JP5092383B2 - Ball bearing for machine tool main spindle - Google Patents

Ball bearing for machine tool main spindle Download PDF

Info

Publication number
JP5092383B2
JP5092383B2 JP2006337342A JP2006337342A JP5092383B2 JP 5092383 B2 JP5092383 B2 JP 5092383B2 JP 2006337342 A JP2006337342 A JP 2006337342A JP 2006337342 A JP2006337342 A JP 2006337342A JP 5092383 B2 JP5092383 B2 JP 5092383B2
Authority
JP
Japan
Prior art keywords
ball bearing
bearing
ball
machine tool
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006337342A
Other languages
Japanese (ja)
Other versions
JP2007315588A (en
Inventor
美昭 勝野
満穂 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006337342A priority Critical patent/JP5092383B2/en
Priority to KR1020077030965A priority patent/KR101057311B1/en
Priority to US11/996,510 priority patent/US20090131235A1/en
Priority to CN2007800008266A priority patent/CN101341347B/en
Priority to PCT/JP2007/050343 priority patent/WO2007080980A1/en
Priority to EP07706685.0A priority patent/EP1972801B1/en
Publication of JP2007315588A publication Critical patent/JP2007315588A/en
Application granted granted Critical
Publication of JP5092383B2 publication Critical patent/JP5092383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フライス盤、旋盤、研削盤、ラップ盤に代表される工作機械において、旋削加工、研削加工,ラップ加工などを行う工作機械の主軸本体旋回部用玉軸受に関する。 The present invention, milling, turning, grinding machines, in a machine tool represented by lapping, turning, grinding, about the spindle body swivel unit for ball bearings of a machine tool or the like is performed lapping.

フライス盤、旋盤、研削盤等の工作機械で主軸を旋回駆動する主軸旋回装置を組込の場合に、この主軸旋回装置の回転支持部に組込まれて使用される軸受には、被削材(ワーク)の加工精度(例えば、真円度、円筒度、内外径寸法精度)や加工面品位(例えば、加工面の光沢度、引き目など)、加工面粗さなどを良くするために、通常、以下の機能が要求される。
(1)高精度(高回転精度)
(2)高剛性
(3)低トルク、低発熱
特に、最近では、数値制御機能を有する工作機械(いわゆる、NC工作機械)が殆どを占めており、一台の工作機械で種々の加工条件をこなせるNC旋盤やNCフライス盤、マシニングセンタなどのNC工作機械の外に、NC旋盤にマシニングセンタの機能を付加した複合型NC工作機械も出現している。マシニングセンタや複合型NC工作機械のような多機能工作機械は、単能型の工作機械に比べて機械構成要素も多く、しかも一台の機械が必要とする床スペースや高さ方向のスペースが大きい。そのため、軸受などの構成要素には上述した(1)ないし(3)の機能を満たすことに加え、省スペース化がさらに要求される。
When a spindle turning device for turning the spindle is incorporated in a machine tool such as a milling machine, a lathe, or a grinding machine, the work piece (workpiece (workpiece) is attached to the bearing that is used in the rotation support portion of the spindle turning device. ) Processing accuracy (for example, roundness, cylindricity, inner and outer diameter dimensional accuracy), processing surface quality (for example, processing surface glossiness, texture, etc.), processing surface roughness, etc. The following functions are required.
(1) High accuracy (high rotation accuracy)
(2) High rigidity (3) Low torque, low heat generation In particular, machine tools with a numerical control function (so-called NC machine tools) have been occupying most recently, and various machining conditions can be achieved with a single machine tool. In addition to NC machine tools such as NC lathes, NC milling machines, and machining centers, complex NC machine tools with machining center functions added to NC lathes have also appeared. Multi-function machine tools such as machining centers and complex NC machine tools have more machine components than single-function machine tools, and the floor space and height space required by one machine is large. . Therefore, in addition to satisfying the functions (1) to (3) described above, components such as bearings are further required to save space.

このような多機能工作機械では、工具を装着する主軸を旋回させることにより、多機能化を図ることが考えられており、このような工作機械の主軸旋回装置に使用される軸受としては、従来、以下のような形式のものが使用されている。
(1)クロスローラ軸受(図31参照)
クロスローラ軸受は、図31に示すように、内輪1と外輪2との間に円筒形の多数のころ3が転動自在に配設された構成を有しており、一つの軸受でラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受けられ、また、省スペース化が可能である。
In such a multi-function machine tool, it is considered to achieve multi-functionality by turning a spindle on which a tool is mounted, and as a bearing used for such a spindle turning device of a machine tool, The following formats are used.
(1) Cross roller bearing (see Fig. 31)
As shown in FIG. 31, the cross roller bearing has a structure in which a large number of cylindrical rollers 3 are arranged between an inner ring 1 and an outer ring 2 so as to be able to roll. It can receive axial load and moment load in both directions and save space.

しかし、クロスローラ軸受は、転動体がころであり、軌道溝1a,2aに対してころ3の転がり接触面が線接触しているので、トルクが大きく、しかも軸やハウジングに組込んだ際のわずかな変形により、線接触部分の接触状態が不安定となり、トルクむらが発生しやすい。また、工作機械の主軸旋回部用では、高精度化と高剛性化を図るために軸受に予圧をかけることが多いが、この場合、上記の変形によるトルクむらがさらに大きくなる。
(2)4点接触玉軸受(図32参照)
4点接触玉軸受は、図32に示すように、内輪4と外輪5との間に多数の玉6が転動自在に配設された構成を有しており、一つの軸受でラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受けられ、また省スペース化が可能である。
However, in the cross roller bearing, the rolling element is a roller, and the rolling contact surface of the roller 3 is in line contact with the raceway grooves 1a and 2a, so that the torque is large, and when the roller is incorporated in a shaft or housing. Due to slight deformation, the contact state of the line contact portion becomes unstable, and torque unevenness is likely to occur. In addition, for a spindle turning part of a machine tool, a preload is often applied to the bearing in order to achieve high accuracy and high rigidity, but in this case, the torque unevenness due to the above-described deformation is further increased.
(2) Four-point contact ball bearing (see Fig. 32)
As shown in FIG. 32, the four-point contact ball bearing has a configuration in which a large number of balls 6 are arranged between the inner ring 4 and the outer ring 5 so as to be able to roll. It can receive axial load and moment load in both directions, and can save space.

4点接触玉軸受の場合、転動体が玉なので、純アキシャル荷重を受ける場合、又はラジアル荷重よりアキシャル荷重が優勢な場合、同寸法のクロスローラ軸受よりトルクが小さい一方で、アキシャル荷重に対してラジアル荷重が優勢な場合、又は純ラジアル荷重を受ける場合、各玉6は軌道溝4a,5aと4点で接触するため玉6と各軌道溝4a,5aとのスピン滑りが大きく、やはりトルクが大きい。また、クロスローラ軸受と同様に、工作機械の主軸旋回部用では、高精度化と高剛性化を図るために軸受に予圧をかけることが多いが、この場合、玉6が常に内外輪軌道溝4a,5aと4点で接触するため、トルクがさらに増加してしまう。
(3)2列組合せ玉軸受(図33参照)
2列組合せ玉軸受は、図33に示すように、内輪7と外輪8との間に複数の玉9が転動可能に配設されたアンギュラ玉軸受等を2列に組合せた構成を有する。2列組合せ玉軸受の場合、それぞれの単列軸受において、玉9と内外輪7,8の軌道溝間は2点接触であるので、低トルク化は図れるものの、単列軸受の2倍の軸方向スペースが必要となり、コンパクト化の点でクロスローラ軸受や4点接触玉軸受に劣る。
In the case of a four-point contact ball bearing, the rolling element is a ball, so when receiving a pure axial load, or when the axial load is superior to the radial load, the torque is smaller than the cross roller bearing of the same dimension, but against the axial load. When the radial load is dominant, or when receiving a pure radial load, each ball 6 contacts the raceway grooves 4a and 5a at four points, so that the spin slip between the ball 6 and each raceway groove 4a and 5a is large, and the torque is still large. large. In addition, as with the cross roller bearing, for the spindle turning part of a machine tool, a preload is often applied to the bearing in order to achieve high accuracy and high rigidity. In this case, the ball 6 always has inner and outer ring raceway grooves. Since it contacts 4a and 5a at four points, the torque further increases.
(3) Two-row combination ball bearing (see Fig. 33)
As shown in FIG. 33, the two-row combination ball bearing has a configuration in which an angular ball bearing or the like in which a plurality of balls 9 are arranged between the inner ring 7 and the outer ring 8 so as to be able to roll is combined in two rows. In the case of two-row combination ball bearings, the ball 9 and the raceway grooves of the inner and outer rings 7 and 8 are in two-point contact in each single-row bearing, so although torque can be reduced, the shaft is twice that of the single-row bearing. Directional space is required, which is inferior to cross roller bearings and 4-point contact ball bearings in terms of compactness.

更に、2列組合せ玉軸受で、省スペース化を目的として、極薄肉の深みぞ玉軸受やアンギュラ玉軸受(図34参照)を組み合わせた構成を有するものがある。このように極薄肉の玉軸受を組合せた2列組合せ軸受を使用してハウジングに回転軸を回転自在に支持する場合には、通常、図35に示すように、軸11の端部に形成した段部12に2列組合せ軸受の内輪7を嵌合させ、この内輪7の自由端を軸11の端部にボルト13で締結される内輪押え14で押圧することにより、回転軸11に2列組合せ軸受の内輪7を固定し、2列組合せ軸受の外輪8を、回転軸11を覆うハウジング15の端部に形成した段部16に嵌合させ、その外輪の自由端をハウジング15の端部にボルト17によって締結される外輪押え18によって押圧することにより、ハウジング15に2列組合せ軸受の外輪8を固定するようにしている。   Furthermore, there is a two-row combination ball bearing having a configuration in which an extremely thin deep groove ball bearing or an angular ball bearing (see FIG. 34) is combined for the purpose of space saving. When a two-row combination bearing combined with an extremely thin ball bearing as described above is used to rotatably support the rotating shaft on the housing, it is usually formed at the end of the shaft 11 as shown in FIG. The inner ring 7 of the two-row combination bearing is fitted to the stepped portion 12 and the free end of the inner ring 7 is pressed by the inner ring presser 14 fastened to the end portion of the shaft 11 by the bolt 13, whereby the rotating shaft 11 has two rows. The inner ring 7 of the combined bearing is fixed, and the outer ring 8 of the two-row combined bearing is fitted into a step 16 formed at the end of the housing 15 covering the rotating shaft 11, and the free end of the outer ring is connected to the end of the housing 15. The outer ring 8 of the two-row combination bearing is fixed to the housing 15 by being pressed by the outer ring presser 18 fastened by the bolt 17.

このため、回転軸11及びハウジング15間に介挿する2列組合せ軸受として極薄肉の深溝玉軸受や図34に示すアンギュラ玉軸受を適用する場合には、省スペース化の点では有利であるが、内輪7及び外輪8のリング肉厚が非常に薄く、内輪7及び外輪8の剛性が低いため、加工精度がでにくく(特に真円度)、且つ上述したように、内輪7及び外輪8を回転軸11及びハウジング15に嵌合すると共に、内輪押え14及び外輪押え18によって押圧して回転軸11及びハウジング15に固定するので、2列組合せ軸受の組付け時即ち回転軸11及びハウジング15への嵌合時や内輪押え14及び外輪押え18による押圧時に変形し易く、組込み精度の確保に手間を要するなどの問題がある。また、場合によっては、組込み時の変形により内輪7及び外輪8の軌道溝が歪み、玉9と軌道溝との接触部間に偏荷重が加わったり、玉9の円滑な転がり運動が阻害されたりして、短期間の運転で損傷するという不具合を生じることがある。
(4)2列組合せ円すいころ軸受(図36参照)
2列組合せ円すいころ軸受は、図36に示すように、内輪21と外輪22との間に保持器23を介して複数の円すい形のころ24が転動可能に配設された円すいころ軸受20を内輪間座25及び外輪間座26を介して2列に組合せて構成されている。円すいころ軸受は、クロスローラ軸受と同様に転動体がころであり、軌道溝に対してころ24の転がり接触面が線接触しており、また、ころ24の端部と内輪21のつば部27が滑り接触しているのでトルクが大きくなり、更に、単列軸受の2倍の軸方向スペースが必要である。また、工作機械の主軸旋回部用では、高精度化と高剛性化を図るために、軸受に予圧をかけることが多いが、この場合、トルクがさらに大きくなる。
For this reason, when an ultra-thin deep groove ball bearing or an angular ball bearing shown in FIG. 34 is applied as a two-row combination bearing inserted between the rotary shaft 11 and the housing 15, it is advantageous in terms of space saving. The ring thickness of the inner ring 7 and the outer ring 8 is very thin, and the rigidity of the inner ring 7 and the outer ring 8 is low, so that the processing accuracy is difficult (particularly roundness), and as described above, the inner ring 7 and the outer ring 8 are The rotary shaft 11 and the housing 15 are fitted together, and are pressed by the inner ring retainer 14 and the outer ring retainer 18 to be fixed to the rotational shaft 11 and the housing 15. Therefore, when the two-row combination bearing is assembled, that is, to the rotational shaft 11 and the housing 15. And is easily deformed when pressed by the inner ring presser 14 and the outer ring presser 18, and there is a problem that it takes time and effort to secure the assembly accuracy. Also, depending on the case, the raceway grooves of the inner ring 7 and the outer ring 8 may be distorted due to deformation at the time of assembling, and an uneven load may be applied between the contact portions between the balls 9 and the raceway grooves, or the smooth rolling motion of the balls 9 may be hindered. As a result, there may be a problem that it is damaged by a short-term operation.
(4) Two-row combination tapered roller bearing (see Fig. 36)
As shown in FIG. 36, the two-row combined tapered roller bearing has a tapered roller bearing 20 in which a plurality of tapered rollers 24 are disposed between an inner ring 21 and an outer ring 22 via a cage 23 so as to be able to roll. Are combined in two rows via an inner ring spacer 25 and an outer ring spacer 26. In the tapered roller bearing, like the cross roller bearing, the rolling element is a roller, the rolling contact surface of the roller 24 is in line contact with the raceway groove, and the end portion of the roller 24 and the collar portion 27 of the inner ring 21. Because of the sliding contact, the torque increases, and more than twice the axial space of the single row bearing is required. In addition, in order to achieve high accuracy and high rigidity for the spindle turning part of a machine tool, a preload is often applied to the bearing, but in this case, the torque is further increased.

従来の工作機械の主軸旋回装置としては、例えば垂直な第1軸を中心に機械構造に対して旋回する第1ハーフヘッドと、ツールスピンドルを支持するために水平面に対して35°傾斜した傾斜平面上で第1ハーフヘッドにガイドベアリングを介して結合し、傾斜平面に対して直角である第2軸を中心として第1ハーフヘッドに対して旋回する第2ハーフヘッドと、第1ハーフヘッド及び第2ハーフヘッドを個別に旋回させるダイレクトモータとを備え、ツールスピンドルをその中心軸が垂直となる状態から第2ハーフヘッドを旋回させてツールスピンドルをその中心軸が水平面に対して仰角をなす状態の2軸間で回転可能なスピンドルヘッドが知られている(例えば、特許文献1参照)。   As a conventional spindle turning device of a machine tool, for example, a first half head that turns with respect to a machine structure about a vertical first axis, and an inclined plane that is inclined by 35 ° with respect to a horizontal plane to support a tool spindle A second half head coupled to the first half head via a guide bearing and pivoting relative to the first half head about a second axis perpendicular to the inclined plane; a first half head; 2 A direct motor for individually turning the half head, and a tool spindle in a state in which the center axis is at an elevation angle with respect to a horizontal plane by turning the second half head from a state in which the center axis is vertical. A spindle head that can rotate between two axes is known (for example, see Patent Document 1).

また、回転テーブルの例としては、基台の中心に立設された支持軸にテーブルがデストリビュータを介して嵌挿され、このテーブルが基台上にクロスローラベアリングを介して回転可能に支持され、テーブルがウォームギヤ又はダイレクトモータによって回転駆動されて回転割出しを行うようにした回転割出し装置が知られている(例えば、特許文献2参照)。
特表2004−520944号公報(第1頁、図1〜図4) 特開平10−29125号公報(第2頁、図1)
As an example of the rotary table, a table is fitted and inserted into a support shaft standing at the center of the base via a distributor, and this table is rotatably supported on the base via a cross roller bearing. A rotary indexing device in which a table is rotationally driven by a worm gear or a direct motor to perform rotational indexing is known (for example, see Patent Document 2).
JP-T-2004-520944 (first page, FIGS. 1 to 4) JP-A-10-29125 (second page, FIG. 1)

このように、上記特許文献1及び特許文献2に記載されている構成を採用することにより、4側面以外に上面も種々の加工が可能となる5軸加工(被削材(ワーク)を保持するテーブル設置面以外の対向する面の加工が1段取りで可能)のマシニングセンタやNC旋盤とマシニングセンタの両機能を備えた複合加工機の製作が可能となり、この種の工作機械が増加しているが、何れの構成を採用するとしても、回転を支持する支持軸受の性能が回転機構部の回転精度・剛性等の特性に最も影響を与えることになる。   As described above, by adopting the configuration described in Patent Document 1 and Patent Document 2, 5-axis machining (holding the work material (workpiece)) that enables various machining of the upper surface in addition to the four side surfaces is possible. Although it is possible to manufacture machining centers with the same function as machining centers and NC lathes and machining centers, the number of machine tools of this type is increasing. Whichever configuration is adopted, the performance of the support bearing that supports the rotation has the most influence on the characteristics such as the rotation accuracy and rigidity of the rotation mechanism section.

また、上記構成を達成するためには、旋回機構部の周辺の構成部品スペースが増加せざるを得ないため、更なる省スペース化が要求される。さらに、主軸全体を揺動させるための動力をできるだけ軽減し、省エネルギ化を図るためには、旋回機構部のコンパクト化による軽量化・低イナーシャ化も必要である。
しかしながら、前述したように、支持軸受として、クロスローラ軸受、4点接触玉軸受、2列組合せ玉軸受、2列組合せ円すいころ軸受等を適用した場合には、種々の不具合を生じることになり、上記(1)〜(3)の機能を保持又は向上させつつ、最近の複合化傾向の工作機械に対応した主軸旋回部用玉軸受を構成することができないという未解決の課題がある。
Further, in order to achieve the above-described configuration, the space for the components around the swivel mechanism must be increased, and thus further space saving is required. Furthermore, in order to reduce the power for swinging the entire main shaft as much as possible and to save energy, it is necessary to reduce the weight and reduce the inertia by making the turning mechanism portion compact.
However, as described above, when a cross roller bearing, a four-point contact ball bearing, a two-row combination ball bearing, a two-row combination tapered roller bearing or the like is applied as a support bearing, various problems are caused. There is an unsolved problem that it is not possible to configure a ball bearing for a main spindle turning part corresponding to a recent machine tool with a complex tendency while maintaining or improving the functions (1) to (3).

そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、上記(1)〜(3)の機能を保持又は向上させつつ、最近の複合化傾向の工作機械に対応した主軸本体旋回部用玉軸受を提供することを目的としている。 Therefore, the present invention has been made by paying attention to the unsolved problems of the above-described conventional example, and it is possible to provide a machine tool having a recent trend toward compounding while maintaining or improving the functions (1) to (3). and its object is to provide a corresponding spindle body turning unit for ball bearings.

上記目的を達成するために、請求項1に係る工作機械の主軸本体旋回部用玉軸受は、基台と、該基台に対して旋回自在とされ工具を回転させる主軸が取り付けられた主軸本体と、該主軸本体を駆動させる駆動源を有し、前記主軸の回転軸と前記主軸本体の旋回軸とが異なる工作機械において、前記基台と前記主軸本体との間に設けられ、外輪の軌道溝と内輪の軌道溝との間に多数の玉が転動自在に配設された工作機械の主軸本体旋回部用玉軸受であって、前記玉軸受は少なくとも2個の単列の玉軸受を有し、該単列の玉軸受の軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が(B/H)<0.63であり、前記玉軸受は、前記基台に対して前記外輪及び前記内輪の何れか一方が締め付け固定され、前記主軸本体に対し前記外輪及び前記内輪の他方が締め付け固定されることで予圧が付与されていることを特徴としている。 In order to achieve the above object, a main spindle main body turning part ball bearing of a machine tool according to claim 1 is provided with a base and a main spindle main body to which a main shaft that is rotatable with respect to the base and rotates a tool is attached. If, have a drive source for driving the main shaft body, the pivot axis is different machine tools of the spindle body and the rotation axis of the spindle, it is provided between the base and the spindle body, the outer ring A ball bearing for a main spindle body turning part of a machine tool in which a large number of balls are rotatably arranged between a raceway groove and a raceway groove of an inner ring, the ball bearing comprising at least two single row ball bearings The cross-sectional dimension ratio (B / H) between the axial cross-sectional width B and the radial cross-sectional height H of the single row ball bearing is (B / H) <0.63, and the ball bearing is Any one of the outer ring and the inner ring is fastened and fixed to the base, and the spindle main body is Preload by wheel and the inner ring of the other is fastened is characterized by being granted.

また、請求項2に係る工作機械の主軸本体旋回部用玉軸受は、基台と、該基台に対して旋回自在とされ工具を回転させる主軸が取り付けられた主軸本体と、該主軸本体を駆動させる駆動源を有し、前記主軸の回転軸と前記主軸本体の旋回軸とが異なる工作機械において、前記基台と前記主軸本体との間に設けられ、外輪の軌道溝と内輪の軌道溝との間に多数の玉が転動自在に配設された工作機械の主軸本体旋回部用玉軸受であって、前記玉軸受は複列の玉軸受を有し、該複列の玉軸受の軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B2/H2)が(B2/H2)<1.2であり、前記玉軸受は、前記基台に対して前記外輪及び前記内輪の何れか一方が締め付け固定され、前記主軸本体に対し前記外輪及び前記内輪の他方が締め付け固定されることで予圧が付与されていることを特徴としている。 In addition, a ball bearing for a main spindle body turning portion of a machine tool according to claim 2 includes a base, a main spindle body attached to a main spindle that is rotatable with respect to the base and rotates a tool, and the main spindle body. It has a drive source to be driven, at a pivot axis and is different from the machine tool of the spindle body and the rotation axis of the spindle, provided, raceway groove and the inner ring raceway of the outer ring between the base and the main shaft body A ball bearing for a main spindle body turning part of a machine tool in which a large number of balls are rotatably arranged between grooves, wherein the ball bearing has a double row ball bearing, and the double row ball bearing axial cross-sectional width B 2 and the radial section sectional size ratio between the height of H 2 (B2 / H2) is the (B2 / H2) <1.2, wherein the ball bearing, the relative to the base One of the outer ring and the inner ring is fastened and fixed, and the other of the outer ring and the inner ring is fixed to the main spindle body. It is characterized in that the preload is applied by being fit with fixed.

らに、請求項に係る工作機械の主軸本体旋回用玉軸受は、請求項1又は2に係る発明において、前記玉軸受の軸線方向に関し、前記主軸本体と前記駆動源が当該玉軸受の両側に位置するように前記玉軸受が配置されていることを特徴としている
請求項1に係る発明は、例えば図3を参照して、外輪101の転動溝101aと内輪102の転動溝102aとの間に多数の玉103が転動自在に配設された単列の玉軸受100において、軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)が断面寸法比(B/H)を(B/H)<0.63としている。
Et al of the spindle body turning ball bearing of a machine tool according to claim 3 is the invention according to claim 1 or 2, relates to the axial direction of the ball bearing, the drive source and the main shaft body of the ball bearing It is as wherein the ball bearing is arranged so as to be positioned on both sides.
In the invention according to claim 1, for example, referring to FIG. 3, a single row in which a large number of balls 103 are rotatably arranged between a rolling groove 101 a of the outer ring 101 and a rolling groove 102 a of the inner ring 102. In the ball bearing 100, the axial sectional width B and the radial sectional height H (= (outer ring outer diameter D−inner ring inner diameter d) / 2) have a sectional dimension ratio (B / H) of (B / H) <0. .63.

ここで、請求項1に係る発明における断面寸法比(B/H)を(B/H)<0.63に設定した理由は以下の通りである。
すなわち、図27及び図28は、それぞれ標準的に使用されている極薄肉玉軸受(軸受内径:Φ203.2mm,軸受外径:φ254mm,軸受幅:25.4mm,前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合(即ち、(B/H)の値を変化させた場合)の内外輪リングの半径方向の変形特性(図25参照:内輪を例示)及び半径方向の断面2次モーメントI(図26参照):I=bh3 /12)を比較した結果を示している。
Here, the reason why the cross-sectional dimension ratio (B / H) in the invention according to claim 1 is set to (B / H) <0.63 is as follows.
27 and FIG. 28 show the standard thin ball bearings (bearing inner diameter: Φ203.2 mm, bearing outer diameter: Φ254 mm, bearing width: 25.4 mm, the cross-sectional dimension ratio (B / H ) = 1) as a reference, when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width (that is, when the value of (B / H) is changed) deformation characteristics (see FIG. 25: illustrates the inner ring) and radial cross-sectional secondary moment I (see Figure 26): shows the I = bh 3/12) result of comparison.

これら図27及び図28によると、(B/H)=0.63未満で、剛性の増加率勾配の変化が顕著に出ている。すなわち、断面2次モーメントIの増加は顕著になり、半径方向における内外輪リングの変形量の減少は飽和状態となる。
したがって、本発明では、従来の極薄肉軸受で問題となる内外輪製作時の旋盤加工や研磨加工時の加工力による軸受変形を防止することができ、真円度や偏肉等の軸受精度を向上させることができる。
According to FIGS. 27 and 28, when (B / H) = 0.63, the change in the stiffness increase rate gradient is noticeable. That is, the increase in the cross-sectional secondary moment I becomes remarkable, and the decrease in the deformation amount of the inner and outer ring in the radial direction is saturated.
Therefore, in the present invention, bearing deformation such as roundness and uneven thickness can be prevented, which can be prevented by lathe processing during inner and outer ring production and processing force during polishing, which is a problem with conventional ultra-thin bearings. Can be improved.

また、軸やハウジングに組込んだ場合(特に、軸やハウジングとすきま嵌合で組込んだ場合)、内輪押えや外輪押え等で軸受を固定したときの内外輪の変形(特に真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転精度不良の他、発熱増大や摩耗、焼付き等の不具合を防止することができる。
つまり、従来使用されている極薄肉玉軸受に比較して、省スペース化と同時に高精度化を両立させることが可能である。
In addition, when assembled in a shaft or housing (especially when assembled by clearance fitting with the shaft or housing), deformation of the inner and outer rings when the bearing is fixed with inner ring retainers or outer ring retainers (especially with roundness) In addition to torque failure and rotation accuracy failure caused by deformation, problems such as increased heat generation, wear, and seizure can be prevented.
That is, as compared with the conventionally used ultra-thin ball bearings, it is possible to achieve both space saving and high accuracy.

図29は、単列の本発明品とクロスローラ軸受についてそれぞれの軸受にモーメント荷重を負荷した場合の内外輪相対傾き角の比較データである。
ここで、測定軸受の主要寸法は、
本発明品:
内輪内径 :Φ170
外輪外径 :Φ215
単体幅 :13.5mm
転動体ピッチ円直径:Φ192.5
接触角35°
(B/H=0.60)
クロスローラ軸受:
内輪内径 :130
外輪外径 :230
組立幅 :30mm
転動体ピッチ円直径:Φ189.7
である。
FIG. 29 is a comparison data of the relative inclination angles of the inner and outer rings when a moment load is applied to each of the single row product of the present invention and the cross roller bearing.
Here, the main dimensions of the measuring bearing are
Invention product:
Inner ring inner diameter: Φ170
Outer ring outer diameter: Φ215
Single unit width: 13.5mm
Rolling element pitch circle diameter: Φ192.5
Contact angle 35 °
(B / H = 0.60)
Cross roller bearing:
Inner ring inner diameter: 130
Outer ring outer diameter: 230
Assembly width: 30mm
Rolling element pitch circle diameter: Φ189.7
It is.

この図29から明らかなように、転動体のピッチ円直径が略同一となる本発明品及びクロスローラ軸受の両者について、モーメント剛性の比較データは、本発明品がクロスローラ軸受に対して、約1.3倍のモーメント剛性を保持していることが確認された。
また、上記の実験に加えて、本発明品及びクロスローラ軸受を軸及びハウジングに組込んだ後、モータ(ベルト駆動)により低速で回転させたが、本発明品は、回転ムラもなくスムーズに回転したが、クロスローラ軸受の場合はトルク変動による回転ムラが実際に確認された。
As is clear from FIG. 29, the moment rigidity comparison data for both the present invention product and the cross roller bearing in which the pitch circle diameters of the rolling elements are substantially the same are about It was confirmed that the moment rigidity was maintained 1.3 times.
In addition to the above experiments, the product of the present invention and the cross roller bearing were assembled into the shaft and housing, and then rotated at a low speed by a motor (belt drive). In the case of the cross roller bearing, rotation irregularity due to torque fluctuation was actually confirmed.

一方、国際標準化機構(ISO)で規定されている寸法系列が18(例えば6820)、19(例えば6924)、10(例えば6028)、02(例えば7224A)、03(例えば7322A)の標準玉軸受では、軸受内径寸法がφ5mm〜φ500mmにおいては、上述の断面寸法比(B/H)は0.63〜1.17に設定されている。
したがって、これらの玉軸受における断面寸法比(B/H)の最大値1.17の約1/2倍、すなわち0.63未満に設定することで、従来の標準単列玉軸受で最も幅狭の玉軸受より幅狭で、且つ従来の標準単列玉軸受の軸方向スペース以内に、請求項1に係る玉軸受を2列組み合わせて配置することができる。
On the other hand, in the standard ball bearings whose dimension series prescribed by the International Organization for Standardization (ISO) are 18 (for example, 6820), 19 (for example, 6924), 10 (for example, 6028), 02 (for example, 7224A), 03 (for example, 7322A) When the inner diameter of the bearing is φ5 mm to φ500 mm, the cross-sectional dimension ratio (B / H) is set to 0.63 to 1.17.
Therefore, the width of the cross-sectional dimension ratio (B / H) of these ball bearings is set to about ½ times the maximum value of 1.17, that is, less than 0.63, which is the narrowest in conventional standard single row ball bearings. The ball bearings according to claim 1 can be arranged in combination with each other within a space narrower than that of the conventional ball bearing and within the axial space of the conventional standard single row ball bearing.

例えば、従来の玉軸受の断面寸法比(B/H)が(B/H)=0.9であれば、本発明の軸受の断面寸法比(B/H)を(B/H)=0.45とすればよい。また、本例の場合、組み合わせる2個の玉軸受における軸受の断面寸法比(B/H)を同一にする必要はなく、例えば、片方を0.50、もう一方を0.40としてもよい。
なお、単列玉軸受は、1列では、予圧を掛けたりモーメント荷重を負荷することは困難であるが、2列以上の多列組合せとすることで、ラジアル荷重・アキシヤル荷重及びモーメント荷重を負荷することが可能となる。
For example, if the sectional dimension ratio (B / H) of a conventional ball bearing is (B / H) = 0.9, the sectional dimension ratio (B / H) of the bearing of the present invention is (B / H) = 0. .45. In the case of this example, it is not necessary for the two ball bearings to be combined to have the same cross-sectional dimension ratio (B / H). For example, one may be 0.50 and the other may be 0.40.
Single-row ball bearings are difficult to apply preload or moment load in one row, but with multiple rows of two or more rows, radial load, axial load and moment load can be applied. It becomes possible to do.

また、各玉が内外輪の軌道溝に対して常に2点で接触するので、4点接触玉軸受のように、玉の大きなスピンによるトルクの増加を抑制することができ、更には、クロスローラ軸受や2列組合せ円すいころ軸受に比べて、転がり抵抗が低くなるので低トルク化を実現することができる。
さらに、幅寸法が従来の標準単列玉軸受の約半分となることで、玉径も従来の玉軸受の半分程度となるが、逆に1列あたりの玉数が増加し、軸受剛性は従来の玉軸受に対して増加する。また、工作機械の主軸旋回部に用いる場合においては、揺動回転条件であるので、玉径を小さくしたことにより軸受の負荷容量が低下しても転がり疲れ寿命時間が実用上で問題となることはない。
Further, since each ball always contacts the inner and outer raceway grooves at two points, an increase in torque due to a large spin of the ball can be suppressed as in a four-point contact ball bearing. Compared to a bearing or a two-row combined tapered roller bearing, the rolling resistance is reduced, so a reduction in torque can be realized.
Furthermore, when the width dimension is about half that of the conventional standard single-row ball bearing, the ball diameter is also about half that of the conventional ball bearing. Increased against ball bearings. Also, when used for the spindle turning part of a machine tool, since it is a swinging rotation condition, rolling fatigue life time becomes a problem in practice even if the load capacity of the bearing is reduced by reducing the ball diameter. There is no.

また、請求項に係る発明は、例えば図21を参照して、外輪201の複列軌道溝201a,201bと内輪202の複列軌道溝202a,202bとの間に多数の玉203が転動自在に配設された複列の玉軸受200において、軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)を(B2/H2)<1.2としている。 In the invention according to claim 2 , for example, referring to FIG. 21, a large number of balls 203 roll between the double row raceway grooves 201 a and 201 b of the outer ring 201 and the double row raceway grooves 202 a and 202 b of the inner ring 202. In the double-row ball bearing 200 disposed freely, the sectional dimension ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 (= (outer ring outer diameter D2-inner ring inner diameter d2) / 2). ) For (B2 / H2) <1.2.

複列玉軸受において、断面寸法比(B2/H2)を以上のような設定とすることで、請求項1に係る単列の幅狭玉軸受を2列組合せとした場合と同様、従来の標準単列玉軸受の軸方向幅スペース内に請求項3に係る複列玉軸受を配置することが可能となり、また、予圧をかけたり、モーメント荷重を付加すること等も可能となる。その他の作用効果は請求項1に係る単列の幅狭玉軸受を2列組合せとした場合と同様である。   In the double row ball bearing, by setting the cross-sectional dimension ratio (B2 / H2) as described above, the conventional standard is the same as when the single row narrow ball bearing according to claim 1 is combined in two rows. It becomes possible to arrange the double row ball bearing according to claim 3 in the axial width space of the single row ball bearing, and it is also possible to apply a preload or apply a moment load. Other functions and effects are the same as in the case where the single row narrow ball bearings according to claim 1 are combined in two rows.

図30は、各種軸受の計算モーメント剛性の比較である。同一サイズ(計算例は、軸受名番7906A(接触角30°)相当で、内外径寸法が同じ場合:内輪内径φ30mm、外輪外径φ47mm)では、請求項1に係る単列の幅狭アンギュラ玉軸受(接触角30°:総玉軸受の計算例)を2列組合せ、且つ内外輪の軌道溝曲率半径を変化させた本発明例A〜Eは、何れもクロスローラ軸受、標準2列組合せアンギュラ玉軸受及び4点接触玉軸受に比べてモーメント剛性が大きくなっている。例えば、本発明例Bは、クロスローラ軸受の2.4倍、標準2列組合せアンギュラ玉軸受の1.9倍、4点接触玉軸受の3.3倍のモーメント剛性を保持させることが可能である。   FIG. 30 is a comparison of calculated moment stiffness of various bearings. For the same size (calculation example is equivalent to bearing name No. 7906A (contact angle 30 °) and the inner and outer diameter dimensions are the same: inner ring inner diameter φ30 mm, outer ring outer diameter φ47 mm), the single row narrow angular contact ball according to claim 1 The present invention examples A to E in which the bearings (contact angle 30 °: calculation example of the total ball bearing) are combined in two rows and the raceway radius of curvature of the inner and outer rings are changed are all cross roller bearings, standard double row angular combinations The moment rigidity is larger than that of the ball bearing and the four-point contact ball bearing. For example, the present invention example B can maintain moment rigidity 2.4 times that of a cross roller bearing, 1.9 times that of a standard two-row combination angular ball bearing, and 3.3 times that of a four-point contact ball bearing. is there.

なお、それぞれの設計予圧すきまは、本発明例A〜E、標準2列組合せアンギュラ玉軸受及び4点接触玉軸受は、−0.010mm、クロスローラ軸受は−0.001mmと実用上の標準的な値として計算している(クロスローラ軸受で、−0.001mmより小さい予圧設定をした場合、トルクが過多となり実用上で使用不可となるおそれがある)。
なお、本発明に係る幅狭玉軸受の適正な玉径は、シール等の装着有無により変化するが、剛性を増加させるため、極端に玉径を小さくすると、玉と内外輪の軌道溝との接触部間の面圧が増加し、耐圧痕性が低下するため、おおむね、軸受幅(B)又は(B2/2)の30%〜90%が望ましい。
The design preload clearances are -0.010 mm for the invention examples A to E, standard two-row combination angular contact ball bearings and 4-point contact ball bearings, and -0.001 mm for the cross roller bearings. (If the pre-load setting is less than -0.001 mm with a cross roller bearing, the torque may be excessive and may be unusable for practical use).
The appropriate ball diameter of the narrow ball bearing according to the present invention varies depending on whether or not a seal or the like is attached, but in order to increase rigidity, if the ball diameter is extremely reduced, the ball and the inner and outer ring raceway grooves Since the surface pressure between the contact portions increases and the pressure scar resistance decreases, the bearing width (B) or (B2 / 2) is preferably approximately 30% to 90%.

さらに、本発明をアンギュラ玉軸受に適用した場合、軸受の接触角は必要な剛性(例えば、モーメント剛性)及び要求トルクにより選ばれるが、おおむね10〜60°の範囲が望ましい。
さらに、荷重の方向や大きさに合わせて、必要に応じて、組合せた各単列軸受の接触角、或いは複列軸受の場合は各列間の接触角を変えても構わない。
Furthermore, when the present invention is applied to an angular ball bearing, the contact angle of the bearing is selected depending on the required rigidity (for example, moment rigidity) and the required torque, but is preferably in the range of approximately 10 to 60 °.
Furthermore, the contact angle of each combined single row bearing or the contact angle between each row in the case of a double row bearing may be changed as necessary in accordance with the direction and magnitude of the load.

さらには、内外輪軌道溝の曲率半径は、要求される剛性やトルク特性に応じて、51〜60%Da(Da:玉径)、好ましくは52〜56%Da、より好ましくは52〜54%Da程度とする。また、内外輪のそれぞれの軌道溝の曲率半径は同一でなくてもよいし、組み合される単列軸受間や複列軸受の各列間で異なってもよい。   Further, the radius of curvature of the inner and outer ring raceway grooves is 51 to 60% Da (Da: ball diameter), preferably 52 to 56% Da, more preferably 52 to 54%, depending on the required rigidity and torque characteristics. It is about Da. Further, the radius of curvature of each raceway groove of the inner and outer rings may not be the same, or may be different between single row bearings to be combined or between rows of double row bearings.

本発明によれば、工作機械の基台と主軸本体との間に設けられる主軸本体旋回部用玉軸受において、単列玉軸受の場合に、軸方向断面幅Bと半径方向断面高さHとの断面比(B/H)を(B/H)<0.63とし、複列玉軸受の場合に、軸方向断面幅B2と半径方向断面高さH2との断面比(B2/ H2)が(B2/H2)<1.2とすることで、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられるのは勿論のこと、高精度化(高回転精度化)、高剛性化、低トルク化及び低発熱化を図ることができると共に、更なる省スペース化を図ることができるという効果が得られる。そして、上記効果を奏する主軸本体旋回部用玉軸受を、主軸旋回部に適用して主軸旋回装置を構成することにより、主軸旋回装置自体も省スペース化を図ることができる。 According to the present invention, in the spindle main body turning part ball bearing provided between the base of the machine tool and the main spindle main body, in the case of a single row ball bearing, the axial sectional width B and the radial sectional height H In the case of a double row ball bearing, the sectional ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 is (B / H) <0.63. By setting (B2 / H2) <1.2, it is possible to receive radial load, axial load in both directions, and moment load, as well as higher accuracy (higher rotation accuracy), higher rigidity, and lower torque. In addition, it is possible to reduce the heat generation, and to obtain an effect that further space saving can be achieved. Then, the spindle turning device itself can be saved in space by applying the spindle main body turning portion ball bearing having the above effects to the spindle turning portion to constitute the spindle turning device.

以下、図1〜図24を参照して本発明の実施の形態を説明する。
図1は、本発明に係る工作機械の主軸旋回装置を例えば5軸加工マシニングセンタに適用した場合の第1の実施形態(請求項1又は3に対応)を示す要部を断面とした側面図である。
図中、30は工作機械の主軸旋回装置であって、マシニングセンタの固定部に固定された基台31と、この基台31に回転自在に支持された旋回台座32と、この旋回台座32に装着された主軸本体33とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 is a side view in cross section of a main portion showing a first embodiment (corresponding to claim 1 or 3) when the spindle turning device of a machine tool according to the present invention is applied to, for example, a 5-axis machining center. is there.
In the figure, reference numeral 30 denotes a spindle turning device for a machine tool, which is a base 31 fixed to a fixed portion of a machining center, a turning base 32 rotatably supported by the base 31, and a rotating base 32 attached to the base 31. The main shaft body 33 is provided.

基台31は、左端面中央から右側に凹設した旋回台座32を収容する収容凹部34を有し、この収容凹部34内に、旋回台座32が本発明による主軸本体旋回部用玉軸受35を介して回転自在に支持されている。
ここで、旋回台座32は、基台31の左端面と対向して左端に平坦な取付面36を形成した円板部37と、この円板部37の右端から突出して主軸本体旋回部用玉軸受35の内輪を保持する段部38及びウォームホイール39を嵌合保持する段部40を形成し、中央部の右端から左方に重量を軽減するための凹部41を形成した突出部42とを有する。
The base 31 has a housing recess 34 that houses a swivel base 32 that is recessed from the center of the left end surface to the right side. The swivel base 32 has a main shaft body swivel ball bearing 35 according to the present invention in the housing recess 34. It is rotatably supported via.
Here, the swivel pedestal 32 has a disc portion 37 which is opposed to the left end surface of the base 31 and has a flat mounting surface 36 formed at the left end, and protrudes from the right end of the disc portion 37 and protrudes from the right end of the disc main body swivel portion A step portion 38 that holds the inner ring of the bearing 35 and a step portion 40 that fits and holds the worm wheel 39 are formed, and a protruding portion 42 that is formed with a recess 41 for reducing the weight from the right end of the central portion to the left. Have.

そして、段部38に主軸本体旋回部用玉軸受35の内輪を係合させた状態で、ウォームホイール39に一体に形成された内輪押え43をボルト44で締め付けることにより、段部38に主軸本体旋回用玉軸受35の内輪が固定されている。
一方、主軸本体旋回部用玉軸受35の外輪は、基台31の収容凹部34に形成した段部45に嵌合され、基台31の左端面側に配設された外輪押え46を例えば旋回台座32の円板部37に形成した透孔(図示せず)を通じて挿入したボルト47によってボルト締めすることにより、基台31に固定されている。
Then, the inner ring presser 43 formed integrally with the worm wheel 39 is tightened with a bolt 44 in a state where the inner ring of the spindle main body turning part ball bearing 35 is engaged with the stepped part 38, whereby the main spindle body is fixed to the stepped part 38. The inner ring of the turning ball bearing 35 is fixed.
On the other hand, the outer ring of the ball bearing 35 for the main spindle main body turning part is fitted into a step 45 formed in the receiving recess 34 of the base 31, and the outer ring presser 46 disposed on the left end surface side of the base 31 is turned, for example. It is fixed to the base 31 by bolting with a bolt 47 inserted through a through hole (not shown) formed in the disc portion 37 of the base 32.

また、ウォームホイール39には、モータ等の回転駆動源に連結されたウォーム48が噛合され、このウォーム48を回転駆動することにより、旋回台座32を例えば後述する主軸本体33の工具取付面を垂直下方0°としたときに、主軸本体33を前後方向に±100°程度旋回(揺動)させる。
さらに、主軸本体33は、エンドミルやドリル等の治工具(図示せず)を取付ける工具取付面51を下方として工具を回転させる回転駆動源を内装した主軸52と、この主軸52の側面に一体に形成された旋回台座32の円板部37の取付面36にボルト締めされた取付板部53とを有する。
Further, the worm wheel 39 is engaged with a worm 48 connected to a rotational drive source such as a motor. By rotating the worm 48, the swivel pedestal 32 is vertically aligned with, for example, a tool mounting surface of a main spindle body 33 described later. When the downward angle is 0 °, the main spindle body 33 is swung (oscillated) about ± 100 ° in the front-rear direction.
Further, the main spindle body 33 is integrally formed with a main spindle 52 equipped with a rotation drive source for rotating a tool with a tool mounting surface 51 for attaching a tool (not shown) such as an end mill or a drill as a lower side, and a side surface of the main spindle 52. And a mounting plate portion 53 bolted to the mounting surface 36 of the disc portion 37 of the swivel base 32 formed.

次に、上記第1の実施形態の動作を説明する。
今、例えば、図1に示すように、主軸本体33が工具取付面51を垂直下方0°に位置決めした状態で、主軸52の工具取付面51にエンドミルやドリル等の治工具を取付けて、内蔵する回転駆動源によって高速回転駆動させた状態で、治工具と被削材(ワーク)とを相対移動させることにより、立形マシニングセンタとして切削加工を行うことができる。
Next, the operation of the first embodiment will be described.
Now, for example, as shown in FIG. 1, with the main spindle body 33 positioning the tool mounting surface 51 at 0 ° vertically downward, a tool such as an end mill or a drill is mounted on the tool mounting surface 51 of the main spindle 52 and built-in. The tool can be cut as a vertical machining center by moving the jig and the work material (workpiece) relative to each other while being driven to rotate at a high speed by the rotating drive source.

この切削加工が終了した後に、図示しない回転駆動源によってウォーム48を例えば正転させて、旋回台座32を手前方向に+90°旋回させることにより、主軸本体33を手前方向に+90°旋回させて治工具が手前を向く状態となり、この状態で治工具と被削材(ワーク)とを相対移動させることにより、横型マシニングセンタとして切削加工を行うことができる。   After this cutting process is completed, the spindle body 33 is rotated + 90 ° in the forward direction by rotating the pedestal 32 by + 90 ° in the forward direction, for example, by rotating the worm 48 forward by a rotational drive source (not shown). The tool turns to the front side, and in this state, the jig and the work material (workpiece) are moved relative to each other, whereby cutting can be performed as a horizontal machining center.

同様に、回転駆動源によってウォーム48を逆転駆動して、旋回台座例えば旋回台32及び主軸本体33を後ろ側に−90°旋回させてから治工具と被削材(ワーク)とを相対移動させることにより、横形マシニングセンタとして切削加工を行うことができる。
このように、主軸旋回装置30の主軸旋回部に本発明による主軸本体旋回部用玉軸受35を適用することにより、後述するように、主軸本体旋回部用玉軸受35がラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられるのは勿論のこと、高精度化(高回転精度化)、高剛性化、低トルク化及び低発熱化を図ることができると共に、更なる省スペース化を図ることができるので、主軸旋回装置30自体も省スペース化を図ることができる。
Similarly, the worm 48 is reversely driven by a rotational drive source, and the swivel base, for example, the swivel base 32 and the main spindle body 33 are swung back by −90 °, and then the jig and the work material are moved relative to each other. Thus, cutting can be performed as a horizontal machining center.
In this way, by applying the main spindle main body turning section ball bearing 35 according to the present invention to the main spindle turning section of the main spindle turning device 30, the main spindle main body turning section ball bearing 35 has a radial load and an axial axial direction as will be described later. In addition to being able to receive loads and moment loads, it is possible to achieve high accuracy (high rotational accuracy), high rigidity, low torque and low heat generation, as well as further space saving. Therefore, the spindle turning device 30 itself can also save space.

なお、上記第1の実施形態においては、旋回台座32をウォームギヤで回転駆動する場合について説明したが、これに限定されるものではなく、傘歯車機構や他の歯車機構を適用して回転駆動することができ、さらには図2に示すように、ウォームホイール39及びウォーム48を省略して、基台31の収容凹部34の内周面に配設したステータ61と、これに対向する旋回台座32の突出部42の外周面に配設したロータ62とで構成されるダイレクトモータ63で旋回台座32を直接旋回駆動するようにしてもよい。この図2の場合には、主軸本体旋回部用玉軸受35として後述する図12に示す片側シール及び保持器付き玉軸受を適用するのが好ましい。また、旋回台座32は、主軸本体旋回部用玉軸受35及びロータ62を保持する基部64と、この基部64にボルト締めされる主軸本体旋回部用玉軸受35の内輪押えを兼ねる取付板部65とで構成されている。 In the first embodiment, the case where the swivel base 32 is rotationally driven by the worm gear has been described. However, the present invention is not limited to this, and the rotational base 32 is rotationally driven by applying a bevel gear mechanism or another gear mechanism. Further, as shown in FIG. 2, the worm wheel 39 and the worm 48 are omitted, the stator 61 disposed on the inner peripheral surface of the housing recess 34 of the base 31, and the swivel base 32 facing the stator 61. Alternatively, the swivel base 32 may be directly driven to turn by a direct motor 63 including a rotor 62 disposed on the outer peripheral surface of the protrusion 42. In the case of this Figure 2 is preferably applied to one side seal and retainer with ball bearings illustrated in Figure 12 to be described later as a spindle body turning unit for ball bearings 35. Further, the swivel base 32 has a base 64 that holds the main spindle body swivel ball bearing 35 and the rotor 62, and a mounting plate 65 that also serves as an inner ring presser of the main spindle main body swivel ball bearing 35 that is bolted to the base 64. It consists of and.

ここで、ダイレクトモータ63は図2に示すアウタロータ型に構成する場合に限らず、突出部42の凹部41内周面にロータを配設し、このロータの内側にステータを配設するインナロータ型に構成するようにしてもよい。
また、第1の実施形態においては、基台31に形成した収容凹部34内に旋回台座32を回転自在に支持する場合について説明したが、これに限定されるものではなく、基台31の外側に旋回台座32を本発明による主軸本体旋回部用玉軸受35を介して回転自在に支持するようにしてもよい。
Here, the direct motor 63 is not limited to the outer rotor type shown in FIG. 2, but an inner rotor type in which a rotor is provided on the inner peripheral surface of the recess 41 of the protrusion 42 and a stator is provided inside the rotor. You may make it comprise.
Moreover, in 1st Embodiment, although the case where the rotation base 32 was rotatably supported in the accommodation recessed part 34 formed in the base 31 was demonstrated, it is not limited to this, The outer side of the base 31 In addition, the swivel base 32 may be rotatably supported through the spindle main body swivel ball bearing 35 according to the present invention.

さらに、第1の実施形態においては、マシニングセンタに本発明を適用した場合について説明したが、これに限定されるものではなく、旋盤、フライス盤、研削盤、ラップ盤等にマシニングセンタ機能を付加するために主軸を旋回させる主軸旋回装置を備えた任意の複合型の工作機械に本発明を適用し得るものである。
さらにまた、主軸旋回装置30としては、上記構成に限定されるものではなく、主軸本体33を主軸本体旋回部用玉軸受を介して支持するようにした構成であれば任意の構成を採用することができる。
Furthermore, in the first embodiment, the case where the present invention is applied to a machining center has been described. However, the present invention is not limited to this, and in order to add a machining center function to a lathe, a milling machine, a grinding machine, a lapping machine, or the like. The present invention can be applied to any composite type machine tool provided with a spindle turning device for turning the spindle.
Furthermore, the main spindle turning device 30 is not limited to the above-described configuration, and any configuration may be adopted as long as the main spindle body 33 is supported via the main spindle main body turning portion ball bearing. Can do.

次に、上記主軸旋回装置30の主軸旋回部に適用する本発明による主軸本体旋回部用玉軸受35の具体例について説明する。
主軸本体旋回部用玉軸受35には、(a)主軸旋回装置30の旋回台座32上に設置された主軸本体33を高精度(振れ精度)で回転させること、(b)主軸本体33を低トルクでスムーズに揺動回転させること、(c)ワーク加工時の荷重に対する主軸本体全体の変位を少なくする(高剛性)ことが要求される。また、主軸本体旋回部用玉軸受35には、主軸関連部品の重量によるモーメント荷重や旋回加減速時に発生するイナーシャ荷重に加え、加工条件に応じて発生するラジアル荷重、アキシアル荷重及びモーメント荷重が単独で作用したり、或いはこれらの荷重が複合的に作用したりする。
Next, a specific example of the main shaft main body turning portion ball bearing 35 according to the present invention applied to the main shaft turning portion of the main spindle turning device 30 will be described.
The main spindle body swivel ball bearing 35 includes: (a) rotating the main spindle body 33 installed on the turning pedestal 32 of the main spindle turning device 30 with high accuracy (runout accuracy); and (b) reducing the main spindle body 33 to a low level. It is required to smoothly swing and rotate with torque, and (c) to reduce the displacement of the entire main spindle body with respect to the load during workpiece processing (high rigidity). In addition to the moment load due to the weight of the spindle related parts and the inertia load that occurs during turning acceleration / deceleration, the radial bearing, axial load, and moment load that occur according to the processing conditions are independent on the spindle body swivel ball bearing 35. Or these loads may act in combination.

本発明に係る主軸本体旋回部用玉軸受の第1実施形態(請求項1に対応)を図3に示す。同図に示す主軸本体旋回部用玉軸受(単列玉軸受)100は、外輪101の軌道溝101aと内輪102の軌道溝102aとの間に多数の玉103が転動自在に配設された単列の総玉のアンギュラ玉軸受100において、軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)を(B/H)<0.63としている。この理由は、前述した課題を解決する手段の項で図29を参照して詳細に説明したので、ここでの記載は割愛する。 FIG. 3 shows a first embodiment (corresponding to claim 1) of the main ball main body turning part ball bearing according to the present invention. In the spindle main body swivel ball bearing (single row ball bearing) 100 shown in the same figure, a large number of balls 103 are rotatably arranged between a raceway groove 101a of an outer ring 101 and a raceway groove 102a of an inner ring 102. In the single ball angular contact ball bearing 100, the sectional dimension ratio (B / H) between the axial sectional width B and the radial sectional height H (= (outer ring outer diameter D−inner ring inner diameter d) / 2) is set. (B / H) <0.63. The reason for this has been described in detail with reference to FIG. 29 in the section of means for solving the above-described problem, and therefore description thereof is omitted here.

ここで、この実施の形態では、図4に示すように、アンギュラ玉軸受100を2列背面組合せとし、7940A(接触角30°)の2列組合せアンギュラ玉軸受と置き換える場合を例に採る。
7940Aのアンギュラ玉軸受は、内輪内径d:Φ200mm、外輪外径D:Φ280mm、軸方向断面幅(軸受単体幅)Bが38mmであるので、断面寸法比(B/H)=0.95である。したがって、本実施形態のアンギュラ玉軸受100では、断面寸法比(B/H)=0.475(内輪内径及び外輪外径はそのままで、軸方向断面幅(軸受単体幅)Bを19mmとした)としている。これにより、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられるのは勿論のこと、高精度化(高回転精度化)、高剛性化、低トルク化及び低発熱化を図ることができると共に、軸方向寸法で1/2の省スペース化を図ることができる。
Here, in this embodiment, as shown in FIG. 4, a case where the angular ball bearing 100 is replaced with a double row combination angular ball bearing of 7940A (contact angle 30 °) is taken as an example.
Since the 7940A angular contact ball bearing has an inner ring inner diameter d: Φ200 mm, an outer ring outer diameter D: Φ280 mm, and an axial sectional width (bearing single body width) B is 38 mm, the sectional dimension ratio (B / H) = 0.95. . Therefore, in the angular ball bearing 100 of the present embodiment, the cross-sectional dimension ratio (B / H) = 0.475 (the inner ring inner diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing unit width) B is 19 mm). It is said. As a result, radial load, axial load in both directions, and moment load can be received, as well as high accuracy (high rotational accuracy), high rigidity, low torque and low heat generation can be achieved. Space saving of 1/2 in the axial dimension can be achieved.

もちろん、必要に応じて、アンギュラ玉軸受100の断面寸法比(B/H)を0.475未満或いは0.475を超える(但し(B/H)<0.63)ように設定してもかまわない。因みにアンギュラ玉軸受100の接触角は例えば30°としている。
なお、本実施形態では、玉103のピッチ円直径は次式(1)の通りとしているが、軸受1列あたりの玉数を増やしてさらにモーメント剛性を増加させたい場合は、次式(2)を採用して、玉103のピッチ円直径を外輪側にずらして図5に示す構造としてもよいし、必要に応じて次式(3)を採用して逆に玉103のピッチ円直径を内輪102側にずらしてもよい(図示せず)。
玉のピッチ円直径=(内輪内径+外輪外径)/2 …(1)
玉のピッチ円直径>(内輪内径+外輪外径)/2 …(2)
玉のピッチ円直径<(内輪内径+外輪外径)/2 …(3)
また、必要に応じて、図6に示すように、組み合わされる左右の玉軸受の玉ピッチ円直径を同―値とせずともよいし、組み合わされる左右の玉軸受における玉103の径を同一値としなくてもよい。加えて、組み合わせる2個の玉軸受の断面寸法比(B/H)は同一でなく、例えば玉径の小さい方を(B/H)=0.35、玉径の大きい方を(B/H)=0.60としても構わない。さらに、玉103の軸方向ピッチも軸方向中心でなくともよく、シールや保持器の装着有無やモーメントの作用点間距離の確保等のために玉103の軸方向ピッチを軸方向にずらしてもよい。
Of course, the cross sectional dimension ratio (B / H) of the angular ball bearing 100 may be set to be less than 0.475 or more than 0.475 (provided that (B / H) <0.63) as necessary. Absent. Incidentally, the contact angle of the angular ball bearing 100 is, for example, 30 °.
In this embodiment, the pitch circle diameter of the balls 103 is as shown in the following equation (1). However, when it is desired to increase the moment rigidity by increasing the number of balls per row of the bearing, the following equation (2) And the pitch circle diameter of the ball 103 may be shifted to the outer ring side as shown in FIG. 5, or the following formula (3) may be adopted as necessary to change the pitch circle diameter of the ball 103 to the inner ring. You may shift to 102 side (not shown).
Ball pitch circle diameter = (inner ring inner diameter + outer ring outer diameter) / 2 (1)
Ball pitch circle diameter> (inner ring inner diameter + outer ring outer diameter) / 2 (2)
Ball pitch circle diameter <(inner ring inner diameter + outer ring outer diameter) / 2 (3)
Further, as shown in FIG. 6, the ball pitch circle diameters of the combined left and right ball bearings may not be the same value as shown in FIG. 6, and the diameters of the balls 103 in the combined left and right ball bearings are set to the same value. It does not have to be. In addition, the sectional dimension ratio (B / H) of the two ball bearings to be combined is not the same. For example, the smaller ball diameter is (B / H) = 0.35, and the larger ball diameter is (B / H). ) = 0.60. Furthermore, the axial pitch of the balls 103 does not have to be the center in the axial direction, and the axial pitch of the balls 103 may be shifted in the axial direction in order to secure the distance between the action points of the moment and the installation of seals and cages. Good.

図7は、軸方向の一方の端部に環状シール体104を装着したアンギュラ玉軸受100を2列背面組み合わせたものである。
軸方向の一方の端部に環状シール体104を装着したアンギュラ玉軸受100を2列組み合わせて機械等に取付けた後(シール取り付け面を外側に向けて組み合わせる)は、軸受使用中に外部からの異物やごみ等の侵入及び封入グリースの外部への洩れを防止することが可能である。環状シール体104は、この実施の形態では、外輪101のシール溝104aに押し込んで挿入する非接触型(内輪102と非接触)で金属芯金105の補強タイプのゴムシール(例えばニトリルゴム・アクリルゴムやフッ素ゴム)106とし、組み合わせ端面と反対側のみ環状シール体104を装着して省スペース化を図っている。
FIG. 7 shows a combination of two rows of angular ball bearings 100 with an annular seal body 104 mounted on one end in the axial direction.
After the angular ball bearings 100 having the annular seal body 104 mounted on one end in the axial direction are combined in two rows and mounted on a machine or the like (combined with the seal mounting surface facing outward), the external ball bearing 100 is used from outside during use of the bearing. It is possible to prevent entry of foreign matter, dust, etc. and leakage of the enclosed grease to the outside. In this embodiment, the annular seal body 104 is a non-contact type (non-contact with the inner ring 102) inserted into the seal groove 104a of the outer ring 101 and a reinforcing rubber seal (for example, nitrile rubber / acrylic rubber) of the metal core 105. Or fluorine rubber) 106, and an annular seal body 104 is attached only on the side opposite to the combined end face to save space.

図8は、軸方向の両端部に環状シール体104を装着したアンギュラ玉軸受100を示したものである。
軸方向の両端部に環状シール体104を装着したアンギュラ玉軸受100を機械等に取付けた後は、軸受使用中に外部からの異物やごみ等の侵入を防止すると共に、軸受取扱い時や軸やハウジングヘの組込み時においても、異物やごみ等の侵入及び封入グリースの外部への洩れを防止することが可能となる。組合せについては、2列でモーメント剛性を増加させるためには、モーメントの作用点距離が大きくとれる背面組合せ(図4等で接触角がハの字の向きとなっている)を採用するのが望ましい。
FIG. 8 shows an angular ball bearing 100 in which annular seal bodies 104 are mounted at both ends in the axial direction.
After the angular ball bearing 100 having the annular seal body 104 mounted on both ends in the axial direction is attached to a machine or the like, it prevents foreign matter or dust from entering from outside during use of the bearing, Even when it is assembled into the housing, it is possible to prevent intrusion of foreign matter, dust, etc. and leakage of the enclosed grease to the outside. As for the combination, in order to increase the moment stiffness in two rows, it is desirable to adopt a backside combination (the contact angle is in the direction of the letter C in FIG. 4 etc.) that allows the moment action point distance to be increased. .

更に剛性が必要な場合は、図9及び図10に示すように、3列以上の多列組合せとしても構わないし、何らかの理由(例えば、軸受組込み時にミスアライメント発生が避けられず、軸受の内部荷重負荷を極力抑えたい場合等)で、モーメント剛性を小さくしたい場合は、図11に示すように、正面組み合わせ(接触角の向きが逆ハの字)等の配列としてもよい。   If further rigidity is required, as shown in FIG. 9 and FIG. 10, a multi-row combination of three or more rows may be used. For some reason (for example, misalignment is unavoidable when the bearing is installed, the internal load of the bearing is For example, when it is desired to suppress the load as much as possible and to reduce the moment rigidity, as shown in FIG. 11, an arrangement such as a front combination (a contact angle direction is a reverse C) may be used.

更には、モーメント荷重や両方のアキシアル荷重を付加するためには、2列以上の組み合わせ軸受とする必要があるが、荷重条件や方向に応じて使用条件上で可能であれば、単列軸受で使用してもかまわない。
また、本実施形態では、アンギュラ玉軸受としているが、深溝玉軸受等その他の玉軸受としてもよい。環状シール体は、図7及び図8で示した非接触型ではなく、接触型の金属芯金補強タイプのゴムシール(ゴム材質は、例えばニトリルゴム・アクリルゴムやフッ素ゴム)でもよいし、外輪101のシール溝に加締め加工する金属シールド板でもかまわない。また、環状シール体を内輪102側のシール溝に押し込んで挿入したり、又は加締め加工で取付けるようにしたりしてもよい(外輪と接触又は非接触する構造)。
Furthermore, in order to apply a moment load or both axial loads, it is necessary to use two or more rows of combined bearings. You can use it.
In this embodiment, the angular ball bearing is used, but other ball bearings such as a deep groove ball bearing may be used. The annular seal body is not the non-contact type shown in FIGS. 7 and 8, but may be a contact type metal core reinforcing type rubber seal (the rubber material is, for example, nitrile rubber, acrylic rubber, or fluorine rubber), or the outer ring 101. A metal shield plate that is swaged into the seal groove may be used. Further, the annular seal body may be inserted by being pushed into the seal groove on the inner ring 102 side, or may be attached by caulking (a structure in contact with or non-contact with the outer ring).

内輪102、外輪101及び玉103の材料は、標準的な使用条件では軸受鋼(例えば、SUJ2、SUJ3など)とするが、使用環境に応じて、耐食材料であるステンレス系材料(例えば、SUS440C等のマルテンサイト系ステンレス鋼材やSUS304等のオーステナイト系ステンレス鋼材、SUS630等の析出硬化系ステンレス鋼材など)、チタン合金やセラミック系材料(例えば、Si3 4 、SiC、Al2 3 、ZrO2 等)を採用してもよい。 The material of the inner ring 102, the outer ring 101, and the ball 103 is a bearing steel (eg, SUJ2, SUJ3, etc.) under standard usage conditions, but depending on the usage environment, a stainless steel material (eg, SUS440C, etc.) that is a corrosion resistant material. Martensitic stainless steel materials, austenitic stainless steel materials such as SUS304, precipitation hardening stainless steel materials such as SUS630, etc., titanium alloys and ceramic materials (for example, Si 3 N 4 , SiC, Al 2 O 3 , ZrO 2, etc.) ) May be adopted.

潤滑方法も特に限定されず、一般的な使用環境では、鉱油系グリースや合成油系(例えば、リチウム系、ウレア系等)のグリースや油を使用でき、高温環境用途などではフッ素系グリース又はフッ素系の油、或いはフッ素樹脂、MoS2 などの固体潤滑剤を使用することができる。
図12は、軸方向の一方の端部(組合せ側端面と反対側の端部)に環状シール体104を装着し、且つ玉103を転動可能に保持する保持器110を備えたアンギュラ玉軸受100を2列背面組み合わせたものである。
The lubrication method is not particularly limited, and mineral oil-based grease or synthetic oil-based grease (for example, lithium-based or urea-based grease) or oil can be used in a general use environment, and fluorine-based grease or fluorine in high-temperature environment applications. Series lubricants or solid lubricants such as fluororesin and MoS 2 can be used.
FIG. 12 shows an angular contact ball bearing equipped with a retainer 110 that is mounted with an annular seal body 104 at one end in the axial direction (end opposite to the end face on the combination side) and holds the ball 103 in a rollable manner. 100 is a combination of two rows on the back.

保持器110としては、例えば、図13〜図16(a)に示すように、円環部111と、該円環部111の一端部に周方向に略等間隔で複数箇所軸方向に突設された柱部112と、各柱部112間に形成されて玉103を周方向に転動可能に保持するポケット部113とを備えた柔軟性のある冠形保持器を採用している。保持器110の材質は、例えば、ポリアミド、ポリアセタール、ポリフェニレンサルファイド等の合成樹脂材とし、必要に応じて、合成樹脂材にガラス繊維や炭素繊維等の補強材を混入した材料を用いる。   As the retainer 110, for example, as shown in FIGS. 13 to 16A, an annular portion 111 and one end portion of the annular portion 111 project in the axial direction at a plurality of locations at substantially equal intervals in the circumferential direction. A flexible crown-shaped cage including the pillars 112 and pockets 113 formed between the pillars 112 to hold the balls 103 so as to roll in the circumferential direction is employed. The material of the cage 110 is, for example, a synthetic resin material such as polyamide, polyacetal, or polyphenylene sulfide, and a material in which a reinforcing material such as glass fiber or carbon fiber is mixed into the synthetic resin material is used as necessary.

また、この実施の形態では、軸受の負荷容量や剛性を上げるために、隣り合う玉103間の円周方向ピッチは極力小さくし、できる限り玉数を多くしている。さらに、玉103の軸方向ピッチをできるだけ組合せ側端面の反対側にずらし(図12:X1 >X2 )、保持器110の円環部111が軸受組合せ端面側になるように配置しており、モーメント剛性を上げるための作用点間距離を大きくとれるようにしている。 In this embodiment, in order to increase the load capacity and rigidity of the bearing, the circumferential pitch between adjacent balls 103 is made as small as possible, and the number of balls is increased as much as possible. Furthermore, the axial pitch of the balls 103 is shifted as much as possible to the opposite side of the combination side end surface (FIG. 12: X 1 > X 2 ), and the ring portion 111 of the cage 110 is arranged to be on the bearing combination end surface side. In order to increase the moment rigidity, the distance between the operating points can be increased.

なお、総玉軸受の場合も、環状シール体の装着の有無等、必要に応じて同様に玉の軸方向ピッチを幅中央ではなく、軸方向の左右何れかの方向(軸受合わせ端面側、あるいは反対側)にずらしてもかまわない。
保持器付きの軸受は、回転が1方向の連続回転や大きなモーメント荷重が加わる条件等、各玉の接触角の変化による公転速度のばらつきが発生しやすい条件等で、総玉軸受を使用した場合の玉間の接触や玉つまりが生じやすい用途で低トルク、低発熱等の点で、より良い効果を発揮する。
In the case of a full-ball bearing, the axial pitch of the balls is not the center of the width but the axial direction of the ball in the left or right direction (bearing alignment end surface side or It can be shifted to the opposite side.
When a ball bearing with a cage is used as a full ball bearing under conditions where the rotation speed tends to vary due to changes in the contact angle of each ball, such as continuous rotation in one direction or a large moment load. It is more effective in terms of low torque, low heat generation, etc.

さらに、本実施形態では、ポケット部113の入り口部を玉径より若干小さくして引っかかり(パチン代)を設ければ、内輪102及び外輪101に組込む際、玉103の脱落がなく軸受の組立が容易である。
保持器の形状は、本実施形態に限定されず、各玉103間に配置するセパレータタイプの保持器の他、何れの方式でもよい。また、材料も合成樹脂材ではなく、金属材料でもかまわない。
Furthermore, in this embodiment, if the entrance portion of the pocket portion 113 is slightly smaller than the ball diameter and is provided with a catch (pachin allowance), the ball 103 can be assembled without being dropped when the inner ring 102 and the outer ring 101 are assembled. Easy.
The shape of the cage is not limited to this embodiment, and any type other than the separator type cage disposed between the balls 103 may be used. Also, the material may be a metal material instead of a synthetic resin material.

また、図16(b)は図16(a)と基本構造は同様な冠形保持器であるが、円環部111の少なくとも円周方向の一箇所で互いに隣り合うポケット部113間を予め切断して、各切断面間に所定のすき間を持たせた構造としている。
このような構造を採用することで、保持器と内外輪との熱膨張係数差及び保持器の寸法精度や真円度のばらつき(特に、軸受サイズが大きい実施形態のような場合)により、転動体ピッチ円径と保持器のピッチ円径がずれた場合でも、片持ち形状であることによる半径方向の柔軟性と、各切断面間のすき間による円周方向の弾力的変形(円周方向の柔軟性)を兼ね備えることとなるため、玉103とポケット部113間の突っ張り力を緩衝して、保持器の損傷や摩耗を防止すると共に、玉103とポケット部113内面とのすべり接触抵抗によるトルクむらや発熱をより軽減することができる。
16 (b) is a crown-shaped cage having the same basic structure as FIG. 16 (a), but the pocket portions 113 adjacent to each other at least at one place in the circumferential direction of the annular portion 111 are cut in advance. And it is set as the structure which gave the predetermined clearance gap between each cut surface.
By adopting such a structure, the rotation is caused by the difference in the thermal expansion coefficient between the cage and the inner and outer rings and the variation in the dimensional accuracy and roundness of the cage (particularly in the case of an embodiment with a large bearing size). Even if the pitch diameter of the moving body and the pitch diameter of the cage deviate from each other, the flexibility in the radial direction due to the cantilever shape and the elastic deformation in the circumferential direction due to the gaps between the cut surfaces (in the circumferential direction) Flexibility), the tension force between the ball 103 and the pocket portion 113 is buffered to prevent the cage from being damaged or worn, and the torque due to the sliding contact resistance between the ball 103 and the pocket portion 113 inner surface. Unevenness and heat generation can be further reduced.

また、本発明の主軸本体旋回部用玉軸受は、構造上、使用玉径が小さくなるため、保持器の円環部111の半径方向の厚みは厚くできず(図12からも理解できるように、保持器は内輪外径と外輪内径との間の空隙部に適度なすき間を設けて位置決めさせる必要があり、この内輪外径と外輪内径との間の空隙部は玉径と略比例関係にあるので狭い)、更に、幅狭構造により、軸方向の間隙部も狭く、軸方向厚みも薄くせざるを得ない。このため、標準サイズの軸受より保持器の円環部が極めて小さく、真円度等の寸法精度を出しにくくなるので、円環部111を図16(b)のようにした保持器構造は、特に上述した保持器の損傷や摩耗防止効果及びトルクむらや発熱の軽減に関して効果が得られる。 In addition, since the ball bearing for the main spindle body turning part of the present invention has a structurally small ball diameter, the radial thickness of the annular part 111 of the cage cannot be increased (as can be understood from FIG. 12). The cage needs to be positioned by providing an appropriate gap in the gap between the outer diameter of the inner ring and the inner diameter of the outer ring, and the gap between the outer diameter of the inner ring and the inner diameter of the outer ring is approximately proportional to the ball diameter. Furthermore, due to the narrow structure, the gap in the axial direction is also narrow and the thickness in the axial direction must be reduced. For this reason, since the annular portion of the cage is extremely smaller than a standard size bearing and it is difficult to obtain dimensional accuracy such as roundness, the cage structure with the annular portion 111 as shown in FIG. In particular, the effects described above can be obtained with respect to the above-described cage damage and wear prevention effect, and torque unevenness and heat generation reduction.

また、対象とする用途は、旋回回転であり、保持器に遠心力が連続的に加わるわけではない。したがって、これらの用途に本発明を適用する場合、図16(b)のような保持器構造としても、遠心力による悪影響は発生しない。なお、必要に応じて、円環部111の切断箇所は円周方向で2カ所以上としても構わない。この場合、切断箇所は、可能な限り円周方向で等分とすることが望ましい。また、これらの玉軸受を工作機械の主軸旋回装置に適用する場合、剛性を大きくするために、通常、予圧をかけて使用するが、条件に応じて、或いはその他の用途等ですき間を持たせて使用してもよい。   Moreover, the intended use is turning rotation, and the centrifugal force is not continuously applied to the cage. Therefore, when the present invention is applied to these uses, even if the cage structure is as shown in FIG. If necessary, the circular portion 111 may have two or more cut portions in the circumferential direction. In this case, it is desirable that the cut portions are equally divided in the circumferential direction as much as possible. In addition, when these ball bearings are applied to the spindle turning device of a machine tool, they are usually used with a preload to increase the rigidity. However, depending on the conditions or for other purposes, allow clearance. May be used.

さらに、図17を参照して、前述した第1の実施の形態の変形例(請求項2に対応)を説明する。
この変形例では、図1に示す単列の総玉のアンギュラ玉軸受で構成される単列玉軸受100の片側に環状シール体120を設けると共に、多数の玉103を円周方向に位置決めする保持器130を配設している。
Further, a modification (corresponding to claim 2) of the above-described first embodiment will be described with reference to FIG.
In this modification, an annular seal body 120 is provided on one side of a single row ball bearing 100 constituted by a single row full-ball angular ball bearing shown in FIG. 1, and a plurality of balls 103 are positioned in the circumferential direction. A container 130 is provided.

すなわち、図17に示すように、外輪101及び内輪102の例えば右側の片側端面に環状シール体120を収容するシール収容溝121及び122が配設されている。
環状シール体120は逆L字状に形成した金属芯金125で補強した補強タイプのゴムシール(例えばニトリルゴム・アクリルゴムやフッ素ゴム)126で構成されている。ゴムシール126は、外周部に外輪101と嵌合する嵌合部126aが形成され、内周部に内輪102と接触するリップ部126bが形成されている。
That is, as shown in FIG. 17, seal housing grooves 121 and 122 for housing the annular seal body 120 are arranged on one end face on the right side of the outer ring 101 and the inner ring 102, for example.
The annular seal body 120 is composed of a reinforced rubber seal (for example, nitrile rubber / acrylic rubber or fluororubber) 126 reinforced by a metal core 125 formed in an inverted L shape. The rubber seal 126 has a fitting portion 126 a that fits the outer ring 101 on the outer peripheral portion, and a lip portion 126 b that contacts the inner ring 102 on the inner peripheral portion.

外輪101のシール収容溝121は、外輪101の軌道溝101aに連接する傾斜内周面101bの右端側に比較的浅い段部121aと、この段部121aの底部に円周方向に形成された環状シール体120の嵌合部126aを押し込んで挿入する浅い嵌合凹部121bとを有する構成とされている。また、内輪102のシール収容溝122は、内輪の軌道溝102aの左右両端に連接する円筒外周面102bにおける軌道溝102aの右側の右端側に比較的深い段部122aと、この段部122aの底面に円周方向に形成した環状シール体120の内周面に形成されたリップ部126bが接触する浅い収容凹部122bとを有する構成とされている。   The seal housing groove 121 of the outer ring 101 has a relatively shallow step portion 121a on the right end side of the inclined inner peripheral surface 101b connected to the raceway groove 101a of the outer ring 101, and an annular shape formed in the circumferential direction at the bottom portion of the step portion 121a. It is set as the structure which has the shallow fitting recessed part 121b which pushes in and inserts the fitting part 126a of the seal body 120. FIG. Further, the seal housing groove 122 of the inner ring 102 includes a relatively deep step portion 122a on the right end side on the right side of the raceway groove 102a on the cylindrical outer peripheral surface 102b connected to the left and right ends of the raceway groove 102a of the inner ring, and a bottom surface of the step portion 122a. And a shallow housing recess 122b with which the lip 126b formed on the inner peripheral surface of the annular seal body 120 formed in the circumferential direction contacts.

さらに、保持器130は、玉103を収容するポケット部131を挟んで軸方向に延長する一対の円環状部132a及び132bを有し、これら円環状部132a及び132bが内輪102の円筒外周面102bを案内面として装着されている。
そして、環状シール体120側の円環状部132bには内輪102の円筒外周面102bとシール収容溝122との交点に形成される交点エッジ部123と対向する内周面に交点エッジ部123との接触を回避する断面半円形の凹状溝部133が円周方向に形成されている。
Furthermore, the retainer 130 has a pair of annular portions 132 a and 132 b extending in the axial direction across the pocket portion 131 that accommodates the ball 103, and these annular portions 132 a and 132 b are the cylindrical outer peripheral surface 102 b of the inner ring 102. Is installed as a guide surface.
The annular portion 132b on the annular seal body 120 side is connected to the intersection edge portion 123 on the inner circumferential surface facing the intersection edge portion 123 formed at the intersection between the cylindrical outer circumferential surface 102b of the inner ring 102 and the seal housing groove 122. A concave groove 133 having a semicircular cross section that avoids contact is formed in the circumferential direction.

この保持器130は、切削により製作された銅合金などの金属材料、ポリアミド、ポリアセタール、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の合成樹脂材料、さらにはガラス繊維やカーボン繊維等の補強材を添加した強化材入り合成樹脂材料等で製作されている。保持器130を樹脂材料で形成する場合には、切削成形及び射出成形の何れをも適用することができる。   The cage 130 is made of a metal material such as a copper alloy manufactured by cutting, a synthetic resin material such as polyamide, polyacetal, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or glass fiber or carbon fiber. It is made of a synthetic resin material containing a reinforcing material with a reinforcing material added. When the cage 130 is formed of a resin material, either cutting molding or injection molding can be applied.

このように、保持器130の案内面の右端側に形成された交点エッジ部123と対向する内周面に凹状溝部133が円周方向に形成されているので、この交点エッジ部123が保持器130の内周面と接触することを確実に防止することができ、環状シール体120側の円環状部132bの幅を広くして断面積を大きくすることにより強度を確保しながら、保持器130の摩耗を確実に防止することができる。   As described above, since the concave groove 133 is formed in the circumferential direction on the inner peripheral surface facing the intersection edge portion 123 formed on the right end side of the guide surface of the cage 130, the intersection edge portion 123 is formed in the cage. The retainer 130 can be reliably prevented from coming into contact with the inner peripheral surface of the ring 130, while ensuring the strength by increasing the width of the annular portion 132b on the annular seal body 120 side to increase the cross-sectional area. Can be reliably prevented.

また、案内面の一部に設けられた凹状溝部133には、グリース潤滑の場合、グリースを保持する貯留部としての役割を果たすことができ、加えて案内面近傍に位置するため、案内面に適度に潤滑油を供給する効果もあり、潤滑特性の面からも、長期に亘って耐摩耗性を保持することができる。この効果は、後述する図20に示すように、円環状部132a及び132bの双方に凹状溝部133及び134を形成した場合にはより顕著になる。   In addition, in the case of grease lubrication, the concave groove 133 provided in a part of the guide surface can serve as a reservoir for holding grease, and in addition, since it is located in the vicinity of the guide surface, There is also an effect of appropriately supplying the lubricating oil, and the wear resistance can be maintained for a long time from the viewpoint of the lubrication characteristics. This effect becomes more remarkable when concave grooves 133 and 134 are formed in both annular portions 132a and 132b as shown in FIG.

通常、玉軸受100の少なくとも片側に環状シール体120を配設する場合には、外輪101の内径面や内輪102の外径面を保持器130の案内面とするが、この案内面とシール収容溝122とが接する位置に交点エッジ部123が形成されるため、この交点エッジ部123と保持器130の円環状部132bとの接触によるエッジ当りによって保持器130が摩耗することになる。   Normally, when the annular seal body 120 is disposed on at least one side of the ball bearing 100, the inner diameter surface of the outer ring 101 and the outer diameter surface of the inner ring 102 are used as the guide surfaces of the cage 130. Since the intersection edge portion 123 is formed at a position where the groove 122 is in contact with the groove 122, the cage 130 is worn due to the contact between the intersection edge portion 123 and the annular portion 132b of the cage 130.

この保持器130の摩耗を防止するには、従来は、内輪案内としたときに、図18に示すように、保持器130の交点エッジ部123側における円環状部132bの軸方向長さ即ち幅を短くして、円環状部132bと交点エッジ部123とが接触しないようにすることが考えられている。
しかしながら、本実施例のように幅狭の玉軸受100の場合には、円環状部132bの幅が非常に薄くなり、十分な強度を確保することができないという問題がある。
In order to prevent the wear of the cage 130, conventionally, when the inner ring guide is used, as shown in FIG. 18, the axial length or width of the annular portion 132b on the intersection edge portion 123 side of the cage 130 is shown. It is considered that the annular portion 132b and the intersection edge portion 123 do not come into contact with each other.
However, in the case of the narrow ball bearing 100 as in this embodiment, there is a problem that the width of the annular portion 132b becomes very thin and sufficient strength cannot be ensured.

このためには、図19に示すように円環状部132bの幅を長くして強度を確保する必要があるが、この場合には、上述したように、円環状部132bの内周面と交点エッジ部123とが対向することになるため、玉軸受100の回転中に保持器130が案内側軌道輪に対して傾いた場合に、円環状部132bの内周面が交点エッジ部123にエッジ当りすることになり保持器130が摩耗してしまう。   For this purpose, as shown in FIG. 19, it is necessary to increase the width of the annular portion 132b to ensure strength, but in this case, as described above, the intersection with the inner peripheral surface of the annular portion 132b. Since the edge portion 123 is opposed, when the cage 130 is inclined with respect to the guide-side raceway during rotation of the ball bearing 100, the inner peripheral surface of the annular portion 132b is edged to the intersection edge portion 123. As a result, the cage 130 is worn.

特に、シール収容溝121及び122は、切削加工後の熱処理面であることが多いので面粗度が悪く、且つ保持器130と接触する交線部分にはバリが形成されやすいので、摩耗が発生しやすい。
さらに、本発明による玉軸受100は、構造上、軸受の玉ピッチ円径に対して、玉径が非常に小さくなるので、それに対応して、保持器130の円環状部132bの断面も小さくなり、保持器130の半径方向強度(円環状部132bの半径方向強度)も小さくなる。これに加え、本発明による玉軸受100の用途はその使用条件から、軸受回転時に、大きなモーメント荷重が付加され易く、軸受が傾き易い。そのため、各玉103の接触角の変化により、各玉103の公転速度がバラツキ、玉103とポケット部131との間の突っ張り力による保持器130の変形も大きくなるため、さらにエッジ当りし易くなり、接触部の面圧も増加して摩耗が進行し易い。
In particular, since the seal receiving grooves 121 and 122 are often heat-treated surfaces after cutting, the surface roughness is poor, and burrs are likely to be formed at the intersecting portions that come into contact with the cage 130, so that wear occurs. It's easy to do.
Furthermore, since the ball bearing 100 according to the present invention has a structurally very small ball diameter with respect to the ball pitch circle diameter of the bearing, the cross section of the annular portion 132b of the cage 130 is correspondingly reduced. The radial strength of the cage 130 (the radial strength of the annular portion 132b) is also reduced. In addition to this, the application of the ball bearing 100 according to the present invention is likely to cause a large moment load to be applied during rotation of the bearing, and the bearing is liable to tilt due to its usage conditions. Therefore, due to the change in the contact angle of each ball 103, the revolution speed of each ball 103 varies, and the deformation of the cage 130 due to the tension force between the ball 103 and the pocket portion 131 also increases, so it is easier to hit the edge. Further, the surface pressure of the contact portion also increases and wear tends to proceed.

しかしながら、上述したように、本実施形態では、図17に示すように、保持器130の環状シール体120側の円環状部132bの幅を広くして断面積を増加させながらシール収容溝122と案内面となる円筒面102bとの境界部の交点エッジ部123に接触する可能性のある部分に凹状溝133が形成されているので、保持器130が傾いたとしても、交点エッジ部123と凹状溝133との間に十分な間隔を確保することができるので、凹状溝133と交点エッジ部123との接触を確実に防止することができ、保持器130の摩耗を確実に防止することができる。   However, as described above, in this embodiment, as shown in FIG. 17, the width of the annular portion 132b on the annular seal body 120 side of the cage 130 is increased to increase the cross-sectional area, Since the concave groove 133 is formed in a portion that may contact the intersection edge portion 123 at the boundary with the cylindrical surface 102b serving as the guide surface, even if the cage 130 is inclined, the intersection edge portion 123 and the concave shape are formed. Since a sufficient space can be ensured between the groove 133 and the contact between the concave groove 133 and the intersection edge portion 123 can be surely prevented, and wear of the cage 130 can be surely prevented. .

なお、上記変形例では、玉軸受100の右側に環状シール体120を配設した場合について説明したが、これに限定されるものではなく、玉軸受100の左側に環状シール体120を配設するようにしてもよく、さらには両側に環状シール体120を配設するようにしてもよい。
また、上記変形例では、円環状部132bに形成する凹状溝133を断面半円形状に形成した場合について説明したが、これに限定されるものではなく、断面四角形状、断面三角形状、断面楕円状等の交点エッジ部123との接触を回避できる形状であれば任意の形状とすることができる。
In the above modification, the case where the annular seal body 120 is disposed on the right side of the ball bearing 100 has been described. However, the present invention is not limited to this, and the annular seal body 120 is disposed on the left side of the ball bearing 100. Alternatively, the annular seal body 120 may be disposed on both sides.
Moreover, although the case where the concave groove 133 formed in the annular portion 132b is formed in a semicircular cross section has been described in the above modification, the present invention is not limited to this, and is not limited to this. Any shape can be used as long as contact with the intersection edge portion 123 such as a shape can be avoided.

さらに、上記変形例では、環状シール体120が内輪シール収容溝122と接触する場合について説明したが、これに限定されるものではなく、図6に示す内輪シール収容溝122と接触しない非接触ゴムシール型(金属芯金着き)や外輪シール溝に加締める金属シールを適用することができる。
さらにまた、上記変形例では、保持器130の案内面を内輪102の外周面とした場合について説明したが、これに限定されるものではなく、外輪101の内周面を案内面とするようにしてもよい。
Furthermore, although the case where the annular seal body 120 is in contact with the inner ring seal housing groove 122 has been described in the above modification, the present invention is not limited to this, and the non-contact rubber seal that does not contact the inner ring seal housing groove 122 shown in FIG. A metal seal that is caulked in a mold (attached to a metal core) or an outer ring seal groove can be applied.
Furthermore, in the above-described modification, the case where the guide surface of the cage 130 is the outer peripheral surface of the inner ring 102 has been described, but the present invention is not limited to this, and the inner peripheral surface of the outer ring 101 is used as the guide surface. May be.

なおさらに、上記変形例では、保持器130の円環状部132a及び132bのうち環状シール体120側の円環状部132bに凹状溝133を形成した場合について説明したが、これに限定されるものではなく、図20に示すように、環状シール体120とは反対側の円環状部132aにも円環状部132bの凹状溝133と各玉103の中心を通る垂直面を挟む面対称位置に凹状溝部134を設けるようにしてもよい。このように、凹状溝部を左右の円環状部132a及び132bに形成すると、組み付け時に保持器130の凹状溝部の形成位置を確認することなく、任意の方向から組み付けることができ、組み付け作業を向上させることができる。   Furthermore, in the above-described modification, the case where the concave groove 133 is formed in the annular portion 132b on the annular seal body 120 side of the annular portions 132a and 132b of the cage 130 has been described. However, the present invention is not limited to this. As shown in FIG. 20, as shown in FIG. 20, the annular groove 132 a on the opposite side of the annular seal body 120 also has a concave groove portion in a plane-symmetric position sandwiching the concave groove 133 of the annular portion 132 b and the vertical plane passing through the center of each ball 103. 134 may be provided. As described above, when the concave groove portions are formed in the left and right annular portions 132a and 132b, it is possible to assemble from any direction without confirming the formation position of the concave groove portions of the retainer 130 during the assembly, thereby improving the assembling work. be able to.

次に、図21を参照して、本発明の第2の態様(請求項4又は5に対応)の実施の形態の一例である工作機械の主軸本体旋回部用複列玉軸受を説明する。
この複列総玉アンギュラ玉軸受200は、外輪201の複列軌道溝201a,201bと内輪202の複列軌道溝202a,202bとの間に多数の玉203が転動自在に配設され、軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)が(B2/H2)<1.2とされており、玉ピッチ円直径が半径方向断面高さの中央に設定されている。この理由は、前述した課題を解決する手段の項で図30を参照して詳細に説明したので、ここでの記載は割愛する。
Next, a double-row ball bearing for a spindle main body turning portion of a machine tool, which is an example of an embodiment of a second aspect of the present invention (corresponding to claim 4 or 5), will be described with reference to FIG.
In this double row full ball angular contact ball bearing 200, a large number of balls 203 are arranged between the double row raceway grooves 201a and 201b of the outer ring 201 and the double row raceway grooves 202a and 202b of the inner ring 202 so as to roll freely. The cross-sectional dimension ratio (B2 / H2) between the cross-sectional width B2 and the radial cross-sectional height H2 (= (outer ring outer diameter D2—inner ring inner diameter d2) / 2) is (B2 / H2) <1.2. The ball pitch circle diameter is set at the center of the radial section height. The reason for this has been described in detail with reference to FIG. 30 in the section of means for solving the above-described problem, so description thereof is omitted here.

ここで、この実施の形態では、複列玉軸受200を7940A(接触角30°)の2列組合せアンギュラ玉軸受に置き換えた場合を例に採る。
7940Aは、内輪内径d:Φ200mm、外輪外径D:Φ280mm、軸方向断面幅(軸受単体幅):Bが38mmであるので、断面寸法比(B/H)=0.95である。したがって、本実施形態のアンギュラ玉軸受200では、断面寸法比(B2/H2)=0.95(内輪外径及び外輪外径はそのままで、軸方向断面幅(軸受単体幅):B2を38mmとした)としている。これにより、ラジアル荷重と両方向のアキシアル荷重、モーメント荷重を受けられるのは勿論のこと、高精度化(高回転精度化)、高剛性化、低トルク化及び低発熱化を図ることができると共に、軸方向寸法で1/2の省スペース化を図ることができる。
Here, in this embodiment, a case where the double row ball bearing 200 is replaced with a 7940A (contact angle 30 °) double row angular contact ball bearing is taken as an example.
7940A has an inner ring inner diameter d: Φ200 mm, an outer ring outer diameter D: Φ280 mm, an axial sectional width (bearing single body width): B is 38 mm, and thus the sectional dimension ratio (B / H) = 0.95. Therefore, in the angular ball bearing 200 of the present embodiment, the sectional dimension ratio (B2 / H2) = 0.95 (the inner ring outer diameter and the outer ring outer diameter remain the same, and the axial sectional width (bearing unit width): B2 is 38 mm. ) As a result, radial load, axial load in both directions, and moment load can be received, as well as high accuracy (high rotational accuracy), high rigidity, low torque and low heat generation can be achieved. Space saving of 1/2 in the axial dimension can be achieved.

もちろん、必要に応じて、断面寸法比(B2/H2)を0.95未満或いは0.95を超える(但し、(B2/H2)<1.2)ように設定してもよい。因みにアンギュラ玉軸受200の接触角は、例えば30°としている。
なお、図22は、モーメント剛性を上げるため、複列総玉アンギュラ玉軸受200で玉ピッチ円直径を外径側にずらした例であり、図23は、複列総玉アンギュラ玉軸受200で各列の玉径や玉ピッチ円直径を変えた例であり、図24は、軸方向の両端部に環状シール体104を装着した複列総玉アンギュラ玉軸受200で、モーメント剛性を上げるため、玉ピッチ円直径を外径側にずらした例である。
Of course, if necessary, the cross-sectional dimension ratio (B2 / H2) may be set to be less than 0.95 or more than 0.95 (provided that (B2 / H2) <1.2). Incidentally, the contact angle of the angular ball bearing 200 is, for example, 30 °.
FIG. 22 is an example in which the ball pitch circle diameter is shifted to the outer diameter side in the double row full ball angular contact ball bearing 200 in order to increase the moment rigidity, and FIG. FIG. 24 shows an example in which the ball diameter and ball pitch circle diameter of the row are changed. FIG. 24 shows a double row full ball angular contact ball bearing 200 having annular seal bodies 104 mounted on both ends in the axial direction. This is an example in which the pitch circle diameter is shifted to the outer diameter side.

何れの例の場合も、環状シール体、保持器等の構造や装着の有無の他、構造に関する適用例は、上記第1の実施形態で記載した単列玉軸受に準ずる。また、上記第1の態様実施と同様に、予圧及びすきまの何れの条件で使用してもよい。   In any case, in addition to the structure of the annular seal body, the cage, etc. and whether or not it is mounted, the application example related to the structure is the same as the single row ball bearing described in the first embodiment. Moreover, you may use on any conditions of a preload and clearance similarly to the said 1st aspect implementation.

本発明の第1の実施形態(請求項1又は3に対応)である工作機械の主軸旋回装置を示す要部を断面とした側面図である。It is the side view which made the principal part the cross section which shows the spindle turning apparatus of the machine tool which is the 1st Embodiment (corresponding to Claim 1 or 3) of the present invention. 本発明の第1の実施形態(請求項1又は3に対応)である工作機械の主軸旋回装置の変形例を示す要部を断面とした側面図である。It is the side view which made the principal part the cross section which shows the modification of the spindle turning apparatus of the machine tool which is the 1st Embodiment (corresponding to Claim 1 or 3) of this invention. 本発明に係る主軸本体旋回部用玉軸受の第1の実施形態を示す単列アンギュラ玉軸受の断面図である。1 is a cross-sectional view of a single-row angular contact ball bearing showing a first embodiment of a main shaft main body turning portion ball bearing according to the present invention. 図3の単列玉軸受を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 3 with 2 rows. 本発明の第1の態様の他の実施の形態である単列玉軸受を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing which is other embodiment of the 1st aspect of this invention in two rows. 図3の単列玉軸受と他の実施の形態である単列玉軸受とを2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 3 and the single row ball bearing which is other embodiment in two rows. 本発明の第1の態様の他の実施の形態である単列玉軸受を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing which is other embodiment of the 1st aspect of this invention in two rows. 本発明の第1の態様の他の実施の形態である単列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the single row ball bearing which is other embodiment of the 1st aspect of this invention. 図3の単列玉軸受を3列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 3 with 3 rows. 図3の単列玉軸受を4列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 3 with 4 rows. 図3の単列玉軸受を2列正面組合せで組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing of FIG. 3 by 2 row front combination. 本発明の第1の態様の他の実施の形態である単列玉軸受を2列組み合わせた状態を示す要部断面図である。It is principal part sectional drawing which shows the state which combined the single row ball bearing which is other embodiment of the 1st aspect of this invention in two rows. 保持器の径方向に沿う断面図である。It is sectional drawing in alignment with the radial direction of a holder | retainer. 保持器を径方向内側から見た部分斜視図である。It is the fragmentary perspective view which looked at the holder | retainer from radial direction inner side. 図13の矢印B方向から見た図である。It is the figure seen from the arrow B direction of FIG. (a)は図13の矢印A方向から見た図、(b)は(a)の変形例を示す図である。(A) is the figure seen from the arrow A direction of FIG. 13, (b) is a figure which shows the modification of (a). 本発明の第1の態様の変形例(請求項2に対応)の一例である工作機械の主軸本体旋回部用単列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the single row ball bearing for spindle main body turning parts of the machine tool which is an example of the modification (corresponding to Claim 2) of the 1st aspect of this invention. 工作機械の主軸本体旋回部用単列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the single row ball bearing for the spindle main body turning parts of a machine tool. 工作機械の主軸本体旋回部用単列玉軸受の変形例を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the modification of the single row ball bearing for the spindle main body turning parts of a machine tool. 本発明の第1の態様の他の変形例の一例である工作機械の主軸本体旋回部用単列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the spindle main body turning part single row ball bearing of the machine tool which is an example of the other modification of the 1st aspect of this invention. 本発明の第2の態様(請求項4又は5に対応)の実施の形態の一例である工作機械の主軸本体旋回部用複列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the double row ball bearing for main axis | shaft main body turning parts of the machine tool which is an example of embodiment of the 2nd aspect (corresponding to Claim 4 or 5) of this invention. 本発明の第2の態様の他の実施の形態である複列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the double row ball bearing which is other embodiment of the 2nd aspect of this invention. 本発明の第2の態様の他の実施の形態である複列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the double row ball bearing which is other embodiment of the 2nd aspect of this invention. 本発明の第2の態様の他の実施の形態である複列玉軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the double row ball bearing which is other embodiment of the 2nd aspect of this invention. 内輪の半径方向の変形量を説明するための説明図である。It is explanatory drawing for demonstrating the deformation amount of the radial direction of an inner ring | wheel. 内輪の断面2次モーメントの計算方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of the cross-sectional secondary moment of an inner ring | wheel. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner and outer ring | wheels of radial direction. 断面寸法比(B/H)と断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and a cross-sectional secondary moment I. 単列軸受でのモーメント剛性の比較を示すグラフ図である。It is a graph which shows the comparison of the moment rigidity in a single row bearing. 各種軸受での計算モーメント剛性の比較を示すグラフ図である。It is a graph which shows the comparison of the calculated moment rigidity in various bearings. クロスローラ軸受の要部断面図である。It is principal part sectional drawing of a cross-roller bearing. 4点接触玉軸受の要部断面図である。It is principal part sectional drawing of a 4-point contact ball bearing. 従来の2列組合せアンギュラ玉軸受の要部断面図である。It is principal part sectional drawing of the conventional 2 row combination angular contact ball bearing. 従来の極薄肉断面の2列組合せアンギュラ玉軸受の要部断面図である。It is principal part sectional drawing of the conventional 2 row combination angular contact ball bearing of an ultra-thin wall section. 従来の極薄肉断面の2列組合せアンギュラ玉軸受を軸に取付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the conventional 2 rows combination angular contact ball bearing of the ultra-thin wall section to the axis | shaft. 従来の2列組合せ円すいころ軸受の要部断面図である。It is principal part sectional drawing of the conventional 2 row combination tapered roller bearing.

符号の説明Explanation of symbols

30 工作機械の主軸旋回装置
31 基台
32 旋回台座
33 主軸本体
35 主軸本体旋回部用玉軸受
39 ウォームホイール
48 ウォーム
61 ステータ
62 ロータ
63 ダイレクトモータ
100 単列玉軸受
101 外輪
101a 外輪軌道溝
102 内輪
102a 内輪軌道溝
103 玉
120 環状シール体
121,122 シール収容溝
123 交点エッジ部
130 保持器
131 ポケット部
132a,132b 円環状部
133 凹状溝部
200 複列玉軸受
201 外輪
201a,201b 外輪軌道溝
202 内輪
202a,202b 内輪軌道溝
203 玉
30 Spindle 31 for machine tool 31 Base 32 Swivel base 33 Spindle main body 35 Spindle body ball bearing 39 Spindle body worm wheel 48 Worm 61 Stator 62 Rotor 63 Direct motor 100 Single row ball bearing 101 Outer ring 101a Outer ring raceway groove 102 Inner ring 102a Inner ring raceway groove 103 Ball 120 Annular seal body 121, 122 Seal receiving groove 123 Intersection edge part 130 Retainer 131 Pocket part 132a, 132b Annular part 133 Concave groove part 200 Double row ball bearing 201 Outer ring 201a, 201b Outer ring raceway groove 202 Inner ring 202a 202b Inner ring raceway groove 203 ball

Claims (3)

基台と、該基台に対して旋回自在とされ工具を回転させる主軸が取り付けられた主軸本体と、該主軸本体を駆動させる駆動源を有し、前記主軸の回転軸と前記主軸本体の旋回軸とが異なる工作機械において、前記基台と前記主軸本体との間に設けられ、外輪の軌道溝と内輪の軌道溝との間に多数の玉が転動自在に配設された工作機械の主軸本体旋回部用玉軸受であって、
前記玉軸受は少なくとも2個の単列の玉軸受を有し、
該単列の玉軸受の軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)が(B/H)<0.63であり、
前記玉軸受は、前記基台に対して前記外輪及び前記内輪の何れか一方が締め付け固定され、前記主軸本体に対し前記外輪及び前記内輪の他方が締め付け固定されることで予圧が付与されている
ことを特徴とする工作機械の主軸本体旋回部用玉軸受。
A base, a spindle body spindle is mounted for rotating the tool is pivotable relative to the base platform, have a drive source for driving the main shaft body, said spindle body and the rotation axis of the spindle In a machine tool having a different rotation axis, a machine tool is provided between the base and the main spindle body, and a large number of balls are rotatably disposed between the outer raceway groove and the inner raceway groove. A ball bearing for the main spindle body swivel part,
The ball bearing has at least two single row ball bearings;
The cross-sectional dimension ratio (B / H) between the axial cross-sectional width B and the radial cross-sectional height H of the single row ball bearing is (B / H) <0.63,
In the ball bearing, either one of the outer ring and the inner ring is fastened and fixed to the base, and the other of the outer ring and the inner ring is fastened and fixed to the main spindle body, so that a preload is applied. A ball bearing for a turning part of a main spindle body of a machine tool.
基台と、該基台に対して旋回自在とされ工具を回転させる主軸が取り付けられた主軸本体と、該主軸本体を駆動させる駆動源を有し、前記主軸の回転軸と前記主軸本体の旋回軸とが異なる工作機械において、前記基台と前記主軸本体との間に設けられ、外輪の軌道溝と内輪の軌道溝との間に多数の玉が転動自在に配設された工作機械の主軸本体旋回部用玉軸受であって、
前記玉軸受は複列の玉軸受を有し、
該複列の玉軸受の軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B2/H2)が(B2/H2)<1.2であり、
前記玉軸受は、前記基台に対して前記外輪及び前記内輪の何れか一方が締め付け固定され、前記主軸本体に対し前記外輪及び前記内輪の他方が締め付け固定されることで予圧が付与されている
ことを特徴とする工作機械の主軸本体旋回部用玉軸受。
A base, a spindle body spindle is mounted for rotating the tool is pivotable relative to the base platform, have a drive source for driving the main shaft body, said spindle body and the rotation axis of the spindle In a machine tool having a different rotation axis, a machine tool is provided between the base and the main spindle body, and a large number of balls are rotatably disposed between the outer raceway groove and the inner raceway groove. A ball bearing for the main spindle body swivel part,
The ball bearing has a double row ball bearing,
Is an axial cross-sectional width B 2 and the radial section sectional size ratio between the height H 2 (B2 / H2) is (B2 / H2) <1.2 for the ball bearing of the plurality rows,
In the ball bearing, either one of the outer ring and the inner ring is fastened and fixed to the base, and the other of the outer ring and the inner ring is fastened and fixed to the main spindle body, so that a preload is applied. A ball bearing for a turning part of a main spindle body of a machine tool.
前記玉軸受の軸線方向に関し、前記主軸本体と前記駆動源が当該玉軸受の両側に位置するように前記玉軸受が配置されていることを特徴とする請求項1又は2に記載の工作機械の主軸本体旋回部用玉軸受。   3. The machine tool according to claim 1, wherein the ball bearing is disposed so that the main spindle body and the drive source are located on both sides of the ball bearing with respect to an axial direction of the ball bearing. Ball bearings for the main spindle body turning part.
JP2006337342A 2006-01-13 2006-12-14 Ball bearing for machine tool main spindle Expired - Fee Related JP5092383B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006337342A JP5092383B2 (en) 2006-01-13 2006-12-14 Ball bearing for machine tool main spindle
KR1020077030965A KR101057311B1 (en) 2006-01-13 2007-01-12 Ball bearing for spindle turning of machine tool and spindle spindle of machine tool using same
US11/996,510 US20090131235A1 (en) 2006-01-13 2007-01-12 Ball Bearing for Spindle Turning Device of Machine Tool and Spindle Turning Device of Machine Tool Using the Same
CN2007800008266A CN101341347B (en) 2006-01-13 2007-01-12 Ball bearing for spindle pivot part of machine tool and spindle pivot device of machine tool using the same
PCT/JP2007/050343 WO2007080980A1 (en) 2006-01-13 2007-01-12 Ball bearing for spindle pivot section of machine tool, and spindle pivot device of machine tool, using the same
EP07706685.0A EP1972801B1 (en) 2006-01-13 2007-01-12 Ball bearing for spindle pivot section of machine tool, and spindle pivot device of machine tool, using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006006378 2006-01-13
JP2006006378 2006-01-13
JP2006122344 2006-04-26
JP2006122344 2006-04-26
JP2006337342A JP5092383B2 (en) 2006-01-13 2006-12-14 Ball bearing for machine tool main spindle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012147485A Division JP5397508B2 (en) 2006-01-13 2012-06-29 Ball bearing for machine tool main spindle

Publications (2)

Publication Number Publication Date
JP2007315588A JP2007315588A (en) 2007-12-06
JP5092383B2 true JP5092383B2 (en) 2012-12-05

Family

ID=38849623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337342A Expired - Fee Related JP5092383B2 (en) 2006-01-13 2006-12-14 Ball bearing for machine tool main spindle

Country Status (1)

Country Link
JP (1) JP5092383B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453764B2 (en) * 2008-10-28 2014-03-26 日本精工株式会社 Bearing device and assembly method thereof
JP5291575B2 (en) * 2009-08-26 2013-09-18 住友重機械工業株式会社 Bearing structure and bearing
JP2011106600A (en) * 2009-11-19 2011-06-02 Ntn Corp Bearing device for wheel
EP2777872B1 (en) 2013-03-12 2015-08-05 Maschinenfabrik Berthold Hermle AG Vertical processing centre in gantry form with a integrated tool magazine storage unit integrated into the machine
JP7045612B2 (en) * 2018-02-28 2022-04-01 パナソニックIpマネジメント株式会社 Flight equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177792A (en) * 1995-12-21 1997-07-11 Ntn Corp Cage for ball bearing and ball bearing
JP2001193744A (en) * 2000-01-05 2001-07-17 Nsk Ltd Rotation supporting device for spindle in machine tool
JP2002039171A (en) * 2000-07-26 2002-02-06 Nsk Ltd Bearing device
JP2004092687A (en) * 2002-08-29 2004-03-25 Nsk Ltd Double row angular ball bearing
JP2004190763A (en) * 2002-12-10 2004-07-08 Nsk Ltd Rotary supporting device for pulley
JP2005239258A (en) * 2004-02-27 2005-09-08 Nsk Ltd Cap attaching jig and ball bearing used for the jig

Also Published As

Publication number Publication date
JP2007315588A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
KR101057311B1 (en) Ball bearing for spindle turning of machine tool and spindle spindle of machine tool using same
JP6728585B2 (en) Angular contact ball bearing
JP5092383B2 (en) Ball bearing for machine tool main spindle
JP3207410U (en) Rolling bearing
JP2006329420A (en) Bearing device for robot arm joint part, and ball bearing
JP4715961B2 (en) Rotary table device for machine tools
JP5233199B2 (en) Angular contact ball bearings
JP2011153683A (en) Angular ball bearing
JP2006105384A (en) Double row ball bearing
JP5397508B2 (en) Ball bearing for machine tool main spindle
JP4743176B2 (en) Combination ball bearings and double row ball bearings
JP2003042160A (en) Angular contact ball bearing and main bearing
JP2006153094A (en) Ball bearing and rotary table device for machine tool using ball bearing
JP3210224U (en) Angular contact ball bearing cage, angular contact ball bearing and bearing device
JP5034962B2 (en) Rolling bearing
JP3965252B2 (en) Bearing device and spindle device
WO2018225720A1 (en) Holder for rolling bearing, and rolling bearing
JP4322650B2 (en) Cylindrical roller bearing
JP3200125U (en) Angular contact ball bearings
JP2004314203A (en) Machine tool table device and rolling bearing for machine tool table device
JP2005061434A (en) Multi-point contacting ball bearing
JP2006097872A (en) Bearing unit
JP3210223U (en) Angular contact ball bearing cage, angular contact ball bearing and bearing device
JP2006211863A (en) Direct drive motor and bearing therefor
WO2008023787A1 (en) Angular ball bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees