JP2010106867A - Bearing device and method for assembling the same - Google Patents

Bearing device and method for assembling the same Download PDF

Info

Publication number
JP2010106867A
JP2010106867A JP2008276461A JP2008276461A JP2010106867A JP 2010106867 A JP2010106867 A JP 2010106867A JP 2008276461 A JP2008276461 A JP 2008276461A JP 2008276461 A JP2008276461 A JP 2008276461A JP 2010106867 A JP2010106867 A JP 2010106867A
Authority
JP
Japan
Prior art keywords
bearing
peripheral surface
ring
preload
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008276461A
Other languages
Japanese (ja)
Other versions
JP5453764B2 (en
Inventor
Yoshiaki Katsuno
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008276461A priority Critical patent/JP5453764B2/en
Publication of JP2010106867A publication Critical patent/JP2010106867A/en
Application granted granted Critical
Publication of JP5453764B2 publication Critical patent/JP5453764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device improved in assembling/disassembling performance of a bearing, maintaining the rigidity of the bearing, improved in rotation accuracy, and preventing creep, and to provide a method for manufacturing the bearing device. <P>SOLUTION: This method for manufacturing the bearing device includes: a process for assembling the bearing 10 in a swivel base 32 and a base 31 in the state of fitting in at least one of spaces between the outer peripheral surface of the swivel base 32 as a shaft and the inner peripheral surface of an inner ring and between the inner peripheral surface of the base 31 as a housing and the outer peripheral surface of an outer ring; a process for applying a predetermined pre-load to the bearing 10 after the assembling process. In the pre-load applying process, when a predetermined pre-load is applied to the bearing 10, there occurs at least one of shrinkage of the inner peripheral surface of the inner ring in the radial direction for shrink-fitting between the outer peripheral surface of the swivel base 32 and the inner peripheral surface of the inner ring and swelling of the outer peripheral surface of the outer ring in the radial direction for shrink fit between the inner peripheral surface of the base 31 and the outer peripheral surface of the outer ring. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、産業機械、ロボットの関節部や旋回機構部及び減速機構部、工作機械の回転テーブルや主軸旋回機構部、印刷機械のドラム等の回転機構部、ダイレクトモータ回転支持部、医療機器、半導体/液晶製造装置、光学及びオプトエロクトロニクス装置等の回転軸を支持する軸受装置及びその組立方法に関する。   The present invention includes, for example, industrial machines, robot joints, turning mechanisms and reduction mechanisms, rotary tables and spindle turning mechanisms for machine tools, rotating mechanisms such as drums for printing machines, direct motor rotation supports, medical The present invention relates to a bearing device for supporting a rotating shaft such as a device, a semiconductor / liquid crystal manufacturing device, an optical device, and an optoelectronic device, and an assembling method thereof.

通常、例えば、工作機械の回転テーブル、工作機械の主軸旋回部等の回転機構部や印刷機のドラム回転軸、あるいは、ロボットの関節や旋回機構部及び減速機構部やこれらの部位に回転を与えるダイレクトモータの回転支持部等には、図17〜図20に示すように、クロスローラ軸受100、4点接触玉軸受110、組合せアンギュラ玉軸受120、組合せ円すいころ軸受130等が使用されている(例えば、特許文献1参照)。   Usually, for example, a rotation mechanism part such as a rotary table of a machine tool, a spindle turning part of a machine tool, a drum rotary shaft of a printing machine, a robot joint, a turning mechanism part, a speed reduction mechanism part, and these parts are rotated. As shown in FIGS. 17 to 20, a cross roller bearing 100, a four-point contact ball bearing 110, a combined angular ball bearing 120, a combined tapered roller bearing 130, etc. are used for the rotation support portion of the direct motor ( For example, see Patent Document 1).

クロスローラ軸受100は、図17に示すように、内輪101と外輪102との間に円筒形の複数のころ103が転動自在に配設されており、4点接触玉軸受110は、図18に示すように、内輪111と外輪112との間に複数の玉113が転動自在に配設されている。これら軸受100,110は、一つの転がり軸受でラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受けられる。   As shown in FIG. 17, in the cross roller bearing 100, a plurality of cylindrical rollers 103 are rotatably arranged between an inner ring 101 and an outer ring 102, and the four-point contact ball bearing 110 is shown in FIG. As shown, a plurality of balls 113 are arranged between the inner ring 111 and the outer ring 112 so as to be freely rollable. These bearings 100 and 110 are a single rolling bearing and can receive a radial load, an axial load in both directions, and a moment load.

また、組合せアンギュラ玉軸受120は、図19に示すように、内輪121と外輪122との間に複数の玉123が転動自在に配設されたアンギュラ玉軸受124,124を2列に組合せたもので、同様に、組合せ円すいころ軸受130は、図20に示すように、内輪131と外輪132との間に複数の円すいころ133が転動自在に配置された円すいころ軸受134,134を内輪間座135及び外輪間座136を介して2列に組み合わせたものである。これら軸受120,130も、単列の軸受を2列組み合わせることで、ラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受ける。   Further, as shown in FIG. 19, the combined angular ball bearing 120 is a combination of angular ball bearings 124, 124 in which a plurality of balls 123 are rotatably arranged between an inner ring 121 and an outer ring 122 in two rows. Similarly, as shown in FIG. 20, the combination tapered roller bearing 130 includes tapered roller bearings 134 and 134 in which a plurality of tapered rollers 133 are rotatably disposed between an inner ring 131 and an outer ring 132. These are combined in two rows via a spacer 135 and an outer ring spacer 136. These bearings 120 and 130 also receive a radial load, an axial load in both directions, and a moment load by combining two single row bearings.

特許文献1に記載の玉軸受としては、軸方向のコンパクト化を図る目的で、軸方向の幅を小さくした幅狭のものが提案されている。   As a ball bearing described in Patent Document 1, a narrow bearing having a reduced axial width has been proposed for the purpose of reducing the axial size.

また、これらの軸受は、所定の予圧を付与して使用され、軸受内部のガタを無くすことにより、回転時の振動の防止、回転精度の維持向上、軸受のラジアル剛性・アキシャル剛性・モーメント剛性の増加等が図られている。   These bearings are used with a predetermined preload. By eliminating backlash inside the bearing, vibration during rotation can be prevented, maintenance of rotation accuracy can be improved, and radial rigidity, axial rigidity, and moment rigidity of the bearing can be reduced. Increases are being made.

例えば、背面組合せアンギュラ玉軸受120Aでは、図21に示すように、組合せ内輪121A,121Aの対向端面間のすきま−Δを調整し、軸に組込み後、軸受ナットや内輪押え等の部材で、内輪121A,121Aを軸方向に移動させ、上記のすきま−Δをなくす(対向端面同士を密着させて、−Δを0にする)。これにより、軸受内の弾性変形によって、背面組合せアンギュラ玉軸受120Aに予圧(所謂、定位置予圧)が付加される。   For example, in the rear combined angular contact ball bearing 120A, as shown in FIG. 21, the clearance -Δ between the opposed end faces of the combined inner rings 121A, 121A is adjusted and assembled into the shaft. 121A and 121A are moved in the axial direction to eliminate the above-mentioned clearance −Δ (the opposing end surfaces are brought into close contact with each other to make −Δ 0). Thus, a preload (so-called fixed position preload) is applied to the back combination angular contact ball bearing 120A by elastic deformation in the bearing.

さらに、これらの転がり軸受は、軸と内輪との嵌め合いやハウジングと外輪との嵌め合いをすきま嵌めやしまり嵌めとして、それぞれの部材に組み込まれている。   Furthermore, these rolling bearings are incorporated in the respective members by using a fit between the shaft and the inner ring or a fit between the housing and the outer ring as a clearance fit or a close fit.

特開2006−105385号公報JP 2006-105385 A

ところで、クロスローラ軸受100の場合は、転動体が円筒形のころ103で、且つ軌道溝101a,102aに対してころ103の転がり接触面が線接触しているので、トルクが大きく、しかも、軸やハウジングに組み込んだ時のわずかな変形により、線接触部分の接触状態が不均一となり、トルクむらが発生しやすい。   By the way, in the case of the cross roller bearing 100, since the rolling element is a cylindrical roller 103 and the rolling contact surface of the roller 103 is in line contact with the raceway grooves 101a and 102a, the torque is large, and the shaft Due to slight deformation when assembled in a housing, the contact state of the line contact portion becomes uneven, and torque unevenness is likely to occur.

また、4点接触玉軸受110では、転動体が玉113なので、純アキシャル荷重を受ける場合又はラジアル荷重よりアキシャル荷重が優勢な場合には、同寸法のクロスローラ軸受100よりトルクが小さい。一方、アキシャル荷重に対してラジアル荷重が優勢な場合、又は純ラジアル荷重を受ける場合には、各玉113は軌道溝111a,112aと4点で接触するため、玉113と軌道溝111a,112aとのスピン滑りが大きく、トルクが大きい。   Further, in the four-point contact ball bearing 110, since the rolling element is the ball 113, the torque is smaller than that of the cross roller bearing 100 of the same dimension when receiving a pure axial load or when the axial load is more dominant than the radial load. On the other hand, when the radial load is dominant with respect to the axial load, or when receiving a pure radial load, each ball 113 comes into contact with the raceway grooves 111a and 112a at four points, so the balls 113 and the raceway grooves 111a and 112a Spin slip is large and torque is large.

さらに、これら転がり軸受において、例えば、内輪がすきま嵌めで軸に取り付けられ、内輪が一方向のラジアル荷重を受けて回転すると、内輪と軸との間で円周方向に有害な滑り(クリープと称する)を生ずることがある。このクリープと呼ばれる軌道輪の滑り現象は、はめ合い面がすきま嵌めの場合、軌道輪が回転するにつれて荷重点が円周方向に移動し、軌道輪が軸やハウジングに対して円周方向に位置ずれを生じることである。   Furthermore, in these rolling bearings, for example, when the inner ring is attached to the shaft with a clearance fit and the inner ring rotates under a radial load in one direction, harmful slip in the circumferential direction between the inner ring and the shaft (referred to as creep). ) May occur. The slip phenomenon of the raceway called creep is that when the fitting surface is a clearance fit, the load point moves in the circumferential direction as the raceway rotates, and the raceway is positioned in the circumferential direction with respect to the shaft and housing. This is to cause a shift.

クリープが一度起こると、はめ合い面は著しく摩耗し、軸またはハウジングを損傷させることが多い。軸やハウジングの補修や交換は、軸受のみの交換よりも大掛りとなり機械の復旧に時間を要する。また、軸受内部に摩耗粉が侵入したりして、異常発熱や振動等の原因となる。   Once creep has occurred, the mating surfaces wear significantly and often damage the shaft or housing. Repair and replacement of the shaft and housing is much larger than replacement of the bearing alone, and it takes time to recover the machine. In addition, wear powder may enter the bearing and cause abnormal heat generation, vibration, and the like.

このクリープは、軸受をアキシャル方向に、軸受ナット等で締め付けただけでは防止できないことも多い。したがって、通常、軸受のはめ合いにおいては、荷重を受けて回転する軌道輪にしめしろを与えて、軸またはハウジングとしまり嵌めにて固定し、運転中のクリープを防止する。   This creep cannot often be prevented by simply tightening the bearing in the axial direction with a bearing nut or the like. Therefore, normally, in the fitting of the bearing, an interference is given to the bearing ring that rotates under load, and it is fixed to the shaft or the housing by an interference fit to prevent creep during operation.

また、しまり嵌めとする他の目的としては、回転精度の向上が挙げられる。工作機械の回転テーブルや主軸旋回機構部において、軸受と軸又はハウジング間のはめ合いがすきま嵌め、例えば、内輪回転で軸と内輪がすきま嵌めの場合、軸中心と内輪中心がずれ、軸が偏芯回転することで、旋盤加工では加工面の真円度のくずれや引き目不具合が生じたり、フライス加工では、加工面の形状くずれや粗さ悪化等の品位が低下する。印刷機の回転ドラムにおいては、上記の理由で回転精度が悪化すると印刷精度に影響し、カラー多重印刷の場合、色むらや文字のにじみ等の問題が発生する。   Moreover, the improvement of rotational accuracy is mentioned as the other objective made into an interference fit. In a rotary table or spindle turning mechanism of a machine tool, the fit between the bearing and the shaft or the housing is a clearance fit.For example, when the inner ring rotates and the shaft and the inner ring are a clearance fit, the center of the shaft and the center of the inner ring are shifted and the shaft is offset. By rotating the core, the lathe machining causes a roundness of the processed surface to be broken or a defect in the stitching, and the milling process deteriorates the quality of the processed surface, such as a shape loss or a deterioration in roughness. In the rotary drum of a printing press, if the rotational accuracy is deteriorated for the above reasons, the printing accuracy is affected. In the case of color multiplex printing, problems such as uneven color and bleeding of characters occur.

上記の理由から、軌道輪をしまり嵌めで組み込むことが多いが、しまり嵌めの場合、当然組み込む際にプレス等で圧入するか、あるいは焼き嵌め等が必要となる。上記用途では、軸受内径φ100〜φ300mm程度の比較的大型サイズの軸受が使用される場合が多く、しまり嵌めの場合、組込み作業が容易ではない。また、軸受を軸やハウジングから分解する際、しまり嵌めされた軌道輪に組み込み時とは逆方向の荷重がかかるように周辺部の構造設計をする必要もある。ダイレクト駆動モータの回転支持部用軸受では、ロータやステータが軸受の横に配置される構成も多く、分解方法も考慮した構造とする設計は難しい。   For the above reasons, the race ring is often assembled by tight fitting, but in the case of tight fitting, it is naturally necessary to press-fit with a press or the like, or shrink fit or the like when assembling. In the above applications, a relatively large bearing having a bearing inner diameter of φ100 to φ300 mm is often used, and in the case of tight fitting, the assembling work is not easy. In addition, when disassembling the bearing from the shaft or housing, it is necessary to design the structure of the peripheral portion so that a load in the opposite direction to that when assembled into the tightly fitted race is applied. There are many configurations in which the rotor and the stator are arranged beside the bearing in the rotation support portion bearing of the direct drive motor, and it is difficult to design the structure in consideration of the disassembly method.

特に、アンギュラ玉軸受124の場合、図22に示すように、単体では一方向の荷重しか負荷できない構造であり、逆方向の荷重を加えると、内外輪121,122の溝肩エッジ部と玉123とが接触し玉傷が発生したり、玉軸受124が分離して再使用ができなくなるので、組込み・分解の際には充分な配慮を要する。   In particular, in the case of the angular ball bearing 124, as shown in FIG. 22, it has a structure that can only apply a load in one direction as a single unit, and when a load in the opposite direction is applied, the groove shoulder edge portion of the inner and outer rings 121 and 122 and the ball 123 Contact with each other to cause ball damage, or the ball bearing 124 is separated and cannot be reused. Therefore, sufficient consideration is required when assembling and disassembling.

本発明は、上述した事情に鑑みて為されたものであり、その目的は、軸受の組込み性・分解性の向上や軸受の剛性維持・回転精度の向上と共に、クリープを防止することができる軸受装置及びその組立方法を提供することにある。   The present invention has been made in view of the above-described circumstances, and its purpose is to improve creepability as well as to improve the ease of assembly and disassembly of the bearing, to maintain the rigidity of the bearing and to improve rotational accuracy. It is to provide an apparatus and an assembly method thereof.

本発明の上記目的は、以下の構成によって達成される。
(1)軸と、ハウジングと、内輪が前記軸に外嵌されると共に、外輪が前記ハウジングに内嵌され、前記軸及び前記ハウジングに組み込み後に予圧が付加される転がり軸受と、を備える軸受装置であって、
前記転がり軸受は、前記内輪と前記外輪との間に配置される複数の玉を有し、
前記内輪の最大肉厚ti1、最小肉厚ti2、内輪内径d、有効肉厚ti=ti1−(ti1−ti2)/4、有効外径Dit=d+2tiとしたときの内輪有効肉厚比Yi=ti/Dit、
および、前記外輪の最大肉厚to1、最小肉厚to2、外輪外径Dt、有効肉厚to=to1−(to1−to2)/3、有効外径Dot=Dtとしたときの外輪有効肉厚比Yo=to/Dotを、
3%≦Yi、Yo≦5%とした玉軸受であり、
前記軸の外周面と前記内輪の内周面とは、前記組み込み後の玉軸受に予圧が付与される前の状態において、すきま嵌めとされ、前記組み込み後の玉軸受に予圧が付与された状態において、前記内輪の内周面の半径方向への収縮によってしまり嵌めとされることを特徴とする軸受装置。
(2)軸と、ハウジングと、内輪が前記軸に外嵌されると共に、外輪が前記ハウジングに内嵌され、前記軸及び前記ハウジングに組み込み後に予圧が付加される転がり軸受と、を備える軸受装置であって、
前記転がり軸受は、前記内輪と前記外輪との間に配置される複数の玉を有し、
前記内輪の最大肉厚ti1、最小肉厚ti2、内輪内径d、有効肉厚ti=ti1−(ti1−ti2)/4、有効外径Dit=d+2tiとしたときの内輪有効肉厚比Yi=ti/Dit、
および、前記外輪の最大肉厚to1、最小肉厚to2、外輪外径Dt、有効肉厚to=to1−(to1−to2)/3、有効外径Dot=Dtとしたときの外輪有効肉厚比Yo=to/Dotを、
3%≦Yi、Yo≦5%とした玉軸受であり、
前記ハウジングの内周面と前記外輪の外周面とは、前記組み込み後の玉軸受に予圧が付与される前の状態において、すきま嵌めとされ、前記組み込み後の玉軸受に予圧が付与された状態において、前記外輪の外周面の半径方向への膨張によってしまり嵌めとされることを特徴とする軸受装置。
(3)前記玉軸受は、軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)を、0.1<B/H<0.63とすることを特徴とする(1)又は(2)に記載の軸受装置。
The above object of the present invention is achieved by the following configurations.
(1) A bearing device comprising: a shaft, a housing, and an inner ring fitted onto the shaft, and an outer ring fitted inside the housing, and a rolling bearing to which preload is applied after being incorporated into the shaft and the housing. Because
The rolling bearing has a plurality of balls arranged between the inner ring and the outer ring,
The inner ring effective wall thickness ratio Yi = ti when the maximum inner wall thickness ti1, the minimum wall thickness ti2, the inner ring inner diameter d, the effective wall thickness ti = ti1- (ti1-ti2) / 4, and the effective outer diameter Dit = d + 2ti. / Dit,
The outer ring effective thickness ratio when the maximum thickness to1, the minimum thickness to2, the outer ring outer diameter Dt, the effective thickness to = to1- (to1-to2) / 3, and the effective outer diameter Dot = Dt of the outer ring. Yo = to / Dot,
3% ≦ Yi, Yo ≦ 5% ball bearing,
A state in which the outer peripheral surface of the shaft and the inner peripheral surface of the inner ring are clearance-fitted in a state before preload is applied to the ball bearing after the assembly, and the preload is applied to the ball bearing after the assembly The bearing device according to claim 1, wherein the inner ring has an interference fit by contraction in a radial direction.
(2) A bearing device comprising: a shaft, a housing, and an inner ring fitted onto the shaft, and an outer ring fitted inside the housing, and a rolling bearing to which preload is applied after being incorporated into the shaft and the housing. Because
The rolling bearing has a plurality of balls arranged between the inner ring and the outer ring,
The inner ring effective wall thickness ratio Yi = ti when the maximum inner wall thickness ti1, the minimum wall thickness ti2, the inner ring inner diameter d, the effective wall thickness ti = ti1- (ti1-ti2) / 4, and the effective outer diameter Dit = d + 2ti. / Dit,
The outer ring effective thickness ratio when the maximum thickness to1, the minimum thickness to2, the outer ring outer diameter Dt, the effective thickness to = to1- (to1-to2) / 3, and the effective outer diameter Dot = Dt. Yo = to / Dot,
3% ≦ Yi, Yo ≦ 5% ball bearing,
The inner peripheral surface of the housing and the outer peripheral surface of the outer ring are in a state in which a preload is applied to the ball bearing after the incorporation, and a preload is applied to the ball bearing after the assembly. The bearing device is characterized in that the outer ring has an interference fit by expansion in the radial direction.
(3) The ball bearing is characterized in that a cross-sectional dimension ratio (B / H) between an axial cross-sectional width B and a radial cross-sectional height H is 0.1 <B / H <0.63. The bearing device according to (1) or (2).

(4)軸と、ハウジングと、内輪が前記軸に外嵌されると共に、外輪が前記ハウジングに内嵌され、前記軸及び前記ハウジングに組込み後に予圧が付加される転がり軸受と、を備える軸受装置の組立方法であって、
前記軸の外周面と前記内輪の内周面との間、及び前記ハウジングの内周面と前記外輪の外周面との間の少なくとも一方をすきま嵌めとした状態で、前記軸及び前記ハウジングに前記転がり軸受を組み込む工程と、
該組み込み工程後、前記転がり軸受に所定の予圧を付加する工程と、を備え、
前記転がり軸受は、前記内輪と前記外輪との間に配置される複数の玉を有し、
前記内輪の最大肉厚ti1、最小肉厚ti2、内輪内径d、有効肉厚ti=ti1−(ti1−ti2)/4、有効外径Dit=d+2tiとしたときの内輪有効肉厚比Yi=ti/Dit、
および、前記外輪の最大肉厚to1、最小肉厚to2、外輪外径Dt、有効肉厚to=to1−(to1−to2)/3、有効外径Dot=Dtとしたときの外輪有効肉厚比Yo=to/Dotを、
3%≦Yi、Yo≦5%した玉軸受であり、
前記予圧付与工程は、前記玉軸受に前記所定の予圧を付与したとき、前記軸の外周面と前記内輪の内周面との間をしまり嵌めとする前記内輪の内周面の半径方向への収縮と、前記ハウジングの内周面と前記外輪の外周面との間をしまり嵌めとする前記外輪の外周面の半径方向への膨張の少なくとも一方を発生することを特徴とする軸受装置の組立方法。
(5)前記玉軸受は、軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)を、0.1<B/H<0.63とすることを特徴とする(4)に記載の軸受装置の組立方法。
(4) A bearing device including a shaft, a housing, and an inner ring fitted onto the shaft, and an outer ring fitted inside the housing, and a rolling bearing to which preload is applied after being assembled into the shaft and the housing. The assembly method of
In a state where at least one of the outer peripheral surface of the shaft and the inner peripheral surface of the inner ring and at least one of the inner peripheral surface of the housing and the outer peripheral surface of the outer ring is fitted with clearance, the shaft and the housing are Incorporating a rolling bearing;
A step of applying a predetermined preload to the rolling bearing after the assembling step,
The rolling bearing has a plurality of balls arranged between the inner ring and the outer ring,
The inner ring effective wall thickness ratio Yi = ti when the maximum inner wall thickness ti1, the minimum wall thickness ti2, the inner ring inner diameter d, the effective wall thickness ti = ti1- (ti1-ti2) / 4, and the effective outer diameter Dit = d + 2ti. / Dit,
The outer ring effective thickness ratio when the maximum thickness to1, the minimum thickness to2, the outer ring outer diameter Dt, the effective thickness to = to1- (to1-to2) / 3, and the effective outer diameter Dot = Dt of the outer ring. Yo = to / Dot,
3% ≦ Yi, Yo ≦ 5% ball bearing,
In the preload application step, when the predetermined preload is applied to the ball bearing, a radial fit of the inner peripheral surface of the inner ring that fits between the outer peripheral surface of the shaft and the inner peripheral surface of the inner ring is performed. A method for assembling a bearing device, characterized in that at least one of contraction and expansion in the radial direction of the outer peripheral surface of the outer ring, which is tightly fitted between the inner peripheral surface of the housing and the outer peripheral surface of the outer ring, is generated. .
(5) The ball bearing is characterized in that a cross-sectional dimension ratio (B / H) between an axial cross-sectional width B and a radial cross-sectional height H is 0.1 <B / H <0.63. A method for assembling the bearing device according to (4).

本発明の軸受装置によれば、軸の外周面と内輪の内周面とは、組み込み後の転がり軸受に予圧が付与される前の状態において、すきま嵌めとされ、組み込み後の転がり軸受に予圧が付与された状態において、内輪の内周面の半径方向への収縮によってしまり嵌めとされるので、内輪を軸に組み込む際に、プレスや焼き嵌め等を用いる必要もないので容易に組込みができ、また内輪を軸から分解する際も、軸受に負荷をかけることなくスムーズに行なえる。さらに、しまり嵌めで組み込む場合に比べて軸受周りの設計も容易となる。また、予圧付加後は内輪と軸との間はしまり嵌めとなるので、クリープの発生や回転精度の悪化も防止できる。   According to the bearing device of the present invention, the outer peripheral surface of the shaft and the inner peripheral surface of the inner ring are clearance-fitted in a state before preload is applied to the rolling bearing after assembly, and the preload is applied to the rolling bearing after assembly. When the inner ring is attached, the inner ring is contracted in the radial direction so that the inner ring can be easily fitted because there is no need to use a press or shrink fit when the inner ring is incorporated into the shaft. Also, when the inner ring is disassembled from the shaft, it can be carried out smoothly without applying a load to the bearing. Furthermore, the design around the bearing becomes easier as compared with the case of incorporating by tight fitting. Further, since the inner ring and the shaft are closely fitted after the preload is applied, the occurrence of creep and the deterioration of the rotation accuracy can be prevented.

本発明の他の軸受装置によれば、ハウジングの内周面と外輪の外周面とは、組み込み後の転がり軸受に予圧が付与される前の状態において、すきま嵌めとされ、組み込み後の転がり軸受に予圧が付与された状態において、外輪の外周面の半径方向への膨張によってしまり嵌めとされるので、外輪をハウジングに組み込む際に、プレスや焼き嵌め等を用いる必要もないので容易に組込みができ、また外輪をハウジングから分解する際も、軸受に負荷をかけることなくスムーズに行なえる。さらに、しまり嵌めで組み込む場合に比べて軸受周りの設計も容易となる。また、予圧付加後は外輪とハウジングとの間はしまり嵌めとなるので、クリープの発生や回転精度の悪化も防止できる。   According to another bearing device of the present invention, the inner peripheral surface of the housing and the outer peripheral surface of the outer ring are clearance-fitted in a state before the preload is applied to the rolling bearing after being assembled, and the rolling bearing after being assembled. In the state where preload is applied to the outer ring, the outer ring is radially fitted on the outer peripheral surface, so that it is not necessary to use a press or shrink fit when installing the outer ring into the housing. In addition, when disassembling the outer ring from the housing, it can be performed smoothly without applying a load to the bearing. Furthermore, the design around the bearing becomes easier as compared with the case of incorporating by tight fitting. In addition, since the outer ring and the housing are closely fitted after the preload is applied, the occurrence of creep and the deterioration of the rotation accuracy can be prevented.

また、本発明の軸受装置の組立方法によれば、軸の外周面と内輪の内周面との間、及びハウジングの内周面と外輪の外周面との間の少なくとも一方をすきま嵌めとした状態で、軸及びハウジングに転がり軸受を組み込む工程と、組み込み工程後、転がり軸受に所定の予圧を付加する工程と、を備え、予圧付与工程は、転がり軸受に所定の予圧を付与したとき、軸の外周面と内輪の内周面との間をしまり嵌めとする内輪の内周面の半径方向への収縮と、ハウジングの内周面と外輪の外周面との間をしまり嵌めとする外輪の外周面の半径方向への膨張の少なくとも一方を発生するので、軸やハウジングに軸受を組み込む際、プレスや焼き嵌め等を用いる必要もないので容易に組込みができ、また軸受を分解する際も、軸受に負荷をかけることなくスムーズに行なえる。さらに、しまり嵌めで組み込む場合に比べて軸受周りの設計も容易となる。また、予圧付加後は軸受と軸・ハウジング間はしめしろとなるので、クリープの発生や回転精度の悪化も防止できる。   Further, according to the assembly method of the bearing device of the present invention, a clearance fit is provided between at least one of the outer peripheral surface of the shaft and the inner peripheral surface of the inner ring and between the inner peripheral surface of the housing and the outer peripheral surface of the outer ring. A rolling bearing is incorporated into the shaft and the housing, and a step of applying a predetermined preload to the rolling bearing after the assembling step. The preloading step includes a step of applying the predetermined preload to the rolling bearing. Of the inner ring of the inner ring with a close fit between the outer peripheral face of the inner ring and the inner peripheral face of the inner ring, and the outer ring with a tight fit between the inner peripheral face of the housing and the outer peripheral face of the outer ring. Since at least one of the expansion of the outer peripheral surface in the radial direction occurs, it is not necessary to use a press or shrink fit when installing the bearing in the shaft or housing, so it can be easily installed, and when disassembling the bearing, Without applying load to the bearing It can be carried out in the Meuse. Furthermore, the design around the bearing becomes easier as compared with the case of incorporating by tight fitting. In addition, since the gap between the bearing and the shaft / housing becomes an interference after the preload is applied, the occurrence of creep and the deterioration of the rotation accuracy can be prevented.

即ち、軸の外周面と内輪の内周面との間、及びハウジングの内周面と外輪の外周面との間がすきま嵌めで組み込まれた場合、2列の内輪間及び外輪間で軸芯が半径方向にずれる可能性が高い。このような芯ずれが生じた状態で、転がり軸受が回転した場合、もみすり運動のような振れ回りが生じ、回転精度が悪化する。一方、本発明では、予圧後にしまり嵌めで組み込まれているので、内輪間及び外輪間で芯ずれがなくなり、回転精度を向上することができる。   That is, when the gap between the outer peripheral surface of the shaft and the inner peripheral surface of the inner ring and between the inner peripheral surface of the housing and the outer peripheral surface of the outer ring is assembled with a clearance fit, the shaft core is between the two inner rings and between the outer rings. Is likely to shift in the radial direction. When the rolling bearing rotates in a state where such misalignment has occurred, a whirling motion such as a hulling motion occurs, and the rotational accuracy deteriorates. On the other hand, in the present invention, since it is incorporated with a tight fit after preloading, there is no misalignment between the inner rings and between the outer rings, and the rotation accuracy can be improved.

以下、本発明の一実施形態に係る軸受装置及びその組立方法について、図1〜12を参照して詳細に説明する。
図1は、例えば、5軸加工マシニングセンタに使用される、本発明の軸受装置である工作機械の主軸旋回装置を示している。図中、符号30は工作機械の主軸旋回装置30であって、マシニングセンタの固定部に固定された基台(以下、「ハウジング」とも称す。)31と、この基台31に回転自在に支持された旋回台座(以下、「軸」とも称す。)32と、この旋回台座32に装着された主軸本体33と、を備え、ダイレクトモータ63による駆動方式を採用している。
Hereinafter, a bearing device and an assembly method thereof according to an embodiment of the present invention will be described in detail with reference to FIGS.
FIG. 1 shows a spindle turning device for a machine tool, which is a bearing device of the present invention, used for a 5-axis machining machining center, for example. In the figure, reference numeral 30 denotes a spindle turning device 30 of a machine tool, which is supported by a base 31 (hereinafter also referred to as “housing”) fixed to a fixed portion of a machining center and rotatably supported by the base 31. And a main spindle 33 mounted on the swivel base 32, and adopts a drive system using a direct motor 63.

基台31は、左端面中央から右側に凹設した旋回台座32を収容する収容凹部34を有し、この収容凹部34内には、旋回台座32が主軸旋回部用軸受(以下、「転がり軸受」とも称す。)10を介して回転自在に支持されている。   The base 31 has a housing recess 34 that houses a swivel base 32 that is recessed from the center of the left end surface to the right side. The swivel base 32 is a main shaft swivel bearing (hereinafter referred to as a “rolling bearing”). It is also referred to as "."

旋回台座32は、主軸旋回部用玉軸受10及びロータ62を保持する基部64と、この基部64にボルト締めされる主軸旋回部用玉軸受10の内輪押えを兼ねる円板部65とで構成されている。基部64は、中央部の右端から左方に重量を軽減するための凹部41を形成した突出部42を有し、円板部65は、基部64の左端面と対向し、左端に平坦な取付面36を有する。   The swivel base 32 includes a base portion 64 that holds the main shaft turning portion ball bearing 10 and the rotor 62, and a disc portion 65 that also serves as an inner ring presser of the main shaft turning portion ball bearing 10 that is bolted to the base portion 64. ing. The base 64 has a protruding portion 42 formed with a recess 41 for reducing the weight from the right end of the central portion to the left, and the disc portion 65 is opposed to the left end surface of the base 64 and is mounted flat on the left end. It has a surface 36.

主軸本体33は、エンドミルやドリル等の治工具(図示せず)を取付ける工具取付面51を下方として工具を回転させる回転駆動源を内装した主軸52と、旋回台座32の円板部65の取付面36にボルト締めされ、主軸52の側面に一体に形成された取付板部53とを有する。   The main spindle body 33 is provided with a main spindle 52 equipped with a rotational drive source for rotating a tool with a tool mounting surface 51 for attaching a tool (not shown) such as an end mill or a drill, and a disk portion 65 of the swivel base 32 attached. It has a mounting plate portion 53 that is bolted to the surface 36 and formed integrally with the side surface of the main shaft 52.

また、主軸旋回装置30は、基台31の収容凹部34の内周面に配設したステータ61と、これに対向する旋回台座32の突出部42の外周面に配設したロータ62とで構成されるダイレクトモータ63を備え、このダイレクトモータ63で旋回台座32を直接旋回駆動する。なお、ダイレクトモータ63は、図1に示すアウタロータ型に構成する場合に限らず、突出部42の凹部41内周面にロータを配設し、このロータの内側にステータを配設するインナロータ型に構成するようにしてもよい。   The main spindle turning device 30 includes a stator 61 disposed on the inner peripheral surface of the housing recess 34 of the base 31 and a rotor 62 disposed on the outer peripheral surface of the protruding portion 42 of the swivel base 32 facing the stator 61. The direct motor 63 is provided, and the direct motor 63 directly drives the turning base 32 to turn. The direct motor 63 is not limited to the outer rotor type shown in FIG. 1, and is an inner rotor type in which a rotor is provided on the inner peripheral surface of the concave portion 41 of the projecting portion 42 and a stator is provided inside the rotor. You may make it comprise.

主軸旋回部用玉軸受10は、幅狭のアンギュラ玉軸受14を2列背面組合せした組合せアンギュラ玉軸受である。各アンギュラ玉軸受14は、図1及び図2に示すように、旋回台座32に外嵌される内輪11と、基台31に内嵌される外輪12と、内輪11及び外輪12の各軌道面11a,12a間に接触角を持って転動自在に配置される複数の転動体である玉13と、を有する。なお、各アンギュラ玉軸受14には、保持器やシールが設けられても良い。   The main shaft turning part ball bearing 10 is a combination angular contact ball bearing in which two rows of narrow angular ball bearings 14 are combined in the back side. As shown in FIGS. 1 and 2, each angular ball bearing 14 includes an inner ring 11 that is externally fitted to the swivel base 32, an outer ring 12 that is internally fitted to the base 31, and each raceway surface of the inner ring 11 and the outer ring 12. A ball 13 that is a plurality of rolling elements that are arranged to freely roll with a contact angle between 11a and 12a. Each angular ball bearing 14 may be provided with a cage or a seal.

そして、各内輪11は、旋回台座32に形成された段部38に外嵌された状態で、内輪押えを兼ねる円板部65をボルト44で締め付けることにより、段部38に固定される。一方、各外輪12は、基台31の収容凹部34に形成した段部45に内嵌された状態で、基台31の左端面側に配設された外輪押え46をボルト47によってボルト締めすることにより、基台31に固定される。また、円板部65をボルト締結することで、各内輪11の対向端面間の軸方向すきまを0とし、軸受内の弾性変形によって玉軸受10に定位置予圧が付与される。この時、内輪11の対向端面間の軸方向すきまが0となった状態で、旋回台座32と円板部65との軸方向すきまΔ1(図1参照。)を確保できるようにするのが好ましい。内輪11への押付力のばらつきを抑え、適切な予圧を付加させるためには、Δ1は通常、0.01〜0.05mm程度が適切である。   Each inner ring 11 is fixed to the stepped portion 38 by tightening the disc portion 65 that also serves as an inner ring presser with a bolt 44 in a state of being fitted on the stepped portion 38 formed on the swivel base 32. On the other hand, each outer ring 12 is bolted to the outer ring presser 46 disposed on the left end surface side of the base 31 with a bolt 47 in a state in which the outer ring 12 is fitted in a step 45 formed in the housing recess 34 of the base 31. Thus, the base 31 is fixed. Further, by fastening the disc portion 65 with bolts, the axial clearance between the opposed end faces of the inner rings 11 is set to 0, and a fixed position preload is applied to the ball bearing 10 by elastic deformation in the bearing. At this time, it is preferable to ensure the axial clearance Δ1 (see FIG. 1) between the swivel base 32 and the disk portion 65 in a state where the axial clearance between the opposed end surfaces of the inner ring 11 becomes zero. . In order to suppress variation in the pressing force on the inner ring 11 and to add an appropriate preload, Δ1 is usually about 0.01 to 0.05 mm.

各幅狭のアンギュラ玉軸受14は、軸方向の省スペース化を図るため、軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)を(B/H)<0.63としている。なお、B/Hは理論的にはB/H>0であるが、現実的には、使用する玉や保持器、シールの設計、選定等と加味すると、B/H>0.10、好ましくはB/H>0.20、より好ましくはB/H>0.30が望ましい。   Each narrow angular ball bearing 14 has a cross section of an axial cross section width B and a radial cross section height H (= (outer ring outer diameter D−inner ring inner diameter d) / 2) in order to save space in the axial direction. The dimension ratio (B / H) is set to (B / H) <0.63. B / H is theoretically B / H> 0, but in reality, B / H> 0.10, preferably in consideration of the design, selection, etc. of balls, cages, and seals to be used. B / H> 0.20, more preferably B / H> 0.30.

また、国際標準化機構(ISO)で決められている標準玉軸受の場合、B/Hが1.0前後のものが多くを占める。したがって、B/H<0.5に設定すれば標準玉軸受約1列分の幅方向スペースで2列の幅狭玉軸受を配設させることができ、省スペース化が図られる。また、アンギュラ玉軸受の場合、1列では一方向の軸方向荷重しか受けられず、また、モーメント荷重を受けることはできないが、2列以上組み合わせることで、両方向の軸方向荷重やモーメント荷重の負荷が可能となる。また予圧を付加することもできるので、省スペース化と共にラジアル剛性やアキシャル剛性及びモーメント剛性なども大きくすることができる。また、B/H<0.25に設定すれば、4列の幅狭玉軸受を配設させることができ、さらに剛性の向上が可能である。   Further, in the case of standard ball bearings determined by the International Organization for Standardization (ISO), those with a B / H of around 1.0 account for the majority. Therefore, if B / H <0.5 is set, two rows of narrow ball bearings can be arranged in a space in the width direction of about one row of standard ball bearings, thereby saving space. In the case of angular contact ball bearings, only one axial load can be received in one row, and moment load cannot be received. However, by combining two or more rows, both axial load and moment load can be applied. Is possible. Further, since preload can be added, it is possible to increase the radial rigidity, the axial rigidity, the moment rigidity and the like as well as space saving. If B / H <0.25, four rows of narrow ball bearings can be disposed, and the rigidity can be further improved.

ここで、図5及び図6はそれぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ38.1mm,軸受外径:φ47.625mm,軸受幅:4.762mm,前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合(即ち、(B/H)の値を変化させた場合)の内外輪リングの半径方向の変形特性(図3参照:内輪を例示)及び半径方向の断面2次モーメントI(図4参照:I=bh/12で計算)を比較した結果を示している。 Here, FIG. 5 and FIG. 6 are each a standard thin ball bearing (bearing inner diameter: φ38.1 mm, bearing outer diameter: φ47.625 mm, bearing width: 4.762 mm, cross-sectional dimension ratio (B / H) = 1) as a reference, the radius of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width (that is, when the value of (B / H) is changed) direction of deformation characteristics (see Figure 3: the inner ring of illustration) and radial cross-sectional secondary moment I: shows the result of comparison (see FIG. 4 calculated as I = bh 3/12).

また、図7及び図8についてもそれぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ63.5mm,軸受外径:φ76.2mm,軸受幅:6.35mm,前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合(即ち、(B/H)の値を変化させた場合)の内外輪リングの半径方向の変形特性及び半径方向の断面2次モーメントIを比較した結果を示している。   7 and 8 are also used as standard thin ball bearings (bearing inner diameter: φ63.5 mm, bearing outer diameter: φ76.2 mm, bearing width: 6.35 mm, cross-sectional dimension ratio (B / H) = 1) as a reference, the radius of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width (that is, when the value of (B / H) is changed) The result of having compared the deformation characteristic of a direction and the cross-sectional secondary moment I of the radial direction is shown.

いずれの軸受も(B/H)=0.63未満で、剛性の増加率勾配の変化が顕著に出ている。すなわち、断面2次モーメントIの増加は顕著になり、半径方向の内外輪リングの変形量の減少は飽和状態となる。これにより、従来の極薄肉軸受で問題となる内外輪製作時の旋盤加工や研磨加工時の加工力による軸受変形を防止することができ、真円度や偏肉等の軸受精度を向上させることができる。   In any of the bearings, (B / H) = 0.63, and the change in the rigidity increase rate gradient is noticeable. That is, the increase in the secondary moment I of the cross section becomes significant, and the decrease in the deformation amount of the inner and outer ring in the radial direction becomes saturated. This can prevent bearing deformation due to lathe processing and grinding processing forces when manufacturing inner and outer rings, which is a problem with conventional ultra-thin bearings, and improve bearing accuracy such as roundness and uneven thickness. Can do.

また、軸32やハウジング31に組み込んだ場合(特に、軸32やハウジング31とすきま嵌合で組み込んだ場合)、円板部65や外輪押え46等で軸受10を固定した時の内外輪11,12の変形(特に真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転精度不良、あるいは、発熱増大、摩耗や焼付き等の不具合を防止することができる。   Further, when the bearing 10 is fixed to the shaft 32 or the housing 31 (particularly when it is assembled by clearance fitting with the shaft 32 or the housing 31), the inner and outer rings 11, 12 deformation (especially deterioration of roundness) can be suppressed, and torque defects and rotational accuracy defects caused by deformation, or problems such as increased heat generation, wear and seizure can be prevented.

さらに、幅寸法が従来の標準単列玉軸受の約半分となることで、玉径も従来の玉軸受の半分程度となるが、逆に1列あたりの玉数が増加し、軸受剛性は従来の玉軸受に対して増加する。   Furthermore, when the width dimension is about half that of the conventional standard single-row ball bearing, the ball diameter is also about half that of the conventional ball bearing. Increased against ball bearings.

また、国際標準化機構(ISO)で決められている寸法系列が18(例えば、6824)、19(例えば、6936)、10(例えば、7020A)、02(例えば、7240C)、03(例えば、7360A)の標準玉軸受では、軸受内径寸法がφ5mm〜φ500mmにおいては、断面寸法比(B/H)はB/H=0.63〜1.17となっているが、本実施形態のアンギュラ玉軸受14は、軸方向に幅狭とした、上述の断面寸法比に該当しないものとなる。   The dimension series determined by the International Organization for Standardization (ISO) is 18 (for example, 6824), 19 (for example, 6936), 10 (for example, 7020A), 02 (for example, 7240C), 03 (for example, 7360A). In the standard ball bearing, when the inner diameter of the bearing is φ5 mm to φ500 mm, the cross-sectional dimension ratio (B / H) is B / H = 0.63 to 1.17. Is narrow in the axial direction and does not correspond to the above-mentioned cross-sectional dimension ratio.

ここで、本実施形態では、上述したように、円板部65をボルト締結することで、軸受内の弾性変形によって玉軸受10に定位置予圧が付与されるが、転がり軸受10に予圧が付与される前の状態において、旋回台座32の外周面と内輪11の内周面との間、及び、基台31の内周面と外輪12の外周面との間の各嵌め合いは、すきま嵌めとされている。そして、転がり軸受10に予圧が付与された状態において、内輪11の内周面の半径方向への収縮、外輪12の外周面の半径方向への膨張によって、各嵌め合いはしまり嵌めとなる。   Here, in this embodiment, as described above, by fixing the disc portion 65 with bolts, a fixed position preload is applied to the ball bearing 10 by elastic deformation in the bearing, but a preload is applied to the rolling bearing 10. In the state before being performed, each fit between the outer peripheral surface of the swivel base 32 and the inner peripheral surface of the inner ring 11 and between the inner peripheral surface of the base 31 and the outer peripheral surface of the outer ring 12 is a clearance fit. It is said that. Then, in a state in which a preload is applied to the rolling bearing 10, each fit is a tight fit due to contraction of the inner peripheral surface of the inner ring 11 in the radial direction and expansion of the outer peripheral surface of the outer ring 12 in the radial direction.

具体的に、転がり軸受10の旋回台座32及び基台31への組立方法について説明すると、まず、旋回台座32の段部38に2列のアンギュラ玉軸受14を背面組合せの状態で挿入する。この状態で、旋回台座32の外周面と内輪11の内周面との間の嵌め合いは、すきま嵌めとされている。なお、外輪押え46は、一方(図1の左側)のアンギュラ玉軸受14の外輪12に嵌めておく。   Specifically, a method for assembling the rolling bearing 10 to the turning pedestal 32 and the base 31 will be described. First, two rows of angular ball bearings 14 are inserted into the stepped portion 38 of the turning pedestal 32 in a combined state of the back surface. In this state, the fit between the outer peripheral surface of the swivel base 32 and the inner peripheral surface of the inner ring 11 is a clearance fit. The outer ring presser 46 is fitted to the outer ring 12 of one of the angular ball bearings 14 (left side in FIG. 1).

次に、内輪押えを兼ねた円板部65を軸である旋回台座32に組み付け後、ボルト44により、軸受に予圧が付加されない程度に、円板部65を旋回台座32に軽く仮締めする。軽く仮締めする事で、2つのアンギュラ玉軸受14は組合せ軸受となり、図22(b)に示すような逆方向の荷重が負荷しなくなる。また、組合せアンギュラ玉軸受10をハウジングである基台31の収容凹部34の端部穴に挿入する。基台31の内周面と外輪12の外周面との間の嵌め合いもすきま嵌めとされている。   Next, after assembling the disc portion 65 that also serves as an inner ring presser to the turning pedestal 32 that is the shaft, the disc portion 65 is lightly temporarily fastened to the turning pedestal 32 with bolts 44 so that no preload is applied to the bearing. By lightly tightening temporarily, the two angular ball bearings 14 become a combination bearing, and a load in the reverse direction as shown in FIG. Moreover, the combination angular contact ball bearing 10 is inserted into the end hole of the receiving recess 34 of the base 31 which is a housing. The fit between the inner peripheral surface of the base 31 and the outer peripheral surface of the outer ring 12 is also a clearance fit.

そして、円板部65のボルト44を適正なトルクで締め付け、内輪11が固定されると、初めて設定予圧が組合せアンギュラ玉軸受10に付与される。その後、外輪押え46のボルト47を、適正トルクで締め付ける。   Then, when the bolt 44 of the disc portion 65 is tightened with an appropriate torque and the inner ring 11 is fixed, the set preload is applied to the combined angular ball bearing 10 for the first time. Thereafter, the bolt 47 of the outer ring presser 46 is tightened with an appropriate torque.

この予圧が付与された状態で、内輪11の内周面が半径方向に収縮し、外輪12の外周面が半径方向に膨張するため、旋回台座32の外周面と内輪11の内周面との間、及び、基台31の内周面と外輪12の外周面との間の各嵌め合いがしまり嵌めとなる。これにより、組み込み前にあったすきまがなくなり、クリープや回転振動等の不具合を防止することができる。   With the preload applied, the inner peripheral surface of the inner ring 11 contracts in the radial direction, and the outer peripheral surface of the outer ring 12 expands in the radial direction, so that the outer peripheral surface of the swivel base 32 and the inner peripheral surface of the inner ring 11 Each fit between the inner peripheral surface of the base 31 and the outer peripheral surface of the outer ring 12 is a tight fit. As a result, there is no gap before assembly, and problems such as creep and rotational vibration can be prevented.

なお、予圧が付与される前の状態での、旋回台座32と内輪11、及び基台31と外輪12との各嵌め合いすきまは、設定予圧荷重、予圧荷重と内輪及び外輪の半径方向の膨張収縮量との関係、予圧付与後の嵌め合いすきま(しめしろ)等を考慮して設定される。また、内輪11及び外輪12の半径方向の膨張収縮により、軸受内部のラジアルすきま量も変化することから、予圧すきまは、設定予圧荷重に加え、このラジアルすきまの変化量を考慮して設定される。   In addition, in the state before the preload is applied, the fitting clearances between the turning pedestal 32 and the inner ring 11 and the base 31 and the outer ring 12 are the set preload load, the preload load, and the radial expansion of the inner ring and the outer ring. It is set in consideration of the relationship with the amount of contraction, the fitting clearance (interference) after applying the preload. Further, since the radial clearance amount in the bearing also changes due to the expansion and contraction of the inner ring 11 and the outer ring 12 in the radial direction, the preload clearance is set in consideration of the change amount of the radial clearance in addition to the set preload load. .

以下、表1に示す本発明品A(幅狭品)の軸受10を用いた場合の、本実施形態の嵌め合いすきま、予圧すきまの設定について説明する。表1は、本発明品Aと従来品の軸受の詳細寸法の比較を示す。   Hereinafter, the setting of the fitting clearance and the preload clearance in this embodiment when the bearing 10 of the product A (narrow product) shown in Table 1 is used will be described. Table 1 shows a comparison of the detailed dimensions of the bearings of the present invention product A and the conventional product.

Figure 2010106867
Figure 2010106867

また、図9は、本発明品Aの軸受の定位置予圧における予圧荷重と外輪の半径方向の直径膨張量及び内輪の半径方向の直径収縮量の関係を示し、図10は、本発明品Aと従来品との外輪の半径方向の直径膨張量の比較を示す。図10により、本発明品Aは、従来品に比べ、軌道輪の半径方向の膨張収縮量が多いのが分かる。   FIG. 9 shows the relationship between the preload applied in the fixed position preload of the bearing of the product A of the present invention, the diameter expansion amount in the radial direction of the outer ring and the diameter shrinkage amount of the inner ring in the radial direction, and FIG. The comparison of the radial expansion amount of the outer ring with the conventional product is shown. FIG. 10 shows that the product A of the present invention has a larger amount of expansion and contraction in the radial direction of the races than the conventional product.

本実施形態では、設定予圧荷重を15000Nとしたので、軸32及びハウジング31と軸受10とのはめ合いを、図9により、以下のように設定した。
軸32と内輪11との初期はめ合い :0.024mm未満のすきま
ハウジング31と外輪12との初期はめ合い:0.026mm未満のすきま
In this embodiment, since the set preload is set to 15000 N, the fit between the shaft 32 and the housing 31 and the bearing 10 is set as follows with reference to FIG.
Initial fit between shaft 32 and inner ring 11: clearance less than 0.024 mm Initial fit between housing 31 and outer ring 12: clearance less than 0.026 mm

本条件にすれば、各すきまがほぼ最大値(軸と内輪:≒0.024mm、ハウジングと外輪:≒0.026mm)になっても、組込み予圧付加後の嵌め合いすきまは、略0mm(ややしまり嵌め)となり、当初あったすきまがほぼなくなり、クリープ等の不具合を防止することができる。   Under this condition, even if each clearance is almost the maximum value (shaft and inner ring: ≈ 0.024 mm, housing and outer ring: ≈ 0.026 mm), the fitting clearance after the built-in preload is approximately 0 mm (somewhat It is possible to prevent defects such as creep and the like.

また、軌道輪の半径方向の膨張収縮による剛性低下(予圧減少)をより防止したい場合は、必要に応じて、例えば、軸32又はハウジング31と軸受10間の嵌め合いすきまを、それぞれ、軌道輪の半径方向の膨張収縮量の約1/2程度以下(本実施形態では、軸32と内輪11間のすきま:0.001〜0.010mm、或いは、ハウジング31と外輪12間のすきま:0.001〜0.015mm)程度に設定するとよい。このように設定しておけば、軸受の膨張収縮量を抑制し、かつ予圧付加後は、適度なしまり嵌めとなるので、剛性を確保できる。また、クリープや回転時の振動をより防止することができる。   Further, when it is desired to further prevent a decrease in rigidity (a decrease in preload) due to the expansion and contraction of the raceway in the radial direction, for example, if necessary, a fitting clearance between the shaft 32 or the housing 31 and the bearing 10 may be provided. (In this embodiment, the clearance between the shaft 32 and the inner ring 11 is 0.001 to 0.010 mm, or the clearance between the housing 31 and the outer ring 12 is 0.00. It may be set to about 001 to 0.015 mm). If set in this way, the amount of expansion and contraction of the bearing is suppressed, and after the preload is applied, an appropriate interference fit is obtained, so that rigidity can be ensured. Further, creep and vibration during rotation can be further prevented.

図11は、本発明品Aにおいて、初期設定想定予圧を15000Nとし、内輪11と軸32との嵌め合い及び外輪12とハウジング31とのはめ合いをそれぞれすきま0.005mmとした場合(嵌め合い条件A)と、予圧付加後も内外輪11,12と軸32・ハウジング31間にすきまが残っている場合(嵌め合い条件B)の、両者のモーメント剛性の比較結果を示す。嵌め合い条件Aでは、内外輪11,12の膨張収縮量が0.005mmに規制されるので、モーメント剛性が確保できる。   FIG. 11 shows a case in which the initial setting assumed preload is 15000 N and the fitting between the inner ring 11 and the shaft 32 and the fitting between the outer ring 12 and the housing 31 are respectively set to a clearance of 0.005 mm. A) shows a comparison result of the moment stiffness between the inner and outer rings 11, 12 and the shaft 32 / housing 31 after the preload is applied (fitting condition B). In the fitting condition A, the expansion / contraction amount of the inner and outer rings 11 and 12 is restricted to 0.005 mm, so that moment rigidity can be ensured.

また、予圧すきまは、内外輪11,12の膨張収縮によって減少する予圧量分だけ、予め大きく設定しても良い。即ち、外輪外径が膨張すると、ほぼ同値だけ外輪軌道溝部も半径方向に膨張する。同様に内輪内径が収縮すると、ほぼ同値だけ内輪軌道溝部も半径方向に収縮する。この結果、軌道溝の膨張収縮分だけ軸受内部ラジアルすきまが増加することになり、予圧を付加するために必要な予圧すきまも少なくなる。つまり、予圧荷重は膨張収縮がないとした理論値に対して減少する。このため、例えば、初期設定の想定予圧による内外輪11,12の半径方向の膨張収縮による軸受内部ラジアルすきま増加量の合計がΔr1の場合、以下に示す式(1)により、予圧すきまをΔa1だけ多くしておく。   Further, the preload clearance may be set to be large in advance by an amount corresponding to the preload that decreases due to the expansion and contraction of the inner and outer rings 11 and 12. That is, when the outer diameter of the outer ring expands, the outer ring raceway groove also expands in the radial direction by substantially the same value. Similarly, when the inner ring inner diameter contracts, the inner ring raceway groove also contracts in the radial direction by substantially the same value. As a result, the radial clearance inside the bearing is increased by the amount of expansion and contraction of the raceway groove, and the preload clearance necessary for applying the preload is also reduced. That is, the preload is reduced with respect to the theoretical value where there is no expansion / contraction. For this reason, for example, when the total increase amount of the radial clearance in the bearing due to the expansion and contraction in the radial direction of the inner and outer rings 11 and 12 by the assumed preload of the initial setting is Δr1, the preload clearance is set to Δa1 by the following equation (1). Keep a lot.

2列組み合わせアンギュラ玉軸受10の半径方向すきまと軸方向の予圧すきまの変化量の関係式は、以下の式で表わされる。
Δa1≒Δr1×cotα ・・・・(1)
ここで、
Δa1:軸方向の予圧すきま変化量(mm)
Δr1:半径方向の内部ラジアルすきま変化量(mm)
(≒内外輪の膨張収縮による内部ラジアルすきま変化量)
α :軸受接触角(°)
The relational expression of the amount of change between the radial clearance of the two-row combination angular ball bearing 10 and the axial preload clearance is expressed by the following equation.
Δa1≈Δr1 × cot α (1)
here,
Δa1: Change in axial preload clearance (mm)
Δr1: Change in radial radial clearance (mm)
(≒ Internal radial clearance change due to expansion and contraction of inner and outer rings)
α: Bearing contact angle (°)

また、補正後の初期設定予圧すきまΔa´(mm)は、下記条件において計算される。
(計算条件)
必要予圧荷重:15000N(理論予圧すきま:Δa=−0.038mmとする)
軸と内輪の初期はめ合いすきま :0.005mm設定
ハウジングと外輪の初期はめ合いすきま:0.005mm設定
Moreover, the initially set preload clearance Δa ′ (mm) after correction is calculated under the following conditions.
(Calculation condition)
Necessary preload load: 15000 N (theoretical preload clearance: Δa = −0.038 mm)
Initial fitting clearance between shaft and inner ring: 0.005 mm setting Initial fitting clearance between housing and outer ring: 0.005 mm setting

上記の条件の場合、予圧荷重によって、内外輪11,12の総膨張収縮量は、0.010mmになる。つまり、0.010mmの膨張収縮の時点で、しまり嵌めとなりそれ以上変形しなくなる。なお、軸32・ハウジング31に挿入しない条件では、内外輪11,12の総膨張収縮量は、内輪側:0.025mm+外輪側:0.027mm=0.052mmとなってしまう。   In the case of the above conditions, the total amount of expansion and contraction of the inner and outer rings 11 and 12 is 0.010 mm due to the preload. That is, at the time of expansion and contraction of 0.010 mm, it becomes an interference fit and no further deformation occurs. Under the condition that the shaft 32 and the housing 31 are not inserted, the total expansion and contraction amount of the inner and outer rings 11 and 12 is 0.025 mm + 0.027 mm = 0.052 mm on the inner ring side + 0.027 mm.

従って、予圧すきまの補正分(Δa1)は、
Δa1=Δr1×cotα=0.010×cot35°=0.0143mm
となり、以上より、初期設定予圧すきまは、
Δa´(−0.0523)=Δa(−0.038)+Δa1(−0.0143)(mm)となる。
以上の設定によって、軸受組込み後、想定した必要予圧荷重(15000N)が確保でき、剛性低下を防止することができる。
Therefore, the correction amount (Δa1) of the preload clearance is
Δa1 = Δr1 × cot α = 0.010 × cot 35 ° = 0.0143 mm
From the above, the initial setting preload clearance is
Δa ′ (− 0.0523) = Δa (−0.038) + Δa1 (−0.0143) (mm).
With the above settings, it is possible to secure an assumed required preload (15000 N) after the bearing is assembled, and to prevent a decrease in rigidity.

以上説明したように、本実施形態の主軸旋回装置30では、軸である旋回台座32の外周面と内輪11の内周面とは、組み込み後の主軸旋回部用軸受10に予圧が付与される前の状態において、すきま嵌めとされ、組み込み後の軸受10に予圧が付与された状態において、内輪11の内周面の半径方向への収縮によってしまり嵌めとされるので、内輪11を旋回台座32に組み込む際に、プレスや焼き嵌め等を用いる必要もないので容易に組込みができ、また内輪11を旋回台座32から分解する際も、軸受10に負荷をかけることなくスムーズに行なえる。さらに、しまり嵌めで組み込む場合に比べて軸受周りの設計も容易となる。また、予圧付加後は内輪11と旋回台座32との間はしまり嵌めとなるので、クリープの発生や回転精度の悪化も防止できる。   As described above, in the spindle turning device 30 of the present embodiment, the outer peripheral surface of the turning pedestal 32 that is the shaft and the inner peripheral surface of the inner ring 11 are preloaded on the spindle turning portion bearing 10 after being assembled. In the previous state, the clearance is fitted, and in the state where the preload is applied to the assembled bearing 10, the inner ring 11 is tightly fitted by contraction in the radial direction of the inner peripheral surface. Since it is not necessary to use a press or shrink fit when installing in the bearing, it can be easily assembled. Also, when the inner ring 11 is disassembled from the swivel base 32, the bearing 10 can be smoothly moved without applying a load. Furthermore, the design around the bearing becomes easier as compared with the case of incorporating by tight fitting. In addition, since the inner ring 11 and the turning pedestal 32 are closely fitted after the preload is applied, the occurrence of creep and the deterioration of rotational accuracy can be prevented.

また、本実施形態の主軸旋回装置30では、ハウジングである基台31の内周面と外輪12の外周面とは、組み込み後の主軸旋回部用軸受10に予圧が付与される前の状態において、すきま嵌めとされ、組み込み後の軸受10に予圧が付与された状態において、外輪12の外周面の半径方向への膨張によってしまり嵌めとされるので、外輪12を基台31に組み込む際に、プレスや焼き嵌め等を用いる必要もないので容易に組込みができ、また外輪12を基台31から分解する際も、軸受10に負荷をかけることなくスムーズに行なえる。さらに、しまり嵌めで組み込む場合に比べて軸受周りの設計も容易となる。また、予圧付加後は外輪12と基台31との間はしまり嵌めとなるので、クリープの発生や回転精度の悪化も防止できる。   In the main spindle turning device 30 of the present embodiment, the inner peripheral surface of the base 31 that is a housing and the outer peripheral surface of the outer ring 12 are in a state before preload is applied to the main spindle turning portion bearing 10 after being assembled. When the outer ring 12 is assembled into the base 31, since it is a clearance fit, and in the state where the preload is applied to the bearing 10 after incorporation, the outer ring 12 is tightly fitted by radial expansion. Since there is no need to use a press or shrink fit, it can be easily assembled, and when the outer ring 12 is disassembled from the base 31, it can be carried out smoothly without applying a load to the bearing 10. Furthermore, the design around the bearing becomes easier as compared with the case of incorporating by tight fitting. Further, since the outer ring 12 and the base 31 are closely fitted after the preload is applied, the occurrence of creep and the deterioration of the rotation accuracy can be prevented.

また、本実施形態の主軸旋回装置30の組立方法によれば、軸である旋回台座32の外周面と内輪11の外周面との間、及びハウジングである基台31の内周面と外輪12の外周面との間の少なくとも一方をすきま嵌めとした状態で、旋回台座32及び基台31に軸受10を組み込む工程と、組み込み工程後、軸受10に所定の予圧を付加する工程と、を備え、予圧付与工程は、軸受10に所定の予圧を付与したとき、旋回台座32の外周面と内輪11の内周面との間をしまり嵌めとする内輪11の内周面の半径方向への収縮と、基台31の内周面と外輪12の外周面との間をしまり嵌めとする外輪12の外周面の半径方向への膨張の少なくとも一方を発生するので、旋回台座32や基台31に軸受10を組み込む際、プレスや焼き嵌め等を用いる必要もないので容易に組込みができ、また軸受10を分解する際も、軸受10に負荷をかけることなくスムーズに行なえる。さらに、しまり嵌めで組み込む場合に比べて軸受周りの設計も容易となる。また、予圧付加後は軸受10と旋回台座32・基台31間はしまり嵌めとなるので、クリープの発生や回転精度の悪化も防止できる。   Further, according to the method of assembling the main spindle turning device 30 of the present embodiment, the inner peripheral surface of the base 31 that is the housing and the outer ring 12 and the outer peripheral surface of the turning base 32 that is the shaft and the outer peripheral surface of the inner ring 11. A step of incorporating the bearing 10 into the swivel base 32 and the base 31 with a clearance fit between at least one of the outer peripheral surface and a step of applying a predetermined preload to the bearing 10 after the assembling step. In the preload applying step, when a predetermined preload is applied to the bearing 10, the inner peripheral surface of the inner ring 11 is contracted in the radial direction with a tight fit between the outer peripheral surface of the swivel base 32 and the inner peripheral surface of the inner ring 11. And at least one of the radial expansion of the outer peripheral surface of the outer ring 12 that fits tightly between the inner peripheral surface of the base 31 and the outer peripheral surface of the outer ring 12, the swivel base 32 and the base 31 When installing the bearing 10, press or shrink fit There is no need to have easily built, also when disassembling the bearing 10, performed smoothly without burdening the bearing 10. Furthermore, the design around the bearing becomes easier as compared with the case of incorporating by tight fitting. Further, after the preload is applied, the bearing 10 and the swivel pedestal 32 / base 31 are tightly fitted, so that the occurrence of creep and the deterioration of the rotation accuracy can be prevented.

回転精度の悪化防止の効果の一つは、以下の理由によるものである。
即ち、軸(旋回台座)32の外周面と内輪11の内周面との間、及びハウジング(基台)31の内周面と外輪12の外周面との間がすきま嵌めで組み込まれた場合、図12(a)に示すように、2列の内輪11,11間及び外輪12,12間で軸芯が半径方向にずれる可能性が高い。このような芯ずれが生じた状態で、転がり軸受が回転した場合、もみすり運動のような振れ回りが生じ、回転精度が悪化する。一方、本発明では、予圧後にしまり嵌めで組み込まれているので、図12(b)のように、内輪11,11間及び外輪12,12間で芯ずれがなくなり、回転精度を向上することができる。
One of the effects of preventing the deterioration of rotational accuracy is due to the following reason.
That is, when the space between the outer peripheral surface of the shaft (swivel pedestal) 32 and the inner peripheral surface of the inner ring 11 and the inner peripheral surface of the housing (base) 31 and the outer peripheral surface of the outer ring 12 are assembled with a clearance fit. As shown in FIG. 12 (a), there is a high possibility that the axis is displaced in the radial direction between the two rows of inner rings 11, 11 and between the outer rings 12, 12. When the rolling bearing rotates in a state where such misalignment has occurred, a whirling motion such as a hulling motion occurs, and the rotational accuracy deteriorates. On the other hand, in the present invention, since it is incorporated with a tight fit after preloading, there is no misalignment between the inner rings 11 and 11 and between the outer rings 12 and 12, as shown in FIG. it can.

さらに他の効果として、軸受予圧付加時に外輪12の外周面が膨張、あるいは内輪11の内周面が収縮するので、設計上の理論予圧荷重(内外輪11,12の軌道溝と玉13間の弾性接触変形より計算される)が軸受10に付加されず、理論上の剛性が確保できなくなる。本実施形態のように、嵌めあいを適正値にすることにより、内外輪11,12の膨張収縮を最小限に抑えることができ、予圧荷重の低下による剛性低下も最小限に抑制することが可能となる。   As another effect, the outer peripheral surface of the outer ring 12 expands or the inner peripheral surface of the inner ring 11 contracts when bearing preload is applied, so that the theoretical theoretical preload load (between the raceway grooves of the inner and outer rings 11 and 12 and the balls 13 is increased). (Calculated from elastic contact deformation) is not added to the bearing 10, and theoretical rigidity cannot be secured. By setting the fit to an appropriate value as in this embodiment, the expansion and contraction of the inner and outer rings 11 and 12 can be minimized, and the decrease in rigidity due to a decrease in the preload can be minimized. It becomes.

特に、本実施形態では、断面寸法比を0.1<B/H<0.63とした幅狭のアンギュラ玉軸受14が用いられているので、内外輪11,12の軸方向断面肉厚が薄く、予圧による内外輪11,12の膨張収縮変形も大きくなるので、その効果が大きい。つまり、標準寸法の転がり軸受の場合には、内外輪11,12の断面肉厚が厚く、また、用途上の必要予圧荷重も小さかったので、予圧を付加しても内外輪11,12の膨張収縮量はわずかであったので、嵌めあいすきまの影響は少なかった。しかし、幅狭のアンギュラ玉軸受14では、これに比べて予圧による内外輪11,12の膨張収縮変形が大きく、今回のような発明が必要となる。   In particular, in this embodiment, the narrow angular ball bearing 14 having a cross-sectional dimension ratio of 0.1 <B / H <0.63 is used, so that the axial cross-sectional thickness of the inner and outer rings 11 and 12 is small. It is thin, and the expansion and contraction deformation of the inner and outer rings 11 and 12 due to preload is also increased, so the effect is great. That is, in the case of a rolling bearing having a standard size, the inner and outer rings 11 and 12 have a large cross-sectional thickness, and the required preload for application is small. Since the amount of shrinkage was slight, the effect of the fitting clearance was small. However, in the narrow angular contact ball bearing 14, the expansion and contraction deformation of the inner and outer rings 11 and 12 due to the preload is larger than this, and the present invention is required.

加えて、工作機械の回転テーブルや主軸旋回機構部、印刷機のドラム回転部等は高剛性を必要とし、かつ省スペース化が必要となるので、幅狭のアンギュラ玉軸受14は、これらの構造に有効である。また、剛性増加のため、設定する予圧荷重も、数千N以上と大きいので膨張収縮変形も大きくなり、上記効果をより発揮できる。   In addition, since the rotary table of the machine tool, the spindle turning mechanism part, the drum rotating part of the printing machine, etc. require high rigidity and space saving, the narrow angular ball bearing 14 has these structures. It is effective for. In addition, because the rigidity is increased, the preload to be set is as large as several thousand N or more, so that the expansion and contraction deformation is also increased, and the above effect can be exhibited more.

(変形例)
また、本実施形態の変形例として、上記実施形態で使用した幅狭のアンギュラ玉軸受14の代わりに、図13に示すような特殊寸法の薄肉のアンギュラ玉軸受80を使用してもよい。このアンギュラ玉軸受80は、旋回台座32に外嵌される内輪81と、基台31に内嵌される外輪82と、内輪81及び外輪82の各軌道面81a,82a間に接触角を持って転動自在に配置される複数の玉83と、を有する。
(Modification)
As a modification of the present embodiment, a thin angular ball bearing 80 having a special dimension as shown in FIG. 13 may be used instead of the narrow angular ball bearing 14 used in the above embodiment. The angular ball bearing 80 has a contact angle between the inner ring 81 fitted on the swivel base 32, the outer ring 82 fitted on the base 31, and the raceways 81 a and 82 a of the inner ring 81 and the outer ring 82. And a plurality of balls 83 that are arranged to roll freely.

アンギュラ玉軸受の薄肉度を表わす指標としては、内輪81(又は外輪82)の径方向の断面肉厚(いわゆる、有効肉厚:t)と、内輪81(又は外輪82)の径方向寸法(いわゆる、有郊外径:Dt)と、の比である有効肉厚比:Y(=t/Dt)が一般的に適用される。   As an index representing the thinness of the angular ball bearing, the radial cross-sectional thickness (so-called effective thickness: t) of the inner ring 81 (or outer ring 82) and the radial dimension (so-called “outer ring 82”) of the inner ring 81 (or outer ring 82). The effective thickness ratio: Y (= t / Dt), which is the ratio of the suburban diameter: Dt), is generally applied.

具体的には、図13に示すように、内輪有効肉厚比Yiは、内輪81の最大肉厚ti1、最小肉厚ti2、内輪内径dとしたとき、有効肉厚ti=ti1−(ti1−ti2)/4と有効外径Dit=d+2tiとの比(ti/Dit)で表される。また、外輪有効肉厚比Yoは、外輪の最大肉厚to1、最小肉厚to2、外輪外径Dtとしたとき、有効肉厚to=to1−(to1−to2)/3と、有効外径Dot=Dtとの比(to/Dot)で表される。   Specifically, as shown in FIG. 13, when the inner ring effective wall thickness ratio Yi is the maximum wall thickness ti1, the minimum wall thickness ti2, and the inner ring inner diameter d of the inner ring 81, the effective wall thickness ti = ti1- (ti1- ti2) / 4 and the effective outer diameter Dit = d + 2ti (ti / Dit). Further, when the outer ring effective thickness ratio Yo is the maximum thickness to1, the minimum thickness to2, and the outer diameter Dt of the outer ring, the effective thickness to = to1- (to1-to2) / 3 and the effective outer diameter Dot. = It is expressed by a ratio (to / Dot) with Dt.

有効肉厚比Y(Yi、Yo)が小さいと、リングの半径方向剛性が小さくなるため、幅狭のアンギュラ玉軸受14と同様、大きな予圧荷重を負荷した際、内外輪81,82の膨張収縮量が大きくなる。そして、表2に示す標準寸法のアンギュラ玉軸受、及び本発明の特殊寸法薄肉アンギュラ玉軸受(本発明品B,C)に予圧荷重を負荷したときの内外輪の膨張収縮変形の計算結果を図14及び図15に示す。   When the effective wall thickness ratio Y (Yi, Yo) is small, the radial rigidity of the ring is small. Therefore, like the narrow angular ball bearing 14, the expansion and contraction of the inner and outer rings 81 and 82 when a large preload is applied. The amount increases. The calculation results of the expansion and contraction deformation of the inner and outer rings when a preload is applied to the standard-sized angular contact ball bearings shown in Table 2 and the special-dimension thin-walled angular contact ball bearings of the present invention (the present invention products B and C) are shown in FIG. 14 and FIG.

Figure 2010106867
Figure 2010106867

図14及び図15に示すように、一般用途(工作機械主軸など)で、標準予圧条件が適用される領域では、本発明品B,Cと標準品A,Bとの間に膨張収縮量の大きな差は認められないが、工作機械の回転テーブルや主軸旋回機構部、或いは、ロボットの間接部や旋回機構部及び減速機構部などでは、非常に高い剛性が要求されるため、超重予圧が適用される場合が多い。この条件下では、両者の膨張収縮量差は非常に大きくなる。   As shown in FIG. 14 and FIG. 15, in a general application (machine tool spindle, etc.) and in a region where standard preload conditions are applied, the expansion / contraction amount between the products B and C of the present invention and the standard products A and B is small. Although a large difference is not recognized, super-high preload is applied because very high rigidity is required for the rotary table of the machine tool, the spindle turning mechanism, or the indirect part of the robot, the turning mechanism and the speed reduction mechanism. Often done. Under these conditions, the difference between the expansion and contraction amounts of both is very large.

図14及び図15に示すように、有効肉厚比Yとして、5%以下の薄肉アンギュラ玉軸受(本発明品)を適用した場合、膨張収縮量が非常に大きく、仮に、15000Nの予圧荷重を設定した場合、外輪膨張量は約35μm以上、内輪収縮量は31μm以上となる。   As shown in FIGS. 14 and 15, when a thin angular contact ball bearing (product of the present invention) with an effective thickness ratio Y of 5% or less is applied, the amount of expansion and contraction is very large. When set, the outer ring expansion amount is about 35 μm or more, and the inner ring contraction amount is 31 μm or more.

そして、本変形例の薄肉のアンギュラ玉軸受80を表3に示す嵌め合い条件下で、軸32及びハウジング31に組み込むことで、予圧付加前はすきま嵌め、予圧付加後はしまり嵌めとなり、本発明の効果を達成することができる。   Then, by incorporating the thin angular ball bearing 80 of the present modification into the shaft 32 and the housing 31 under the fitting conditions shown in Table 3, a clearance fit is applied before the preload is applied, and an interference fit is applied after the preload is applied. The effect of can be achieved.

Figure 2010106867
Figure 2010106867

また、表3に示すアンギュラ玉軸受80の精度P5は、標準的な適用条件であり、また、軸32及びハウジング31の寸法許容差も一般的な選定条件(基本公差IT6:g6、H6)であり、適用に際してなんら問題はない。このように、本発明の有効肉厚比を5%以下とした特殊寸法の薄肉アンギュラ玉軸受80を使用し、ごく一般的に採用されている適正な軸受精度及び軸・ハウジングの寸法精度を組み合わせることで、上記第1実施形態の主軸旋回装置30と同様の効果を発揮することが可能となる。   The accuracy P5 of the angular ball bearing 80 shown in Table 3 is a standard application condition, and the dimensional tolerance of the shaft 32 and the housing 31 is also a general selection condition (basic tolerance IT6: g6, H6). There is no problem in application. As described above, the thin-walled angular contact ball bearing 80 having a special dimension in which the effective thickness ratio of the present invention is 5% or less is used, and the proper bearing accuracy and the dimensional accuracy of the shaft / housing which are generally adopted are combined. Thus, the same effect as the main spindle turning device 30 of the first embodiment can be exhibited.

また、図14及び図15に示すように、標準品A,Bの場合、予圧荷重15000Nでの外輪膨張量は約20μm、内輪収縮量は20μmとなり、軸受と軸・ハウジングとの嵌合レンジを20μm以下にしないと、本発明の「予圧付加前はすきま嵌めで、予圧付加後はしまり嵌め」という条件を満足することはできない。この条件を達成するには、軸及びハウジングの精度を、2段階上の基本公差IT4以下にする必要があり、加工精度確保が非常に困難であり、精密加工工程の追加や、加工コストの大幅な増加などの大きな問題が生じる。   As shown in FIGS. 14 and 15, in the case of the standard products A and B, the expansion amount of the outer ring at a preload 15000N is about 20 μm and the contraction amount of the inner ring is 20 μm, and the fitting range between the bearing and the shaft / housing is increased. Unless the thickness is 20 μm or less, the condition of “clearance fitting before preloading and tight fitting after preloading” according to the present invention cannot be satisfied. In order to achieve this condition, the shaft and housing accuracy needs to be less than the basic tolerance IT4 on two levels, and it is very difficult to ensure the processing accuracy, adding a precision processing step and greatly increasing the processing cost. A big problem such as an increase occurs.

また、有効肉厚比Yが5%以下の軸受であれば、本発明の効果を発揮することができるが、表2に示す極薄肉標準品のように、有効肉厚比Yが小さすぎると(外輪有効肉厚比Yo=2.4、内輪有効肉厚比Yi=2.8)、予圧荷重15000Nでの膨張収縮量が極端に大きくなり、100μm(外輪膨張量60μm+内輪収縮量55μm)を越えてしまう。   In addition, if the bearing has an effective thickness ratio Y of 5% or less, the effect of the present invention can be exhibited. However, if the effective thickness ratio Y is too small as in the ultrathin standard product shown in Table 2, (Outer ring effective wall thickness ratio Yo = 2.4, inner ring effective wall thickness ratio Yi = 2.8), the expansion / shrinkage amount at the preload 15000N becomes extremely large, and 100 μm (outer ring expansion amount 60 μm + inner ring shrinkage amount 55 μm) It will exceed.

つまり、内外輪81,82のリング剛性が極端に低下し、軸32やハウジング31に組込み後、リング変形が大きくなり、軸受80の動トルク変動や回転精度が悪化してしまうなどの不具合が生じる。特に、工作機械の回転テーブルや旋回機構部などの用途では回転精度が問題となる。また、ロボットの間接部などでは安定したトルク特性が非常に要求されるため、やはり問題となる。従って、上記の問題を鑑み、有効肉厚比Y(外輪有効肉厚比Yo、内輪有効肉厚比Yi)としては、3%≦Y≦5%とするのがよい。   In other words, the ring rigidity of the inner and outer rings 81 and 82 is extremely reduced, and the ring deformation becomes large after being incorporated in the shaft 32 and the housing 31, resulting in problems such as dynamic torque fluctuation and rotational accuracy of the bearing 80 being deteriorated. . In particular, rotation accuracy becomes a problem in applications such as a rotary table and a turning mechanism of a machine tool. In addition, a stable torque characteristic is extremely required in the indirect part of the robot, which is also a problem. Therefore, in view of the above problems, the effective thickness ratio Y (outer ring effective thickness ratio Yo, inner ring effective thickness ratio Yi) is preferably 3% ≦ Y ≦ 5%.

なお、本発明は、上述した実施形態に限定されるものでなく、適宜、変形、改良等が可能である。
なお、本発明の軸受装置は、本実施形態の用途以外、例えば、工作機械の回転テーブル・ロボットの旋回機構部や関節部及び減速機構部・印刷機械のドラム等の回転機構部、ダイレクトモータ回転支持部等でも、同様の効果を発揮できる。特に、工作機械の回転テーブルや主軸旋回機構部、ダイレクトモータ回転支持部、ロボットの関節部や旋回機構部及び減速機構部等においては、省スペース化と高剛性化を両立させる必要があり、軸方向に幅狭のアンギュラ玉軸受、及び薄肉アンギュラ玉軸受を使用すれば、予圧荷重による軌道輪の膨張収縮量が大きいので、さらに上記の作用効果が向上する。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
The bearing device of the present invention may be used other than the application of the present embodiment, for example, a rotary table of a machine tool, a turning mechanism of a robot, a joint, a speed reduction mechanism, a rotating mechanism such as a drum of a printing machine, a direct motor rotation, etc. The same effect can also be exhibited by the support portion or the like. In particular, it is necessary to achieve both space saving and high rigidity in the rotary table of the machine tool, the spindle turning mechanism, the direct motor rotation support, the robot joint, the turning mechanism, and the speed reduction mechanism. If an angular ball bearing having a narrow width in the direction and a thin angular ball bearing are used, the amount of expansion and contraction of the race ring due to the preload is large, so that the above-described effects are further improved.

本発明の転がり軸受としては、本実施形態のアンギュラ玉軸受以外に、円すいころ軸受、深溝玉軸受、クロスローラ軸受、4点接触玉軸受等が適用できる。また、組合せ軸受の場合、必要に応じで、2列以上、例えば、3列組合せや4列組合せアンギュラ玉軸受としても良い。   As the rolling bearing of the present invention, a tapered roller bearing, a deep groove ball bearing, a cross roller bearing, a four-point contact ball bearing and the like can be applied in addition to the angular ball bearing of the present embodiment. Further, in the case of a combination bearing, it may be a two-row or more, for example, a three-row combination or a four-row combination angular ball bearing, if necessary.

さらに、モーメント剛性を向上させるため、組み合わせた軸受間に内輪間座や外輪間座を挿入してもよい。また、組合せ方法も、図2に示すような、接触角の向きをハの字形とした背面組合せではなく、逆ハの字形とした正面組合せとしてもよい。   Furthermore, in order to improve moment rigidity, an inner ring spacer or an outer ring spacer may be inserted between the combined bearings. Further, the combination method may be a front combination in which the direction of the contact angle is a cross-shaped shape as shown in FIG.

予圧の付加方法としては、2列以上の軸受の組合せによる定位置予圧方式の他、図16に示すようなばね70を利用し、適正な予圧荷重を付加できる定圧予圧方式等を採用してもよい。予圧の付加方法や構造は適時、本発明の範囲で選定可能である。   As a method for applying preload, in addition to a fixed position preload method using a combination of two or more rows of bearings, a constant pressure preload method that can add an appropriate preload load using a spring 70 as shown in FIG. Good. The preload application method and structure can be selected within the scope of the present invention in a timely manner.

また、本実施形態の主軸旋回装置においては、基台31に形成した収容凹部34内に旋回台座32を回転自在に支持する場合について説明したが、これに限定されるものではなく、基台31の外側に旋回台座32を主軸旋回部用玉軸受10を介して回転自在に支持するようにしてもよい。   In the spindle turning device of the present embodiment, the case where the turning base 32 is rotatably supported in the housing recess 34 formed in the base 31 has been described, but the present invention is not limited to this, and the base 31 is not limited thereto. Alternatively, the swivel base 32 may be rotatably supported via the main shaft swivel ball bearing 10.

さらに、本実施形態では、軸32の外周面と内輪11の内周面との間、及びハウジング31の内周面と外輪12の外周面との間の各嵌め合いは、転がり軸受10に予圧が付与される前の状態においてすきま嵌めとし、転がり軸受10に予圧が付与された状態においてしまり嵌めとしているが、本発明は、これら嵌め合いの少なくとも一方が、転がり軸受10に予圧が付与された状態においてしまり嵌めとされればよく、一方の嵌め合いが予圧付与後にすきま嵌めの状態のままであってもよい。   Furthermore, in this embodiment, each fit between the outer peripheral surface of the shaft 32 and the inner peripheral surface of the inner ring 11 and between the inner peripheral surface of the housing 31 and the outer peripheral surface of the outer ring 12 is preloaded on the rolling bearing 10. In the state before being applied, the clearance fit is used, and in the state where the preload is applied to the rolling bearing 10, the fit is applied. However, in the present invention, at least one of these fits is applied to the rolling bearing 10. In this state, it is only necessary to make an interference fit, and one fit may remain in a clearance fit state after the preload is applied.

また、本発明は、これら嵌め合いの少なくとも一方が、転がり軸受10に予圧が付与される前の状態においてすきま嵌めであればよく、一方の嵌め合いが予圧付与前からしまり嵌めであってもよい。その場合、すきま嵌めとした他方の嵌め合いが、予圧付与後にしまり嵌めとされる。   In the present invention, at least one of these fits may be a clearance fit in a state before the preload is applied to the rolling bearing 10, and one fit may be a tight fit before the preload is applied. . In that case, the other fit, which is a clearance fit, is a tight fit after the preload is applied.

また、軸受の寸法安定性や耐摩耗性などの機械的性質を向上させるために、内輪及び外輪の少なくとも一方に、サブゼロ処理を施してもよい。
サブゼロ処理の方法としては、例えば、焼入れ直後に、液体窒素を用いて−150℃程度の雰囲気とし、本サブゼロ処理後に焼戻しを行なう。そして、サブゼロと焼戻しを数回繰り返す。冷却媒体として、液体窒素使用のサブゼロ処理では、繰り返し回数は多くとも3回程度でかまわない。サブゼロ処理によって、組織中の残留オーステナイト(γR)がマルテンサイトに変態する。併せて、結晶粒の安定化も促進されるので、これにより経時寸法変化の防止と耐摩耗性などの機械的性質が向上する。
Further, in order to improve mechanical properties such as dimensional stability and wear resistance of the bearing, sub-zero treatment may be applied to at least one of the inner ring and the outer ring.
As a method of sub-zero treatment, for example, immediately after quenching, an atmosphere of about −150 ° C. is formed using liquid nitrogen, and tempering is performed after this sub-zero treatment. Then, sub-zero and tempering are repeated several times. In the sub-zero treatment using liquid nitrogen as the cooling medium, the number of repetitions may be at most about 3. Residual austenite (γR) in the structure is transformed into martensite by the sub-zero treatment. In addition, since the stabilization of the crystal grains is promoted, this improves the mechanical properties such as prevention of dimensional change with time and wear resistance.

本軸受の場合、内輪及び外輪の軸方向幅が狭い、或いは、有効肉厚が薄いので、そりや真円度不良など経時寸法変化が発生しやすい傾向がある。 したがって、サブゼロ処理により、それらを抑制することができ、特に、軸受精度が必要な工作機械の回転テーブルや主軸旋回機構部、印刷機械のドラム等の回転機構部などに、本軸受を使用する場合、軸受精度劣化による機器の精度不具合を防止でき長期的に機能を保持することができる。   In the case of this bearing, since the axial width of the inner ring and the outer ring is narrow or the effective thickness is thin, there is a tendency that dimensional changes with time such as warpage and roundness failure tend to occur. Therefore, they can be suppressed by sub-zero treatment, especially when this bearing is used for a rotary table of a machine tool that requires bearing accuracy, a spindle turning mechanism, a rotary mechanism such as a drum of a printing machine, etc. In addition, it is possible to prevent malfunctions of equipment due to deterioration of bearing accuracy and to maintain the function for a long time.

本発明の一実施形態に係る軸受装置である工作機械の主軸旋回装置を示す要部を断面とした側面図である。It is the side view which made the principal part the cross section which shows the main spindle turning apparatus of the machine tool which is a bearing apparatus which concerns on one Embodiment of this invention. 図1に示す2列背面組合せアンギュラ玉軸受を示す断面図である。It is sectional drawing which shows the 2 rows back combination angular contact ball bearing shown in FIG. 内輪の半径方向の変形量を説明するための説明図である。It is explanatory drawing for demonstrating the deformation amount of the radial direction of an inner ring | wheel. 内輪の断面2次モーメントの計算方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of the cross-sectional secondary moment of an inner ring | wheel. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner and outer ring | wheels of a radial direction. 断面寸法比(B/H)と断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and a cross-sectional secondary moment I. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner and outer ring | wheels of a radial direction. 断面寸法比(B/H)と断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and a cross-sectional secondary moment I. 本発明品の予圧荷重と内輪の半径方向収縮量・外輪の半径方向膨張量との関係を示すグラフ図である。It is a graph which shows the relationship between the preload of this invention product, the radial direction shrinkage amount of an inner ring | wheel, and the radial direction expansion amount of an outer ring | wheel. 本発明品と従来品の予圧荷重と外輪の半径方向膨張量との関係を比較して示すグラフ図である。It is a graph which compares and shows the relationship between the preload of this invention product and a conventional product, and the radial direction expansion amount of an outer ring | wheel. 本発明品の嵌め合い条件によるモーメント剛性を比較して示すグラフ図である。It is a graph which compares and shows the moment rigidity by the fitting conditions of this invention goods. (a)は、すきま嵌めで組み込まれた2列背面組合せアンギュラ玉軸受を示す断面図であり、(b)は、しまり嵌めで組み込まれた2列背面組合せアンギュラ玉軸受を示す断面図である。(A) is sectional drawing which shows the 2 row back combination angular ball bearing integrated by clearance fitting, (b) is sectional drawing which shows the 2 row back combination angular ball bearing integrated by interference fitting. 本発明の変形例の薄肉アンギュラ玉軸受を示す要部断面図である。It is principal part sectional drawing which shows the thin-walled angular contact ball bearing of the modification of this invention. 本発明品と標準品の予圧荷重と内輪の半径方向収縮量との関係を比較して示すグラフ図である。It is a graph which compares and shows the relationship between the preload of this invention product and a standard product, and the radial direction shrinkage | contraction amount of an inner ring | wheel. 本発明品と標準品の予圧荷重と外輪の半径方向膨張量との関係を比較して示すグラフ図である。It is a graph which compares and shows the relationship between the preload of this invention product and a standard product, and the radial direction expansion amount of an outer ring | wheel. 本発明の定圧予圧が付与される2列背面組合せアンギュラ玉軸受の変形例を示す断面図である。It is sectional drawing which shows the modification of the 2 row back combination angular contact ball bearing to which the constant pressure preload of this invention is provided. クロスローラ軸受の断面図である。It is sectional drawing of a cross roller bearing. 4点接触玉軸受の断面図である。It is sectional drawing of a 4-point contact ball bearing. 2列組合せアンギュラ玉軸受の断面図である。It is sectional drawing of a two-row combination angular contact ball bearing. 2列組合せ円すいころ軸受の断面図である。It is sectional drawing of a two-row combination tapered roller bearing. 2列組合せアンギュラ玉軸受の予圧付与前の状態を示す断面図である。It is sectional drawing which shows the state before preload provision of a 2 row combination angular contact ball bearing. アンギュラ玉軸受の荷重の付加方向を示す断面図である。It is sectional drawing which shows the addition direction of the load of an angular contact ball bearing.

符号の説明Explanation of symbols

10 主軸旋回部用軸受(転がり軸受)
11,81 内輪
12,82 外輪
13,83 玉(転動体)
14,80 アンギュラ玉軸受
30 主軸旋回装置(軸受装置)
31 基台(ハウジング)
32 旋回台座(軸)
10 Bearing for spindle turning part (rolling bearing)
11,81 Inner ring 12,82 Outer ring 13,83 Ball (rolling element)
14,80 Angular contact ball bearings 30 Spindle turning device (bearing device)
31 base (housing)
32 swivel base (axis)

Claims (5)

軸と、ハウジングと、内輪が前記軸に外嵌されると共に、外輪が前記ハウジングに内嵌され、前記軸及び前記ハウジングに組み込み後に予圧が付加される転がり軸受と、を備える軸受装置であって、
前記転がり軸受は、前記内輪と前記外輪との間に配置される複数の玉を有し、
前記内輪の最大肉厚ti1、最小肉厚ti2、内輪内径d、有効肉厚ti=ti1−(ti1−ti2)/4、有効外径Dit=d+2tiとしたときの内輪有効肉厚比Yi=ti/Dit、
および、前記外輪の最大肉厚to1、最小肉厚to2、外輪外径Dt、有効肉厚to=to1−(to1−to2)/3、有効外径Dot=Dtとしたときの外輪有効肉厚比Yo=to/Dotを、
3%≦Yi、Yo≦5%とした玉軸受であり、
前記軸の外周面と前記内輪の内周面とは、前記組み込み後の玉軸受に予圧が付与される前の状態において、すきま嵌めとされ、前記組み込み後の玉軸受に予圧が付与された状態において、前記内輪の内周面の半径方向への収縮によってしまり嵌めとされることを特徴とする軸受装置。
A bearing device comprising: a shaft, a housing, and an inner ring fitted onto the shaft, and an outer ring fitted inside the housing, and a rolling bearing to which a preload is applied after being incorporated into the shaft and the housing. ,
The rolling bearing has a plurality of balls arranged between the inner ring and the outer ring,
The inner ring effective wall thickness ratio Yi = ti when the maximum inner wall thickness ti1, the minimum wall thickness ti2, the inner ring inner diameter d, the effective wall thickness ti = ti1- (ti1-ti2) / 4, and the effective outer diameter Dit = d + 2ti. / Dit,
The outer ring effective thickness ratio when the maximum thickness to1, the minimum thickness to2, the outer ring outer diameter Dt, the effective thickness to = to1- (to1-to2) / 3, and the effective outer diameter Dot = Dt. Yo = to / Dot,
3% ≦ Yi, Yo ≦ 5% ball bearing,
A state in which the outer peripheral surface of the shaft and the inner peripheral surface of the inner ring are clearance-fitted in a state before preload is applied to the ball bearing after the assembly, and the preload is applied to the ball bearing after the assembly The bearing device according to claim 1, wherein the inner ring has an interference fit by contraction in a radial direction.
軸と、ハウジングと、内輪が前記軸に外嵌されると共に、外輪が前記ハウジングに内嵌され、前記軸及び前記ハウジングに組み込み後に予圧が付加される転がり軸受と、を備える軸受装置であって、
前記転がり軸受は、前記内輪と前記外輪との間に配置される複数の玉を有し、
前記内輪の最大肉厚ti1、最小肉厚ti2、内輪内径d、有効肉厚ti=ti1−(ti1−ti2)/4、有効外径Dit=d+2tiとしたときの内輪有効肉厚比Yi=ti/Dit、
および、前記外輪の最大肉厚to1、最小肉厚to2、外輪外径Dt、有効肉厚to=to1−(to1−to2)/3、有効外径Dot=Dtとしたときの外輪有効肉厚比Yo=to/Dotを、
3%≦Yi、Yo≦5%とした玉軸受であり、
前記ハウジングの内周面と前記外輪の外周面とは、前記組み込み後の玉軸受に予圧が付与される前の状態において、すきま嵌めとされ、前記組み込み後の玉軸受に予圧が付与された状態において、前記外輪の外周面の半径方向への膨張によってしまり嵌めとされることを特徴とする軸受装置。
A bearing device comprising: a shaft, a housing, and an inner ring fitted onto the shaft, and an outer ring fitted inside the housing, and a rolling bearing to which a preload is applied after being incorporated into the shaft and the housing. ,
The rolling bearing has a plurality of balls arranged between the inner ring and the outer ring,
The inner ring effective wall thickness ratio Yi = ti when the maximum inner wall thickness ti1, the minimum wall thickness ti2, the inner ring inner diameter d, the effective wall thickness ti = ti1- (ti1-ti2) / 4, and the effective outer diameter Dit = d + 2ti. / Dit,
The outer ring effective thickness ratio when the maximum thickness to1, the minimum thickness to2, the outer ring outer diameter Dt, the effective thickness to = to1- (to1-to2) / 3, and the effective outer diameter Dot = Dt of the outer ring. Yo = to / Dot,
3% ≦ Yi, Yo ≦ 5% ball bearing,
The inner peripheral surface of the housing and the outer peripheral surface of the outer ring are in a state in which a preload is applied to the ball bearing after the incorporation, and a preload is applied to the ball bearing after the assembly. The bearing device is characterized in that the outer ring has an interference fit by expansion in the radial direction.
前記玉軸受は、軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)を、0.1<B/H<0.63とすることを特徴とする請求項1又は2に記載の軸受装置。   2. The ball bearing according to claim 1, wherein a sectional dimension ratio (B / H) between an axial sectional width B and a radial sectional height H is 0.1 <B / H <0.63. Or the bearing apparatus of 2. 軸と、ハウジングと、内輪が前記軸に外嵌されると共に、外輪が前記ハウジングに内嵌され、前記軸及び前記ハウジングに組込み後に予圧が付加される転がり軸受と、を備える軸受装置の組立方法であって、
前記軸の外周面と前記内輪の内周面との間、及び前記ハウジングの内周面と前記外輪の外周面との間の少なくとも一方をすきま嵌めとした状態で、前記軸及び前記ハウジングに前記転がり軸受を組み込む工程と、
該組み込み工程後、前記転がり軸受に所定の予圧を付加する工程と、を備え、
前記転がり軸受は、前記内輪と前記外輪との間に配置される複数の玉を有し、
前記内輪の最大肉厚ti1、最小肉厚ti2、内輪内径d、有効肉厚ti=ti1−(ti1−ti2)/4、有効外径Dit=d+2tiとしたときの内輪有効肉厚比Yi=ti/Dit、
および、前記外輪の最大肉厚to1、最小肉厚to2、外輪外径Dt、有効肉厚to=to1−(to1−to2)/3、有効外径Dot=Dtとしたときの外輪有効肉厚比Yo=to/Dotを、
3%≦Yi、Yo≦5%した玉軸受であり、
前記予圧付与工程は、前記玉軸受に前記所定の予圧を付与したとき、前記軸の外周面と前記内輪の内周面との間をしまり嵌めとする前記内輪の内周面の半径方向への収縮と、前記ハウジングの内周面と前記外輪の外周面との間をしまり嵌めとする前記外輪の外周面の半径方向への膨張の少なくとも一方を発生することを特徴とする軸受装置の組立方法。
An assembly method for a bearing device, comprising: a shaft, a housing, and an inner ring fitted onto the shaft, and an outer ring fitted inside the housing, and a rolling bearing to which preload is applied after being assembled into the shaft and the housing. Because
In a state where at least one of the outer peripheral surface of the shaft and the inner peripheral surface of the inner ring and at least one of the inner peripheral surface of the housing and the outer peripheral surface of the outer ring is fitted with clearance, the shaft and the housing are Incorporating a rolling bearing;
A step of applying a predetermined preload to the rolling bearing after the assembling step,
The rolling bearing has a plurality of balls arranged between the inner ring and the outer ring,
The inner ring effective wall thickness ratio Yi = ti when the maximum inner wall thickness ti1, the minimum wall thickness ti2, the inner ring inner diameter d, the effective wall thickness ti = ti1- (ti1-ti2) / 4, and the effective outer diameter Dit = d + 2ti. / Dit,
The outer ring effective thickness ratio when the maximum thickness to1, the minimum thickness to2, the outer ring outer diameter Dt, the effective thickness to = to1- (to1-to2) / 3, and the effective outer diameter Dot = Dt. Yo = to / Dot,
3% ≦ Yi, Yo ≦ 5% ball bearing,
In the preload application step, when the predetermined preload is applied to the ball bearing, a radial fit of the inner peripheral surface of the inner ring that fits between the outer peripheral surface of the shaft and the inner peripheral surface of the inner ring is performed. A method for assembling a bearing device, characterized in that at least one of contraction and expansion in the radial direction of the outer peripheral surface of the outer ring, which is tightly fitted between the inner peripheral surface of the housing and the outer peripheral surface of the outer ring, is generated. .
前記玉軸受は、軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)を、0.1<B/H<0.63とすることを特徴とする請求項4に記載の軸受装置の組立方法。   5. The ball bearing according to claim 4, wherein a sectional dimension ratio (B / H) between an axial sectional width B and a radial sectional height H is 0.1 <B / H <0.63. A method for assembling the bearing device according to claim 1.
JP2008276461A 2008-10-28 2008-10-28 Bearing device and assembly method thereof Active JP5453764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008276461A JP5453764B2 (en) 2008-10-28 2008-10-28 Bearing device and assembly method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008276461A JP5453764B2 (en) 2008-10-28 2008-10-28 Bearing device and assembly method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013219278A Division JP5704213B2 (en) 2013-10-22 2013-10-22 Bearing device

Publications (2)

Publication Number Publication Date
JP2010106867A true JP2010106867A (en) 2010-05-13
JP5453764B2 JP5453764B2 (en) 2014-03-26

Family

ID=42296524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008276461A Active JP5453764B2 (en) 2008-10-28 2008-10-28 Bearing device and assembly method thereof

Country Status (1)

Country Link
JP (1) JP5453764B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525756A (en) * 2014-11-28 2015-04-22 沈阳飞机工业(集团)有限公司 Rolling closing device of bearing and processing method thereof
WO2016072290A1 (en) * 2014-11-07 2016-05-12 Ntn株式会社 Bearing device, mechanical device, bearing, bearing status monitoring device, bearing monitoring system, and wind power generation facility

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103878256B (en) * 2014-03-14 2016-04-20 沈阳飞机工业(集团)有限公司 Two-sided bearing shell nosing device and preparation method thereof
CN104259776A (en) * 2014-09-15 2015-01-07 沈阳飞机工业(集团)有限公司 Bearing closed-up punch and machining process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021154A (en) * 2001-07-10 2003-01-24 Koyo Seiko Co Ltd Double row tapered roller bearing device and assembly method for the same
JP2006070918A (en) * 2004-08-31 2006-03-16 Nsk Ltd Bearing device and method of manufacturing the same
JP2006170335A (en) * 2004-12-16 2006-06-29 Nsk Ltd Ball bearing for ct scanner device and ct scanner device
JP2006224816A (en) * 2005-02-17 2006-08-31 Nsk Ltd Column assist type electric power steering device
JP2007315588A (en) * 2006-01-13 2007-12-06 Nsk Ltd Ball bearing for spindle pivot part of machine tool and spindle pivot device of machine tool using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021154A (en) * 2001-07-10 2003-01-24 Koyo Seiko Co Ltd Double row tapered roller bearing device and assembly method for the same
JP2006070918A (en) * 2004-08-31 2006-03-16 Nsk Ltd Bearing device and method of manufacturing the same
JP2006170335A (en) * 2004-12-16 2006-06-29 Nsk Ltd Ball bearing for ct scanner device and ct scanner device
JP2006224816A (en) * 2005-02-17 2006-08-31 Nsk Ltd Column assist type electric power steering device
JP2007315588A (en) * 2006-01-13 2007-12-06 Nsk Ltd Ball bearing for spindle pivot part of machine tool and spindle pivot device of machine tool using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072290A1 (en) * 2014-11-07 2016-05-12 Ntn株式会社 Bearing device, mechanical device, bearing, bearing status monitoring device, bearing monitoring system, and wind power generation facility
CN104525756A (en) * 2014-11-28 2015-04-22 沈阳飞机工业(集团)有限公司 Rolling closing device of bearing and processing method thereof

Also Published As

Publication number Publication date
JP5453764B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5444642B2 (en) Combination bearing
JP5704213B2 (en) Bearing device
JP5453764B2 (en) Bearing device and assembly method thereof
JP3207410U (en) Rolling bearing
JP2013194886A (en) Bearing device and rotating body
JP2006326695A (en) Bearing device for main spindle of machine tool
JP2012026496A (en) Angular ball bearing, and bearing installation structure
JP2012117567A (en) Bearing device
JP5003498B2 (en) Bearing device and assembly method thereof
US8418367B2 (en) Method of manufacturing a rolling bearing unit for supporting a wheel
JP2002339960A (en) Rolling bearing device
JP2008019943A (en) Combination bearing
JP2006105384A (en) Double row ball bearing
JP2006342830A (en) Preload applying method of double-row tapered roller bearing unit
JP2008030132A (en) Spindle bearing structure of nc automatic lathe
JP2006258115A (en) Double row tapered roller bearing unit
JP2008101631A (en) Roller bearing with seal
JP2009008211A (en) Roller bearing-bearing housing assembling body
JP2017106520A (en) Bearing device and rotation support device
JP4326533B2 (en) Combined rolling bearing
JP2006153094A (en) Ball bearing and rotary table device for machine tool using ball bearing
JP5402081B2 (en) Bearing device
JP4359944B2 (en) Bearing support device
JP2007113777A (en) Rolling bearing device
JP2008014473A (en) Wheel bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5453764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250