、それぞれの設計予圧すきまは、本発明例A〜E、標準2列組合わせアンギュラ玉軸受及び4点接触玉軸受は、−0.010mm、クロスローラ軸受は−0.001mmと実用上の標準的な値として計算している(クロスローラ軸受で、−0.001mmより小さい予圧設定をした場合、トルクが過多となり実用上で使用不可となる虞れがある。)。
なお、本発明に係る幅狭玉軸受の適正な玉径は、シール等の装着有無により変化するが、剛性を増加させるため、極端に玉径を小さくすると、玉と内外輪の軌道溝との接触部間の面圧が増加し、耐圧痕性が低下するため、おおむね、軸受幅(B)又は(B2/2)の30%〜90%が望ましい。
The design preload clearances are -0.010 mm for the invention examples A to E, standard two-row angular contact ball bearings and 4-point contact ball bearings, and -0.001 mm for the cross roller bearings. (If the pre-load setting is less than -0.001 mm with a cross roller bearing, the torque may be excessive and may not be usable in practice).
The appropriate ball diameter of the narrow ball bearing according to the present invention varies depending on whether or not a seal or the like is attached, but in order to increase rigidity, if the ball diameter is extremely reduced, the ball and the inner and outer ring raceway grooves Since the surface pressure between the contact portions increases and the pressure scar resistance decreases, the bearing width (B) or (B2 / 2) is preferably approximately 30% to 90%.

さらに、本発明をアンギュラ玉軸受に適用した場合、軸受の接触角は必要な剛性(例えば、モーメント剛性)及び要求トルクにより選ばれるが、おおむね10〜60°の範囲が望ましい。
さらに、荷重の方向や大きさに合わせて、必要に応じて、組合わせた各単列軸受の接触角、あるいは複列軸受の場合は各列間の接触角を変えても構わない。
さらには、内外輪軌道溝の曲率半径は、要求される剛性やトルク特性に応じて、51〜60%Da(Da:玉径)、好ましくは52〜56%Da、より好ましくは52〜54%Da程度とする。また、内外輪のそれぞれの軌道溝の曲率半径は同一でなくてもよいし、組み合される単列軸受間や複列軸受の各列間で異なってもよい。
Furthermore, when the present invention is applied to an angular ball bearing, the contact angle of the bearing is selected depending on the required rigidity (for example, moment rigidity) and the required torque, but is preferably in the range of approximately 10 to 60 °.
Further, according to the direction and magnitude of the load, the contact angle of each combined single row bearing or the contact angle between each row in the case of a double row bearing may be changed as necessary.
Further, the radius of curvature of the inner and outer ring raceway grooves is 51 to 60% Da (Da: ball diameter), preferably 52 to 56% Da, more preferably 52 to 54%, depending on the required rigidity and torque characteristics. It is about Da. Further, the radius of curvature of each raceway groove of the inner and outer rings may not be the same, or may be different between single row bearings to be combined or between rows of double row bearings.

なおさらに、請求項5又は6に係る発明では、請求項1又は2における単列の玉軸受において、外輪及び内輪の少なくとも片側端面にシール収容溝部を夫々形成し、これらシール収容溝部内に環状シール体を配設すると共に、多数の玉を円周方向に位置決めする保持器を配設したときに、保持器の多数の玉を保持するポケットの軸方向両側に形成した内輪外周面及び外輪内周面の何れか一方を案内面とする円環状部に、当該案内面とシール収容溝部との交点エッジ部と対向する位置に、凹状溝部を円周方向に形成したので、前述したように幅狭形状の軸受であっても、凹状溝部によって保持器の円環状部が交点エッジ部に接触するエッジ当りを回避して、エッジ当りによる円環状部の摩耗を確実防止することができる。   Still further, in the invention according to claim 5 or 6, in the single-row ball bearing according to claim 1 or 2, a seal housing groove is formed on at least one end face of each of the outer ring and the inner ring, and an annular seal is formed in the seal housing groove. The inner ring outer circumferential surface and the outer ring inner circumferential surface formed on both sides in the axial direction of the pocket for holding a large number of balls of the cage, when the body is disposed and the cage for positioning the large number of balls in the circumferential direction is disposed. Since the concave groove portion is formed in the circumferential direction at the position facing the intersection edge portion between the guide surface and the seal receiving groove portion on the annular portion having one of the surfaces as the guide surface, the width is narrow as described above. Even in the case of a bearing having a shape, wear of the annular portion due to edge contact can be reliably prevented by avoiding contact of the annular portion of the cage with the intersection edge portion by the concave groove portion.

本発明によれば、ロボットアームの関節部に組み込まれる玉軸受において、単列玉軸受の場合に、軸方向断面幅Bと半径方向断面高さHとの断面比(B/H)を(B/H)<0.63とし、複列玉軸受の場合に、軸方向断面幅B2と半径方向断面高さH2との断面比(B2/H2)が(B2/H2)<1.2とすることで、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられるのは勿論のこと、高剛性化、高回転精度化、低コスト化、低トルク化及び低発熱化を図ることができると共に、更なる省スペース化を図ることができる。   According to the present invention, in the ball bearing incorporated in the joint portion of the robot arm, in the case of the single row ball bearing, the sectional ratio (B / H) between the axial sectional width B and the radial sectional height H is (B / H). /H)<0.63, and in the case of a double row ball bearing, the sectional ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 is (B2 / H2) <1.2. In addition to being able to receive radial load, axial load in both directions, and moment load, it is possible to achieve high rigidity, high rotational accuracy, low cost, low torque and low heat generation. Space saving can be achieved.

以下、本発明の実施の形態を図を参照して説明する。
図1は本発明の第1の態様(請求項1又は2に対応)の実施の形態の一例である単列玉軸受をロボットアームの関節部に組み込んで軸受装置を構成した例を説明するための概略断面図、図2は図1の関節部に組み込まれる単列玉軸受を示す要部断面図、図3は図2の単列玉軸受を2列組み合わせた状態を示す要部断面図、図4〜図15は本発明の第1の態様の他の実施の形態を説明するための図、図16〜図19は本発明の第1の態様の変形例を説明するための図、図20は本発明の第2の態様(請求項3又は4に対応)の実施の形態の一例であるロボットアーム関節部用複列玉軸受を説明するための要部断面図、図21〜図23は本発明の第2の態様の他の実施の形態を説明するための図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a view for explaining an example in which a single row ball bearing which is an example of an embodiment of the first aspect of the present invention (corresponding to claim 1 or 2) is incorporated in a joint portion of a robot arm to constitute a bearing device. FIG. 2 is a cross-sectional view of an essential part showing a single-row ball bearing incorporated in the joint part of FIG. 1, and FIG. 3 is a cross-sectional view of an essential part showing a state in which two single-row ball bearings of FIG. 4 to 15 are diagrams for explaining another embodiment of the first aspect of the present invention, and FIGS. 16 to 19 are diagrams and figures for explaining a modification of the first aspect of the present invention. 20 is a cross-sectional view of an essential part for explaining a double-row ball bearing for a robot arm joint, which is an example of an embodiment of the second aspect of the present invention (corresponding to claim 3 or 4). These are the figures for demonstrating other embodiment of the 2nd aspect of this invention.

なお、各実施の形態共に、既に図31で説明した多関節ロボットアームのリンク21c,21d先端と支持ハンド25との間の関節部23(図32参照)に、本発明に係る玉軸受を組み込んでロボットアーム関節部軸受装置を構成する場合を例に採るが、これに限定されず、他の公知のロボットアームの関節部に組み込まれる玉軸受に本発明を適用してもよい。   In each of the embodiments, the ball bearing according to the present invention is incorporated into the joint portion 23 (see FIG. 32) between the tips of the links 21c and 21d of the multi-joint robot arm already described in FIG. However, the present invention is not limited to this and may be applied to a ball bearing incorporated in a joint portion of another known robot arm.

本発明の第1の態様(請求項1又は2に対応)の実施の形態の一例である単列玉軸受100は、図2に示すように、外輪101の軌道溝101aと内輪102の軌道溝102aとの間に多数の玉103が転動自在に配設された単列の総玉のアンギュラ玉軸受とされ、軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)が、(B/H)<0.63とされている。   As shown in FIG. 2, a single row ball bearing 100 as an example of an embodiment of the first aspect (corresponding to claim 1 or 2) of the present invention includes a raceway groove 101 a of the outer ring 101 and a raceway groove of the inner ring 102. A single-row angular contact ball bearing in which a large number of balls 103 are rotatably arranged between the ball 102a and an axial section width B and a radial section height H (= (outer ring outer diameter D−). The sectional dimension ratio (B / H) with the inner ring inner diameter d) / 2) is (B / H) <0.63.

そして、この実施の形態では、図1及び図3に示すように、アンギュラ玉軸受100を2列背面組合せとして、ロボットアームの関節部23に組み込むことにより、ロボットアーム関節部用軸受装置を構成している。
外輪101及び内輪102は外輪押え30及び内輪押え31を介して支持ハンド25の軸32や関節部23のハウジング23aにボルト等を利用して締結され、外輪押え30は外輪101の外径面の一部、内輪押え31は軸32の外径面の一部に嵌合して、軸32を介して軸受と芯がずれないように位置決めされている。
In this embodiment, as shown in FIGS. 1 and 3, the angular contact ball bearings 100 are assembled into the joint portion 23 of the robot arm as a two-row back combination, thereby constituting a robot arm joint portion bearing device. ing.
The outer ring 101 and the inner ring 102 are fastened to the shaft 32 of the support hand 25 and the housing 23a of the joint 23 using bolts or the like via the outer ring presser 30 and the inner ring presser 31, and the outer ring presser 30 is formed on the outer diameter surface of the outer ring 101. A part of the inner ring presser 31 is fitted to a part of the outer diameter surface of the shaft 32 and is positioned via the shaft 32 so that the bearing and the core are not displaced.

ここで、この実施の形態では、2列背面組合せのアンギュラ玉軸受100を、7208A(接触角30°)の2列組合せアンギュラ玉軸受と置き換える場合を例に採る。
7208Aのアンギュラ玉軸受は、内輪内径d:φ40mm、外輪外径:Dφ80mm、軸方向断面幅(軸受単体幅)Bが18mmであるので、断面寸法比(B/H)=0.9である。したがって、本実施形態のアンギュラ玉軸受100では、断面寸法比(B/H)=0.45(内輪内径及び外輪外径はそのままで、軸方向断面幅(軸受単体幅)Bを9mmとした)としている。
Here, in this embodiment, a case where the double-row back side angular contact ball bearing 100 is replaced with a 7208A (contact angle 30 °) double-row combination angular ball bearing is taken as an example.
Since the 7208A angular contact ball bearing has an inner ring inner diameter d: φ40 mm, an outer ring outer diameter: Dφ80 mm, and an axial sectional width (bearing single body width) B is 18 mm, the sectional dimension ratio (B / H) = 0.9. Therefore, in the angular ball bearing 100 of the present embodiment, the cross-sectional dimension ratio (B / H) = 0.45 (the inner ring inner diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing unit width) B is 9 mm). It is said.

これにより、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられるのは勿論のこと、高剛性化、高回転精度化、低コスト化、低トルク化及び低発熱化を図ることができると共に、軸方向寸法で1/2の省スペース化を図ることができ、半導体製造工程や液晶パネル製造工程等における処理チャンバのゲートの上下方向の開口幅を狭く設計することが可能となる。
もちろん、必要に応じて、アンギュラ玉軸受100の断面寸法比(B/H)を0.45未満或いは0.45を超える(但し(B/H)<0.63)ように設定してもかまわない。因みにアンギュラ玉軸受100の接触角は例えば30°としている。
As a result, radial load, axial load in both directions, and moment load can be received, as well as high rigidity, high rotational accuracy, low cost, low torque and low heat generation. It is possible to save space by ½ in the directional dimension, and it is possible to design a narrow opening width in the vertical direction of the gate of the processing chamber in a semiconductor manufacturing process, a liquid crystal panel manufacturing process, or the like.
Of course, if necessary, the cross-sectional dimension ratio (B / H) of the angular ball bearing 100 may be set to be less than 0.45 or more than 0.45 (where (B / H) <0.63). Absent. Incidentally, the contact angle of the angular ball bearing 100 is, for example, 30 °.

なお、本実施形態では、玉103のピッチ円直径は次式(1)のとおりとしているが、軸受1列あたりの玉数を増やして更にモーメント剛性を増加させたい場合は、次式(2)を採用して、玉103のピッチ円直径を外輪側にずらして図4に示す構造としてもよいし、必要に応じて次式(3)を採用して逆に玉103のピツチ円直径を内輪102側にずらしてもよい(図示せず)。
玉のピッチ円直径=(内輪内径+外輪外径)/2 …(1)
玉のピッチ円直径>(内輪内径+外輪外径)/2 …(2)
玉のピッチ円直径<(内輪内径+外輪外径)/2 …(3)
In this embodiment, the pitch circle diameter of the balls 103 is as shown in the following formula (1). However, when it is desired to increase the moment rigidity by increasing the number of balls per row of the bearing, the following formula (2) is used. 4 and the pitch circle diameter of the ball 103 may be shifted to the outer ring side, and the structure shown in FIG. 4 may be adopted, or the following equation (3) may be adopted as necessary to change the pitch circle diameter of the ball 103 to the inner ring. You may shift to 102 side (not shown).
Ball pitch circle diameter = (inner ring inner diameter + outer ring outer diameter) / 2 (1)
Ball pitch circle diameter> (inner ring inner diameter + outer ring outer diameter) / 2 (2)
Ball pitch circle diameter <(inner ring inner diameter + outer ring outer diameter) / 2 (3)

また、必要に応じて、図5に示すように、組み合わされる左右の玉軸受の玉ピッチ円直径を同―値とせずともよいし、組み合わされる左右の玉軸受の玉103の径を同一値としなくてもよい。加えて、組み合わせる2個の玉軸受の断面寸法比(B/H)は同一でなく、例えば玉径の小さい方を(B/H)=0.28、玉径の大きい方を(B/H)=0.62としても構わない。更に、玉103の軸方向ピッチも軸方向中心でなくともよく、シールや保持器の装着有無やモーメントの作用点間距離の確保等のために玉103の軸方向ピッチを軸方向にずらしてもよい。   Further, as shown in FIG. 5, the ball pitch circle diameters of the left and right ball bearings to be combined may not be the same value as shown in FIG. 5, and the diameters of the balls 103 of the right and left ball bearings to be combined are set to the same value. It does not have to be. In addition, the sectional dimension ratio (B / H) of the two ball bearings to be combined is not the same. For example, the smaller ball diameter is (B / H) = 0.28, and the larger ball diameter is (B / H). ) = 0.62. Further, the axial pitch of the balls 103 may not be the center of the axial direction, and the axial pitch of the balls 103 may be shifted in the axial direction in order to secure the distance between the application points of the moment and the moment of attachment of the seal and the cage. Good.

図6は、軸方向の一方の端部に環状シール体104を装着したアンギュラ玉軸受100を2列背面組み合わせたものである。 軸方向の一方の端部に環状シール体104を装着したアンギュラ玉軸受100を2列組み合わせて機械等に取り付けた後(シール取り付け面を外側に向けて組み合わせる)は、軸受使用中に外部からの異物やごみ等の侵入及び封入グリースの外部への洩れを防止することが可能である。環状シール体104は、この実施の形態では、外輪101のシール溝104aに押し込んで挿入する非接触型(内輪102と非接触)で金属芯金105の補強タイプのゴムシール(例えばニトリルゴム・アクリルゴムやフッ素ゴム)106とし、組み合わせ端面と反対側のみ環状シール体104を装着して省スペース化を図っている。   FIG. 6 shows a combination of two rows of angular ball bearings 100 each having an annular seal body 104 mounted at one end in the axial direction. After the angular ball bearings 100 having the annular seal body 104 mounted on one end in the axial direction are combined in two rows and attached to a machine or the like (combined with the seal mounting surface facing outward), the external ball bearing 100 is used while the bearing is in use. It is possible to prevent entry of foreign matter, dust, etc. and leakage of the enclosed grease to the outside. In this embodiment, the annular seal body 104 is a non-contact type (non-contact with the inner ring 102) inserted into the seal groove 104a of the outer ring 101 and a reinforcing rubber seal (for example, nitrile rubber / acrylic rubber) of the metal core 105. Or fluorine rubber) 106, and an annular seal body 104 is attached only on the side opposite to the combined end face to save space.

図7は、軸方向の両端部に環状シール体104を装着したアンギュラ玉軸受100を示したものである。
軸方向の両端部に環状シール体104を装着したアンギュラ玉軸受100を機械等に取り付けた後は、軸受使用中に外部からの異物やごみ等の侵入を防止すると共に、軸受取扱い時や軸やハウジングヘの組込み時においても、異物やごみ等の侵入及び封入グリースの外部への洩れを防止することが可能となる。組み合わせについては、2列でモーメント剛性を増加させるためには、モーメントの作用点距離が大きくとれる背面組み合わせ(図3等で接触角がハの字の向きとなっている)を採用するのが望ましい。
FIG. 7 shows an angular ball bearing 100 in which annular seal bodies 104 are mounted at both ends in the axial direction.
After the angular ball bearing 100 with the annular seal body 104 mounted on both ends in the axial direction is attached to a machine or the like, it prevents foreign matter and dust from entering from outside during use of the bearing, Even when it is assembled into the housing, it is possible to prevent intrusion of foreign matter, dust, etc. and leakage of the enclosed grease to the outside. As for the combination, in order to increase the moment stiffness in two rows, it is desirable to adopt the back combination (the contact angle is in the direction of the letter C in FIG. 3 etc.) that allows the moment action point distance to be increased. .

更に剛性が必要な場合は、図8及び図9に示すように、3列以上の多列組み合わせとしても構わないし、何らかの理由(例えば、軸受組込み時にミスアライメント発生が避けられず、軸受の内部荷重負荷を極力抑えたい場合等)で、モーメント剛性を小さくしたい場合は、図10に示すように、正面組み合わせ(接触角の向きが逆ハの字)等の配列としてもよい。   If further rigidity is required, as shown in FIGS. 8 and 9, a multi-row combination of three or more rows may be used. For some reason (for example, misalignment is unavoidable when the bearing is installed, the internal load of the bearing is For example, when it is desired to suppress the load as much as possible and to reduce the moment rigidity, an arrangement such as a frontal combination (the contact angle direction is reverse C) may be used as shown in FIG.

更には、モーメント荷重や両方のアキシアル荷重を負荷するためには、2列以上の組み合わせ軸受とする必要があるが、荷重条件や方向に応じて使用条件上で可能であれば、単列軸受で使用してもかまわない。
また、本実施形態では、アンギュラ玉軸受としているが、深みぞ玉軸受等その他の玉軸受としてもよい。環状シール体は、図6及び図7で示した非接触型ではなく、接触型の金属芯金補強タイプのゴムシール(ゴム材質は、例えばニトリルゴム・アクリルゴムやフッ素ゴム)でもよいし、外輪101のシール溝に加締め加工する金属シールド板でもかまわない。また、環状シール体を内輪102側のシール溝に押し込んで挿入したり、又は加締め加工で取り付けるようにしてもよい(外輪と接触又は非接触する構造)。
Furthermore, in order to apply moment load or both axial loads, it is necessary to use two or more rows of combined bearings. You can use it.
In this embodiment, the angular ball bearing is used, but other ball bearings such as a deep groove ball bearing may be used. The annular seal body is not the non-contact type shown in FIGS. 6 and 7, but may be a contact type metal core reinforcing type rubber seal (the rubber material is, for example, nitrile rubber, acrylic rubber or fluororubber), or the outer ring 101. A metal shield plate that is swaged into the seal groove may be used. Further, the annular seal body may be inserted by being inserted into the seal groove on the inner ring 102 side, or may be attached by caulking (a structure in contact with or non-contact with the outer ring).

内輪102、外輪101及び玉103の材料は、標準的な使用条件では軸受鋼(例えば、SUJ2、SUJ3など)とするが、使用環境に応じて、耐食材料であるステンレス系材料(例えば、SUS440C等のマルテンサイト系ステンレス鋼材やSUS304等のオーステナイト系ステンレス鋼材、SUS630等の析出硬化系ステンレス鋼材など)、チタン合金やセラミック系材料(例えば、Si3 4 、SiC、Al2 3 、ZrO2 等)を採用してもよい。 The material of the inner ring 102, the outer ring 101, and the ball 103 is a bearing steel (eg, SUJ2, SUJ3, etc.) under standard usage conditions, but depending on the usage environment, a stainless steel material (eg, SUS440C, etc.) that is a corrosion resistant material. Martensitic stainless steel materials, austenitic stainless steel materials such as SUS304, precipitation hardening stainless steel materials such as SUS630, etc., titanium alloys and ceramic materials (for example, Si 3 N 4 , SiC, Al 2 O 3 , ZrO 2, etc.) ) May be adopted.

潤滑方法も特に限定されず、一般的な使用環境では、鉱油系グリースや合成油系(例えば、リチウム系、ウレア系等)のグリースや油を使用でき、高温環境用途などではフッ素系グリースまたはフッ素系の油、あるいはフッ素樹脂、MoS2 などの固体潤滑剤を使用することができる。
図11は、軸方向の一方の端部(組合せ側端面と反対側の端部)に環状シール体104を装着し、且つ玉103を転動可能に保持する保持器110を備えたアンギュラ玉軸受100を2列背面組み合わせたものである。
The lubrication method is not particularly limited, and mineral oil-based grease or synthetic oil-based grease (for example, lithium-based or urea-based grease) or oil can be used in a general usage environment. Fluorine-based grease or fluorine Series lubricants or solid lubricants such as fluororesin and MoS 2 can be used.
FIG. 11 shows an angular contact ball bearing provided with an annular seal body 104 at one end in the axial direction (end opposite to the end face on the combination side) and a cage 110 that holds the ball 103 in a rollable manner. 100 is a combination of two rows on the back.

保持器110としては、例えば、図12〜図15(a)に示すように、円環部111と、該円環部111の一端部に周方向に略等間隔で複数箇所軸方向に突設された柱部112と、各柱部112間に形成されて玉103を周方向に転動可能に保持するポケット部113とを備えた柔軟性のある冠形保持器を採用している。保持器110の材質は、例えば、ポリアミド、ポリアセタール、ポリフェニレンサルファイド等の合成樹脂材とし、必要に応じて、合成樹脂材にガラス繊維や炭素繊維等の補強材を混入した材料を用いる。   As the cage 110, for example, as shown in FIGS. 12 to 15 (a), an annular portion 111 and one end portion of the annular portion 111 project in the axial direction at a plurality of locations at substantially equal intervals in the circumferential direction. A flexible crown-shaped cage including the pillars 112 and pockets 113 formed between the pillars 112 to hold the balls 103 so as to roll in the circumferential direction is employed. The material of the cage 110 is, for example, a synthetic resin material such as polyamide, polyacetal, or polyphenylene sulfide, and a material in which a reinforcing material such as glass fiber or carbon fiber is mixed into the synthetic resin material is used as necessary.

また、この実施の形態では、軸受の負荷容量や剛性を上げるために、隣り合う玉103間の円周方向ピッチは極力小さくし、できる限り玉数を多くしている。更に、玉103の軸方向ピッチをできるだけ組合せ側端面の反対側にずらし(図11:X1 >X2 )、保持器110の円環部111が軸受組合せ端面側になるように配置しており、モーメント剛性を上げるための作用点間距離を大きくとれるようにしている。 In this embodiment, in order to increase the load capacity and rigidity of the bearing, the circumferential pitch between adjacent balls 103 is made as small as possible, and the number of balls is increased as much as possible. Furthermore, the axial pitch of the balls 103 is shifted as much as possible to the opposite side of the combination side end face (FIG. 11: X 1 > X 2 ), and the ring portion 111 of the cage 110 is arranged to be on the bearing combination end face side. In order to increase the moment rigidity, the distance between the operating points can be increased.

なお、総玉軸受の場合も、環状シール体の装着の有無等、必要に応じて同様に玉の軸方向ピッチを幅中央ではなく、軸方向の左右いずれかの方向(軸受合わせ端面側、あるいは反対側)にずらしてもかまわない。 保持器付きの軸受は、回転が1方向の連続回転や大きなモーメント荷重が加わる条件等、各玉の接触角の変化による公転速度のばらつきが発生しやすい条件等で、総玉軸受を使用した場合の玉間の接触や玉つまりが生じやすい用途で低トルク、低発熱等の点で、より良い効果を発揮する。   In the case of a full ball bearing, the axial pitch of the balls is not the center of the width in the same way as necessary, such as whether or not an annular seal body is mounted. It can be shifted to the opposite side. When a ball bearing with a cage is used as a full ball bearing under conditions where the rotation speed tends to vary due to changes in the contact angle of each ball, such as continuous rotation in one direction or a large moment load. It is more effective in terms of low torque, low heat generation, etc.

更に、本実施形態では、ポケット部113の入り口部を玉径より若干小さくして引っかかり(パチン代)を設ければ、内輪102及び外輪101に組み込む際、玉103の脱落がなく軸受の組立が容易である。 保持器の形状は、本実施形態に限定されず、各玉103間に配置するセパレータタイプの保持器の他、いずれの方式でもよい。また、材料も合成樹脂材ではなく、金属材料でもかまわない。   Furthermore, in this embodiment, if the entrance portion of the pocket portion 113 is slightly smaller than the ball diameter and is provided with a hook (pachin allowance), the ball 103 can be assembled without being dropped when the inner ring 102 and the outer ring 101 are assembled. Easy. The shape of the cage is not limited to this embodiment, and any system other than the separator type cage disposed between the balls 103 may be used. Also, the material may be a metal material instead of a synthetic resin material.

また、図15(b)は図15(a)と基本構造は同様な冠形保持器であるが、円環部111の少なくとも円周方向の一箇所で互いに隣り合うポケット部113間を予め切断して、各切断面間に所定のすき間を持たせた構造としている。
このような構造を採用することで、保持器と軌道輪との熱膨張係数差及び保持器の寸法精度や真円度のばらつきにより、転動体ピッチ円径と保持器のピッチ円径がずれた場合でも、片持ち形状であることによる半径方向の柔軟性と、各切断面間のすき間による円周方向の弾力的変形(円周方向の柔軟性)を兼ね備えることとなるため、玉103とポケット部113間の突っ張り力を緩衝して、保持器の損傷や摩耗を防止すると共に、玉103とポケット部113内面とのすべり接触抵抗によるトルクむらや発熱をより軽減することができる。
15 (b) is a crown-shaped cage having the same basic structure as FIG. 15 (a), but the pocket portion 113 adjacent to each other at least at one place in the circumferential direction of the annular portion 111 is cut in advance. And it is set as the structure which gave the predetermined clearance gap between each cut surface.
By adopting such a structure, the rolling element pitch circle diameter and the cage pitch circle diameter have shifted due to differences in the thermal expansion coefficient between the cage and the raceway and variations in the dimensional accuracy and roundness of the cage. Even in this case, the ball 103 and the pocket have both the flexibility in the radial direction due to the cantilever shape and the elastic deformation in the circumferential direction (the flexibility in the circumferential direction) due to the gaps between the cut surfaces. The tension force between the portions 113 can be buffered to prevent the cage from being damaged and worn, and torque unevenness and heat generation due to sliding contact resistance between the balls 103 and the pocket portions 113 can be further reduced.

また、本発明の玉軸受は、構造上、使用玉径が小さくなるため、保持器の円環部111の半径方向の厚みは厚くできず(図11からも理解できるように、保持器は内輪外径と外輪内径との間の空隙部に適度なすき間を設けて位置決めさせる必要があり、この内輪外径と外輪内径との間の空隙部は玉径と略比例関係にあるので狭い)、更に、幅狭構造により、軸方向の間隙部も狭く、軸方向厚みも薄くせざるを得ない。このため、標準サイズの軸受より保持器の円環部が極めて小さく、真円度等の寸法精度を出しにくくなるので、円環部111を図15(b)のようにした保持器構造は、特に上述した保持器の損傷や摩耗防止効果及びトルクむらや発熱の軽減に関して効果が得られる。   In addition, since the ball bearing of the present invention has a structurally small ball diameter, the radial thickness of the annular portion 111 of the cage cannot be increased (as can be understood from FIG. 11, the cage is an inner ring). It is necessary to position the gap between the outer diameter and the inner diameter of the outer ring by providing an appropriate gap, and the gap between the outer diameter of the inner ring and the inner diameter of the outer ring is substantially proportional to the ball diameter and is narrow) Furthermore, due to the narrow structure, the gap in the axial direction is also narrow and the axial thickness has to be reduced. For this reason, since the annular portion of the cage is extremely smaller than a standard size bearing and it is difficult to obtain dimensional accuracy such as roundness, the cage structure having the annular portion 111 as shown in FIG. In particular, the effects described above can be obtained with respect to the above-described cage damage and wear prevention effect, and torque unevenness and reduction of heat generation.

また、対象とする用途は、軸受のdmn値(dm:転がり軸受の転動体ピッチ円直径(mm)とn:回転速度(min-1)との積)がせいぜい10万〜20万以下の場合が多く、これらの用途に本発明を適用する場合、図15(b)のような保持器構造としても、遠心力による悪影響は発生しない。なお、必要に応じて、円環部111の切断箇所は円周方向で2カ所以上としても構わない。この場合、切断箇所は、可能な限り円周方向で等分とすることが望ましい。また、これらの玉軸受をロボットアームの関節部に適用する場合、剛性を大きくするために、通常、予圧をかけて使用するが、条件に応じて、或いはその他の用途等ですき間を持たせて使用してもよい。 In addition, the intended application is when the dmn value of the bearing (dm: product of rolling element pitch circle diameter (mm) of rolling bearing and n: rotational speed (min −1 )) is at most 100,000 to 200,000 or less. In many cases, when the present invention is applied to these uses, even if the cage structure as shown in FIG. If necessary, the circular portion 111 may have two or more cut portions in the circumferential direction. In this case, it is desirable that the cut portions are equally divided in the circumferential direction as much as possible. In addition, when these ball bearings are applied to the joints of robot arms, they are usually used with a preload in order to increase the rigidity. However, depending on the conditions or for other purposes, allow clearance. May be used.

さらに、図16を参照して、前述した第1の実施の形態の変形例(請求項5又は6に対応)を説明する。
この変形例では、図1に示す単列の総玉のアンギュラ玉軸受で構成される単列玉軸受100の片側に環状シール体120を設けると共に、多数の玉103を円周方向に位置決めする保持器130を配設している。
Furthermore, with reference to FIG. 16, a modified example of the first embodiment described above (corresponding to claim 5 or 6) will be described.
In this modification, an annular seal body 120 is provided on one side of a single row ball bearing 100 constituted by a single row full-ball angular ball bearing shown in FIG. 1, and a plurality of balls 103 are positioned in the circumferential direction. A container 130 is provided.

すなわち、図16に示すように、外輪101及び内輪102の例えば右側の片側端面に環状シール体120を収容するシール収容溝121及び122が配設されている。
環状シール体120は逆L字状に形成した金属芯金125で補強した補強タイプのゴムシール(例えばニトリルゴム・アクリルゴムやフッ素ゴム)126で構成されている。ゴムシール126は、外周部に外輪101と嵌合する嵌合部126aが形成され、内周部に内輪101と接触するリップ部126bが形成されている。
That is, as shown in FIG. 16, seal housing grooves 121 and 122 for housing the annular seal body 120 are arranged on one end face on the right side of the outer ring 101 and the inner ring 102, for example.
The annular seal body 120 is composed of a reinforced rubber seal (for example, nitrile rubber / acrylic rubber or fluororubber) 126 reinforced by a metal core 125 formed in an inverted L shape. The rubber seal 126 has a fitting portion 126a that fits the outer ring 101 on the outer peripheral portion, and a lip portion 126b that contacts the inner ring 101 on the inner peripheral portion.

外輪101のシール収容溝121は、外輪101の軌道溝101aに連接する傾斜内周面101bの右端側に比較的浅い段部121aと、この段部121aの底部に円周方向に形成された環状シール体120の嵌合部126aを押し込んで挿入する浅い嵌合凹部121bとを有する構成とされている。また、内輪102のシール収容溝122は、内輪の軌道溝102aの左右両端に連接する円筒外周面102bにおける軌道溝102aの右側の右端側に比較的深い段部122aと、この段部122aの底面に円周方向に形成した環状シール体120の内周面に形成されたリップ部126bが接触する浅い収容凹部122bとを有する構成とされている。   The seal housing groove 121 of the outer ring 101 has a relatively shallow step portion 121a on the right end side of the inclined inner peripheral surface 101b connected to the raceway groove 101a of the outer ring 101, and an annular shape formed in the circumferential direction at the bottom portion of the step portion 121a. It is set as the structure which has the shallow fitting recessed part 121b which pushes in and inserts the fitting part 126a of the seal body 120. FIG. Further, the seal receiving groove 122 of the inner ring 102 includes a relatively deep step portion 122a on the right end side on the right side of the track groove 102a on the cylindrical outer peripheral surface 102b connected to the left and right ends of the track groove 102a of the inner ring, and a bottom surface of the step portion 122a. And a shallow receiving recess 122b with which a lip 126b formed on the inner peripheral surface of the annular seal body 120 formed in the circumferential direction contacts.

さらに、保持器130は、玉103を収容するポケット部131を挟んで軸方向に延長する一対の円環状部132a及び132bを有し、これら円環状部132a及び132bが内輪102の円筒外周面102bを案内面として装着されている。
そして、環状シール体120側の円環状部132bには内輪102の円筒外周面102bとシール収容溝122との交点に形成される交点エッジ部123と対向する内周面に交点エッジ部123との接触を回避する断面半円形の凹状溝部133が円周方向に形成されている。
Furthermore, the retainer 130 has a pair of annular portions 132 a and 132 b extending in the axial direction across the pocket portion 131 that accommodates the ball 103, and these annular portions 132 a and 132 b are the cylindrical outer peripheral surface 102 b of the inner ring 102. Is installed as a guide surface.
The annular portion 132b on the annular seal body 120 side is connected to the intersection edge portion 123 on the inner circumferential surface facing the intersection edge portion 123 formed at the intersection between the cylindrical outer circumferential surface 102b of the inner ring 102 and the seal housing groove 122. A concave groove 133 having a semicircular cross section that avoids contact is formed in the circumferential direction.

この保持器130は、切削により製作された銅合金などの金属材料、ポリアミド、ポリアセタール、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の合成樹脂材料、さらにはガラス繊維やカーボン繊維等の補強材を添加した強化材入り合成樹脂材料等で製作されている。保持器130を樹脂材料で形成する場合には、切削成形及び射出成形の何れをも適用することができる。   The cage 130 is made of a metal material such as a copper alloy manufactured by cutting, a synthetic resin material such as polyamide, polyacetal, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or glass fiber or carbon fiber. It is made of a synthetic resin material containing a reinforcing material with a reinforcing material added. When the cage 130 is formed of a resin material, either cutting molding or injection molding can be applied.

このように、保持器130の案内面の右端側に形成された交点エッジ部123と対向する内周面に凹状溝部133が円周方向に形成されているので、この交点エッジ部123が保持器130の内周面と接触することを確実に防止することができ、環状シール体120側の円環状部132bの幅を広くして断面積を大きくすることにより強度を確保しながら、保持器130の摩耗を確実に防止することができる。   As described above, since the concave groove 133 is formed in the circumferential direction on the inner peripheral surface facing the intersection edge portion 123 formed on the right end side of the guide surface of the cage 130, the intersection edge portion 123 is formed in the cage. The retainer 130 can be reliably prevented from coming into contact with the inner peripheral surface of the ring 130, while ensuring the strength by increasing the width of the annular portion 132b on the annular seal body 120 side to increase the cross-sectional area. Can be reliably prevented.

また、案内面の一部に設けられた凹状溝部133には、グリース潤滑の場合、グリースを保持する貯留部としての役割を果たすことができ、加えて案内面近傍に位置するため、案内面に適度に潤滑油を供給する効果もあり、潤滑特性の面からも、長期に亘って耐摩耗性を保持することができる。この効果は、後述する図19に示すように、円環状部132a及び132bの双方に凹状溝部133及び134を形成した場合にはより顕著になる。   In addition, in the case of grease lubrication, the concave groove 133 provided in a part of the guide surface can serve as a reservoir for holding grease, and in addition, since it is located in the vicinity of the guide surface, There is also an effect of appropriately supplying the lubricating oil, and the wear resistance can be maintained for a long time from the viewpoint of the lubrication characteristics. This effect becomes more conspicuous when concave grooves 133 and 134 are formed in both annular portions 132a and 132b as shown in FIG.

通常、玉軸受100の少なくとも片側に環状シール体120を配設する場合には、外輪101の内径面や内輪102の外径面を保持器130の案内面とするが、この案内面とシール収容溝122とが接する位置に交点エッジ部123が形成されるため、この交点エッジ部123と保持器130の円環状部132bとの接触によるエッジ当りによって保持器130が摩耗することになる。   Normally, when the annular seal body 120 is disposed on at least one side of the ball bearing 100, the inner diameter surface of the outer ring 101 and the outer diameter surface of the inner ring 102 are used as the guide surfaces of the cage 130. Since the intersection edge portion 123 is formed at a position where the groove 122 is in contact with the groove 122, the cage 130 is worn due to the contact between the intersection edge portion 123 and the annular portion 132b of the cage 130.

この保持器130の摩耗を防止するには、従来は、内輪案内としたときに、図17に示すように、保持器130の交点エッジ部123側における円環状部132bの軸方向長さ即ち幅を短くして、円環状部132bと交点エッジ部123とが接触しないようにすることが考えられている。
しかしながら、本実施例のように幅狭の玉軸受100の場合には、円環状部132bの幅が非常に薄くなり、十分な強度を確保することができないという問題がある。
In order to prevent the wear of the cage 130, conventionally, when the inner ring guide is used, as shown in FIG. 17, the axial length or width of the annular portion 132b on the intersection edge 123 side of the cage 130 is shown. It is considered that the annular portion 132b and the intersection edge portion 123 do not come into contact with each other.
However, in the case of the narrow ball bearing 100 as in this embodiment, there is a problem that the width of the annular portion 132b becomes very thin and sufficient strength cannot be ensured.

このためには、図18に示すように円環状部132bの幅を長くして強度を確保する必要があるが、この場合には、上述したように、円環状部132bの内周面と交点エッジ部123とが対向することになるため、玉軸受100の回転中に保持器130が案内側軌道輪に対して傾いた場合に、円環状部132bの内周面が交点エッジ部123にエッジ当りすることになり保持器130が摩耗してしまう。
特に、シール収容溝121及び122は、切削加工後の熱処理面であることが多いので面粗度が悪く、且つ保持器130と接触する交線部分にはバリが形成されやすいので、摩耗が発生しやすい。
For this purpose, as shown in FIG. 18, it is necessary to increase the width of the annular portion 132b to ensure strength, but in this case, as described above, the intersection with the inner peripheral surface of the annular portion 132b. Since the edge portion 123 is opposed, when the cage 130 is inclined with respect to the guide-side raceway during rotation of the ball bearing 100, the inner peripheral surface of the annular portion 132b is edged to the intersection edge portion 123. As a result, the cage 130 is worn.
In particular, since the seal receiving grooves 121 and 122 are often heat-treated surfaces after cutting, the surface roughness is poor, and burrs are likely to be formed at the intersecting portions that come into contact with the cage 130, so that wear occurs. It's easy to do.

さらに、本発明による玉軸受100は、構造上、軸受の玉ピッチ円径に対して、玉径が非常に小さくなるので、それに対応して、保持器130の円環状部132bの断面も小さくなり、保持器130の半径方向強度(円環状部132bの半径方向強度)も小さくなる。これに加え、本発明による玉軸受100の用途はその使用条件から、軸受回転時に、大きなモーメント荷重が付加され易く、軸受が傾き易い。そのため、各玉103の接触角の変化により、各玉103の公転速度がバラツキ、玉103とポケット部131との間の突っ張り力による保持器130の変形も大きくなるため、さらにエッジ当りし易くなり、接触部の面圧も増加して摩耗が進行し易い。   Furthermore, since the ball bearing 100 according to the present invention has a structurally very small ball diameter with respect to the ball pitch circle diameter of the bearing, the cross section of the annular portion 132b of the cage 130 is correspondingly reduced. The radial strength of the cage 130 (the radial strength of the annular portion 132b) is also reduced. In addition to this, the application of the ball bearing 100 according to the present invention is likely to cause a large moment load to be applied during rotation of the bearing, and the bearing is liable to tilt due to its usage conditions. Therefore, due to the change in the contact angle of each ball 103, the revolution speed of each ball 103 varies, and the deformation of the cage 130 due to the tension force between the ball 103 and the pocket portion 131 also increases, so it is easier to hit the edge. Further, the surface pressure of the contact portion also increases and wear tends to proceed.

しかしながら、上述したように、本実施形態では、図16に示すように、保持器130の環状シール体120側の円環状部132bの幅を広くして断面積を増加させながらシール収容溝122と案内面となる円筒面102bとの境界部の交点エッジ部123に接触する可能性のある部分に凹状溝133が形成されているので、保持器130が傾いたとしても、交点エッジ部123と凹状溝133との間に十分な間隔を確保することができるので、凹状溝133と交点エッジ部123との接触を確実に防止することができ、保持器130の摩耗を確実に防止することができる。   However, as described above, in the present embodiment, as shown in FIG. 16, the width of the annular portion 132 b on the annular seal body 120 side of the retainer 130 is increased to increase the cross-sectional area while increasing the cross-sectional area. Since the concave groove 133 is formed in a portion that may contact the intersection edge portion 123 at the boundary with the cylindrical surface 102b serving as the guide surface, even if the cage 130 is inclined, the intersection edge portion 123 and the concave shape are formed. Since a sufficient space can be ensured between the groove 133 and the contact between the concave groove 133 and the intersection edge portion 123 can be surely prevented, and wear of the cage 130 can be surely prevented. .

なお、上記変形例では、玉軸受100の右側に環状シール体120を配設した場合について説明したが、これに限定されるものではなく、玉軸受100の左側に環状シール体120を配設するようにしてもよく、さらには両側に環状シール体120を配設するようにしてもよい。
また、上記変形例では、円環状部132bに形成する凹状溝133を断面半円形状に形成した場合について説明したが、これに限定されるものではなく、断面四角形状、断面三角形状、断面楕円状等の交点エッジ部123との接触を回避できる形状であれば任意の形状とすることができる。
In the above modification, the case where the annular seal body 120 is disposed on the right side of the ball bearing 100 has been described. However, the present invention is not limited to this, and the annular seal body 120 is disposed on the left side of the ball bearing 100. Alternatively, the annular seal body 120 may be disposed on both sides.
Moreover, although the case where the concave groove 133 formed in the annular portion 132b is formed in a semicircular cross section has been described in the above modification, the present invention is not limited to this, and is not limited to this. Any shape can be used as long as contact with the intersection edge portion 123 such as a shape can be avoided.

さらに、上記変形例では、環状シール体120が内輪シール収容溝122と接触する場合について説明したが、これに限定されるものではなく、図6に示す内輪シール収容溝122と接触しない非接触ゴムシール型(金属芯金着き)や外輪シール溝に加締める金属シールを適用することができる。
さらにまた、上記変形例では、保持器130の案内面を内輪102の外周面とした場合について説明したが、これに限定されるものではなく、外輪101の内周面を案内面とするようにしてもよい。
Furthermore, although the case where the annular seal body 120 is in contact with the inner ring seal housing groove 122 has been described in the above modification, the present invention is not limited to this, and a non-contact rubber seal that does not contact the inner ring seal housing groove 122 shown in FIG. A metal seal that is caulked in a mold (attached to a metal core) or an outer ring seal groove can be applied.
Furthermore, in the above-described modification, the case where the guide surface of the cage 130 is the outer peripheral surface of the inner ring 102 has been described, but the present invention is not limited to this, and the inner peripheral surface of the outer ring 101 is used as the guide surface. May be.

なおさらに、上記変形例では、保持器130の円環状部132a及び132bのうち環状シール体120側の円環状部132bに凹状溝133を形成した場合について説明したが、これに限定されるものではなく、図19に示すように、環状シール体120とは反対側の円環状部132aにも円環状部132bの凹状溝133と各玉103の中心を通る垂直面を挟む面対称位置に凹状溝部134を設けるようにしてもよい。このように、凹状溝部を左右の円環状部132a及び132bに形成すると、組み付け時に保持器130の凹状溝部の形成位置を確認することなく、任意の方向から組み付けることができ、組み付け作業を向上させることができる。   Furthermore, in the above-described modification, the case where the concave groove 133 is formed in the annular portion 132b on the annular seal body 120 side of the annular portions 132a and 132b of the cage 130 has been described. However, the present invention is not limited to this. 19, the annular groove 132a on the opposite side of the annular seal body 120 also has a concave groove at a plane symmetrical position across the vertical groove passing through the concave groove 133 of the annular portion 132b and the center of each ball 103. 134 may be provided. As described above, when the concave groove portions are formed in the left and right annular portions 132a and 132b, it is possible to assemble from any direction without confirming the formation position of the concave groove portions of the retainer 130 during the assembly, thereby improving the assembling work. be able to.

次に、図20を参照して、本発明の第2の態様(請求項3又は4に対応)の実施の形態の一例である複列玉軸受を説明する。
この複列総玉アンギュラ玉軸受200は、外輪201の複列軌道溝201a,201bと内輪202の複列軌道溝202a,202bとの間に多数の玉203が転動自在に配設され、軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)が、(B2/H2)<1.2とされており、玉ピッチ円直径が半径方向断面高さの中央に設定されている。
Next, with reference to FIG. 20, the double row ball bearing which is an example of embodiment of the 2nd aspect (corresponding to Claim 3 or 4) of this invention is demonstrated.
In this double row full ball angular contact ball bearing 200, a large number of balls 203 are arranged between the double row raceway grooves 201a and 201b of the outer ring 201 and the double row raceway grooves 202a and 202b of the inner ring 202 so as to roll freely. The sectional dimension ratio (B2 / H2) between the direction sectional width B2 and the radial section height H2 (= (outer ring outer diameter D2−inner ring inner diameter d2) / 2) is (B2 / H2) <1.2. The ball pitch circle diameter is set at the center of the radial section height.

そして、図1を参照して、この複列アンギュラ玉軸受200を、ロボットアームの関節部23に組み込むことにより、ロボットアーム関節部用軸受装置を構成している。
ここで、この実施の形態では、複列アンギュラ玉軸受200を、7208A(接触角30°)の2列組合せアンギュラ玉軸受に置き換えた場合を例に採る。
7208Aは、内輪内径φ40mm、外輪外径φ80mm、軸方向断面幅(軸受単体幅):Bが18mmであるので、断面寸法比(B/H)=0.9である。したがって、本実施形態の複列アンギュラ玉軸受200では、断面寸法比(B2/H2)=0.9(内輪外径及び外輪外径はそのままで、軸方向断面幅(軸受単体幅):B2を18mmとした)としている。
Referring to FIG. 1, the double-row angular contact ball bearing 200 is incorporated into the joint portion 23 of the robot arm to constitute a robot arm joint portion bearing device.
Here, in this embodiment, a case where the double row angular contact ball bearing 200 is replaced with a double row combination angular contact ball bearing of 7208A (contact angle 30 °) is taken as an example.
7208A has an inner ring inner diameter φ40 mm, an outer ring outer diameter φ80 mm, and an axial cross-sectional width (bearing single body width): B is 18 mm, so the cross-sectional dimension ratio (B / H) = 0.9. Therefore, in the double-row angular contact ball bearing 200 of the present embodiment, the sectional dimension ratio (B2 / H2) = 0.9 (the inner ring outer diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing unit width): B2 18 mm).

これにより、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられるのは勿論のこと、高剛性化、高回転精度化、低コスト化、低トルク化及び低発熱化を図ることができると共に、軸方向寸法で1/2の省スペース化を図ることができ、半導体製造工程や液晶パネル製造工程等における処理チャンバのゲートの上下方向の開口幅を狭く設計することが可能となる。   As a result, radial load, axial load in both directions, and moment load can be received, as well as high rigidity, high rotational accuracy, low cost, low torque and low heat generation. It is possible to save space by ½ in the directional dimension, and it is possible to design a narrow opening width in the vertical direction of the gate of the processing chamber in a semiconductor manufacturing process, a liquid crystal panel manufacturing process, or the like.

もちろん、必要に応じて、断面寸法比(B2/H2)を0.90未満或いは0.90を超える(但し、(B2/H2)<1.2)ように設定してもよい。因みに、複列アンギュラ玉軸受200の接触角は、例えば30°としている。
なお、図21は、モーメント剛性をあげるため、複列総玉アンギュラ玉軸受200で玉ピッチ円直径を外径側にずらした例であり、図22は、複列総玉アンギュラ玉軸受200で各列の玉径や玉ピッチ円直径を変えた例であり、図23は、軸方向の両端部に環状シール体104を装着した複列総玉アンギュラ玉軸受200で、モーメント剛性をあげるため、玉ピッチ円直径を外径側にずらした例である。
Of course, if necessary, the cross-sectional dimension ratio (B2 / H2) may be set to be less than 0.90 or more than 0.90 (provided that (B2 / H2) <1.2). Incidentally, the contact angle of the double-row angular contact ball bearing 200 is, for example, 30 °.
FIG. 21 is an example in which the ball pitch circle diameter is shifted to the outer diameter side in the double row full ball angular contact ball bearing 200 in order to increase the moment rigidity, and FIG. FIG. 23 shows an example in which the ball diameter and ball pitch circle diameter of the row are changed. FIG. 23 shows a double row full ball angular contact ball bearing 200 having annular seal bodies 104 attached to both ends in the axial direction. This is an example in which the pitch circle diameter is shifted to the outer diameter side.

いずれの例の場合も、環状シール体、保持器等の構造や装着の有無の他、構造に関する適用例は、上記第1の態様の実施の形態で記載した単列玉軸受に準ずる。また、上記第1の態様の実施の形態と同様に、予圧及びすき間のいずれの条件で使用してもよい。
なお、本発明のリンク、リンク装置、多関節ロボットアーム、関節部、外輪、外輪軌道溝、内輪、内輪軌道溝、玉や保持器等の構成は、上記各態様の実施の形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において、適宜変更可能である。
In any case, in addition to the structure of the annular seal body, the cage, etc., whether or not it is mounted, application examples related to the structure are the same as those of the single row ball bearing described in the embodiment of the first aspect. Moreover, you may use on any conditions of a preload and a clearance gap similarly to embodiment of the said 1st aspect.
The configurations of the link, the link device, the articulated robot arm, the joint, the outer ring, the outer ring raceway groove, the inner ring, the inner ring raceway groove, the ball, the cage and the like of the present invention are those exemplified in the above embodiments. The present invention is not limited to this, and can be appropriately changed without departing from the gist of the present invention.

本発明の第1の態様(請求項1又は2に対応)の実施の形態の一例である単列玉軸受をロボットアームの関節部に組み込んで軸受装置を構成した例を説明するための概略断面図である。Schematic cross section for explaining an example in which a single row ball bearing which is an example of an embodiment of the first aspect of the present invention (corresponding to claim 1 or 2) is incorporated in a joint portion of a robot arm to constitute a bearing device FIG. 図1の関節部に組み込まれる単列玉軸受を示す要部断面図である。It is principal part sectional drawing which shows the single row ball bearing integrated in the joint part of FIG. 図2の単列玉軸受を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 2 with 2 rows. 本発明の第1の態様の他の実施の形態である単列玉軸受を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing which is other embodiment of the 1st aspect of this invention in two rows. 図2の単列玉軸受と他の実施の形態である単列玉軸受とを2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 2 and the single row ball bearing which is other embodiment in two rows. 本発明の第1の態様の他の実施の形態である単列玉軸受を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing which is other embodiment of the 1st aspect of this invention in two rows. 本発明の第1の態様の他の実施の形態である単列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the single row ball bearing which is other embodiment of the 1st aspect of this invention. 図2の単列玉軸受を3列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 2 with 3 rows. 図2の単列玉軸受を4列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 2 with 4 rows. 図1の単列玉軸受を2列正面組合せで組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 1 by 2 row front combination. 本発明の第1の態様の他の実施の形態である単列玉軸受を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing which is other embodiment of the 1st aspect of this invention in two rows. 保持器の径方向に沿う断面図である。It is sectional drawing in alignment with the radial direction of a holder | retainer. 保持器を径方向内側から見た部分斜視図である。It is the fragmentary perspective view which looked at the holder | retainer from radial direction inner side. 図12の矢印B方向から見た図である。It is the figure seen from the arrow B direction of FIG. (a)は図12の矢印A方向から見た図、(b)は(a)の変形例を示す図である。(A) is the figure seen from the arrow A direction of FIG. 12, (b) is a figure which shows the modification of (a). 本発明の第1の態様の変形例(請求項5又は6に対応)の一例であるロボットアーム関節部用単列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the single row ball bearing for robot arm joint parts which is an example of the modification (corresponding to Claim 5 or 6) of the 1st aspect of this invention. ロボットアーム関節部用単列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the single row ball bearing for robot arm joint parts. ロボットアーム関節部用単列玉軸受の変形例を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the modification of the single row ball bearing for robot arm joint parts. 本発明の第1の態様の他の変形例の一例であるロボットアーム関節部用単列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the single row ball bearing for robot arm joint parts which is an example of the other modification of the 1st aspect of this invention. 本発明の第2の態様(請求項3又は4に対応)の実施の形態の一例であるロボットアーム関節部用複列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the double row ball bearing for robot arm joint parts which is an example of embodiment of the 2nd aspect (corresponding to Claim 3 or 4) of this invention. 本発明の第2の態様の他の実施の形態である複列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the double row ball bearing which is other embodiment of the 2nd aspect of this invention. 本発明の第2の態様の他の実施の形態である複列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the double row ball bearing which is other embodiment of the 2nd aspect of this invention. 本発明の第2の態様の他の実施の形態である複列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the double row ball bearing which is other embodiment of the 2nd aspect of this invention. 内輪の半径方向の変形量を説明するための説明図である。It is explanatory drawing for demonstrating the deformation amount of the radial direction of an inner ring | wheel. 内輪の断面2次モーメントの計算方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of the cross-sectional secondary moment of an inner ring | wheel. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner and outer ring | wheels of a radial direction. 断面寸法比(B/H)と断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and a cross-sectional secondary moment I. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner and outer ring | wheels of a radial direction. 断面寸法比(B/H)と断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and a cross-sectional secondary moment I. 各種軸受での計算モーメント剛性の比較を示すグラフ図である。It is a graph which shows the comparison of the calculated moment rigidity in various bearings. 多関節ロボットアームの一例を説明するための概略図である。It is the schematic for demonstrating an example of an articulated robot arm. 従来のロボットアーム関節部の軸受装置を示す断面図である。It is sectional drawing which shows the conventional bearing apparatus of a robot arm joint part. 従来の2列組合せアンギュラ玉軸受の要部断面図である。It is principal part sectional drawing of the conventional 2 row combination angular contact ball bearing. 従来の極薄肉断面の2列組合せアンギュラ玉軸受の要部断面図である。It is principal part sectional drawing of the conventional 2 row combination angular contact ball bearing of an ultra-thin wall section. 従来の極薄肉断面の2列組合せアンギュラ玉軸受を軸に取り付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the conventional 2 rows combination angular contact ball bearing of the ultra-thin wall section to the axis | shaft. 4点接触玉軸受の要部断面図である。It is principal part sectional drawing of a 4-point contact ball bearing. クロスローラ軸受の要部断面図である。It is principal part sectional drawing of a cross-roller bearing.

符号の説明Explanation of symbols

21a〜21d リンク
21 リンク装置
23 ロボットアーム関節部
100 単列玉軸受
101 外輪
101a 外輪軌道溝
102 内輪
102a 内輪軌道溝
103 玉
120 環状シール体
121,122 シール収容溝
123 交点エッジ部
130 保持器
131 ポケット部
132a,132b 円環状部
133 凹状溝部
200 複列玉軸受
201 外輪
201a,201b 外輪軌道溝
202 内輪
202a,202b 内輪軌道溝
203 玉
21a to 21d Link 21 Link device 23 Robot arm joint part 100 Single row ball bearing 101 Outer ring 101a Outer ring raceway groove 102 Inner ring 102a Inner ring raceway groove 103 Ball 120 Ring seal body 121, 122 Seal receiving groove 123 Intersection edge part 130 Cage 131 Pocket Parts 132a, 132b annular part 133 concave groove part 200 double row ball bearing 201 outer ring 201a, 201b outer ring raceway groove 202 inner ring 202a, 202b inner ring raceway groove 203 ball

Claims (6)

複数のリンクによって構成されるリンク装置を備えた多関節ロボットアームの関節部と、該関節部に組み込まれる転がり軸受とを具備するロボットアーム関節部用軸受装置であって、
前記転がり軸受として、軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が、(B/H)<0.63である単列の玉軸受を用いたことを特徴とするロボットアーム関節部用軸受装置。
A robot arm joint part bearing device comprising a joint part of an articulated robot arm provided with a link device constituted by a plurality of links, and a rolling bearing incorporated in the joint part,
As the rolling bearing, a single-row ball bearing in which the sectional dimension ratio (B / H) between the axial sectional width B and the radial sectional height H is (B / H) <0.63 is used. A bearing device for a joint portion of a robot arm.
外輪の軌道溝と内輪の軌道溝との間に多数の玉が転動自在に配設され、複数のリンクによって構成されるリンク装置を備えた多関節ロボットアームの関節部に組み込まれる単列の玉軸受において、
軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が、(B/H)<0.63であることを特徴とする玉軸受。
A plurality of balls are rotatably arranged between the outer ring raceway groove and the inner ring raceway groove, and are incorporated into the joint portion of the multi-joint robot arm having a link device constituted by a plurality of links. In ball bearings,
A ball bearing characterized in that a cross-sectional dimension ratio (B / H) between an axial cross-sectional width B and a radial cross-sectional height H is (B / H) <0.63.
複数のリンクによって構成されるリンク装置を備えた多関節ロボットアームの関節部と、該関節部に組み込まれる転がり軸受とを具備するロボットアーム関節部用軸受装置であって、
前記転がり軸受として、軸方向断面幅B2と半径方向断面高さH2との断面寸法比(B2/H2)が、(B2/H2)<1.2である複列の玉軸受を用いたことを特徴とするロボットアーム関節部用軸受装置。
A robot arm joint part bearing device comprising a joint part of an articulated robot arm provided with a link device constituted by a plurality of links, and a rolling bearing incorporated in the joint part,
As the rolling bearing, a double-row ball bearing in which the sectional dimension ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 is (B2 / H2) <1.2 is used. A bearing device for a joint portion of a robot arm.
外輪の複列軌道溝と内輪の複列軌道溝との間に多数の玉が転動自在に配設され、複数のリンクによって構成されるリンク装置を備えた多関節ロボットアームの関節部に組み込まれる複列の玉軸受において、
軸方向断面幅B2と半径方向断面高さH2との断面寸法比(B2/H2)が、(B2/H2)<1.2であることを特徴とする玉軸受。
A large number of balls are rotatably arranged between the double-row raceway groove on the outer ring and the double-row raceway groove on the inner ring, and incorporated into the joint part of an articulated robot arm having a link device constituted by a plurality of links. Double row ball bearing
A ball bearing characterized in that a cross-sectional dimension ratio (B2 / H2) between the axial cross-sectional width B2 and the radial cross-sectional height H2 is (B2 / H2) <1.2.
前記玉軸受は、外輪及び内輪間の少なくとも片側端面にシール収容溝部を夫々形成し、該シール収容溝部内に環状シール体を配設すると共に、前記多数の玉を円周方向に位置決めする保持器を配設した構成を有し、前記保持器は前記多数の玉を保持するポケットの軸方向両側に円環状部が形成され、該円環状部は内輪外周面及び外輪内周面の何れか一方を案内面とし、当該案内面と前記シール収容溝部との交点エッジ部と対向する位置に、当該交点エッジ部との接触を回避する凹状溝部を円周方向に形成したことを特徴とする請求項1に記載のロボットアーム関節部用軸受装置。   The ball bearing has a seal housing groove formed on at least one end face between the outer ring and the inner ring, an annular seal body is disposed in the seal housing groove, and a plurality of balls are positioned in the circumferential direction. The retainer has an annular portion formed on both sides in the axial direction of the pocket for holding the plurality of balls, and the annular portion is either one of the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring. A concave groove portion that avoids contact with the intersection edge portion is formed in a circumferential direction at a position facing the intersection edge portion between the guide surface and the seal housing groove portion. The bearing device for a robot arm joint part according to 1. 前記外輪及び内輪間の少なくとも片側端面にシール収容溝部を夫々形成し、該シール収容溝部内に環状シール体を配設すると共に、前記多数の玉を円周方向に位置決めする保持器を配設し、該保持器は前記多数の玉を保持するポケットの軸方向両側に円環状部が形成され、該円環状部は内輪外周面及び外輪内周面の何れか一方を案内面とし、当該案内面と前記シール収容溝部との交点エッジ部と対向する位置に、当該交点エッジ部との接触を回避する凹状溝部を円周方向に形成したことを特徴とする請求項2に記載の玉軸受。   A seal housing groove is formed on at least one end surface between the outer ring and the inner ring, an annular seal body is disposed in the seal housing groove, and a cage for positioning the plurality of balls in the circumferential direction is disposed. The retainer has an annular portion formed on both axial sides of a pocket for holding the plurality of balls, and the annular portion has one of an inner ring outer peripheral surface and an outer ring inner peripheral surface as a guide surface, and the guide surface The ball bearing according to claim 2, wherein a concave groove portion that avoids contact with the intersection edge portion is formed in a circumferential direction at a position facing an intersection edge portion between the seal receiving groove portion and the seal housing groove portion.
JP2006115884A 2005-04-27 2006-04-19 Bearing device for robot arm joint part, and ball bearing Pending JP2006329420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115884A JP2006329420A (en) 2005-04-27 2006-04-19 Bearing device for robot arm joint part, and ball bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005129601 2005-04-27
JP2006115884A JP2006329420A (en) 2005-04-27 2006-04-19 Bearing device for robot arm joint part, and ball bearing

Publications (1)

Publication Number Publication Date
JP2006329420A true JP2006329420A (en) 2006-12-07

Family

ID=37551303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115884A Pending JP2006329420A (en) 2005-04-27 2006-04-19 Bearing device for robot arm joint part, and ball bearing

Country Status (1)

Country Link
JP (1) JP2006329420A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090943A (en) * 2008-10-06 2010-04-22 Nsk Ltd Bearing device
JP2010194675A (en) * 2009-02-25 2010-09-09 Nsk Ltd Joint part for manipulator
JP2011052715A (en) * 2009-08-31 2011-03-17 Nsk Ltd Bearing unit for robot joint part, and robot joint part equipped with bearing unit
JP2011131298A (en) * 2009-12-22 2011-07-07 Nsk Ltd Joint section for manipulator
JP2011202739A (en) * 2010-03-25 2011-10-13 Nsk Ltd Bearing device
JP2013204642A (en) * 2012-03-27 2013-10-07 Nsk Ltd Multi-row combinational ball bearing
US9599151B2 (en) 2013-05-10 2017-03-21 Roller Bearing Company Of America, Inc. Double row preloaded ball bearing with spacer balls
CN107718043A (en) * 2017-10-31 2018-02-23 东莞市太行机电科技有限公司 A kind of desktop type industrial robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177792A (en) * 1995-12-21 1997-07-11 Ntn Corp Cage for ball bearing and ball bearing
JP2001032848A (en) * 1999-07-22 2001-02-06 Koyo Seiko Co Ltd Rolling bearing device
JP2001099144A (en) * 1999-10-04 2001-04-10 Koyo Seiko Co Ltd Thin rolling bearing and manufacture thereof
JP2004034226A (en) * 2002-07-03 2004-02-05 Koyo Seiko Co Ltd Bearing arrangement for joints

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177792A (en) * 1995-12-21 1997-07-11 Ntn Corp Cage for ball bearing and ball bearing
JP2001032848A (en) * 1999-07-22 2001-02-06 Koyo Seiko Co Ltd Rolling bearing device
JP2001099144A (en) * 1999-10-04 2001-04-10 Koyo Seiko Co Ltd Thin rolling bearing and manufacture thereof
JP2004034226A (en) * 2002-07-03 2004-02-05 Koyo Seiko Co Ltd Bearing arrangement for joints

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090943A (en) * 2008-10-06 2010-04-22 Nsk Ltd Bearing device
JP2010194675A (en) * 2009-02-25 2010-09-09 Nsk Ltd Joint part for manipulator
JP2011052715A (en) * 2009-08-31 2011-03-17 Nsk Ltd Bearing unit for robot joint part, and robot joint part equipped with bearing unit
JP2011131298A (en) * 2009-12-22 2011-07-07 Nsk Ltd Joint section for manipulator
JP2011202739A (en) * 2010-03-25 2011-10-13 Nsk Ltd Bearing device
JP2013204642A (en) * 2012-03-27 2013-10-07 Nsk Ltd Multi-row combinational ball bearing
US9599151B2 (en) 2013-05-10 2017-03-21 Roller Bearing Company Of America, Inc. Double row preloaded ball bearing with spacer balls
CN107718043A (en) * 2017-10-31 2018-02-23 东莞市太行机电科技有限公司 A kind of desktop type industrial robot

Similar Documents

Publication Publication Date Title
JP2006329420A (en) Bearing device for robot arm joint part, and ball bearing
EP1972801B1 (en) Ball bearing for spindle pivot section of machine tool, and spindle pivot device of machine tool, using the same
US6719459B1 (en) Ball bearing
JP5092383B2 (en) Ball bearing for machine tool main spindle
JP2006105384A (en) Double row ball bearing
JP4743176B2 (en) Combination ball bearings and double row ball bearings
JP5187279B2 (en) Rolling bearing
JP2011153683A (en) Angular ball bearing
JP5233199B2 (en) Angular contact ball bearings
JP4715961B2 (en) Rotary table device for machine tools
JP2011247358A (en) Duplex ball bearing and double-row ball bearing
JP2006214456A (en) Roller bearing
JP2014219101A (en) Angular ball bearing
JP2006046380A (en) Ball bearing
JP5034962B2 (en) Rolling bearing
JP2006153094A (en) Ball bearing and rotary table device for machine tool using ball bearing
JP2005239258A (en) Cap attaching jig and ball bearing used for the jig
JP5397508B2 (en) Ball bearing for machine tool main spindle
JP2006097872A (en) Bearing unit
JP3200125U (en) Angular contact ball bearings
JP2011112201A (en) Ball bearing
JP3907011B2 (en) Roller bearing
JP2006105385A (en) Ball bearing
JP2011226614A (en) Rolling bearing
JP2006170335A (en) Ball bearing for ct scanner device and ct scanner device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Effective date: 20100209

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A02