JP3207410U - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP3207410U
JP3207410U JP2016004186U JP2016004186U JP3207410U JP 3207410 U JP3207410 U JP 3207410U JP 2016004186 U JP2016004186 U JP 2016004186U JP 2016004186 U JP2016004186 U JP 2016004186U JP 3207410 U JP3207410 U JP 3207410U
Authority
JP
Japan
Prior art keywords
bearing
ball
cage
rolling bearing
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016004186U
Other languages
Japanese (ja)
Inventor
美昭 勝野
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Application granted granted Critical
Publication of JP3207410U publication Critical patent/JP3207410U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • F16C33/412Massive or moulded comb cages, e.g. snap ball cages
    • F16C33/414Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages
    • F16C33/416Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages made from plastic, e.g. injection moulded comb cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/56Systems consisting of a plurality of bearings with rolling friction in which the rolling bodies of one bearing differ in diameter from those of another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap

Abstract

【課題】転動体の円周方向の不等配を抑制して、回転軸の振れ回りを小さく抑えることができる転がり軸受を提供する。【解決手段】転がり軸受は、外周面に内輪軌道面を有する内輪と、内周面に外輪軌道面を有する外輪と、内輪軌道面と外輪軌道面との間に転動自在に設けられた複数の転動体13と、円周方向の少なくとも一カ所に切断部14が形成され、複数の転動体13を円周方向に略等間隔で保持する合成樹脂製の保持器15と、を備える。そして、切断部の幅寸法をΔC、切断部における一方の柱部の幅寸法をS1、もう一方の柱部の幅寸法をS2、保持器の切断されていない柱部の幅寸法をS3とした場合、S3=S1+S2+ΔCの関係を満足する。【選択図】図5Provided is a rolling bearing capable of suppressing unevenness in the circumferential direction of rolling elements and suppressing the whirling of a rotating shaft to be small. A rolling bearing includes an inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, and a plurality of rolling bearings provided between the inner ring raceway surface and the outer ring raceway surface. And a retainer 15 made of a synthetic resin that holds a plurality of rolling elements 13 at substantially equal intervals in the circumferential direction. The width dimension of the cut part is ΔC, the width dimension of one pillar part in the cut part is S1, the width dimension of the other pillar part is S2, and the width dimension of the uncut pillar part of the cage is S3. In this case, the relationship of S3 = S1 + S2 + ΔC is satisfied. [Selection] Figure 5

Description

本考案は、例えば、産業機械、ロボットの関節部や旋回機構部、工作機械の主軸、回転テーブルや主軸旋回機構部、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置等の回転支持部に用いられる転がり軸受に関する。   The present invention includes, for example, industrial machinery, robot joints and turning mechanisms, machine tool spindles, rotary tables and spindle turning mechanisms, medical equipment, semiconductor / liquid crystal manufacturing devices, optical and optoelectronic devices, and the like. The present invention relates to a rolling bearing used in the above.

従来の転がり軸受として、図6に示すように、円周方向の一ヶ所に切断部(ΔL)を設けた合成樹脂製の冠形保持器が提案されている(例えば、特許文献1及び2参照)。特許文献1に記載の転がり軸受では、切断部を設けることで、内外輪及び玉と保持器との熱膨張係数の違い等により玉とポケットとの間に発生する突っ張り力を緩和して保持器の磨耗等を防止することが記載されている。   As a conventional rolling bearing, as shown in FIG. 6, a synthetic resin crown-shaped cage having a cut portion (ΔL) at one place in the circumferential direction has been proposed (for example, see Patent Documents 1 and 2). ). In the rolling bearing described in Patent Document 1, by providing a cutting portion, the tension force generated between the ball and the pocket due to the difference in thermal expansion coefficient between the inner and outer rings and the ball and the cage is alleviated. It is described that the wear and the like are prevented.

また、特許文献2に記載の転がり軸受では、円周方向の一ヶ所に切断部が設けられるとともに、切断部の円周方向幅を温度変化と吸水率変化による保持器の伸長分とし、軌道輪との案内すきまを確保することが記載されている。   Further, in the rolling bearing described in Patent Document 2, a cutting part is provided at one place in the circumferential direction, and the circumferential width of the cutting part is set as an extension of the cage due to a change in temperature and a change in water absorption rate. It is described to secure a guide clearance.

特開2003−336640号公報JP 2003-336640 A 特開2006−226496号公報JP 2006-226696 A

ところで、特許文献1に記載の転がり軸受では、玉案内方式を採用して、玉とポケットとの間の半径方向すきまは小さく設定されているので、軸受の回転による昇温で、軸受各部品(例えば、内輪、外輪及び玉が軸受鋼、保持器がポリアミド樹脂などの合成樹脂で形成されている場合)間の線膨張係数の差により保持器が相対的に膨張する際に、半径方向には膨張しにくく、相対膨張分は円周方向に向かう。   By the way, in the rolling bearing described in Patent Document 1, the ball guide method is adopted, and the radial clearance between the ball and the pocket is set to be small. (For example, when the inner ring, outer ring and ball are made of bearing steel, and the cage is made of synthetic resin such as polyamide resin) It is difficult to expand, and the relative expansion is directed in the circumferential direction.

その結果、保持器の切断部の円周方向すきまが小さくなり、使用環境温度も含めて軸受の昇温値が高い場合、保持器の切断部の円周方向の端面同士が突っ張り干渉して、該干渉部での発熱や磨耗、損傷が生じるという問題がある。また、保持器がポリアミド樹脂などの一般的な汎用合成樹脂で形成されている場合は、空気中の水分を吸収して膨張することもあり、吸水による膨張量が加わることも問題である。さらに図6に示すように、切断部においては玉間の円周方向の距離が、(ΔL+2・ΔS)となって他の玉間の距離(ΔS:柱部円周方向幅寸法)より大きくなってしまい、結果として玉の円周方向の不等配が発生する。   As a result, the clearance in the circumferential direction of the cutting part of the cage is reduced, and if the temperature rise value of the bearing is high, including the operating environment temperature, the circumferential end surfaces of the cutting part of the cage are stretched and interfered, There is a problem that heat generation, wear, and damage occur in the interference portion. In addition, when the cage is formed of a general general-purpose synthetic resin such as a polyamide resin, the cage may expand by absorbing moisture in the air, and the amount of expansion due to water absorption is also a problem. Further, as shown in FIG. 6, the circumferential distance between the balls becomes (ΔL + 2 · ΔS) at the cut portion, which is larger than the distance between the other balls (ΔS: column portion circumferential width dimension). As a result, uneven distribution in the circumferential direction of the balls occurs.

また、特許文献2に記載の転がり軸受では、切断部の円周方向幅を温度変化と吸水率変化による保持器の伸長分(温度膨張+吸水膨張)としているが、切断部の円周方向幅が広くなりすぎてしまい、温度上昇が小さい条件や乾燥した雰囲気条件では、切断部の円周方向幅の変化が小さく、切断部を挟んだ部分での玉間の円周方向の距離が他の玉間の円周方向距離より大きくなり、玉の円周方向の不等配が発生する。   Further, in the rolling bearing described in Patent Document 2, the circumferential width of the cut portion is defined as the extension of the cage (temperature expansion + water absorption expansion) due to temperature change and water absorption change. However, under conditions where the temperature rise is small or the atmosphere is dry, the change in the circumferential width of the cut part is small, and the circumferential distance between the balls at the part across the cut part is It becomes larger than the circumferential distance between the balls, and uneven distribution in the circumferential direction of the balls occurs.

玉の円周方向の不等配が生じると、軸受の径方向の剛性が円周位相で不均一(玉の円周方向の不等配部の位相で剛性低下)になるため、軸受回転時に玉の公転周期に対応した振れ回り、いわゆるNRRO値(内輪2回転に約1回の周期)が増加する。特に、回転精度が要求される工作機械の主軸、回転テーブル及び主軸の旋回機構部などの回転支持部に本軸受を使用した場合、回転軸の振れ回りが大きくなり(NRRO値が大)、フライス加工などでは加工面に縞模様が発生したり、旋盤加工などでは加工面の引き目不良や真円度悪化などが発生したりするという問題がある。   If the balls are not evenly distributed in the circumferential direction, the radial rigidity of the bearing will be non-uniform in the circumferential phase (decrease in rigidity due to the phase of the unevenly distributed portion of the ball in the circumferential direction). A swing corresponding to the revolution period of the ball, a so-called NRRO value (a cycle of about once per two rotations of the inner ring) increases. In particular, when this bearing is used in a rotation support part such as a spindle of a machine tool, a rotary table, and a turning mechanism part of the spindle that require rotational accuracy, the rotation of the rotary shaft becomes large (NRRO value is large), and milling There is a problem that a striped pattern is generated on the processed surface in machining, and a stitching defect on the processed surface or a deterioration in roundness occurs in lathe processing.

本考案は、このような不都合を解消するためになされたものであり、その目的は、転動体の円周方向の不等配を抑制して、回転軸の振れ回りを小さく抑えることができる転がり軸受を提供することにある。   The present invention has been made in order to eliminate such inconveniences, and the purpose of the present invention is to reduce rolling around the rotating shaft by suppressing the uneven distribution of the rolling elements in the circumferential direction. It is to provide a bearing.

上記目的を達成するために、請求項1に係る転がり軸受は、外周面に内輪軌道面を有する内輪と、内周面に外輪軌道面を有する外輪と、前記内輪軌道面と前記外輪軌道面との間に転動自在に設けられた複数の転動体と、円周方向の少なくとも一カ所に切断部が形成され、前記複数の転動体を円周方向に等間隔で保持する合成樹脂製の保持器と、を備えた転がり軸受において、
前記切断部の円周方向幅寸法をΔC、前記切断部における一方の柱部の円周方向幅寸法をS、前記切断部におけるもう一方の柱部の円周方向幅寸法をS、前記保持器の切断されていない柱部の円周方向幅寸法をSとした場合、S=S+S+ΔCの関係を満たし、且つ前記ΔCは零より大きいことを特徴としている。
In order to achieve the above object, a rolling bearing according to claim 1 includes an inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, the inner ring raceway surface, and the outer ring raceway surface. And a plurality of rolling elements provided so as to be freely rollable between them, and a cut portion formed in at least one place in the circumferential direction, and holding the plurality of rolling elements at equal intervals in the circumferential direction A rolling bearing provided with
The circumferential width dimension of the cut part is ΔC, the circumferential width dimension of one column part in the cut part is S 1 , and the circumferential width dimension of the other column part in the cut part is S 2 , If the circumferential width of the column portion which is not cut in the cage was S 3, satisfy the relationship of S 3 = S 1 + S 2 + ΔC, and the [Delta] C is characterized by greater than zero.

本考案の転がり軸受によれば、転動体の円周方向の不等配を抑制して、回転軸の振れ回りを小さく抑えることができ、安定した回転性能を得ることができる。   According to the rolling bearing of the present invention, it is possible to suppress the uneven distribution in the circumferential direction of the rolling elements, to suppress the whirling of the rotating shaft, and to obtain stable rotational performance.

本考案の第1実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 1st Embodiment of this invention. 図1に示す転がり軸受に組み込まれた冠形保持器の断面図である。FIG. 2 is a cross-sectional view of a crown-shaped cage incorporated in the rolling bearing shown in FIG. 1. 図1に示す転がり軸受に組み込まれた冠形保持器の部分的斜視図である。FIG. 2 is a partial perspective view of a crown-shaped cage incorporated in the rolling bearing shown in FIG. 1. 図2の矢印B方向から見た一部を破断した図である。It is the figure which fractured | ruptured the part seen from the arrow B direction of FIG. 図1に示す転がり軸受に組み込まれた冠形保持器と転動体の構成を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the structure of the crown-shaped holder | retainer integrated in the rolling bearing shown in FIG. 1, and a rolling element. 従来の保持器を軸方向から見た要部断面図である。It is principal part sectional drawing which looked at the conventional cage | basket from the axial direction. 内輪の半径方向の変形量を説明するための説明図である。It is explanatory drawing for demonstrating the deformation amount of the radial direction of an inner ring | wheel. 内輪の断面2次モーメントの計算方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of the cross-sectional secondary moment of an inner ring | wheel. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner / outer ring in the radial direction. 断面寸法比(B/H)と内外輪の断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the cross-sectional secondary moment I of an inner-outer ring. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner and outer ring | wheels of a radial direction. 断面寸法比(B/H)と内外輪の断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the cross-sectional secondary moment I of an inner-outer ring. 本考案の第2実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 2nd Embodiment of this invention. 本考案の第3実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 3rd Embodiment of this invention. 本考案の第4実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 4th Embodiment of this invention. 本考案の第5実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 5th Embodiment of this invention. 本考案の第6実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 6th Embodiment of this invention. 本考案の第7実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 7th Embodiment of this invention. 本考案の第8実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 8th Embodiment of this invention. 本考案の第9実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 9th Embodiment of this invention. 本考案の第10実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 10th Embodiment of this invention. 本考案の第11実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 11th Embodiment of this invention. 本考案の第12実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 12th Embodiment of this invention.

以下、本考案の各実施の形態を図を参照して説明する。
(第1実施形態)
図1は本考案の第1実施形態を示す単列玉軸受を2列組み合わせた状態を示す要部断面図、図2は玉案内保持器を示す断面図、図3は保持器を径方向内側から見た部分斜視図、図4は図2の矢印B方向から見た矢視図、図5は図1に示す転がり軸受に組み込まれた冠形保持器と転動体の構成を説明するための要部断面図である。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional view of an essential part showing a state in which two single-row ball bearings according to the first embodiment of the present invention are combined, FIG. 2 is a cross-sectional view showing a ball guide cage, and FIG. FIG. 4 is a partial perspective view seen from the direction of arrow B, FIG. 4 is an arrow view seen from the direction of arrow B in FIG. 2, and FIG. 5 is a diagram for explaining the configuration of the crown-shaped cage and rolling elements incorporated in the rolling bearing shown in FIG. It is principal part sectional drawing.

図1に示すように、本実施形態の転がり軸受10(以下、幅狭玉軸受10とも称す)は、アンギュラ玉軸受とされており、2列のアンギュラ玉軸受を背面組合せ(接触角がハの字となる配列)としている。各転がり軸受10は、外周面に内輪軌道面11aを有する内輪11と、内周面に外輪軌道面12aを有する外輪12と、内輪軌道面11aと外輪軌道面12aとの間に転動自在に設けられた複数の玉(転動体)13と、円周方向の一カ所に切断部14(図5参照)が形成され、複数の玉13を円周方向に略等間隔で保持する合成樹脂製の冠形保持器15と、を備える。また、2列の幅狭玉軸受10の各外輪12の軸方向外側の端部内周面には、それぞれ非接触型のシール部材16が装着されている。なお、シール部材16は、接触型タイプでもよく、また、材料、形状は特に限定されない。   As shown in FIG. 1, a rolling bearing 10 (hereinafter also referred to as a narrow ball bearing 10) of this embodiment is an angular ball bearing, and two rows of angular ball bearings are combined in the back (contact angle is C). Array). Each rolling bearing 10 is freely rollable between an inner ring 11 having an inner ring raceway surface 11a on an outer peripheral surface, an outer ring 12 having an outer ring raceway surface 12a on an inner peripheral surface, and an inner ring raceway surface 11a and an outer ring raceway surface 12a. A plurality of balls (rolling elements) 13 provided, and a cutting portion 14 (see FIG. 5) is formed at one place in the circumferential direction, and the plurality of balls 13 is made of a synthetic resin that holds the balls 13 in the circumferential direction at substantially equal intervals. The crown-shaped cage 15 is provided. Further, non-contact type seal members 16 are mounted on the inner peripheral surfaces of the outer ends of the outer rings 12 of the two rows of narrow ball bearings 10 in the axial direction. The seal member 16 may be a contact type, and the material and shape are not particularly limited.

ここで、本実施形態では、軸方向の省スペース化を図るため、転がり軸受10の軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)をB/H<0.63としている。   In this embodiment, in order to save space in the axial direction, the axial sectional width B and the radial sectional height H of the rolling bearing 10 (= (outer ring outer diameter D−inner ring inner diameter d) / 2) and The cross-sectional dimension ratio (B / H) is set to B / H <0.63.

なお、B/Hは、理論的にはB/H>0であるが、現実的には、使用する玉径や保持器、シール部材の設計、選定等を加味すると、B/H>0.10、好ましくはB/H>0.20、より好ましくはB/H>0.30とする。   B / H is theoretically B / H> 0, but in reality, considering the design, selection, etc. of the ball diameter, cage, and seal member to be used, B / H> 0. 10, preferably B / H> 0.20, more preferably B / H> 0.30.

また、国際標準化機構(ISO)で規定されている標準寸法玉軸受の場合、B/Hが1.0前後のものが多くを占める。したがって、B/H<0.5に設定すれば、標準玉軸受約1列分の幅方向スペースで2列分の幅狭玉軸受10を配設させることができ、省スペース化が図れる。   Further, in the case of standard size ball bearings defined by the International Organization for Standardization (ISO), those with a B / H of around 1.0 account for the majority. Therefore, if B / H <0.5 is set, the narrow ball bearings 10 for two rows can be disposed in the width direction space for about one row of standard ball bearings, and space saving can be achieved.

また、アンギュラ玉軸受の場合、1列では一方向の軸方向荷重しか受けられず、また、モーメント荷重を受けることはできないが、2列以上組合わせることで、両方向の軸方向荷重やモーメント荷重の負荷が可能となる。また、予圧を付加することもできるので、省スペース化と共にラジアル剛性やアキシャル剛性及びモーメント剛性なども大きくすることができる。   In the case of angular contact ball bearings, only one axial load can be received in one row and moment load cannot be received. However, by combining two or more rows, the axial load and moment load in both directions can be reduced. Load becomes possible. In addition, since preload can be applied, it is possible to save space and increase radial rigidity, axial rigidity, moment rigidity, and the like.

また、B/H<0.25に設定すれば、さらなる省スペース化と共に、標準玉軸受約1列分の幅方向スペースで4列の幅狭玉軸受を配設させることができ、さらに剛性の向上が可能である。   Moreover, if B / H <0.25, it is possible to arrange four rows of narrow ball bearings in a space in the width direction of about one row of standard ball bearings with further space saving, and further increase rigidity. Improvement is possible.

ここで、図9及び図10は、それぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ38.1mm、軸受外径:φ47.625mm、軸受幅:4.762mm、前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合、即ち、(B/H)の値を変化させた場合の内外輪リングの半径方向の変形特性(図7参照:内輪を例示)及び半径方向の断面2次モーメントI(図8参照:I=bh/12で計算)を比較した計算結果を示している。 Here, FIG. 9 and FIG. 10 show the standard thin ball bearings (bearing inner diameter: φ38.1 mm, bearing outer diameter: φ47.625 mm, bearing width: 4.762 mm, cross-sectional dimension ratio ( B / H) = 1) as a reference, the radius of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width, that is, when the value of (B / H) is changed. direction of deformation characteristics (see FIG. 7: illustrates the inner ring) and radial cross-sectional secondary moment I: shows the calculation result of comparison (see FIG. 8 calculated as I = bh 3/12).

また、図11及び図12は、それぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ63.5mm、軸受外径:φ76.2mm、軸受幅:6.35mm、前記断面寸法比=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合、即ち、(B/H)の値を変化させた場合の内外輪リングの半径方向の変形特性及び半径方向の断面2次モーメントIを比較した計算結果を示している。   FIGS. 11 and 12 show the standard thin ball bearings (bearing inner diameter: φ63.5 mm, bearing outer diameter: φ76.2 mm, bearing width: 6.35 mm, cross-sectional dimension ratio = 1). ) And the radial deformation characteristics and radius of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width, that is, when the value of (B / H) is changed. The calculation result which compared the cross-sectional secondary moment I of the direction is shown.

いずれの軸受の場合も、(B/H)=0.63未満で、剛性の増加率勾配の変化が顕著に出ている。すなわち、(B/H)=0.63未満で、断面2次モーメントIの増加は顕著になり、半径方向の内外輪リングの変形量の減少は飽和状態となる。これにより、従来の極薄肉玉軸受で問題となる内外輪製作時の旋盤加工や研磨加工時の加工力による軸受変形を防止することができ、真円度や偏肉等の軸受精度を向上させることができる。   In any of the bearings, (B / H) = 0.63 or less, and the change in the rigidity increase rate gradient is noticeable. That is, when (B / H) = 0.63, the increase in the secondary moment I of the cross section becomes significant, and the decrease in the deformation amount of the inner and outer ring in the radial direction becomes saturated. This can prevent bearing deformation due to lathe processing and grinding processing forces when manufacturing inner and outer rings, which is a problem with conventional ultra-thin ball bearings, and improves bearing accuracy such as roundness and uneven thickness. be able to.

また、(B/H)=0.63未満とすることで、軸やハウジングに軸受を組み込んだ場合(特に、軸やハウジングとすきま嵌合で組み込んだ場合)、外輪を端面押え、内輪を軸受ナット等でそれぞれ固定した場合の内外輪の変形(特に真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転精度不良、あるいは、発熱増大、磨耗や焼付き等の不具合を防止することができる。   Also, by setting (B / H) to less than 0.63, when the bearing is incorporated in the shaft or housing (especially when it is assembled by clearance fitting with the shaft or housing), the outer ring is pressed against the end face, and the inner ring is the bearing. It is possible to suppress deformation of the inner and outer rings (especially worsening of roundness) when they are fixed with nuts, etc., as well as torque failure and rotation accuracy caused by deformation, or problems such as increased heat generation, wear and seizure. Can be prevented.

さらに、(B/H)=0.63未満とすることで、軸受の幅寸法が従来の標準単列玉軸受の約半分となるので、玉径も従来の玉軸受の半分程度となるが、逆に1列あたりの玉数が少なくとも2倍以上に増加し、軸受剛性は従来の玉軸受に対して増加する。   Furthermore, by setting (B / H) to less than 0.63, the width of the bearing is about half that of a conventional standard single-row ball bearing, so the ball diameter is also about half that of a conventional ball bearing. Conversely, the number of balls per row increases at least twice, and the bearing stiffness increases compared to conventional ball bearings.

また、国際標準化機構(ISO)で規定されている寸法系列が18(例えば、6820)、19(例えば、6938)、10(例えば、7016A)、02(例えば、7224C)、03(例えば、7350A)などの標準寸法玉軸受では、軸受内径寸法がφ5mm〜φ500mmにおいては、断面寸法比(B/H)はB/H=0.63〜1.17となっているが、本実施形態の幅狭玉軸受10は、軸方向に幅狭としたので、上述の断面寸法比に該当しないものとなる。   The dimension series defined by the International Organization for Standardization (ISO) is 18 (for example, 6820), 19 (for example, 6938), 10 (for example, 7016A), 02 (for example, 7224C), 03 (for example, 7350A). In the case of standard size ball bearings such as the above, when the inner diameter of the bearing is φ5 mm to φ500 mm, the cross-sectional dimension ratio (B / H) is B / H = 0.63 to 1.17. Since the ball bearing 10 is narrow in the axial direction, it does not correspond to the above-described cross-sectional dimension ratio.

本実施形態の幅狭玉軸受10では、軸受の負荷容量や剛性を上げるために、円周方向に隣り合う玉13間のピッチは極力小さくし、できる限り玉数を多くしている。通常の玉軸受では、玉数は多くとも30〜40個以下/1列程度であるが、本実施形態では、50個以上、好ましくは60個以上、より好ましくは70個以上/1列としている。   In the narrow ball bearing 10 of this embodiment, in order to increase the load capacity and rigidity of the bearing, the pitch between the balls 13 adjacent in the circumferential direction is made as small as possible, and the number of balls is increased as much as possible. In a normal ball bearing, the number of balls is at most about 30 to 40 or less per row, but in this embodiment, 50 or more, preferably 60 or more, more preferably 70 or more per row. .

アンギュラ玉軸受の場合、接触角は、大きなモーメント荷重を負荷した際に、内外輪みぞ肩部への玉と内外輪みぞ接触部の乗り上げを抑えるため、概ね60°以下、望ましくは50°以下、さらに望ましくは40°以下がよいが、20°未満の場合は、許容アキシャル荷重やモーメント剛性が低下するので好ましくない。本実施形態における適正な玉径は、シール部材等の装着有無により変化するが、剛性を増加させるため、極端に玉径を小さくすると、玉と内外輪の軌道みぞとの接触部間の面圧が増加し、耐圧痕性が低下するおそれがあるため、概ね、軸受幅(B)の30〜90%が望ましい。   In the case of an angular contact ball bearing, the contact angle is approximately 60 ° or less, preferably 50 ° or less in order to suppress the ball and the inner / outer ring groove contact portion from riding on the shoulder portion of the inner / outer ring groove when a large moment load is applied. More preferably, it is 40 ° or less, but if it is less than 20 °, the allowable axial load and moment rigidity are lowered, which is not preferable. The appropriate ball diameter in the present embodiment varies depending on whether or not a seal member or the like is mounted. However, in order to increase rigidity, if the ball diameter is extremely reduced, the surface pressure between the contact portions between the balls and the track grooves of the inner and outer rings is reduced. In general, the pressure resistance is likely to be reduced, so that generally 30 to 90% of the bearing width (B) is desirable.

更に、本実施形態では、玉13の軸方向ピッチをできるだけ組合せ側端面の反対側にずらし(図1:X1>X2)、保持器15のリング部17(図2〜図5参照)が軸受組合せ端面側になるように配置しており、リング部17の軸方向肉厚を大きくし、また、モーメント剛性を上げるための作用点間距離を大きくとれるようにしている。   Furthermore, in this embodiment, the axial pitch of the balls 13 is shifted as much as possible to the opposite side of the end face on the combination side (FIG. 1: X1> X2), and the ring portion 17 (see FIGS. 2 to 5) of the cage 15 is used for the bearing combination. It is arranged so as to be on the end face side, so that the axial thickness of the ring portion 17 is increased, and the distance between the operating points for increasing the moment rigidity can be increased.

また、軸受の材料としては、標準の軸受鋼(SUJ2やSUJ3)など、特に限定されないが、必要に応じて、これらの材料で、軸受の寸法安定性や耐磨耗性などの機械的性質を向上させるために、内輪11及び外輪12の少なくとも一方に、サブゼロ処理を施してもよい。   Also, the bearing material is not particularly limited, such as standard bearing steel (SUJ2 or SUJ3), but if necessary, these materials can provide mechanical properties such as dimensional stability and wear resistance of the bearing. In order to improve, at least one of the inner ring 11 and the outer ring 12 may be subjected to sub-zero treatment.

サブゼロ処理の方法としては、例えば、焼入れ直後に、液体窒素を用いて−150°C程度の雰囲気とし、本サブゼロ処理後に焼戻しを行なう。そして、サブゼロ処理と焼戻し処理とを数回繰り返す。冷却溶媒として、液体窒素使用のサブゼロ処理では、繰り返し回数は多くとも3回程度でかまわない。サブゼロ処理によって、組織中の残留オーステナイト(γR)がマルテンサイトに変態する。併せて、結晶粒の安定化も促進されるので、これにより経時寸法変化の防止と耐磨耗性などの機械的性質が向上する。   As a sub-zero treatment method, for example, immediately after quenching, an atmosphere of about −150 ° C. is formed using liquid nitrogen, and tempering is performed after the sub-zero treatment. Then, the sub-zero process and the tempering process are repeated several times. In the sub-zero treatment using liquid nitrogen as the cooling solvent, the number of repetitions may be at most about 3. Residual austenite (γR) in the structure is transformed into martensite by the sub-zero treatment. At the same time, the stabilization of crystal grains is also promoted, thereby improving mechanical properties such as prevention of dimensional change with time and wear resistance.

本実施形態の場合、内輪11及び外輪12の軸方向幅が狭いので、そりや真円度不良などの経時寸法変化が発生しやすい傾向がある。したがって、サブゼロ処理により、前記経時寸法変化を抑制することができ、特に、軸受精度が必要な工作機械の回転テーブルや主軸旋回機構部、印刷機械のドラム等の回転機構部などの回転支持部に本実施形態の幅狭玉軸受10を使用する場合、軸受精度劣化による機器の精度不具合を防止でき、長期的に良好な機能を保持することができる。   In the case of the present embodiment, since the axial widths of the inner ring 11 and the outer ring 12 are narrow, there is a tendency that dimensional changes such as warpage and roundness failure tend to occur. Accordingly, the sub-zero treatment can suppress the dimensional change with time, and in particular, in rotation support parts such as a rotary table of a machine tool, a spindle turning mechanism part, and a rotary mechanism part such as a drum of a printing machine that require bearing accuracy. When the narrow ball bearing 10 of the present embodiment is used, it is possible to prevent malfunctions of the equipment due to deterioration of the bearing accuracy, and it is possible to maintain a good function in the long term.

また、例えば真空用途や腐食環境などでは、軸受鋼以外に、耐食材料であるステンレス鋼系材料(例えば、SUS440C等のマルテンサイト系ステンレス鋼材料やSUS304等のオーステナイト系ステンレス鋼材料、SUS630等の析出硬化系ステンレス鋼材料など)、チタン合金やセラミック系材料(例えば、Si,SiC,Al,ZrOなど)を採用してもよい。 For example, in vacuum applications and corrosive environments, in addition to bearing steel, stainless steel materials that are corrosion resistant materials (for example, martensitic stainless steel materials such as SUS440C, austenitic stainless steel materials such as SUS304, precipitation of SUS630, etc.) Hardened stainless steel material), titanium alloy or ceramic material (eg, Si 3 N 4 , SiC, Al 2 O 3 , ZrO 2, etc.) may be employed.

潤滑方法も特に限定されず、一般的な使用環境では、鉱油系グリースや合成油系(例えば、リチウム系、ウレア系等)のグリースや油を使用でき、真空用途などでは、フッ素系のグリースまたは油、あるいはフッ素樹脂、MOSなどの固体潤滑剤を使用することができる。 The lubrication method is not particularly limited, and mineral oil grease or synthetic oil grease (for example, lithium or urea) or oil can be used in a general usage environment. Oil, or a solid lubricant such as fluororesin or MOS 2 can be used.

保持器15は、玉案内方式であり、図2〜図4に示すように、リング部17と、このリング部17の一端部に周方向に略等間隔で複数箇所軸方向に突設された柱部18と、各柱部18間に形成されて玉13を周方向に転動可能に保持する多数のポケット部19と、このポケット部19のリング部17とは反対側の先端部に形成された玉13の抜け出しを防止する一対の玉係止部とを備えた柔軟性のある冠形保持器の構成を有する。本実施形態のように、ポケット部19の入り口部を玉径より若干小さくして引っかかり(パチン代)を設ければ、内輪11及び外輪12に組み込む際、玉13の脱落がなく軸受の組み立てが容易である。なお、保持器の形状は、本実施形態に限定されず、適宜選択され得る。   The cage 15 is a ball guide system, and as shown in FIGS. 2 to 4, the ring portion 17 and one end portion of the ring portion 17 are protruded in the axial direction at a plurality of positions at substantially equal intervals in the circumferential direction. Formed between the pillars 18, a large number of pockets 19 formed between the pillars 18 to hold the balls 13 so as to be able to roll in the circumferential direction, and the tip of the pockets 19 opposite to the ring parts 17. It has the structure of a flexible crown-shaped cage provided with a pair of ball locking portions that prevent the balls 13 from coming out. As in this embodiment, if the entrance portion of the pocket portion 19 is slightly smaller than the ball diameter and is provided with a catch (pachin allowance), the ball 13 can be assembled without being dropped when the inner ring 11 and the outer ring 12 are assembled. Easy. In addition, the shape of a holder | retainer is not limited to this embodiment, It can select suitably.

また、保持器15は、図5に示すように、リング部17の少なくとも円周方向の一箇所で互いに隣り合うポケット部19間を予め切断して切断部14を形成し、切断部の円周方向幅寸法をΔC、切断部における一方の柱部の円周方向幅寸法をS、切断部におけるもう一方の柱部の円周方向幅寸法をS、保持器の切断されていない柱部の円周方向幅寸法をSとした場合、S=S+S+ΔC
の関係となるように構成されている。
Further, as shown in FIG. 5, the cage 15 preliminarily cuts between the pocket portions 19 adjacent to each other at least at one place in the circumferential direction of the ring portion 17 to form a cut portion 14. The direction width dimension is ΔC, the circumferential width dimension of one pillar part in the cut part is S 1 , the circumferential width dimension of the other pillar part in the cut part is S 2 , and the uncut pillar part of the cage S 3 = S 1 + S 2 + ΔC where S 3 is the circumferential width dimension of S 3
It is comprised so that it may become a relationship.

本実施形態のような幅狭玉軸受10では、冠形保持器15の円周方向に切断部14を形成し、さらに、上記寸法関係を採用したことで、以下のような効果を奏する。   In the narrow ball bearing 10 as in the present embodiment, the cutting portion 14 is formed in the circumferential direction of the crown-shaped cage 15, and further, the following dimensional relationship is adopted, and the following effects are obtained.

即ち、従来の保持器の場合では、図6に示すように、切断部14における玉13間の距離は(ΔL+2・ΔS)となり、他の玉13間の距離(ΔS:柱部円周方向幅寸法)より大きくなってしまい、結果として玉の円周方向の不等配が発生する。玉の円周方向の不等配が生じると、軸受の径方向の剛性が円周位相で不均一(玉の円周方向の不等配部の位相で剛性低下)になるため、軸受回転時に玉の公転周期に対応した振れ回り、いわゆるNRRO値(内輪2回転に約1回の周期)が増加する。   That is, in the case of the conventional cage, as shown in FIG. 6, the distance between the balls 13 in the cutting portion 14 is (ΔL + 2 · ΔS), and the distance between the other balls 13 (ΔS: the circumferential width of the column portion) Dimension), resulting in uneven distribution of the balls in the circumferential direction. If the balls are not evenly distributed in the circumferential direction, the radial rigidity of the bearing will be non-uniform in the circumferential phase (decrease in rigidity due to the phase of the unevenly distributed portion of the ball in the circumferential direction). A swing corresponding to the revolution period of the ball, a so-called NRRO value (a cycle of about once per two rotations of the inner ring) increases.

また、切断部14を挟む部分の柱部18の円周方向幅寸法と、切断されていない柱部18の幅方向寸法を同一として、それぞれの柱部の円周方向幅寸法の最小部の肉厚を柱部18に加わる荷重に耐えられるような強度となる寸法を確保するように決定することも考えられる。そうすると、切断部14の玉の円周方向ピッチが他の玉の円周方向ピッチよりも大きくなり、玉の円周方向の不等配が生じる。その結果、軸受の径方向の剛性が円周位相で不均一(玉の円周方向の不等配部の位相で剛性低下)になるため、軸受回転時に玉の公転周期に対応した振れ回り、いわゆるNRRO値(内輪2回転に約1回の周期)が増加する。   In addition, the circumferential width dimension of the column portion 18 sandwiching the cut portion 14 and the width direction dimension of the uncut column portion 18 are the same, and the minimum portion of the circumferential width dimension of each column portion is the same. It is also conceivable to determine the thickness so as to secure a dimension that can withstand the load applied to the column portion 18. If it does so, the circumferential direction pitch of the ball | bowl of the cutting part 14 will become larger than the circumferential direction pitch of another ball | bowl, and the uneven distribution of the circumferential direction of a ball | bowl will arise. As a result, the radial rigidity of the bearing becomes non-uniform in the circumferential phase (stiffness decreases due to the phase of the unevenly distributed portion in the circumferential direction of the ball), so that the runout corresponding to the revolution period of the ball during rotation of the bearing, A so-called NRRO value (a cycle of about once per two rotations of the inner ring) increases.

一方、本実施形態では、図5に示すように、切断部14の円周方向幅寸法をΔC、切断部14における一方の柱部の円周方向幅寸法をS、切断部14におけるもう一方の柱部の円周方向幅寸法をS、保持器の切断されていない柱部の円周方向幅寸法をSとして、切断部14の径方向位置に関わらず、S=S+S+ΔC
の関係を満たすように構成されている。つまり、本実施形態では、切断部14においても玉13間の距離が他の玉間の距離と等しく構成されているため、上述のように玉13の不等配によって発生する玉の公転周期(保持器の回転周期)ごとの回転振れ(NRRO)の増加を大幅に抑制することが可能となる。
On the other hand, in the present embodiment, as shown in FIG. 5, the circumferential width dimension of the cutting portion 14 is ΔC, the circumferential width dimension of one pillar portion in the cutting portion 14 is S 1 , and the other width in the cutting portion 14. S 3 = S 1 + S regardless of the radial position of the cut portion 14, where S 2 is the circumferential width dimension of the pillar portion and S 3 is the circumferential width dimension of the pillar portion where the cage is not cut. 2 + ΔC
It is configured to satisfy the relationship. That is, in this embodiment, since the distance between the balls 13 is configured to be equal to the distance between the other balls in the cutting portion 14 as well, the revolution period of the balls generated by the uneven distribution of the balls 13 as described above ( It is possible to greatly suppress an increase in rotational runout (NRRO) for each rotation cycle of the cage.

なお、上記式のS、Sは、S=S+S+ΔCを満たす限り、同一でもよいし、異なってもいてもよい。 S 1 and S 2 in the above formula may be the same or different as long as S 3 = S 1 + S 2 + ΔC is satisfied.

また、ΔCは、以下のように設定するのが好ましい。
切断部14の円周方向幅寸法ΔCは、所定の条件における軸受の温度上昇による保持器の相対膨張及び吸水膨張による円周方向すきま減少分などを見込み、減少後に円周方向すきまが零とならないすきまとする。以上より、回転中に保持器と玉間の突っ張り損傷などの不具合を生じることがなく、発熱やトルク変動の少ない軸受の安定した回転性能を得ることができる。
Moreover, it is preferable to set ΔC as follows.
The circumferential width dimension ΔC of the cut portion 14 is expected to be a decrease in the circumferential clearance due to the relative expansion of the cage due to the temperature rise of the bearing and the water absorption expansion under a predetermined condition, and the circumferential clearance does not become zero after the decrease. It is a clearance. As described above, it is possible to obtain a stable rotation performance of the bearing with less heat generation and less torque fluctuation without causing problems such as a damage of a tension between the cage and the ball during the rotation.

また、本実施形態のような幅狭玉軸受10では、冠形保持器15の円周方向に切断部14が形成されることで、以下のような効果を奏する。   Moreover, in the narrow ball bearing 10 like this embodiment, the following effects are produced by forming the cutting part 14 in the circumferential direction of the crown-shaped cage 15.

即ち、切断部がない円環状の冠形保持器を有する従来の幅狭玉軸受では、軸受が幅狭のため、玉径は幅方向の寸法で限定されて小さくなる。したがって、保持器の円環部の断面肉厚が小さくなり、円環部の剛性は小さい。また、寸法測定時の測定圧による変形が大きく、径方向寸法の測定ができず、保持器が適正な精度か否かを判断できない。玉ピッチ円直径に対してポケット径中心のピッチ円直径がずれていると、玉案内方式なので玉とポケット部とが直径方向で干渉する。   That is, in a conventional narrow ball bearing having an annular crown-shaped cage without a cut portion, the ball diameter is limited by the dimension in the width direction and becomes small because the bearing is narrow. Therefore, the cross-sectional thickness of the annular portion of the cage is reduced, and the rigidity of the annular portion is small. Further, the deformation due to the measurement pressure at the time of measuring the dimension is large, the measurement of the radial dimension cannot be performed, and it cannot be determined whether or not the cage has an appropriate accuracy. If the pitch circle diameter at the center of the pocket diameter is deviated from the ball pitch circle diameter, the ball and the pocket portion interfere in the diameter direction because of the ball guide method.

仮に、保持器の寸法精度が適正であった場合でも、玉径寸法が小さいため、保持器の円環部の断面肉厚が薄くなり、円環部の剛性が小さいため、真円度などの形状精度が悪くなる。また、昇温や吸水による保持器の直径方向の伸長のため、玉とポケットとの間の突っ張りなどが生じ、ポケット面の磨耗や回転中の発熱大、トルクむら、トルク大等の不具合が発生する。   Even if the dimensional accuracy of the cage is appropriate, since the ball diameter is small, the cross-sectional thickness of the annular portion of the cage is thin, and the rigidity of the annular portion is small. The shape accuracy deteriorates. In addition, due to temperature rise and water absorption, the cage stretches in the diameter direction, causing tension between the ball and the pocket, causing problems such as wear on the pocket surface, large heat generation during rotation, uneven torque, and large torque. To do.

また、切断部がない両側に円環をもったもみ抜きタイプの保持器の場合、両側に円環を形成しており比較的強度があるので、適正寸法維持に対しては有利であるが、合成樹脂保持器で、外輪案内方式の場合、温度上昇や吸水による膨張で案内すきまがなくなり、最悪かじる可能性がある。一方、内輪案内方式の場合、逆に案内すきまが大きくなりすぎ、保持器の異常振動による騒音等が発生する。   In addition, in the case of a machined type cage having a ring on both sides without a cutting part, it has an annular shape on both sides and is relatively strong. In the case of an outer ring guide system for a synthetic resin cage, there is a possibility that the guide clearance will disappear due to temperature rise or expansion due to water absorption, and it may be devastated. On the other hand, in the case of the inner ring guide system, on the contrary, the guide clearance becomes too large, and noise or the like is generated due to abnormal vibration of the cage.

これに対し、本実施形態の幅狭玉軸受10では、切断部14を形成することで剛性がさらに小さくなるが、仮にピッチ円直径がずれていても、逆に、弾性変形が容易で、玉ピッチ円直径になじんでくれるので、玉13とポケット部19との間の強い接触圧を伴う干渉が生じにくい。   On the other hand, in the narrow ball bearing 10 of the present embodiment, the rigidity is further reduced by forming the cut portion 14, but conversely, even if the pitch circle diameter is shifted, the elastic deformation is easy, and the ball Since it adapts to the pitch circle diameter, interference with a strong contact pressure between the ball 13 and the pocket portion 19 hardly occurs.

また、保持器材料として、標準的な樹脂材料(ポリアミド、ポリアセタール、ポリフェニレンサルファイド等、線膨張係数が軸受鋼の6〜7倍である)に比べ、炭素繊維などの強化材の添加などにより、線膨張係数が内外輪及び転動体の材料に近い材料(例えば、線膨張係数が内外輪及び転動体材料に対して、0.5〜2倍程度)を用いたり、あるいは、吸収膨張が少ない(多くとも、相対湿度50%、23℃での平衡含水率が2%以下程度)樹脂材料を用いることで、ΔCの変化を小さくすることが可能となり、回転精度をより向上させることができる。また、加えて、円周方向の切断部14の干渉を生じないためのあらかじめ必要なΔCを小さくすることができ、その分、切断部14における柱部の円周方向幅寸法S、Sを厚くすることも可能となる。逆に、切断部14における柱部の円周方向幅寸法S、Sを変えず厚くしなければ、S=S+S+ΔCのSの値が小さくでき、その結果、玉の数が増加でき、軸受の負荷容量や剛性の増加が図ることができる。 In addition, as a cage material, compared to standard resin materials (polyamide, polyacetal, polyphenylene sulfide, etc., whose linear expansion coefficient is 6 to 7 times that of bearing steel), the addition of reinforcing materials such as carbon fiber makes the wire Use a material whose expansion coefficient is close to the material of the inner and outer rings and rolling elements (for example, the linear expansion coefficient is about 0.5 to 2 times that of the inner and outer rings and rolling element material), or has little absorption expansion (many In both cases, the change in ΔC can be reduced by using a resin material, and the rotational accuracy can be further improved by using a resin material. In addition, it is possible to reduce ΔC necessary in advance to prevent interference of the circumferential cut portion 14, and accordingly, the circumferential width dimensions S 1 and S 2 of the column portion in the cut portion 14. It is also possible to increase the thickness. Conversely, if the circumferential width dimensions S 1 and S 2 of the pillar portion in the cut portion 14 are not increased and the thickness is not increased, the value of S 3 of S 3 = S 1 + S 2 + ΔC can be reduced. The number can be increased, and the load capacity and rigidity of the bearing can be increased.

また、保持器の形状は、片側リング(円環)構造ではなく、ポケットの両側に円環をもったもみ抜きタイプの合成樹脂保持器に切断部を設け、同様に切断部間に玉を挿入した構造でもよい。玉を挿入した後の円周方向幅寸法ΔCを所定の温度上昇による円周方向膨張分及び吸水膨張に相当する量としてもよい。このようにすることで、外輪案内方式の場合、案内すきまの減少を最小限に抑え、案内面での食い付き不具合を防止できる。   In addition, the cage shape is not a single-sided ring (ring) structure, but a cutting part is provided in a machined synthetic resin cage with a ring on both sides of the pocket, and a ball is inserted between the cutting parts as well. The structure may be sufficient. The circumferential width dimension ΔC after the ball is inserted may be an amount corresponding to the circumferential expansion due to a predetermined temperature rise and the water absorption expansion. By doing so, in the case of the outer ring guide system, it is possible to minimize the decrease in the guide clearance and prevent the biting trouble on the guide surface.

(第2実施形態)
図13に示す本考案の第2実施形態に係る転がり軸受は、第1実施形態の2列の背面組合せされた幅狭玉軸受に対して、シール部材16が省略された構成である。この実施形態では、シール部材16が設けられていないので、玉径を大きくできる。また、第1実施形態の同径の玉を使用した場合には、シール部材16を設けない分、軸受の軸方向幅をより薄くすることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Second Embodiment)
The rolling bearing according to the second embodiment of the present invention shown in FIG. 13 has a configuration in which the seal member 16 is omitted from the two rows of narrow ball bearings combined in the back surface of the first embodiment. In this embodiment, since the seal member 16 is not provided, the ball diameter can be increased. Moreover, when the ball | bowl of the same diameter of 1st Embodiment is used, since the sealing member 16 is not provided, the axial direction width | variety of a bearing can be made thinner.
Other configurations and operations are the same as those of the first embodiment.

(第3実施形態)
図14に示す本考案の第3実施形態に係る転がり軸受は、第2実施形態のものに対して、玉ピッチ円直径を、玉ピッチ円直径>(D+d)/2としている。この実施形態では、玉ピッチ円直径=(D+d)/2に比べて、軸受1列あたりの玉数を多くすることが可能となり、軸受の負荷容量を上げ、かつ剛性をより向上することができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Third embodiment)
The rolling bearing according to the third embodiment of the present invention shown in FIG. 14 has a ball pitch circle diameter of (ball pitch circle diameter)> (D + d) / 2 with respect to that of the second embodiment. In this embodiment, compared with the ball pitch circle diameter = (D + d) / 2, it is possible to increase the number of balls per row of bearings, increase the load capacity of the bearings, and further improve the rigidity. .
Other configurations and operations are the same as those of the first embodiment.

(第4実施形態)
図15に示す本考案の第4実施形態に係る転がり軸受は、第2実施形態のものに対して、左右の幅狭玉軸受10の玉径、玉ピッチ円直径を変えている。この実施形態では、軸方向荷重が左右の軸受で不均一な場合など、大荷重が負荷する側に玉径大の軸受を配設することで、軸受の損傷防止や寿命向上が図れる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Fourth embodiment)
The rolling bearing according to the fourth embodiment of the present invention shown in FIG. 15 differs from that of the second embodiment in the ball diameter and ball pitch circle diameter of the left and right narrow ball bearings 10. In this embodiment, when the axial load is uneven between the left and right bearings, a bearing having a large ball diameter is provided on the side where the large load is applied, thereby preventing damage to the bearing and improving the life.
Other configurations and operations are the same as those of the first embodiment.

(第5実施形態)
図16に示す本考案の第5実施形態に係る転がり軸受は、第1実施形態のものに対して、シール部材16が対向する内輪11の外周面にシール溝を形成しない構成である。これにより、内輪11の形状を簡素化することができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Fifth embodiment)
The rolling bearing according to the fifth embodiment of the present invention shown in FIG. 16 has a configuration in which no seal groove is formed on the outer peripheral surface of the inner ring 11 opposed to the seal member 16 with respect to that of the first embodiment. Thereby, the shape of the inner ring 11 can be simplified.
Other configurations and operations are the same as those of the first embodiment.

(第6実施形態)
図17に示す本考案の第6実施形態に係る転がり軸受は、幅狭玉軸受10の外輪12の軸方向の両端側内周部にそれぞれ非接触型のシール部材16を装着する。この実施形態では、グリースの軸受外部への流出を防止でき、軸受内への外部からの異物の侵入も起こりにくい。
その他の構成及び作用は、第1実施形態のものと同様である。
(Sixth embodiment)
In the rolling bearing according to the sixth embodiment of the present invention shown in FIG. 17, the non-contact type seal members 16 are respectively mounted on the inner peripheral portions of both ends in the axial direction of the outer ring 12 of the narrow ball bearing 10. In this embodiment, it is possible to prevent the grease from flowing out of the bearing, and it is difficult for foreign matters to enter the bearing.
Other configurations and operations are the same as those of the first embodiment.

(第7実施形態)
図18に示す本考案の第7実施形態に係る転がり軸受は、2列の幅狭玉軸受10を正面組合せとしている。この実施形態では、接触角が逆ハの字であり、背面組合せに対してモーメント剛性が小さくなるので、取り付け時の内輪11及び外輪12の相対傾きが大きくなることが避けられない場合、軸受の内部発生負荷荷重を小さくすることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Seventh embodiment)
The rolling bearing according to the seventh embodiment of the present invention shown in FIG. 18 has two rows of narrow ball bearings 10 as a front combination. In this embodiment, the contact angle is a reverse C shape, and the moment rigidity is reduced with respect to the rear combination. Therefore, if it is inevitable that the relative inclination of the inner ring 11 and the outer ring 12 during installation is unavoidable, Internally generated load can be reduced.
Other configurations and operations are the same as those of the first embodiment.

(第8実施形態)
図19に示す本考案の第8実施形態に係る転がり軸受は、3列の幅狭玉軸受10を背面組合せとしている。この実施形態では、軸受の剛性及び負荷容量を向上させることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Eighth embodiment)
The rolling bearing according to the eighth embodiment of the present invention shown in FIG. 19 has three rows of narrow ball bearings 10 as the back combination. In this embodiment, the rigidity and load capacity of the bearing can be improved.
Other configurations and operations are the same as those of the first embodiment.

(第9実施形態)
図20に示す本考案の第9実施形態に係る転がり軸受は、4列の幅狭玉軸受10を背面組合せとしている。この実施形態では、軸受の剛性及び負荷容量をさらに向上させることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Ninth embodiment)
The rolling bearing according to the ninth embodiment of the present invention shown in FIG. 20 has four rows of narrow ball bearings 10 as the back combination. In this embodiment, the rigidity and load capacity of the bearing can be further improved.
Other configurations and operations are the same as those of the first embodiment.

(第10実施形態)
図21に示す本考案の第10実施形態に係る転がり軸受は、図18に示す第7実施形態のものに対して、2列の内輪11を一体の内輪101とし、リング部17が軸受組合せ端面側と反対側にした複列幅狭玉軸受100である。この実施形態では、2列の単列幅狭玉軸受10と置き換えることができ、また、接触角が逆ハの字であるため、背面組合せに対してモーメント剛性が小さくなる。なお、複列幅狭玉軸受100の軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)は、B2/H2<1.2が好ましく、より好ましくは、B2/H2<1.0とすることで、標準寸法玉軸受と容易に置き換えることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(10th Embodiment)
The rolling bearing according to the tenth embodiment of the present invention shown in FIG. 21 is the same as the seventh embodiment shown in FIG. This is a double row narrow ball bearing 100 on the side opposite to the side. In this embodiment, the single row narrow ball bearing 10 can be replaced with two rows, and since the contact angle is a reverse C shape, the moment rigidity is reduced with respect to the rear combination. The cross-sectional dimension ratio (B2 / H2) between the axial cross-sectional width B2 and the radial cross-sectional height H2 (= (outer ring outer diameter D2-inner ring inner diameter d2) / 2) of the double row narrow ball bearing 100 is B2. /H2<1.2 is preferable, and more preferably, B2 / H2 <1.0 can be easily replaced with a standard size ball bearing.
Other configurations and operations are the same as those of the first embodiment.

(第11実施形態)
図22に示す本考案の第11実施形態に係る転がり軸受は、図18に示す第7実施形態のものに対して、2列の外輪12を一体の外輪102とするとともに、接触角をハの字とした複列幅狭玉軸受110である。この実施形態では、2列の単列幅狭玉軸受10と置き換えることができ、また、接触角がハの字であるため、正面組合せに対してモーメント剛性が大きくなる。なお、複列幅狭玉軸受110の軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)は、B2/H2<1.2が好ましく、より好ましくは、B2/H2<1.0とすることで、標準寸法玉軸受と容易に置き換えることができる。
その他の構成及び作用は、第1実施形態のものと同様である。なお、外輪102の軸方向両端部に接触型又は非接触型のシール部材を装着してもよい。
(Eleventh embodiment)
The rolling bearing according to the eleventh embodiment of the present invention shown in FIG. 22 has two rows of outer rings 12 as an integrated outer ring 102 and has a contact angle of C with respect to that of the seventh embodiment shown in FIG. This is a double row narrow ball bearing 110 having a letter shape. In this embodiment, the single row narrow ball bearing 10 can be replaced with two rows, and since the contact angle is a square shape, the moment rigidity is increased with respect to the front combination. The sectional dimension ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 (= (outer ring outer diameter D2—inner ring inner diameter d2) / 2) of the double row narrow ball bearing 110 is B2. /H2<1.2 is preferable, and more preferably, B2 / H2 <1.0 can be easily replaced with a standard size ball bearing.
Other configurations and operations are the same as those of the first embodiment. A contact type or non-contact type seal member may be attached to both ends of the outer ring 102 in the axial direction.

(第12実施形態)
図23に示す本考案の第12実施形態に係る転がり軸受は、図13に示す第2実施形態のものに対して、合成樹脂製の冠形保持器15に代えて合成樹脂製のもみ抜き保持器150を用い、外輪案内方式が適用されている。もみ抜き保持器150の円周方向の少なくとも1ヶ所の柱部(不図示)位置には、切断部(不図示)が設けられている。切断部の円周方向幅ΔCの設定方法は、第1実施形態のものと同様である。
(Twelfth embodiment)
The rolling bearing according to the twelfth embodiment of the present invention shown in FIG. 23 is the same as that of the second embodiment shown in FIG. The outer ring guide method is applied using the device 150. A cutting portion (not shown) is provided at at least one column portion (not shown) position in the circumferential direction of the machined cage 150. The setting method of the circumferential width ΔC of the cutting part is the same as that of the first embodiment.

本実施形態のような切断部を有するもみ抜きタイプの保持器では、案内すきまの減少を最小限に抑え、案内面での食い付き等の不具合を防止できる。   In the machined type retainer having a cutting portion as in this embodiment, the reduction in the guide clearance can be minimized, and problems such as biting on the guide surface can be prevented.

なお、本考案は、上述した実施形態に限定されるものでなく、適宜、変更、改良等が可能である。例えば、転動体として、玉の代わりに円筒ころを用いてもよい。   In addition, this invention is not limited to embodiment mentioned above, A change, improvement, etc. are possible suitably. For example, cylindrical rollers may be used as rolling elements instead of balls.

(実施例1)
ここで、図1と同一構造の2列の背面組合せアンギュラ玉軸受に組み込まれる保持器15について、切断部14の円周方向幅ΔCが設定される実施例1について説明する。
Example 1
Here, a description will be given of a first embodiment in which the circumferential width ΔC of the cutting portion 14 is set for the retainer 15 incorporated in the two rows of rear combination angular contact ball bearings having the same structure as FIG.

本実施例の軸受仕様は次の通りである。
<軸受仕様>
・非接触シール付(2列のアンギュラ玉軸受の外側の端部のみ2ヶ所)
・軸受寸法:内径φ170mm、外径φ215mm、幅13.5mm(単体幅)、接触角35°、玉径6.35mm、玉数80個、玉ピッチ円径=φ192.5mm、B/H=0.60
・保持器形状:冠形保持器(玉案内方式)
・保持器材質:ポリアミド66(強化材混入なし)、線膨張係数:80×10−6(K−1
・内輪、外輪及び玉材質:軸受鋼(SUJ2)、線膨張係数:12.5×10−6(K−1
・軸受予圧量:500kgf(定位置予圧)
The bearing specifications of this example are as follows.
<Bearing specifications>
・ With non-contact seal (2 locations only on the outer edge of the double row angular contact ball bearing)
Bearing dimensions: inner diameter φ170 mm, outer diameter φ215 mm, width 13.5 mm (single width), contact angle 35 °, ball diameter 6.35 mm, 80 balls, ball pitch circle diameter = φ192.5 mm, B / H = 0 .60
・ Cage shape: Crown type cage (ball guide method)
-Cage material: Polyamide 66 (no reinforcing material mixed), linear expansion coefficient: 80 × 10 −6 (K −1 )
・ Inner ring, outer ring and ball material: bearing steel (SUJ2), linear expansion coefficient: 12.5 × 10 −6 (K −1 )
・ Bearing preload: 500kgf (fixed position preload)

また、軸受の使用環境が平均温度:20°Cに対し、軸受の最大想定温度上昇を100°Cとする。   In addition, the bearing temperature is set to 100 ° C. with respect to the average temperature: 20 ° C.

この場合、切断部14の円周方向幅ΔCは、ΔC=192.5π×(80−12.5)×10−6×80=3.266mmとなり、切断部14の円周方向幅ΔCを3.3mmとすれば良い。 In this case, the circumferential width ΔC of the cut portion 14 is ΔC = 192.5π × (80-12.5) × 10 −6 × 80 = 3.266 mm, and the circumferential width ΔC of the cut portion 14 is 3 .3 mm.

さらには、使用される樹脂材料によって想定される所定の吸水膨張分を、上記ΔCに加えてもよい。吸水膨張分は、例えば、使用する樹脂材料によって想定される平均含水率(相対湿度50%、23℃条件)等から設定することが可能である。   Furthermore, you may add the predetermined | prescribed water absorption expansion part assumed by the resin material to be used to said (DELTA) C. The water absorption expansion can be set from, for example, an average moisture content (relative humidity 50%, 23 ° C. condition) assumed by the resin material used.

(実施例2)
続いて、実施例1について以下の点を変更した保持器15について、切断部14の円周方向幅ΔCが設定される実施例2について説明する。
(Example 2)
Then, Example 2 by which the circumferential direction width | variety (DELTA) C of the cutting part 14 is set is demonstrated about the holder | retainer 15 which changed the following points about Example 1. FIG.

本実施例の軸受仕様の実施例1からの変更点は次の通りである。
<軸受仕様>
・保持器材質:ポリアミド46(+炭素繊維15重量%含有)、線膨張係数:25×10−6(K−1
The changes of the bearing specifications of the present embodiment from the first embodiment are as follows.
<Bearing specifications>
・ Cage material: Polyamide 46 (+ 15% by weight of carbon fiber), linear expansion coefficient: 25 × 10 −6 (K −1 )

この場合、切断部14の円周方向幅ΔCは、ΔC=192.5π×(25−12.5)×10−6×80=0.604mmとなり、切断部14の円周方向幅ΔCを0.6mmとすれば良い。 In this case, the circumferential width ΔC of the cut portion 14 is ΔC = 192.5π × (25-12.5) × 10 −6 × 80 = 0.604 mm, and the circumferential width ΔC of the cut portion 14 is 0. .6 mm is sufficient.

本考案の転がり軸受は、例えば、産業機械、ロボットの関節部や旋回機構部、工作機械の主軸、回転テーブルや主軸旋回機構部、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置等の回転支持部に好適に利用できる。   The rolling bearings of the present invention are, for example, industrial machines, robot joints and turning mechanisms, machine tool spindles, rotary tables and spindle turning mechanisms, medical equipment, semiconductor / liquid crystal manufacturing equipment, optics and optoelectronic equipment, etc. It can utilize suitably for a rotation support part.

10 転がり軸受
11a 内輪軌道面
11 内輪
12a 外輪軌道面
12 外輪
13 転動体
14 切断部
15 保持器
16 シール部材
17 リング部
18 柱部
19 ポケット部
DESCRIPTION OF SYMBOLS 10 Rolling bearing 11a Inner ring raceway surface 11 Inner ring 12a Outer ring raceway surface 12 Outer ring 13 Rolling body 14 Cutting part 15 Cage 16 Seal member 17 Ring part 18 Column part 19 Pocket part

Claims (1)

外周面に内輪軌道面を有する内輪と、内周面に外輪軌道面を有する外輪と、前記内輪軌道面と前記外輪軌道面との間に転動自在に設けられた複数の転動体と、円周方向の少なくとも一カ所に切断部が形成され、前記複数の転動体を円周方向に等間隔で保持する合成樹脂製の保持器と、を備えた転がり軸受において、
前記切断部の円周方向幅寸法をΔC、前記切断部における一方の柱部の円周方向幅寸法をS、前記切断部におけるもう一方の柱部の円周方向幅寸法をS、前記保持器の切断されていない柱部の円周方向幅寸法をSとした場合、S=S+S+ΔCの関係を満たし、且つ前記ΔCは零より大きいことを特徴とする転がり軸受。
An inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, a plurality of rolling elements provided rotatably between the inner ring raceway surface and the outer ring raceway surface, In a rolling bearing comprising a cut portion formed in at least one place in the circumferential direction, and a cage made of synthetic resin that holds the plurality of rolling elements at equal intervals in the circumferential direction,
The circumferential width dimension of the cut part is ΔC, the circumferential width dimension of one column part in the cut part is S 1 , and the circumferential width dimension of the other column part in the cut part is S 2 , A rolling bearing characterized by satisfying the relationship of S 3 = S 1 + S 2 + ΔC when S 3 is the circumferential width dimension of the uncut section of the cage, and ΔC is greater than zero.
JP2016004186U 2011-01-25 2016-08-29 Rolling bearing Expired - Fee Related JP3207410U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011012461 2011-01-25
JP2011012461 2011-01-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016163742 Continuation 2012-01-16

Publications (1)

Publication Number Publication Date
JP3207410U true JP3207410U (en) 2016-11-10

Family

ID=46972156

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012006427A Pending JP2012167814A (en) 2011-01-25 2012-01-16 Rolling bearing
JP2016004186U Expired - Fee Related JP3207410U (en) 2011-01-25 2016-08-29 Rolling bearing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012006427A Pending JP2012167814A (en) 2011-01-25 2012-01-16 Rolling bearing

Country Status (1)

Country Link
JP (2) JP2012167814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086865B2 (en) * 2015-01-14 2018-10-02 Nsk Ltd Steering device
US10415646B2 (en) * 2016-09-16 2019-09-17 Steering Solutions Ip Holding Corporation Telescoping roller I-shaft and method of assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160223019A1 (en) * 2013-10-09 2016-08-04 Nsk Ltd. Cage, rolling bearing and pump for liquefied gas
TWI550200B (en) * 2014-12-18 2016-09-21 Nsk Ltd Bevel ball bearing
JP2022023304A (en) * 2020-07-27 2022-02-08 Ntn株式会社 Bearing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733217B2 (en) * 1997-09-30 2006-01-11 Ntn株式会社 Pulley
JP2006226496A (en) * 2005-02-21 2006-08-31 Ntn Corp Roller bearing and resin-made retainer for roller bearing
JP5187279B2 (en) * 2009-06-22 2013-04-24 日本精工株式会社 Rolling bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086865B2 (en) * 2015-01-14 2018-10-02 Nsk Ltd Steering device
US10415646B2 (en) * 2016-09-16 2019-09-17 Steering Solutions Ip Holding Corporation Telescoping roller I-shaft and method of assembly

Also Published As

Publication number Publication date
JP2012167814A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP3207410U (en) Rolling bearing
US20090131235A1 (en) Ball Bearing for Spindle Turning Device of Machine Tool and Spindle Turning Device of Machine Tool Using the Same
WO2014013754A1 (en) Angular contact ball bearing and duplex bearing
JP5187279B2 (en) Rolling bearing
JP2006329420A (en) Bearing device for robot arm joint part, and ball bearing
JP5092383B2 (en) Ball bearing for machine tool main spindle
JP4743176B2 (en) Combination ball bearings and double row ball bearings
JP5034962B2 (en) Rolling bearing
JP5704213B2 (en) Bearing device
JP2006105384A (en) Double row ball bearing
JP4715961B2 (en) Rotary table device for machine tools
JP2011153683A (en) Angular ball bearing
JP2003042160A (en) Angular contact ball bearing and main bearing
JP5233199B2 (en) Angular contact ball bearings
JP2011226614A (en) Rolling bearing
JP5724275B2 (en) Rolling bearing
JP2006153094A (en) Ball bearing and rotary table device for machine tool using ball bearing
JP5556590B2 (en) Rolling bearing
JP2003336640A (en) Multi-point contact ball bearing
JP2010106867A (en) Bearing device and method for assembling the same
JP2008202755A (en) Rolling bearing
JP2006046380A (en) Ball bearing
JP2011247358A (en) Duplex ball bearing and double-row ball bearing
JP5397508B2 (en) Ball bearing for machine tool main spindle
JP2006097872A (en) Bearing unit

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3207410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees