JP2004034226A - Bearing arrangement for joints - Google Patents

Bearing arrangement for joints Download PDF

Info

Publication number
JP2004034226A
JP2004034226A JP2002194573A JP2002194573A JP2004034226A JP 2004034226 A JP2004034226 A JP 2004034226A JP 2002194573 A JP2002194573 A JP 2002194573A JP 2002194573 A JP2002194573 A JP 2002194573A JP 2004034226 A JP2004034226 A JP 2004034226A
Authority
JP
Japan
Prior art keywords
bearing
pair
preload
combination
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002194573A
Other languages
Japanese (ja)
Other versions
JP4055493B2 (en
Inventor
Yoshiki Fujii
藤井 義樹
Hiroshi Ono
小野 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2002194573A priority Critical patent/JP4055493B2/en
Publication of JP2004034226A publication Critical patent/JP2004034226A/en
Application granted granted Critical
Publication of JP4055493B2 publication Critical patent/JP4055493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing arrangement for joints of a robot arm, which is employed for the inside chamber of a general industrial machinery or a spattering system or the like, prevents a misregistration of a work by damping the oscillation of the work at the time of transfer, and improves a conveyance speed. <P>SOLUTION: The both inner rings of a combined bearing 30 are gripped with a pair of gripping members 41 and 42 from axial outer end surface, and are screwed with a fixing screw 46 in contact with each axial opposed surface simultaneously. Further, a wave washer 50 is inserted between the axial inner end surfaces of both the outer rings of the combined bearing 30, and next both the outer rings are attached at each axial direction outside in such a state that the axial opposite surfaces 47 and 48 of the pair of gripping members 41 and 42 are contacted together, and precompression is applied to each pair of rolling bearing 31 and 32 of the combined bearing 30. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、一般産業機械やスパッタ装置のチャンバ内部等で使用されるロボットアームの関節部用軸受装置に関する。
【0002】
【従来の技術】
従来から、図6に示すように、真空処理装置内でウエハや液晶基板等の板状ワークを搬送する搬送用多関節ロボットが使用されている。
【0003】
搬送用多関節ロボットは、モータ等を内蔵したロボット本体10と、ロボット本体10から延びる左右一対のアーム11,12と、両アーム11,12の先端に設けられたリンクとなるウェハホーク13とから構成されている。
【0004】
各アーム11,12は、一対のリンク14,15,16,17と、リンク14,16とリンク15,17を揺動可能に連結する関節部18,19にて構成されている。リンク14,16の先端とウェハホーク13は、関節部20を介して揺動可能に連結されている。リンク15,17の基端は、ロボット本体10に設けた揺動機構に連結されている。
【0005】
搬送用多関節ロボットの動作を説明する。
【0006】
ウェハホーク13に板状ワーク21が載置された状態で、ロボット本体10に設けた揺動機構にて、リンク15,17を揺動させる。すると、アーム11,12が伸縮し、ウェハホーク13が反復直線移動し、板状ワーク21が搬送される。
【0007】
図7は、関節部20の断面図を示している。
【0008】
関節部20は、内輪33,34と外輪35,36間に玉37,38を介装してなる一対の転がり軸受31,32を、軸方向に組合わせてなるアンギュラ玉軸受からなる組合せ軸受30を備えている。
【0009】
組合せ軸受30の外輪35,36間には、リンク14(16)の先端に設けられた環状部材40が介挿されている。
【0010】
組合せ軸受30の両内輪33,34は、軸方向外端面から把持部材41,42にて把持される。把持部材41はベースからなり、把持部材42はカバー43の開口に嵌合したキャップからなる。カバー43はベース41に重ねられてキャップ42が嵌合され、ベース41の段部44とキャップ42の段部45に、組合せ軸受30の両内輪33,34が遊嵌され、両内輪33,34が軸方向外端面から把持される。
【0011】
キャップ42に固定ネジ46が挿通され、ベース41に締結される。この固定ネジ46の締結により、環状部材40が両外輪35,36間にて挟圧固定されると共に、両内輪33,34もベース41の段部44とキャップ42の段部45に固定され、一対の転がり軸受31,32に各々予圧が付与される。各転がり軸受31,32に付与される予圧は、固定ネジ46の締め付け力を調整することによって行われる。
【0012】
【発明が解決しようとする課題】
板状ワーク21等に対して各種の処理を施す場合、板状ワーク21の位置合わせに高い精度が要求される。そのため、上記処理中に用いられる搬送用多関節ロボットに対しては、搬送時における板状ワーク21の位置ずれを防止することが求められる。
【0013】
ところが、上記処理は一般に真空環境で行われる。このような処理では、搬送時に板状ワーク21を真空吸引により保持することができず、単に板状ワーク21を被搬送物載置台に載置した状態で搬送しなければならない。この搬送によれば、板状ワーク21の位置ずれに対して振動が大きく影響し、搬送用多関節ロボットには高い防振性能が要求される。
【0014】
図7に示した関節部20では、固定ネジ46の締め付け力によって転がり軸受31,32に予圧が付与される定位置予圧付与構造をしている。つまり、固定ネジ46の締め付け量を調整することで、ベース41とキャップ42の軸方向の離間間隔を調整し、その離間間隔に応じた予圧を転がり軸受31,32に付与している。
【0015】
振動を防止するためには、一般的に転がり軸受31,32の予圧を高めることが望ましい。しかし、定位置予圧付与構造においては、固定ネジ46の締め付け加減によって、転がり軸受31,32に付与される予圧が大きく変動する。固定ネジ46の締め付けは、作業者の手作業により行われるため、締め付け精度は悪くなる。そのため、転がり軸受31,32に付与される予圧に過不足が生じ易くなる。特に、転がり軸受31,32に付与される予圧が不充分である場合、軸受のがたつきによって振動が発生する。
【0016】
図6に示した関節部20のように、一対の組合せ軸受30が水平方向に並設されている場合、転がり軸受31,32に付与する予圧が大き過ぎると、両組合せ軸受30にてトルク差が発生し易くなる。両組合せ軸受30にトルク差が生じると振動が発生する。
【0017】
以上のように、搬送時において振動が発生すると、板状ワーク21に位置ずれが生じるという問題があった。しかも、振動の発生により、搬送速度を上げることができないという問題もあった。
【0018】
本発明は、搬送時におけるワークの振動を低減することにより、ワークの位置ずれを防止でき、かつ、搬送速度も高めることができる関節部用軸受装置を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明の関節部用軸受装置は、一対のリンクと、これらリンクを揺動自在に連結させる関節部とからなり、前記関節部は、一方のリンクが固定される内輪と、他方のリンクが固定される外輪と、内外輪間に介装される転動体とからなる転がり軸受を、軸方向に組合わせてなる組合せ軸受と、前記組合せ軸受の両内輪を軸方向外端面から把持するとともに、互いの軸方向対向面を当接させてねじ止めされる一対の把持部材と、前記組合せ軸受の両外輪の軸方向内端面間に介装され、前記一対の把持部材の軸方向対向面を当接させた状態で、前記両外輪を各々軸方向外方に付勢し、前記一対の転がり軸受に各々予圧を付与する予圧付与部材とを含むものである。
【0020】
関節部用軸受装置が適用される部位としては、例えば、搬送用多関節ロボットのアームの関節部や、アーム先端のウェハホーク等が設けられる手首部が挙げられる。
【0021】
本発明の関節部用軸受装置によると、一対の把持部材の軸方向対向面を当接させてねじ止めした状態で、予圧付与部材にて一対の転がり軸受に予圧が付与される、いわゆる定圧予圧付与構造をしている。このため、作業者の手作業によって行われる定位置予圧付与構造のように、転がり軸受に付与される予圧にばらつきが発生せず、各転がり軸受に充分な予圧を付与することができ、軸受のがたつきによって振動が発生するのを防止できる。
【0022】
本発明の関節部用軸受装置は、一対のリンクと、これらリンクを揺動自在に連結させる関節部とからなり、前記関節部は、内輪と、一方のリンクが固定される外輪と、内外輪間に介装される転動体とからなる一対の転がり軸受を、軸方向に組合わせてなる第1の組合せ軸受と、前記第1の組合せ軸受に対して水平方向に並設され、内輪と、他方のリンクが固定される外輪と、内外輪間に介装される転動体とからなる一対の転がり軸受を、軸方向に組合わせてなる第2の組合せ軸受と、前記第1ならびに第2の組合せ軸受の両内輪を軸方向外端面から把持するとともに、互いの軸方向対向面を当接させてねじ止めされる一対の把持部材と、前記各組合せ軸受の両外輪の軸方向内端面間に介装され、前記一対の把持部材の軸方向対向面を当接させた状態で、前記両外輪を各々軸方向外方に付勢し、前記各組合せ軸受の一対の転がり軸受に各々予圧を付与する予圧付与部材とを含むものである。
【0023】
なお、第1ならびに第2の組合せ軸受に付与される予圧の差を20%以内とする。
【0024】
関節部用軸受装置が適用される部位としては、例えば、搬送用多関節ロボットのアーム先端のウェハホーク等が設けられる手首部が挙げられる。
【0025】
本発明の関節部用軸受装置によると、一対の把持部材の軸方向対向面を当接させてねじ止めした状態で、予圧付与部材にて一対の転がり軸受に予圧が付与される、いわゆる定圧予圧付与構造をしている。このため、作業者の手作業によって行われる定位置予圧付与構造のように、転がり軸受に付与される予圧にばらつきが発生せず、各転がり軸受に充分な予圧を付与することができ、軸受のがたつきによって振動が発生するのを防止できる。
【0026】
さらに、第1の組合せ軸受と第2の組合せ軸受に付与される予圧の差を20%以内とすることで、第1の組合せ軸受と第2の組合せ軸受のトルク差を低減でき、トルク差による振動の発生を防止できる。
【0027】
【発明の実施の形態】
以下、本発明の一実施の形態を図1ないし図5を用いて説明する。
【0028】
図1は本実施の形態における関節部用軸受装置の断面図、図2はその関節部用軸受装置の部分拡大断面図、図3はその関節部用軸受装置の要部拡大断面図、図4(A)(B)はその予圧付与部材の平面図ならびに側面図、図5はウェハの振動実験の結果を示すグラフである。
【0029】
本実施の形態の関節部用軸受装置は、図6に示した搬送用多関節ロボットのアーム先端のウェハホーク13が設けられる手首部に組み込まれるものである。なお、図6に示した例と同一部分には、同一符号を付してその説明を省略する。
【0030】
手首部における関節部20は、図1に示すように、互いに水平方向に並設された第1の組合せ軸受30Aと第2の組合せ軸受30Bにて構成されている。第1および第2の組合せ軸受30A,30Bは、図2および図3の拡大図に示すように、各々同様に構成されている。
【0031】
第1および第2の組合せ軸受30A,30Bは、各々内輪33,34と外輪35,36間に玉37,38を介装してなる一対の転がり軸受31,32を、軸方向に組合わせてなるアンギュラ玉軸受からなる。
【0032】
第1の組合せ軸受30Aの外輪35,36間には、リンク14の先端に設けられた環状部材40が介挿されている。また、第2の組合せ軸受30Bの外輪35,36間には、リンク16の先端に設けられた環状部材40が介挿されている。
【0033】
各環状部材40と、転がり軸受31の外輪35の軸方向内端面との間には、予圧付与部材50が介挿されている。
【0034】
予圧付与部材50は、図4に示すように、環状波形バネであるウェーブワッシャにて構成されている。51は波板の山谷の頂部を示している。
【0035】
第1および第2の組合せ軸受30A,30Bの両内輪33,34は、各々把持部材となるベース41と、カバー43の開口に嵌合したキャップ42にて軸方向外端面から把持される。すなわち、カバー43はベース41に重ねられてキャップ42が嵌合され、ベース41の段部44に各組合せ軸受30A,30Bの内輪34が遊嵌されると共に、キャップ42の段部45に内輪33が遊嵌される。
【0036】
ベース41の軸方向対向面47と、キャップ42の軸方向対向面48を互いに当接させた状態で、キャップ42に固定ネジ46が挿通されてベース41に締結される。この状態で、ウェーブワッシャ50にて両外輪35,36が各々軸方向外方に付勢され、転がり軸受31,32に予圧が付与されると共に、転がり軸受31,32が固定される。
【0037】
転がり軸受31,32に付与される予圧の大きさは、静定格荷重の2〜10%とする。ここで、静定格荷重の2%より小さい予圧を付与すると、荷重を負荷されな転動体が生じるため、剛性不足を招き、軸受性能が低下する。また、静定格荷重の10%より大きい予圧を付与すると、転動体の接触面積が200kgf/mmを超え、真空中での環境を考えた場合、寿命低下につながり好ましくない。よって、このように静定格荷重の2〜10%の大きさの予圧を付与するために、ウェーブワッシャ50の弾性力が設定されている。
【0038】
第1の組合せ軸受30Aおよび第2の組合せ軸受30Bに付与される予圧の差を20%以内とする。これは、予圧量の差が20%生じると、各転がり軸受(30A,30B)の起動トルクに28%の差が発生する。今回の荷重条件によるストローク試験では、各転がり軸受(30A,30B)の起動トルク差が30%以上になると、各転がり軸受(30A,30B)が取付けられているウェハホーク13の反復直線運動に発生する振動が大きくなり、ウェハホーク13に載置されている板状ワーク21が位置ずれを起こす。よって、このように予圧の差が20%以内となるように、ウェーブワッシャ50の弾性精度が設定されている。
【0039】
また、上記予圧の設定は、別途ウェーブワッシャのつぶし量と荷重の関係を求めておき、各部品設計によるウェーブワッシャのつぶし量を算出し、その値を上記関係に当てはめることで行われる。
【0040】
リンク14,16の先端どうしは、互いの外周面に形成した歯車22を介して、揺動自在に噛合されている。
【0041】
搬送用多関節ロボットの動作を説明する。
【0042】
ウェハホーク13に板状ワーク21が載置された状態で、ロボット本体10に設けた揺動機構にてリンク15,17が揺動される。すると、歯車22にて噛合したリンク14,16が互いに揺動しながらアーム11,12が伸縮され、ウェハホーク13が反復直線移動し、板状ワーク21が搬送される。
【0043】
図5は、搬送用多関節ロボットのウェハホーク13に載置したワークの振動実験の結果を示す。
【0044】
実験条件について説明する。
【0045】
図6に示すように、板状ワークとして、ウェハホーク13に8インチウェハ21が載置される。
【0046】
ウェハ21の荷重作用点Bから関節部20の組合せ軸受30の中心Aまでの距離Xを140mmとする。荷重作用点Bには、ウェハ21とウェハホーク13の合計の荷重500gfが作用する。
【0047】
縮小時のウェハ21の中心点Cから伸長時のウェハ21の中心点C’までの距離Yを600mmとする。
【0048】
アーム11,12の伸縮速度は300mm/secとする。
【0049】
ウェハ21上に振動計のピックアップが設置され、アーム11,12の伸縮時の振動を測定する。振動の測定方向は、ウェハ21に水平で、かつ、アーム11,12の伸縮方向に対して直角方向とする。測定は、アーム11,12を10往復させ、その間の振動を計測した。
【0050】
図5中A,Bは、本発明のウェーブワッシャ50による定圧予圧の関節部用軸受装置を用いた場合、図5中C,D,Eは、従来例のねじ締めによる定位置予圧の関節部用軸受装置を用いた場合における実験結果を示している。
【0051】
図5の縦軸はウェハの振動値(G)を示している。このグラフは、伸縮動作を10往復(20往復)行い、1動作あたりの最大値をその動作の振動値として、各20回の動作の振動値を測定し、その最大値、最小値、平均値を示している。なお、振動値(G)のGは、重力加速度である。
【0052】
図5より、定圧予圧A,Bの場合に、振動の平均値が小さくなり、その最大値と最小値の差も小さくなることがわかる。下記の表1に、A〜Eの各実験例における振動の平均値、最大値、最小値を示す。
【0053】
【表1】

Figure 2004034226
このように構成された関節部用軸受装置によると、ベース41の軸方向対向面47とキャップ42の軸方向対向面48を当接させて固定ネジ46でねじ止めした状態で、ウェーブワッシャ50にて一対の転がり軸受31,32に予圧が付与される、いわゆる定圧予圧付与構造をしている。このため、作業者の手作業によって行われる定位置予圧付与構造のように、転がり軸受31,32に付与される予圧にばらつきが発生せず、各転がり軸受31,32に充分な予圧を付与することができ、軸受のがたつきによって振動が発生するのを防止できる。
【0054】
第1の組合せ軸受30Aと第2の組合せ軸受30Bに付与される予圧の差を20%以内とすることで、第1の組合せ軸受30Aと第2の組合せ軸受30Bのトルク差を低減でき、トルク差による振動の発生も防止できる。
【0055】
以上のようにして、搬送時における板状ワーク21の振動を低減することにより、板状ワーク21の位置ずれを防止でき、かつ、搬送速度も高めることができる。しかも、振動を低減することで、関節部用軸受装置の長寿命化も図れる。
【0056】
ウェーブワッシャ50は、リンク14,16の環状部材40と、転がり軸受32の外輪36間に介装してもよい。
【0057】
予圧付与部材は、外輪35,36間に介装されて外輪35,36を軸方向外方に付勢することにより、組合せ軸受30の一対の転がり軸受31,32に各々予圧を付与するものであればよい。
【0058】
組合せ軸受30を構成する転がり軸受31,32は、深溝玉軸受や、円すいころ軸受等の各種転がり軸受であってもよい。
【0059】
本発明の関節部用軸受装置は、1つの組合せ軸受に一対のリンクを連結させた構成のものにも適用できる。
【0060】
例えば、搬送用多関節ロボットのアーム11,12の関節部18,19におけるリンク14,16とリンク15,17の連結部分に適用してもよい。
【0061】
すなわち、関節部18,19において、一対の転がり軸受を軸方向に組合わせてなる組合せ軸受が設けられ、転がり軸受の内輪にリンク14,16が圧入されると共に、外輪にリンク15,17が圧入され、両外輪の軸方向内端面間にウェーブワッシャ50が介装される。両内輪は軸方向外端面からカバー等の一対の把持部材にて把持され、把持部材の互いの軸方向対向面を当接させてねじ止めされ、ウェーブワッシャ50にて両外輪が各々軸方向外方に付勢されて一対の転がり軸受に予圧が付与される。
【0062】
このように、1つの組合せ軸受に一対のリンクを連結させた関節部用軸受装置においても、定圧予圧付与構造とすることで、転がり軸受に付与される予圧にばらつきが発生するのを防ぎ、各転がり軸受に充分な予圧を付与することができ、軸受のがたつきによって振動が発生するのを防止できる。よって、板状ワーク21の位置ずれを防止でき、かつ、搬送速度も高めることができる。
【0063】
【発明の効果】
本発明の関節部用軸受装置によると、搬送時におけるワークの振動を低減することにより、ワークの位置ずれを防止でき、かつ、搬送速度も高めることができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態における関節部用軸受装置の断面図である。
【図2】本発明の一実施形態における関節部用軸受装置の部分拡大断面図である。
【図3】本発明の一実施形態における関節部用軸受装置の要部拡大断面図である。
【図4】(A)(B)は、本発明の一実施形態における関節部用軸受装置の予圧付与部材の平面図ならびに側面図である。
【図5】ウェハの振動実験の結果を示すグラフである。
【図6】搬送用多関節ロボットの概略平面図である。
【図7】従来例における関節部用軸受装置の部分拡大断面図である。
【符号の説明】
13 ウェハホーク(リンク)
14,15,16,17 リンク
18,19,20,21 関節部
30 組合せ軸受
31,32 転がり軸受
33,34 内輪
35,36 外輪
37,38 玉(転動体)
41 ベース(把持部材)
42 キャップ(把持部材)
46 固定ネジ
47,48 軸方向対向面
50 ウェーブワッシャ(予圧付与部材)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bearing device for a joint portion of a robot arm used inside a chamber of a general industrial machine or a sputtering apparatus.
[0002]
[Prior art]
Conventionally, as shown in FIG. 6, a transfer articulated robot for transferring a plate-like workpiece such as a wafer or a liquid crystal substrate in a vacuum processing apparatus has been used.
[0003]
The transfer articulated robot includes a robot body 10 incorporating a motor and the like, a pair of left and right arms 11 and 12 extending from the robot body 10, and a wafer hawk 13 serving as a link provided at the tip of both arms 11 and 12. Has been.
[0004]
Each of the arms 11 and 12 includes a pair of links 14, 15, 16, and 17 and joint portions 18 and 19 that link the links 14 and 16 and the links 15 and 17 so as to be swingable. The tips of the links 14 and 16 and the wafer hawk 13 are connected to each other via a joint 20 so as to be swingable. The base ends of the links 15 and 17 are connected to a swing mechanism provided in the robot body 10.
[0005]
The operation of the transfer articulated robot will be described.
[0006]
With the plate-like workpiece 21 placed on the wafer fork 13, the links 15 and 17 are swung by a swinging mechanism provided in the robot body 10. Then, the arms 11 and 12 expand and contract, the wafer hawk 13 repeatedly moves linearly, and the plate-like workpiece 21 is conveyed.
[0007]
FIG. 7 shows a cross-sectional view of the joint 20.
[0008]
The joint portion 20 includes a combination bearing 30 formed of an angular ball bearing in which a pair of rolling bearings 31 and 32 having balls 37 and 38 interposed between inner rings 33 and 34 and outer rings 35 and 36 are combined in the axial direction. It has.
[0009]
An annular member 40 provided at the tip of the link 14 (16) is interposed between the outer rings 35 and 36 of the combination bearing 30.
[0010]
Both inner rings 33 and 34 of the combined bearing 30 are gripped by gripping members 41 and 42 from the axially outer end surface. The gripping member 41 is composed of a base, and the gripping member 42 is composed of a cap fitted into the opening of the cover 43. The cover 43 is overlapped with the base 41 and the cap 42 is fitted, and the inner rings 33 and 34 of the combination bearing 30 are loosely fitted to the step portion 44 of the base 41 and the step portion 45 of the cap 42. Is gripped from the axially outer end surface.
[0011]
A fixing screw 46 is inserted through the cap 42 and fastened to the base 41. By fastening the fixing screw 46, the annular member 40 is clamped and fixed between the outer rings 35 and 36, and the inner rings 33 and 34 are also fixed to the step portion 44 of the base 41 and the step portion 45 of the cap 42, A preload is applied to each of the pair of rolling bearings 31 and 32. The preload applied to each of the rolling bearings 31 and 32 is performed by adjusting the tightening force of the fixing screw 46.
[0012]
[Problems to be solved by the invention]
When performing various processes with respect to the plate-shaped workpiece 21 etc., high precision is required for alignment of the plate-shaped workpiece 21. For this reason, it is required for the articulated robot for transfer used during the above processing to prevent the displacement of the plate-shaped workpiece 21 during transfer.
[0013]
However, the above process is generally performed in a vacuum environment. In such processing, the plate-like workpiece 21 cannot be held by vacuum suction at the time of conveyance, and the plate-like workpiece 21 must simply be conveyed in a state of being placed on the object mounting table. According to this conveyance, the vibration greatly affects the positional deviation of the plate-like workpiece 21, and high anti-vibration performance is required for the articulated robot for conveyance.
[0014]
The joint portion 20 shown in FIG. 7 has a fixed position preload application structure in which preload is applied to the rolling bearings 31 and 32 by the tightening force of the fixing screw 46. That is, by adjusting the tightening amount of the fixing screw 46, the spacing distance between the base 41 and the cap 42 in the axial direction is adjusted, and a preload corresponding to the spacing distance is applied to the rolling bearings 31 and 32.
[0015]
In order to prevent vibration, it is generally desirable to increase the preload of the rolling bearings 31 and 32. However, in the fixed position preload application structure, the preload applied to the rolling bearings 31 and 32 varies greatly depending on whether the fixing screw 46 is tightened or not. Since the fixing screw 46 is tightened manually by the operator, the tightening accuracy is deteriorated. Therefore, excess and deficiency is likely to occur in the preload applied to the rolling bearings 31 and 32. In particular, when the preload applied to the rolling bearings 31 and 32 is insufficient, vibration is generated due to rattling of the bearings.
[0016]
When a pair of combined bearings 30 are arranged in parallel in the horizontal direction as in the joint portion 20 shown in FIG. 6, if the preload applied to the rolling bearings 31 and 32 is too large, the torque difference between the two combined bearings 30 Is likely to occur. When a torque difference is generated between the two combined bearings 30, vibration is generated.
[0017]
As described above, there is a problem that if the vibration is generated during the conveyance, the plate-like workpiece 21 is displaced. Moreover, there is a problem that the conveyance speed cannot be increased due to the occurrence of vibration.
[0018]
SUMMARY OF THE INVENTION An object of the present invention is to provide a joint bearing device that can prevent the displacement of a workpiece and increase the conveyance speed by reducing the vibration of the workpiece during conveyance.
[0019]
[Means for Solving the Problems]
The joint bearing device according to the present invention includes a pair of links and a joint for connecting these links in a swingable manner. The joint includes an inner ring to which one link is fixed and the other link is fixed. A combined bearing formed by combining axially a rolling bearing composed of an outer ring and a rolling element interposed between the inner and outer rings, and both inner rings of the combined bearing are gripped from the outer end surface in the axial direction. A pair of gripping members that are screwed by abutting the axially opposed surfaces of the paired bearings and the axially inner end surfaces of both outer rings of the combined bearing, and abutting the axially opposed surfaces of the pair of gripping members In this state, each of the outer rings is urged outward in the axial direction, and a preload applying member for applying a preload to each of the pair of rolling bearings is included.
[0020]
Examples of the part to which the joint unit bearing device is applied include a joint part of an arm of a transfer multi-joint robot, a wrist part provided with a wafer hawk at the tip of the arm, and the like.
[0021]
According to the joint bearing device of the present invention, the preload is applied to the pair of rolling bearings by the preload applying member in a state where the axially opposed surfaces of the pair of gripping members are brought into contact with each other and screwed, so-called constant pressure preload. Has a grant structure. Therefore, unlike the fixed-position preload application structure that is performed manually by the operator, there is no variation in the preload applied to the rolling bearing, and sufficient preload can be applied to each rolling bearing. Vibrations due to rattling can be prevented.
[0022]
The joint bearing device according to the present invention includes a pair of links and a joint portion that connects the links in a swingable manner. The joint portion includes an inner ring, an outer ring to which one link is fixed, and an inner and outer ring. A pair of rolling bearings comprising a rolling element interposed therebetween, a first combination bearing that is combined in the axial direction, and a parallel arrangement in the horizontal direction with respect to the first combination bearing, an inner ring, A second combination bearing comprising a pair of rolling bearings comprising an outer ring to which the other link is fixed and a rolling element interposed between the inner and outer rings in the axial direction; and the first and second Between the pair of gripping members that are gripped from the outer end surface in the axial direction and screwed by bringing the opposing surfaces in the axial direction into contact with each other, and between the inner end surfaces in the axial direction of the two outer rings of each combination bearing Intervening, and abutting the axially opposed surfaces of the pair of gripping members State, said outer ring biased in each direction outward, the is intended to include a preload applying member which respectively impart a preload to the pair of rolling bearings of each duplex bearing.
[0023]
The difference in preload applied to the first and second combination bearings is set to 20% or less.
[0024]
Examples of the part to which the joint unit bearing device is applied include a wrist part provided with a wafer hawk at the tip of an arm of a transfer multi-joint robot.
[0025]
According to the joint bearing device of the present invention, the preload is applied to the pair of rolling bearings by the preload applying member in a state where the axially opposed surfaces of the pair of gripping members are brought into contact with each other and screwed, so-called constant pressure preload. Has a grant structure. Therefore, unlike the fixed-position preload application structure that is performed manually by the operator, there is no variation in the preload applied to the rolling bearing, and sufficient preload can be applied to each rolling bearing. Vibrations due to rattling can be prevented.
[0026]
Furthermore, the torque difference between the first combination bearing and the second combination bearing can be reduced by setting the difference between the preloads applied to the first combination bearing and the second combination bearing within 20%. Generation of vibration can be prevented.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0028]
1 is a cross-sectional view of the joint bearing device according to the present embodiment, FIG. 2 is a partially enlarged cross-sectional view of the joint bearing device, FIG. 3 is an enlarged cross-sectional view of the main part of the joint bearing device, and FIG. FIGS. 5A and 5B are a plan view and a side view of the preload imparting member, and FIG. 5 is a graph showing the results of a wafer vibration experiment.
[0029]
The joint bearing device according to the present embodiment is incorporated in the wrist portion provided with the wafer hawk 13 at the end of the arm of the articulated robot for conveyance shown in FIG. In addition, the same code | symbol is attached | subjected to the same part as the example shown in FIG. 6, and the description is abbreviate | omitted.
[0030]
As shown in FIG. 1, the joint 20 in the wrist is composed of a first combination bearing 30A and a second combination bearing 30B arranged in parallel in the horizontal direction. The first and second combination bearings 30A and 30B are similarly configured as shown in the enlarged views of FIGS.
[0031]
The first and second combination bearings 30A and 30B are formed by combining a pair of rolling bearings 31 and 32, each having balls 37 and 38 interposed between inner rings 33 and 34 and outer rings 35 and 36, in the axial direction. An angular ball bearing.
[0032]
An annular member 40 provided at the tip of the link 14 is interposed between the outer rings 35 and 36 of the first combination bearing 30A. An annular member 40 provided at the tip of the link 16 is interposed between the outer rings 35 and 36 of the second combination bearing 30B.
[0033]
A preload applying member 50 is interposed between each annular member 40 and the axially inner end surface of the outer ring 35 of the rolling bearing 31.
[0034]
As shown in FIG. 4, the preload applying member 50 is configured by a wave washer that is an annular wave spring. Reference numeral 51 denotes the top of a corrugated mountain valley.
[0035]
Both the inner rings 33 and 34 of the first and second combination bearings 30A and 30B are gripped from the outer end surface in the axial direction by a base 41 serving as a gripping member and a cap 42 fitted into the opening of the cover 43. That is, the cover 43 is overlapped with the base 41 and the cap 42 is fitted. The inner ring 34 of each combination bearing 30A, 30B is loosely fitted to the stepped portion 44 of the base 41, and the inner ring 33 is fitted to the stepped portion 45 of the cap 42. Is loosely fitted.
[0036]
With the axially facing surface 47 of the base 41 and the axially facing surface 48 of the cap 42 in contact with each other, a fixing screw 46 is inserted through the cap 42 and fastened to the base 41. In this state, both the outer rings 35 and 36 are urged outward in the axial direction by the wave washer 50, preload is applied to the rolling bearings 31 and 32, and the rolling bearings 31 and 32 are fixed.
[0037]
The magnitude of the preload applied to the rolling bearings 31 and 32 is 2 to 10% of the static load rating. Here, if a preload smaller than 2% of the static load rating is applied, a rolling element that is not loaded with load is generated, resulting in insufficient rigidity and reduced bearing performance. Moreover, if a preload greater than 10% of the static load rating is applied, the contact area of the rolling elements exceeds 200 kgf / mm, which leads to a decrease in life when considering an environment in a vacuum, which is not preferable. Therefore, the elastic force of the wave washer 50 is set in order to apply a preload having a magnitude of 2 to 10% of the static load rating.
[0038]
The difference in preload applied to the first combination bearing 30A and the second combination bearing 30B is set to be within 20%. This is because when a difference in preload amount of 20% occurs, a difference of 28% occurs in the starting torque of each rolling bearing (30A, 30B). In the stroke test under the current load conditions, when the starting torque difference between the rolling bearings (30A, 30B) becomes 30% or more, the repetitive linear motion of the wafer hawk 13 to which the rolling bearings (30A, 30B) are attached is generated. The vibration increases and the plate-like workpiece 21 placed on the wafer fork 13 is displaced. Therefore, the elastic accuracy of the wave washer 50 is set so that the difference in preload is within 20%.
[0039]
The preload is set by separately obtaining the relationship between the wave washer crushing amount and the load, calculating the wave washer crushing amount according to each component design, and applying the value to the above relationship.
[0040]
The ends of the links 14 and 16 are meshed with each other via a gear 22 formed on the outer peripheral surfaces of the links 14 and 16.
[0041]
The operation of the transfer articulated robot will be described.
[0042]
In a state where the plate-like workpiece 21 is placed on the wafer fork 13, the links 15 and 17 are rocked by the rocking mechanism provided in the robot body 10. Then, the arms 11 and 12 are expanded and contracted while the links 14 and 16 engaged with the gear 22 are swung, the wafer hawk 13 is repeatedly linearly moved, and the plate-like workpiece 21 is conveyed.
[0043]
FIG. 5 shows the result of a vibration experiment of a workpiece placed on the wafer hawk 13 of the transfer articulated robot.
[0044]
Experimental conditions will be described.
[0045]
As shown in FIG. 6, an 8-inch wafer 21 is placed on the wafer fork 13 as a plate-like workpiece.
[0046]
A distance X from the load application point B of the wafer 21 to the center A of the combination bearing 30 of the joint 20 is 140 mm. A total load 500 gf of the wafer 21 and the wafer fork 13 is applied to the load application point B.
[0047]
A distance Y from the center point C of the wafer 21 at the time of reduction to the center point C ′ of the wafer 21 at the time of extension is set to 600 mm.
[0048]
The expansion / contraction speed of the arms 11 and 12 is 300 mm / sec.
[0049]
A vibration meter pickup is installed on the wafer 21 to measure vibrations when the arms 11 and 12 are expanded and contracted. The vibration measurement direction is horizontal to the wafer 21 and perpendicular to the direction of expansion and contraction of the arms 11 and 12. In the measurement, the arms 11 and 12 were reciprocated 10 times, and vibrations between them were measured.
[0050]
In FIGS. 5A and 5B, when the joint device for constant pressure preload by the wave washer 50 of the present invention is used, C, D, and E in FIG. The experimental result in the case of using the bearing device for a vehicle is shown.
[0051]
The vertical axis in FIG. 5 represents the vibration value (G) of the wafer. In this graph, the expansion / contraction operation is performed 10 reciprocations (20 reciprocations), the vibration value of each operation is measured with the maximum value per operation as the vibration value of the operation, and the maximum value, the minimum value, and the average value. Is shown. Note that G of the vibration value (G) is gravitational acceleration.
[0052]
FIG. 5 shows that in the case of the constant pressure preloads A and B, the average value of vibration becomes small and the difference between the maximum value and the minimum value becomes small. Table 1 below shows the average value, maximum value, and minimum value of vibration in each of the experimental examples A to E.
[0053]
[Table 1]
Figure 2004034226
According to the joint bearing device configured as described above, the wave washer 50 is attached to the wave washer 50 in a state where the axially opposed surface 47 of the base 41 and the axially opposed surface 48 of the cap 42 are brought into contact with each other and fixed with the fixing screw 46. Thus, a so-called constant pressure preload application structure is provided in which preload is applied to the pair of rolling bearings 31 and 32. For this reason, unlike the fixed-position preload application structure that is performed manually by the operator, the preload applied to the rolling bearings 31 and 32 does not vary, and sufficient preload is applied to the rolling bearings 31 and 32. It is possible to prevent vibrations from occurring due to the shakiness of the bearing.
[0054]
By setting the difference between the preloads applied to the first combination bearing 30A and the second combination bearing 30B to be within 20%, the torque difference between the first combination bearing 30A and the second combination bearing 30B can be reduced. Generation of vibration due to the difference can also be prevented.
[0055]
As described above, by reducing the vibration of the plate-like workpiece 21 at the time of conveyance, it is possible to prevent the displacement of the plate-like workpiece 21 and to increase the conveyance speed. In addition, the life of the joint bearing device can be extended by reducing vibration.
[0056]
The wave washer 50 may be interposed between the annular member 40 of the links 14 and 16 and the outer ring 36 of the rolling bearing 32.
[0057]
The preload applying member is provided between the outer rings 35 and 36 to apply a preload to the pair of rolling bearings 31 and 32 of the combined bearing 30 by urging the outer rings 35 and 36 outward in the axial direction. I just need it.
[0058]
The rolling bearings 31 and 32 constituting the combination bearing 30 may be various rolling bearings such as a deep groove ball bearing and a tapered roller bearing.
[0059]
The joint bearing device of the present invention can also be applied to a configuration in which a pair of links are connected to one combination bearing.
[0060]
For example, you may apply to the connection part of the links 14 and 16 and the links 15 and 17 in the joint parts 18 and 19 of the arms 11 and 12 of the articulated robot for conveyance.
[0061]
In other words, the joint portions 18 and 19 are provided with a combination bearing in which a pair of rolling bearings are combined in the axial direction, the links 14 and 16 are press-fitted into the inner ring of the rolling bearing, and the links 15 and 17 are press-fitted into the outer ring. A wave washer 50 is interposed between the inner end surfaces in the axial direction of both outer rings. Both inner rings are gripped by a pair of gripping members such as a cover from the outer end surface in the axial direction, screwed by bringing the opposing surfaces in the axial direction of the gripping members into contact with each other. And a preload is applied to the pair of rolling bearings.
[0062]
In this way, even in the joint bearing device in which a pair of links are connected to one combination bearing, by adopting a constant pressure preload application structure, it is possible to prevent variation in the preload applied to the rolling bearing, Sufficient preload can be applied to the rolling bearing, and vibrations due to rattling of the bearing can be prevented. Therefore, the position shift of the plate-shaped workpiece 21 can be prevented, and the conveyance speed can be increased.
[0063]
【The invention's effect】
According to the joint bearing device of the present invention, it is possible to prevent the positional deviation of the workpiece and to increase the conveyance speed by reducing the vibration of the workpiece during the conveyance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a joint bearing device according to an embodiment of the present invention.
FIG. 2 is a partial enlarged cross-sectional view of a joint bearing device according to an embodiment of the present invention.
FIG. 3 is an enlarged cross-sectional view of a main part of the joint bearing device according to the embodiment of the present invention.
FIGS. 4A and 4B are a plan view and a side view of a preload imparting member of the joint bearing device according to the embodiment of the present invention.
FIG. 5 is a graph showing the results of a wafer vibration experiment.
FIG. 6 is a schematic plan view of a transfer articulated robot.
FIG. 7 is a partially enlarged cross-sectional view of a joint bearing device in a conventional example.
[Explanation of symbols]
13 Wafer Hawk (Link)
14, 15, 16, 17 Link 18, 19, 20, 21 Joint 30 Combination bearing 31, 32 Rolling bearing 33, 34 Inner ring 35, 36 Outer ring 37, 38 Ball (rolling element)
41 Base (gripping member)
42 Cap (gripping member)
46 Fixing screws 47, 48 Axial facing surface 50 Wave washer (preloading member)

Claims (3)

一対のリンクと、これらリンクを揺動自在に連結させる関節部とからなるリンク機構の関節部用軸受装置であって、
前記関節部は、一方のリンクが固定される内輪と、他方のリンクが固定される外輪と、内外輪間に介装される転動体とからなる転がり軸受を、軸方向に組合わせてなる組合せ軸受と、
前記組合せ軸受の両内輪を軸方向外端面から把持するとともに、互いの軸方向対向面を当接させてねじ止めされる一対の把持部材と、
前記組合せ軸受の両外輪の軸方向内端面間に介装され、前記一対の把持部材の軸方向対向面を当接させた状態で、前記両外輪を各々軸方向外方に付勢し、前記一対の転がり軸受に各々予圧を付与する予圧付与部材とを含む、ことを特徴とする関節部用軸受装置。
A bearing device for a joint portion of a link mechanism comprising a pair of links and a joint portion that connects these links in a swingable manner,
The joint is a combination of axially combined rolling bearings composed of an inner ring to which one link is fixed, an outer ring to which the other link is fixed, and rolling elements interposed between the inner and outer rings. A bearing,
A pair of gripping members that grip both the inner rings of the combination bearing from the axially outer end surface and are screwed by bringing the opposing surfaces in the axial direction into contact with each other,
With the axially opposed surfaces of the pair of gripping members in contact with each other between the inner end surfaces in the axial direction of both outer rings of the combined bearing, the outer rings are each biased outward in the axial direction, A joint bearing device comprising: a preload applying member that applies a preload to each of the pair of rolling bearings.
一対のリンクと、これらリンクを揺動自在に連結させる関節部とからなるリンク機構の関節部用軸受装置であって、
前記関節部は、内輪と、一方のリンクが固定される外輪と、内外輪間に介装される転動体とからなる一対の転がり軸受を、軸方向に組合わせてなる第1の組合せ軸受と、
前記第1の組合せ軸受に対して水平方向に並設され、内輪と、他方のリンクが固定される外輪と、内外輪間に介装される転動体とからなる一対の転がり軸受を、軸方向に組合わせてなる第2の組合せ軸受と、
前記第1ならびに第2の組合せ軸受の両内輪を軸方向外端面から把持するとともに、互いの軸方向対向面を当接させてねじ止めされる一対の把持部材と、
前記各組合せ軸受の両外輪の軸方向内端面間に介装され、前記一対の把持部材の軸方向対向面を当接させた状態で、前記両外輪を各々軸方向外方に付勢し、前記各組合せ軸受の一対の転がり軸受に各々予圧を付与する予圧付与部材とを含む、ことを特徴とする関節部用軸受装置。
A bearing device for a joint portion of a link mechanism comprising a pair of links and a joint portion that connects these links in a swingable manner,
The joint portion includes a first combination bearing in which a pair of rolling bearings including an inner ring, an outer ring to which one link is fixed, and a rolling element interposed between the inner and outer rings are combined in the axial direction. ,
A pair of rolling bearings arranged in parallel to the first combined bearing in the horizontal direction and comprising an inner ring, an outer ring to which the other link is fixed, and a rolling element interposed between the inner and outer rings, A second combination bearing in combination with
A pair of gripping members for gripping both inner rings of the first and second combination bearings from the axially outer end surface and screwing with the axially opposed surfaces abutting each other;
In the state where the axially opposed surfaces of the pair of gripping members are in contact with each other between the inner end surfaces in the axial direction of both outer rings of the combination bearings, the outer rings are each biased outward in the axial direction. A joint bearing device, comprising: a preload application member that applies a preload to each of the pair of rolling bearings of each combination bearing.
請求項2に記載の関節部用軸受装置において、
前記第1ならびに第2の組合せ軸受に付与される予圧の差が20%以内であることを特徴とする関節部用軸受装置。
The joint bearing device according to claim 2,
The joint bearing device according to claim 1, wherein a difference in preload applied to the first and second combination bearings is within 20%.
JP2002194573A 2002-07-03 2002-07-03 Joint bearing device Expired - Fee Related JP4055493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194573A JP4055493B2 (en) 2002-07-03 2002-07-03 Joint bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194573A JP4055493B2 (en) 2002-07-03 2002-07-03 Joint bearing device

Publications (2)

Publication Number Publication Date
JP2004034226A true JP2004034226A (en) 2004-02-05
JP4055493B2 JP4055493B2 (en) 2008-03-05

Family

ID=31703237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194573A Expired - Fee Related JP4055493B2 (en) 2002-07-03 2002-07-03 Joint bearing device

Country Status (1)

Country Link
JP (1) JP4055493B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329420A (en) * 2005-04-27 2006-12-07 Nsk Ltd Bearing device for robot arm joint part, and ball bearing
JP2008180362A (en) * 2006-12-29 2008-08-07 Nsk Ltd Rolling bearing device having fixing structure by filler
JP2011106685A (en) * 2004-06-07 2011-06-02 Honeywell Internatl Inc Fluid dynamic pressure foil thrust bearing
JP2011131298A (en) * 2009-12-22 2011-07-07 Nsk Ltd Joint section for manipulator
JP2014111291A (en) * 2012-12-05 2014-06-19 Kawasaki Heavy Ind Ltd Robot joint structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106685A (en) * 2004-06-07 2011-06-02 Honeywell Internatl Inc Fluid dynamic pressure foil thrust bearing
JP2006329420A (en) * 2005-04-27 2006-12-07 Nsk Ltd Bearing device for robot arm joint part, and ball bearing
JP2008180362A (en) * 2006-12-29 2008-08-07 Nsk Ltd Rolling bearing device having fixing structure by filler
JP2012082970A (en) * 2006-12-29 2012-04-26 Nsk Ltd Rolling bearing device and direct drive motor with the same
JP2012132567A (en) * 2006-12-29 2012-07-12 Nsk Ltd Rolling bearing device and direct drive motor having the same
JP2011131298A (en) * 2009-12-22 2011-07-07 Nsk Ltd Joint section for manipulator
JP2014111291A (en) * 2012-12-05 2014-06-19 Kawasaki Heavy Ind Ltd Robot joint structure

Also Published As

Publication number Publication date
JP4055493B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
US11761835B2 (en) Mounting structure for torque sensor
US5692728A (en) Supporting device having elastic members with oscillation mechanisms
EP2008057A1 (en) Method of measuring a clearance of a hub bearing for vehicles
JPH07217649A (en) Method of measuring pre-load clearance of double row rolling bearing and device therefor
JP4055493B2 (en) Joint bearing device
US11781928B2 (en) Torque sensor attachment structure
CN104897318B (en) force detection device, robot arm, and electronic component conveyance device
JP2004198318A (en) Resonance measuring method and instrument for bearing unit
US11781927B2 (en) Torque sensor
US20210116315A1 (en) Torque sensor supporting device
JP5225819B2 (en) Oscillating rotation test equipment
KR20000035166A (en) Constant velocity universal joint
JPH055389U (en) Floating hand
JP2010122153A (en) Device for rocking/rotation testing
JP2001121460A (en) Parallel link mechanism for robot
EP2559568A1 (en) Hub device for bicycle
JP2001341090A (en) Vacuum gripping device and ic test handler
JP2000094377A (en) Aligning device
JP4072745B2 (en) Compliance unit
JP6351307B2 (en) Angular contact ball bearings and machinery
US10971380B2 (en) De-bonding leveling device and de-bonding method
US20110248556A1 (en) Hub device for bicycle
Kang et al. An analytical comparison between ball and crossed roller bearings for utilization in actuator modules for precision modular robots
JP2006105261A (en) Center bearing support
JP6089843B2 (en) Force detection device, robot and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Ref document number: 4055493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees