JP2012117567A - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP2012117567A
JP2012117567A JP2010265871A JP2010265871A JP2012117567A JP 2012117567 A JP2012117567 A JP 2012117567A JP 2010265871 A JP2010265871 A JP 2010265871A JP 2010265871 A JP2010265871 A JP 2010265871A JP 2012117567 A JP2012117567 A JP 2012117567A
Authority
JP
Japan
Prior art keywords
bearing
inner ring
ring
preload
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010265871A
Other languages
Japanese (ja)
Inventor
Yoshiaki Katsuno
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010265871A priority Critical patent/JP2012117567A/en
Publication of JP2012117567A publication Critical patent/JP2012117567A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a bearing device which can maintain rigidity of bearing and improve rotation accuracy of the bearing used in inner ring rotation, while surely preventing creeping.SOLUTION: The bearing device includes a rolling bearing 10 in which an inner ring is out-fitted to a swivel base 32 which is a shaft, an outer ring is fitted into a stage 31 which is a housing, and a pre-load is applied after assembly into the swivel base 32 and the stage 31, with a plurality of balls arranged between the inner and the outer rings. Between the outer peripheral surface of the swivel base 32 and the inner peripheral surface of the inner ring, a loose engagement is established under such condition as a pre-load is not applied yet to the rolling bearing 10, but a tight engagement is established under such condition as the pre-load is applied to the rolling bearing 10. Here, φd<(φD+φd)/2 is satisfied, where φD is the outer diameter of the outer ring of the bearing, φd is inner diameter of the inner ring, and φdis a diameter of pitch circle of the balls. Further, under such condition as the pre-load is applied to the rolling bearing 10, the contraction amount of the inner diameter of inner ring is set to be larger than the expansion amount of the outer diameter of the outer ring.

Description

本発明は、例えば、産業機械、ロボットの関節部や旋回機構部、工作機械の回転テーブルや主軸旋回機構部、印刷機械のドラム等の回転機構部、ダイレクトモータ回転支持部、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置等の回転軸を支持する軸受装置に関する。 The present invention includes, for example, industrial machines, robot joints and turning mechanisms, rotary tables and spindle turning mechanisms for machine tools, rotation mechanisms such as drums for printing machines, direct motor rotation support parts, medical devices, semiconductors / The present invention relates to a bearing device for supporting a rotating shaft such as a liquid crystal manufacturing apparatus, an optical and an optoelectronic apparatus.

通常、例えば、工作機械の回転テーブル、工作機械の主軸旋回部等の回転機構部や印刷機のドラム回転軸、あるいは、ロボットの関節や旋回機構部やこれらの部位に回転を与えるダイレクトモータの回転支持部等には、図4〜図7に示すように、クロスローラ軸受100、4点接触玉軸受110、組合せアンギュラ玉軸受120、組合せ円すいころ軸受130等が使用されている(例えば、特許文献1参照)。 Usually, for example, a rotating table of a machine tool, a rotating mechanism unit such as a spindle turning unit of a machine tool, a drum rotating shaft of a printing press, or a rotation of a direct joint motor or a rotating mechanism unit that applies rotation to these parts. As shown in FIGS. 4 to 7, a cross roller bearing 100, a four-point contact ball bearing 110, a combined angular ball bearing 120, a combined tapered roller bearing 130, and the like are used for the support portion (for example, Patent Documents). 1).

クロスローラ軸受100は、図4に示すように、内輪101と外輪102との間に円筒形の複数のころ103が転動自在に配設されており、4点接触玉軸受110は、図5に示すように、内輪111と外輪112との間に複数の玉113が転動自在に配設されている。これら軸受100,110
は、一つの転がり軸受でラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受けられる。
As shown in FIG. 4, the cross roller bearing 100 has a plurality of cylindrical rollers 103 arranged between an inner ring 101 and an outer ring 102 so as to roll freely. As shown in FIG. 4, a plurality of balls 113 are arranged between the inner ring 111 and the outer ring 112 so as to be freely rollable. These bearings 100 and 110
Can receive radial load, axial load in both directions, and moment load with a single rolling bearing.

また、組合せアンギュラ玉軸受120は、図6に示すように、内輪121と外輪122との間に複数の玉123が転動自在に配設されたアンギュラ玉軸受124,124を2列に組合せたもので、同様に、組合せ円すいころ軸受130は、図7に示すように、内輪131と外輪132との間に複数の円すいころ133が転動自在に配置された円すいころ軸受134,134を内輪間座135及び外輪間座136を介して2列に組み合わせたものである。これら軸受120,130も、単列の軸受を2列組み合わせることで、ラジアル荷重と両方向のアキシャル荷重、モーメント荷重を受ける。 Further, as shown in FIG. 6, the combined angular ball bearing 120 is a combination of angular ball bearings 124, 124 in which a plurality of balls 123 are rotatably arranged between an inner ring 121 and an outer ring 122 in two rows. Similarly, as shown in FIG. 7, the combination tapered roller bearing 130 includes tapered roller bearings 134 and 134 in which a plurality of tapered rollers 133 are rotatably disposed between an inner ring 131 and an outer ring 132. These are combined in two rows via a spacer 135 and an outer ring spacer 136. These bearings 120 and 130 also receive a radial load, an axial load in both directions, and a moment load by combining two single row bearings.

特許文献1に記載の玉軸受としては、軸方向のコンパクト化を図る目的で、軸方向の幅を小さくした幅狭のものが提案されている。 As a ball bearing described in Patent Document 1, a narrow bearing having a reduced axial width has been proposed for the purpose of reducing the axial size.

また、これらの軸受は、所定の予圧を付与して使用され、軸受内部のガタを無くすことにより、回転時の振動の防止、回転精度の維持向上、軸受のラジアル剛性・アキシャル剛性・モーメント剛性の増加等が図られている。 These bearings are used with a predetermined preload. By eliminating backlash inside the bearing, vibration during rotation can be prevented, maintenance of rotation accuracy can be improved, and radial rigidity, axial rigidity, and moment rigidity of the bearing can be reduced. Increases are being made.

軸受に予圧を付加する方法としては、例えば、背面組合せアンギュラ玉軸受120Aでは、図8に示すように、組合せ内輪121A,121Aの対向端面間のすきまΔを調整し、軸に組込み後、軸受ナットや内輪押え等の部材で、内輪121A,121Aを軸方向に移動させ、上記のすきまΔをなくす(対向端面同士を密着させて、すきまΔを0にする)。これにより、軸受内の弾性変形によって、背面組合せアンギュラ玉軸受120Aに予圧(所謂、定位置予圧)が付加される。 As a method for applying a preload to the bearing, for example, in the rear combined angular ball bearing 120A, as shown in FIG. 8, the clearance Δ between the opposed end surfaces of the combined inner rings 121A and 121A is adjusted, and incorporated into the shaft. The inner ring 121A, 121A is moved in the axial direction by a member such as a inner ring presser or the like to eliminate the above-described gap Δ (the opposing end surfaces are brought into close contact with each other to make the gap Δ zero). Thus, a preload (so-called fixed position preload) is applied to the back combination angular contact ball bearing 120A by elastic deformation in the bearing.

さらに、これらの転がり軸受は、軸と内輪との嵌め合いやハウジングと外輪との嵌め合いをすきま嵌めやしまり嵌めとして、それぞれの部材に組み込まれている。 Furthermore, these rolling bearings are incorporated in the respective members by using a fit between the shaft and the inner ring or a fit between the housing and the outer ring as a clearance fit or a close fit.

ところで、クロスローラ軸受100の場合は、転動体が円筒形のころ103で、且つ軌道溝101a,102aに対してころ103の転がり接触面が線接触しているので、トルクが大きく、しかも、軸やハウジングに組み込んだ時のわずかな変形により、線接触部分の接触状態が不均一となり、トルクむらが発生しやすい。 By the way, in the case of the cross roller bearing 100, since the rolling element is a cylindrical roller 103 and the rolling contact surface of the roller 103 is in line contact with the raceway grooves 101a and 102a, the torque is large, and the shaft Due to slight deformation when assembled in a housing, the contact state of the line contact portion becomes uneven, and torque unevenness is likely to occur.

また、4点接触玉軸受110では、転動体が玉113なので、純アキシャル荷重を受ける場合又はラジアル荷重よりアキシャル荷重が優勢な場合には、同寸法のクロスローラ軸受100よりトルクが小さい。一方、アキシャル荷重に対してラジアル荷重が優勢な場合、又は純ラジアル荷重を受ける場合には、各玉113は軌道溝111a,112aと4点で接触するため、玉113と軌道溝111a,112aとのスピン滑りが大きく、トルクが大きい。 Further, in the four-point contact ball bearing 110, since the rolling element is the ball 113, the torque is smaller than that of the cross roller bearing 100 of the same dimension when receiving a pure axial load or when the axial load is more dominant than the radial load. On the other hand, when the radial load is dominant with respect to the axial load, or when receiving a pure radial load, each ball 113 comes into contact with the raceway grooves 111a and 112a at four points, so the balls 113 and the raceway grooves 111a and 112a Spin slip is large and torque is large.

さらに、これら転がり軸受において、例えば、内輪がすきま嵌めで軸に取り付けられ、内輪が一方向のラジアル荷重を受けて回転すると、内輪と軸との間で円周方向に有害な滑り(クリープと称する)を生ずることがある。このクリープと呼ばれる軌道輪の滑り現象は、はめ合い面がすきま嵌めの場合、軌道輪が回転するにつれて荷重点が円周方向に移動し、軌道輪が軸やハウジングに対して円周方向に位置ずれを生じることである。 Furthermore, in these rolling bearings, for example, when the inner ring is attached to the shaft with a clearance fit and the inner ring rotates under a radial load in one direction, harmful slip in the circumferential direction between the inner ring and the shaft (referred to as creep). ) May occur. The slip phenomenon of the raceway called creep is that when the fitting surface is a clearance fit, the load point moves in the circumferential direction as the raceway rotates, and the raceway is positioned in the circumferential direction with respect to the shaft and housing. This is to cause a shift.

クリープが一度起こると、はめ合い面は著しく摩耗し、軸またはハウジングを損傷させることが多い。軸やハウジングの補修や交換は、軸受のみの交換よりも大掛りとなり機械の復旧に時間を要する。また、軸受内部に摩耗粉が侵入したりして、異常発熱や振動等の原因となる。 Once creep has occurred, the mating surfaces wear significantly and often damage the shaft or housing. Repair and replacement of the shaft and housing is much larger than replacement of the bearing alone, and it takes time to recover the machine. In addition, wear powder may enter the bearing and cause abnormal heat generation, vibration, and the like.

このクリープは、軸受をアキシャル方向に、軸受ナット等で締め付けただけでは防止できないことも多い。したがって、通常、軸受のはめ合いにおいては、荷重を受けて回転する軌道輪にしめしろを与えて、軸またはハウジングとしまり嵌めにて固定し、運転中のクリープを防止する。 This creep cannot often be prevented by simply tightening the bearing in the axial direction with a bearing nut or the like. Therefore, normally, in the fitting of the bearing, an interference is given to the bearing ring that rotates under load, and it is fixed to the shaft or the housing by an interference fit to prevent creep during operation.

また、しまり嵌めとする他の目的としては、回転精度の向上が挙げられる。工作機械の回転テーブルや主軸旋回機構部において、軸受と軸又はハウジング間のはめ合いがすきま嵌め、例えば、内輪回転で軸と内輪がすきま嵌めの場合、軸中心と内輪中心がずれ、軸が偏芯回転することで、旋盤加工では加工面の真円度のくずれや引き目不具合が生じたり、フライス加工では、加工面の形状くずれや粗さ悪化等の品位が低下する。印刷機の回転ドラムにおいては、上記の理由で回転精度が悪化すると印刷精度に影響し、カラー多重印刷の場合、色むらや文字のにじみ等の問題が発生する。 Moreover, the improvement of rotational accuracy is mentioned as the other objective made into an interference fit. In a rotary table or spindle turning mechanism of a machine tool, the fit between the bearing and the shaft or the housing is a clearance fit.For example, when the inner ring rotates and the shaft and the inner ring are a clearance fit, the center of the shaft and the center of the inner ring are shifted and the shaft is offset. By rotating the core, the lathe machining causes a roundness of the processed surface to be broken or a defect in the stitching, and the milling process deteriorates the quality of the processed surface, such as a shape loss or a deterioration in roughness. In the rotary drum of a printing press, if the rotational accuracy is deteriorated for the above reasons, the printing accuracy is affected. In the case of color multiplex printing, problems such as uneven color and bleeding of characters occur.

上記の理由から、軌道輪をしまり嵌めで組み込むことが多いが、しまり嵌めの場合、当然組み込む際にプレス等で圧入するか、あるいは焼き嵌め等が必要となる。上記用途では、軸受内径φ100〜φ300mm程度の比較的大型サイズの軸受が使用される場合が多く、しまり嵌めの場合、組込み作業が容易ではない。また、軸受を軸やハウジングから分解する際、しまり嵌めされた軌道輪に組み込み時とは逆方向の荷重がかかるように周辺部の構造設計をする必要もある。ダイレクト駆動モータの回転支持部用軸受では、ロータやステータが軸受の横に配置される構成も多く、分解方法も考慮した構造とする設計は難しい。 For the above reasons, the race ring is often assembled by tight fitting, but in the case of tight fitting, it is naturally necessary to press-fit with a press or the like, or shrink fit or the like when assembling. In the above applications, a relatively large bearing having a bearing inner diameter of φ100 to φ300 mm is often used, and in the case of tight fitting, the assembling work is not easy. In addition, when disassembling the bearing from the shaft or housing, it is necessary to design the structure of the peripheral portion so that a load in the opposite direction to that when assembled into the tightly fitted race is applied. There are many configurations in which the rotor and the stator are arranged beside the bearing in the rotation support portion bearing of the direct drive motor, and it is difficult to design the structure in consideration of the disassembly method.

特に、アンギュラ玉軸受124の場合、図9に示すように、単体では一方向の荷重しか負荷できない構造であり、逆方向の荷重を加えると、内外輪121,122の溝肩エッジ部と玉123とが接触し玉傷が発生したり、玉軸受124が分離して再使用ができなくなるので、組込み・分解の際には充分な配慮を要する。 In particular, in the case of the angular ball bearing 124, as shown in FIG. 9, it has a structure that can only apply a load in one direction as a single unit. When a load in the opposite direction is applied, the groove shoulder edge portion of the inner and outer rings 121, 122 and the ball 123 Contact with each other to cause ball damage, or the ball bearing 124 is separated and cannot be reused. Therefore, sufficient consideration is required when assembling and disassembling.

以上の対策として、例えば特許文献2には、組み込み後の転がり軸受に予圧が付与される前の状態において、軸の外周面と内輪の内周面とがすきま嵌めとされ、組み込み後の転がり軸受に予圧が付与された状態において、内輪の内周面の半径方向への収縮によってしまり嵌めとされる軸受装置が開示されている。 As a countermeasure against the above, for example, Patent Document 2 discloses that a rolling bearing after incorporation is a clearance fit between the outer circumferential surface of the shaft and the inner circumferential surface of the inner ring before the preload is applied to the rolling bearing after incorporation. In a state where a preload is applied to the inner ring, a bearing device is disclosed that is tightly fitted by contraction in the radial direction of the inner peripheral surface of the inner ring.

上記構成の軸受装置によれば、内輪を軸に組み込む際に、プレスや焼き嵌め等を用いる必要もないので容易に組込みができ、また内輪を軸から分解する際も、軸受に負荷をかけることなくスムーズに行なえる。さらに、しまり嵌めで組み込む場合に比べて軸受周りの設計も容易となる。また、予圧付加後は内輪と軸との間はしまり嵌めとなるので、クリープの発生や回転精度の悪化も防止できる。 According to the bearing device having the above configuration, when the inner ring is incorporated into the shaft, it is not necessary to use a press or shrink fit, so that the inner ring can be easily incorporated. Also, when the inner ring is disassembled from the shaft, a load is applied to the bearing. It can be done smoothly. Furthermore, the design around the bearing becomes easier as compared with the case of incorporating by tight fitting. Further, since the inner ring and the shaft are closely fitted after the preload is applied, the occurrence of creep and the deterioration of the rotation accuracy can be prevented.

さらに、特許文献2では、組み込み後の転がり軸受に予圧が付与される前の状態において、ハウジングの内周面と外輪の外周面とがすきま嵌めとされ、組み込み後の転がり軸受に予圧が付与された状態において、外輪の外周面の半径方向への膨張によってしまり嵌めとされる軸受装置も開示されている。 Furthermore, in Patent Document 2, in a state before preload is applied to the rolling bearing after assembly, the inner peripheral surface of the housing and the outer peripheral surface of the outer ring are clearance-fitted, and preload is applied to the assembled rolling bearing. Also disclosed is a bearing device that is tightly fitted by expansion in the radial direction of the outer peripheral surface of the outer ring.

上記構成の軸受装置によれば、外輪をハウジングに組み込む際に、プレスや焼き嵌め等を用いる必要もないので容易に組込みができ、また外輪をハウジングから分解する際も、軸受に負荷をかけることなくスムーズに行なえる。さらに、しまり嵌めで組み込む場合に比べて軸受周りの設計も容易となる。また、予圧付加後は外輪とハウジングとの間はしまり嵌めとなるので、クリープの発生や回転精度の悪化も防止できる。 According to the bearing device having the above-described configuration, when the outer ring is incorporated into the housing, it is not necessary to use a press or shrink fit, so that it can be easily incorporated. It can be done smoothly. Furthermore, the design around the bearing becomes easier as compared with the case of incorporating by tight fitting. In addition, since the outer ring and the housing are closely fitted after the preload is applied, the occurrence of creep and the deterioration of the rotation accuracy can be prevented.

一方、上記軸受装置は内輪回転で使用される場合がほとんどであり、内輪回転条件で生じやすいフレッチングやクリープの発生に対して、さらなる対応が必要となっている。 On the other hand, the bearing device is mostly used for inner ring rotation, and further measures are required for the occurrence of fretting and creep that are likely to occur under inner ring rotation conditions.

特開2006−105385号公報JP 2006-105385 A 特開2009−002504号公報JP 2009-002504 A

本発明は、上述した事情に鑑みて為されたものであり、その目的は、内輪回転で発生するクリープをより確実に防止することができる軸受装置を提供することにある。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a bearing device that can more reliably prevent creep generated by inner ring rotation.

本発明の上記目的は、以下の構成によって達成される。
(1)軸と、ハウジングと、内輪が前記軸に外嵌されると共に、外輪が前記ハウジングに内嵌され、前記内輪と前記外輪との間に配置される複数の玉を有した転がり軸受と、を備える軸受装置であって、
前記軸の外周面と前記内輪の内周面とは、前記組み込み後の転がり軸受に予圧が付与される前の状態において、すきま嵌めとされ、前記組み込み後の転がり軸受に予圧が付与された状態において、前記内輪の内周面の半径方向への収縮によってしまり嵌めとされ、
さらに、前記軸受の外輪外径をφD、内輪内径をφd、玉のピッチ円直径をφdとした時に、φd<(φD+φd)/2の条件を満たし、かつ、前記組み込み後の転がり軸受に予圧が付与された状態において、内輪内径収縮量を外輪外径膨張量より大きく設定したことを特徴とする軸受装置。
(2)軸と、ハウジングと、内輪が前記軸に外嵌されると共に、外輪が前記ハウジングに内嵌され、前記内輪と前記外輪との間に配置される複数の玉を有した転がり軸受と、を備える軸受装置であって、
前記ハウジングの内周面と前記外輪の外周面とは、前記組み込み後の転がり軸受に予圧が付与される前の状態において、すきま嵌めとされ、前記組み込み後の転がり軸受に予圧が付与された状態において、前記外輪の外周面の半径方向への膨張によってしまり嵌めとされ、
さらに、前記軸受の外輪外径をφD、内輪内径をφd、玉のピッチ円直径をφdとした時に、φd<(φD+φd)/2の条件を満たし、かつ、前記組み込み後の転がり軸受に予圧が付与された状態において、内輪内径収縮量を外輪外径膨張量より大きく設定したことを特徴とする軸受装置。
(3)前記転がり軸受は、軸方向断面幅B
と半径方向断面高さHとの断面寸法比(B/H)を、0.1<B/H<0.63とした玉軸受であることを特徴とする(1)又は(2)に記載の軸受装置。
The above object of the present invention is achieved by the following configurations.
(1) A rolling bearing having a shaft, a housing, and an inner ring fitted on the shaft, an outer ring fitted on the housing, and a plurality of balls disposed between the inner ring and the outer ring. A bearing device comprising:
A state in which the outer peripheral surface of the shaft and the inner peripheral surface of the inner ring are clearance-fitted before the preload is applied to the rolling bearing after the assembly, and the preload is applied to the rolling bearing after the assembly In the inner ring, it is an interference fit by shrinkage in the radial direction of the inner peripheral surface,
Furthermore, the outer ring outer diameter of the bearing [phi] D, the inner ring inner diameter .phi.d, the pitch circle diameter of the ball when the .phi.d m, satisfies the φd m <(φD + φd) / 2 conditions, and the rolling bearing after the incorporation A bearing device, wherein an inner ring inner diameter contraction amount is set larger than an outer ring outer diameter expansion amount in a state where a preload is applied.
(2) A rolling bearing having a shaft, a housing, and an inner ring that is fitted on the shaft, and an outer ring that is fitted on the housing, and having a plurality of balls disposed between the inner ring and the outer ring. A bearing device comprising:
A state in which the inner peripheral surface of the housing and the outer peripheral surface of the outer ring are clearance fitted in a state before preload is applied to the rolling bearing after the assembly, and the preload is applied to the rolling bearing after the assembly In the above, an interference fit is obtained by expansion of the outer peripheral surface of the outer ring in the radial direction,
Furthermore, the outer ring outer diameter of the bearing [phi] D, the inner ring inner diameter .phi.d, the pitch circle diameter of the ball when the .phi.d m, satisfies the φd m <(φD + φd) / 2 conditions, and the rolling bearing after the incorporation A bearing device, wherein an inner ring inner diameter contraction amount is set larger than an outer ring outer diameter expansion amount in a state where a preload is applied.
(3) The rolling bearing has an axial sectional width B
(1) or (2), wherein the ball bearing has a cross-sectional dimension ratio (B / H) of 0.1 <B / H <0.63. Bearing device.

本発明の軸受装置によれば、軸の外周面と内輪の内周面とは、組み込み後の転がり軸受に予圧が付与される前の状態において、すきま嵌めとされ、組み込み後の転がり軸受に予圧が付与された状態において、内輪の内周面の半径方向への収縮によってしまり嵌めとされるので、内輪を軸に組み込む際に、プレスや焼き嵌め等を用いる必要もないので容易に組込みができ、また内輪を軸から分解する際も、軸受に負荷をかけることなくスムーズに行なえる。さらに、しまり嵌めで組み込む場合に比べて軸受周りの設計も容易となる。また、予圧付加後は内輪と軸との間はしまり嵌めとなるので、クリープの発生や回転精度の悪化も防止できる。 According to the bearing device of the present invention, the outer peripheral surface of the shaft and the inner peripheral surface of the inner ring are clearance-fitted in a state before preload is applied to the rolling bearing after assembly, and the preload is applied to the rolling bearing after assembly. When the inner ring is attached, the inner ring is contracted in the radial direction so that the inner ring can be easily fitted because there is no need to use a press or shrink fit when the inner ring is incorporated into the shaft. Also, when the inner ring is disassembled from the shaft, it can be carried out smoothly without applying a load to the bearing. Furthermore, the design around the bearing becomes easier as compared with the case of incorporating by tight fitting. Further, since the inner ring and the shaft are closely fitted after the preload is applied, the occurrence of creep and the deterioration of the rotation accuracy can be prevented.

またさらに、前記軸受の外輪外径をφD、内輪内径をφd、玉のピッチ円直径をφdmとした時に、φdm< (φD+φd)/2の条件を満たし、かつ、前記組み込み後の転がり軸受に予圧が付与された状態において、内輪内径収縮量を外輪外径膨張量より大きく設定したので、内輪回転で使用される軸受の剛性維持・回転精度をさらに向上させることができると共に、クリープを確実に防止することができる。 Furthermore, when the outer ring outer diameter of the bearing is φD, the inner ring inner diameter is φd, and the pitch circle diameter of the balls is φdm, the condition of φdm <(φD + φd) / 2 is satisfied, and the preloaded rolling bearing is assembled. Since the inner ring inner diameter contraction amount is set to be larger than the outer ring outer diameter expansion amount, the rigidity of the bearing used for inner ring rotation can be further improved and the rotation accuracy can be further improved, and creep can be reliably prevented. can do.

本発明の一実施形態に係る軸受装置である工作機械の主軸旋回装置を示す要部を断面とした側面図である。It is the side view which made the principal part the cross section which shows the main spindle turning apparatus of the machine tool which is a bearing apparatus which concerns on one Embodiment of this invention. 本実施形態の2列背面組合せアンギュラ玉軸受を示す断面図である。It is sectional drawing which shows the 2 rows back combination angular contact ball bearing of this embodiment. 従来の2列背面組合せアンギュラ玉軸受を示す断面図である。It is sectional drawing which shows the conventional 2 rows back combination angular contact ball bearing. クロスローラ軸受の断面図である。It is sectional drawing of a cross roller bearing. 4点接触玉軸受の断面図である。It is sectional drawing of a 4-point contact ball bearing. 2列組合せアンギュラ玉軸受の断面図である。It is sectional drawing of a two-row combination angular contact ball bearing. 2列組合せ円すいころ軸受の断面図である。It is sectional drawing of a two-row combination tapered roller bearing. 2列組合せアンギュラ玉軸受の予圧付与前の状態を示す断面図である。It is sectional drawing which shows the state before preload provision of a 2 row combination angular contact ball bearing. アンギュラ玉軸受の荷重の付加方向を示す断面図である。It is sectional drawing which shows the addition direction of the load of an angular contact ball bearing. (a)は、すきま嵌めで組み込まれた2列背面組合せアンギュラ玉軸受を示す断面図であり、(b)は、しまり嵌めで組み込まれた2列背面組合せアンギュラ玉軸受を示す断面図である。(A) is sectional drawing which shows the 2 row back combination angular ball bearing integrated by clearance fitting, (b) is sectional drawing which shows the 2 row back combination angular ball bearing integrated by interference fitting.

以下、本発明の一実施形態に係る軸受装置について、図1〜2を参照して詳細に説明する。

図1は、例えば、5軸加工マシニングセンタに使用される、本発明の軸受装置である工作機械の主軸旋回装置を示している。図中、符号30は工作機械の主軸旋回装置30であって、マシニングセンタの固定部に固定された基台(以下、「ハウジング」とも称す。)31と、この基台31に回転自在に支持された旋回台座(以下、「軸」とも称す。)32と、この旋回台座32に装着された主軸本体33と、を備え、ダイレクトモータ63による駆動方式を採用している。
Hereinafter, a bearing device according to an embodiment of the present invention will be described in detail with reference to FIGS.

FIG. 1 shows a spindle turning device for a machine tool, which is a bearing device of the present invention, used for a 5-axis machining machining center, for example. In the figure, reference numeral 30 denotes a spindle turning device 30 of a machine tool, which is supported by a base 31 (hereinafter also referred to as “housing”) fixed to a fixed portion of a machining center and rotatably supported by the base 31. And a main spindle 33 mounted on the swivel base 32, and adopts a drive system using a direct motor 63.

基台31は、左端面中央から右側に凹設した旋回台座32を収容する収容凹部34を有し、この収容凹部34内には、旋回台座32が主軸旋回部用軸受(以下、「転がり軸受」とも称す。)10を介して回転自在に支持されている。 The base 31 has a housing recess 34 that houses a swivel base 32 that is recessed from the center of the left end surface to the right side. The swivel base 32 is a main shaft swivel bearing (hereinafter referred to as a “rolling bearing”). It is also referred to as "."

旋回台座32は、主軸旋回部用玉軸受10及びロータ62を保持する基部64と、この基部64にボルト締めされる主軸旋回部用玉軸受10の内輪押えを兼ねる円板部65とで構成されている。基部64は、中央部の右端から左方に重量を軽減するための凹部41を形成した突出部42を有し、円板部65は、基部64の左端面と対向し、左端に平坦な取付面36を有する。 The swivel base 32 includes a base portion 64 that holds the main spindle turning portion ball bearing 10 and the rotor 62, and a disc portion 65 that also serves as an inner ring presser of the main spindle turning portion ball bearing 10 that is bolted to the base portion 64. ing. The base 64 has a protruding portion 42 formed with a recess 41 for reducing the weight from the right end of the central portion to the left, and the disc portion 65 is opposed to the left end surface of the base 64 and is mounted flat on the left end. It has a surface 36.

主軸本体33は、エンドミルやドリル等の治工具(図示せず)を取付ける工具取付面51を下方として工具を回転させる回転駆動源を内装した主軸52と、旋回台座32の円板部65の取付面36にボルト締めされ、主軸52の側面に一体に形成された取付板部53とを有する。 The main spindle body 33 is provided with a main spindle 52 equipped with a rotational drive source for rotating a tool with a tool mounting surface 51 for attaching a tool (not shown) such as an end mill or a drill, and a disk portion 65 of the swivel base 32 attached. It has a mounting plate portion 53 that is bolted to the surface 36 and formed integrally with the side surface of the main shaft 52.

また、主軸旋回装置30は、基台31の収容凹部34の内周面に配設したステータ61と、これに対向する旋回台座32の突出部42の外周面に配設したロータ62とで構成されるダイレクトモータ63を備え、このダイレクトモータ63で旋回台座32を直接旋回駆動する。なお、ダイレクトモータ63は、図1に示すアウタロータ型に構成する場合に限らず、突出部42の凹部41内周面にロータを配設し、このロータの内側にステータを配設するインナロータ型に構成するようにしてもよい。 The main spindle turning device 30 includes a stator 61 disposed on the inner peripheral surface of the housing recess 34 of the base 31 and a rotor 62 disposed on the outer peripheral surface of the protruding portion 42 of the swivel base 32 facing the stator 61. The direct motor 63 is provided, and the direct motor 63 directly drives the turning base 32 to turn. The direct motor 63 is not limited to the outer rotor type shown in FIG. 1, and is an inner rotor type in which a rotor is provided on the inner peripheral surface of the concave portion 41 of the projecting portion 42 and a stator is provided inside the rotor. You may make it comprise.

主軸旋回部用玉軸受10は、幅狭のアンギュラ玉軸受14を2列背面組合せした組合せアンギュラ玉軸受である。各アンギュラ玉軸受14は、図1及び図2に示すように、旋回台座32に外嵌される内輪11と、基台31に内嵌される外輪12と、内輪11及び外輪12の各軌道面11a,12a間に接触角を持って転動自在に配置される複数の転動体である玉13と、を有する。なお、各アンギュラ玉軸受14には、保持器やシールが設けられても良い。 The main shaft turning part ball bearing 10 is a combination angular contact ball bearing in which two rows of narrow angular ball bearings 14 are combined in the back side. As shown in FIGS. 1 and 2, each angular ball bearing 14 includes an inner ring 11 that is externally fitted to the swivel base 32, an outer ring 12 that is internally fitted to the base 31, and each raceway surface of the inner ring 11 and the outer ring 12. A ball 13 that is a plurality of rolling elements that are arranged to freely roll with a contact angle between 11a and 12a. Each angular ball bearing 14 may be provided with a cage or a seal.

そして、各内輪11は、旋回台座32に形成された段部38に外嵌された状態で、内輪押えを兼ねる円板部65をボルト44で締め付けることにより、段部38に固定される。一方、各外輪12は、基台31の収容凹部34に形成した段部45に内嵌された状態で、基台31の左端面側に配設された外輪押え46をボルト47によってボルト締めすることにより、基台31に固定される。また、円板部65をボルト締結することで、各内輪11の対向端面間の軸方向すきまを0とし、軸受内の弾性変形によって玉軸受10に定位置予圧が付与される。この時、内輪11の対向端面間の軸方向すきまが0となった状態で、旋回台座32と円板部65との軸方向すきまΔ1(図1参照)を確保できるようにするのが好ましい。内輪11への押付力のばらつきを抑え、適切な予圧を付加させるためには、Δ1は通常、0.01〜0.05mm程度が適切である。 Each inner ring 11 is fixed to the stepped portion 38 by tightening the disc portion 65 that also serves as an inner ring presser with a bolt 44 in a state of being fitted on the stepped portion 38 formed on the swivel base 32. On the other hand, each outer ring 12 is bolted to the outer ring presser 46 disposed on the left end surface side of the base 31 with a bolt 47 in a state in which the outer ring 12 is fitted in a step 45 formed in the housing recess 34 of the base 31. Thus, the base 31 is fixed. Further, by fastening the disc portion 65 with bolts, the axial clearance between the opposed end faces of the inner rings 11 is set to 0, and a fixed position preload is applied to the ball bearing 10 by elastic deformation in the bearing. At this time, it is preferable to ensure the axial clearance Δ1 (see FIG. 1) between the swivel base 32 and the disc portion 65 in a state where the axial clearance between the opposed end surfaces of the inner ring 11 becomes zero. In order to suppress variation in the pressing force on the inner ring 11 and to add an appropriate preload, Δ1 is usually about 0.01 to 0.05 mm.

各幅狭のアンギュラ玉軸受14は、軸方向の省スペース化を図るため、軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)を(B/H)<0.63としている。なお、B/Hは理論的にはB/H>0であるが、現実的には、使用する玉や保持器、シールの設計、選定等と加味すると、B/H>0.10、好ましくはB/H>0.20、より好ましくはB/H>0.30が望ましい。 Each narrow angular ball bearing 14 has a cross section of an axial cross section width B and a radial cross section height H (= (outer ring outer diameter D−inner ring inner diameter d) / 2) in order to save space in the axial direction. The dimension ratio (B / H) is set to (B / H) <0.63. B / H is theoretically B / H> 0, but in reality, B / H> 0.10, preferably in consideration of the design, selection, etc. of balls, cages, and seals to be used. B / H> 0.20, more preferably B / H> 0.30.

また、国際標準化機構(ISO)で決められている標準玉軸受の場合、B/Hが1.0前後のものが多くを占める。したがって、B/H<0.5に設定すれば標準玉軸受約1列分の幅方向スペースで2列の幅狭玉軸受を配設させることができ、省スペース化が図られる。また、アンギュラ玉軸受の場合、1列では一方向の軸方向荷重しか受けられず、また、モーメント荷重を受けることはできないが、2列以上組合わせることで、両方向の軸方向荷重やモーメント荷重の負荷が可能となる。また予圧を付加することもできるので、省スペース化と共にラジアル剛性やアキシャル剛性及びモーメント剛性なども大きくすることができる。また、B/H<0.25に設定すれば、4列の幅狭玉軸受を配設させることができ、さらに剛性の向上が可能である。
Further, in the case of standard ball bearings determined by the International Organization for Standardization (ISO), those with a B / H of around 1.0 account for the majority. Therefore, if B / H <0.5 is set, two rows of narrow ball bearings can be arranged in a space in the width direction of about one row of standard ball bearings, thereby saving space. In the case of angular contact ball bearings, only one axial load can be received in one row and moment load cannot be received. However, by combining two or more rows, the axial load and moment load in both directions can be reduced. Load becomes possible. Further, since preload can be added, it is possible to increase the radial rigidity, the axial rigidity, the moment rigidity and the like as well as space saving. If B / H <0.25, four rows of narrow ball bearings can be disposed, and the rigidity can be further improved.

加えて、上記幅狭のアンギュラ玉軸受は、標準設計の軸受よりも小径の玉を複数用いている設計であり、内外輪の径方向断面肉厚が厚い構成となっている。したがって、断面二次モーメントが高く、径方向の剛性が高くなる。ゆえに、周囲からの過重負荷に対して変形しづらい特性を保持している。以上から、軸32やハウジング31に組み込んだ場合(特に、軸32やハウジング31とすきま嵌合で組み込んだ場合)、円板部65や外輪押え46等で軸受10を固定した時の内外輪11,12の変形(特に真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転精度不良、あるいは、発熱増大、摩耗や焼付き等の不具合を防止することができる。 In addition, the narrow angular contact ball bearing is designed to use a plurality of balls having a smaller diameter than a standard design bearing, and the inner and outer rings have a thick radial cross-sectional thickness. Therefore, the cross-sectional secondary moment is high and the radial rigidity is high. Therefore, the characteristic which is hard to deform | transform with respect to the heavy load from the periphery is hold | maintained. From the above, the inner and outer rings 11 when the bearing 10 is fixed by the disk portion 65, the outer ring retainer 46, etc., when incorporated in the shaft 32 or the housing 31 (particularly when assembled by clearance fitting with the shaft 32 or the housing 31). , 12 (especially deterioration of roundness) can be suppressed, and defects such as torque failure and rotation accuracy caused by deformation, increased heat generation, wear and seizure can be prevented.

さらに、幅寸法が従来の標準単列玉軸受の約半分となることで、玉径も従来の玉軸受の半分程度となるが、逆に1列あたりの玉数が増加し、軸受剛性は従来の玉軸受に対して増加する。 Furthermore, when the width dimension is about half that of the conventional standard single-row ball bearing, the ball diameter is also about half that of the conventional ball bearing. Increased against ball bearings.

ここで、本実施形態では、上述したように、円板部65をボルト締結することで、軸受内の弾性変形によって玉軸受10に定位置予圧が付与されるが、転がり軸受10に予圧が付与される前の状態において、旋回台座32の外周面と内輪11の内周面との間、及び、基台31の内周面と外輪12の外周面との間の各嵌め合いは、すきま嵌めとされている。そして、転がり軸受10に予圧が付与された状態において、内輪11の内周面の半径方向への収縮、外輪12の外周面の半径方向への膨張によって、各嵌め合いはしまり嵌めとなる。 Here, in this embodiment, as described above, by fixing the disc portion 65 with bolts, a fixed position preload is applied to the ball bearing 10 by elastic deformation in the bearing, but a preload is applied to the rolling bearing 10. In the state before being performed, each fit between the outer peripheral surface of the swivel base 32 and the inner peripheral surface of the inner ring 11 and between the inner peripheral surface of the base 31 and the outer peripheral surface of the outer ring 12 is a clearance fit. It is said that. Then, in a state in which a preload is applied to the rolling bearing 10, each fit is a tight fit due to contraction of the inner peripheral surface of the inner ring 11 in the radial direction and expansion of the outer peripheral surface of the outer ring 12 in the radial direction.

具体的に、転がり軸受10の旋回台座32及び基台31への組立方法について説明すると、まず、旋回台座32の段部38に2列のアンギュラ玉軸受14を背面組合せの状態で挿入する。この状態で、旋回台座32の外周面と内輪11の内周面との間の嵌め合いは、すきま嵌めとされている。なお、外輪押え46は、一方(図1の左側)のアンギュラ玉軸受14の外輪12に嵌めておく。 Specifically, a method for assembling the rolling bearing 10 to the turning pedestal 32 and the base 31 will be described. First, two rows of angular ball bearings 14 are inserted into the stepped portion 38 of the turning pedestal 32 in a combined state of the back surface. In this state, the fit between the outer peripheral surface of the swivel base 32 and the inner peripheral surface of the inner ring 11 is a clearance fit. The outer ring presser 46 is fitted to the outer ring 12 of one of the angular ball bearings 14 (left side in FIG. 1).

次に、内輪押えを兼ねた円板部65を軸である旋回台座32に組み付け後、ボルト44により、軸受に予圧が付加されない程度に、円板部65を旋回台座32に軽く仮締めする。軽く仮締めする事で、2つのアンギュラ玉軸受14は組合せ軸受となり、図9(b)に示すような逆方向の荷重が負荷しなくなる。また、組合せアンギュラ玉軸受10をハウジングである基台31の収容凹部34の端部穴に挿入する。軸受にはまだ予圧は付加されていないので、基台31の内周面と外輪12の外周面との間の嵌め合いもすきま嵌めとされている。 Next, after assembling the disc portion 65 that also serves as an inner ring presser to the turning pedestal 32 that is the shaft, the disc portion 65 is lightly temporarily fastened to the turning pedestal 32 with bolts 44 so that no preload is applied to the bearing. By lightly tightening temporarily, the two angular ball bearings 14 become a combination bearing, and a load in the reverse direction as shown in FIG. Moreover, the combination angular contact ball bearing 10 is inserted into the end hole of the receiving recess 34 of the base 31 which is a housing. Since no preload is applied to the bearing, the fit between the inner peripheral surface of the base 31 and the outer peripheral surface of the outer ring 12 is also a clearance fit.

そして、円板部65のボルト44を適正なトルクで締め付け、内輪11が固定されると、初めて設定予圧が組合せアンギュラ玉軸受10に付与される。その後、外輪押え46のボルト47を、適正トルクで締め付ける。 Then, when the bolt 44 of the disc portion 65 is tightened with an appropriate torque and the inner ring 11 is fixed, the set preload is applied to the combined angular ball bearing 10 for the first time. Thereafter, the bolt 47 of the outer ring presser 46 is tightened with an appropriate torque.

この予圧が付与された状態で、内輪11の内周面が半径方向に収縮し、外輪12の外周面が半径方向に膨張するため、旋回台座32の外周面と内輪11の内周面との間、及び、基台31の内周面と外輪12の外周面との間の各嵌め合いがしまり嵌めとなる。これにより、組み込み前にあったすきまがなくなり、クリープや回転振動等の不具合を防止することができる。 With the preload applied, the inner peripheral surface of the inner ring 11 contracts in the radial direction, and the outer peripheral surface of the outer ring 12 expands in the radial direction, so that the outer peripheral surface of the swivel base 32 and the inner peripheral surface of the inner ring 11 Each fit between the inner peripheral surface of the base 31 and the outer peripheral surface of the outer ring 12 is a tight fit. As a result, there is no gap before assembly, and problems such as creep and rotational vibration can be prevented.

なお、予圧が付与される前の状態での、旋回台座32と内輪11、及び基台31と外輪12との各嵌め合いすきまは、設定予圧荷重、予圧荷重と内輪及び外輪の半径方向膨収縮量との関係、予圧付与後の嵌め合いすきま(しめしろ)等を考慮して設定される。また、内輪11及び外輪12の半径方向の膨収縮により、軸受内部のラジアルすきま量も変化することから、予圧すきまは、設定予圧荷重に加え、このラジアルすきまの変化量を考慮して設定される。 In addition, in the state before the preload is applied, the fitting clearances between the turning pedestal 32 and the inner ring 11 and the base 31 and the outer ring 12 are the set preload load, the preload load, and the radial expansion and contraction of the inner ring and the outer ring. It is set in consideration of the relationship with the amount, the fitting clearance after applying preload, and the like. Further, since the radial clearance amount in the bearing also changes due to the expansion and contraction of the inner ring 11 and the outer ring 12 in the radial direction, the preload clearance is set in consideration of the change amount of the radial clearance in addition to the set preload load. .

また、軌道輪の半径方向膨収縮による剛性低下(予圧減少)をより防止したい場合は、必要に応じて、例えば、軸32又はハウジング31と軸受10間の嵌め合いすきまを、それぞれ、軌道輪の半径方向膨収縮量の約1/2程度以下(本実施形態では、軸32と内輪11間のすきま:0.001〜0.010mm、或いは、ハウジング31と外輪12間のすきま:0.001〜0.015mm)程度に設定するとよい。このように設定しておけば、軸受の膨収縮量を抑制し、かつ予圧付加後は、適度なしまり嵌めとなるので、剛性を確保できる。また、クリープや回転時の振動をより防止することができる。 Further, when it is desired to further prevent a decrease in rigidity (a decrease in preload) due to the radial expansion and contraction of the bearing ring, for example, a fitting clearance between the shaft 32 or the housing 31 and the bearing 10 is respectively set as required. About half or less of the amount of expansion and contraction in the radial direction (in this embodiment, the clearance between the shaft 32 and the inner ring 11: 0.001 to 0.010 mm, or the clearance between the housing 31 and the outer ring 12: 0.001 It may be set to about 0.015 mm). If set in this way, the amount of expansion and contraction of the bearing is suppressed, and after applying the preload, a moderate interference fit is obtained, so that rigidity can be ensured. Further, creep and vibration during rotation can be further prevented.

またさらに、本実施形態では、軸受14の外輪外径をφD、内輪内径をφd、玉のピッチ円直径をφdmとした時に、φd< (φD+φd)/2の条件を満たし、かつ、前記組み込み後の転がり軸受に予圧が付与された状態において、内輪内径収縮量を外輪外径膨張量より大きく設定したことで、予圧が付与された状態における内輪のしめしろをより大きくすることができ、内輪回転条件で生じやすいフレッチングやクリープをより防止できる。また、予圧荷重負荷後内輪しめしろとするための、内輪と軸とのはめあい嵌合条件が得やすい(はめあい範囲を広く設定することができる)。 Furthermore, in the present embodiment, [phi] D the outer ring outer diameter of the bearing 14, the inner ring inner diameter .phi.d, the pitch circle diameter of the ball when the Faidm, meet φd m <(φD + φd) / 2 conditions, and the incorporation By setting the inner ring inner diameter contraction amount larger than the outer ring outer diameter expansion amount in the state where the pre-load is applied to the subsequent rolling bearing, the inner ring interference in the state where the pre-load is applied can be further increased. Fretting and creep that are likely to occur under rotating conditions can be further prevented. In addition, it is easy to obtain the fitting fitting condition between the inner ring and the shaft for setting the inner ring interference after the preload load is applied (the fitting range can be set wide).

通常の産業機械装置では、内輪回転、外輪非回転(静止)で使用される場合がほとんどである。この場合、回転軸側である内輪の回転精度を向上させたり、回転時の振動荷重等によるフレッチングやクリープを抑制するには、はめあいをしめしろ嵌合とする必要がある。また、外部荷重によるしめしろ減少分も加味すると、外部荷重値に対応する適度のしめしろの確保が必要である。逆に、固定輪となる外輪側は、剛性等がさほど要求されない場合、中間ばめ、あるいは若干のすきま嵌合でもフレッチングやクリープの発生はしがたくさほど運転上支障はない。 In general industrial machinery, the inner ring is rotated and the outer ring is not rotated (stationary). In this case, in order to improve the rotation accuracy of the inner ring on the rotating shaft side, or to suppress fretting and creep due to vibration load during rotation, it is necessary to make an interference fit. In addition, when the interference reduction due to the external load is taken into account, it is necessary to secure an appropriate interference corresponding to the external load value. On the other hand, when rigidity or the like is not so much required on the outer ring side that is a fixed ring, there is no problem in operation as much as fretting and creep are hard to occur even with intermediate fit or slight clearance fitting.

従来の軸受の場合、玉ピッチ円径は内外輪の半径方向中央部に設定するが、この場合、予圧荷重による内輪・外輪の半径方向変形量(外輪は膨張、内輪は収縮)は、各リングに作用する応力方向の違いから外輪側の方が大きくなる。結果として、従来の軸受(玉ピッチ円径が半径方向中央位置)では、はめあいレンジを内外輪で同じとした場合、予圧負荷後の外輪膨張・内輪収縮によるしめしろは、はめあいしめしろを必要とする内輪側の方が小さくなってしまうが、本実施形態とすることで、内輪側は、最大しめしろを大きくとることができ、また、しめしろとするはめあいレンジも広く取れる。一方、外輪側は、しめしろとするためのはめあいレンジは狭くなるが、前述のように中間ばめ、あるいは、最悪すきまとなってもかまわないので問題はない。 In the case of conventional bearings, the ball pitch circle diameter is set at the center in the radial direction of the inner and outer rings. In this case, the amount of radial deformation of the inner and outer rings due to preload (the outer ring expands and the inner ring contracts) The outer ring side becomes larger due to the difference in stress direction acting on the outer ring. As a result, with conventional bearings (ball pitch circle diameter in the center position in the radial direction), when the fitting range is the same for the inner and outer rings, the interference due to the outer ring expansion and inner ring contraction after preload is required to fit. The inner ring side is smaller, but by adopting this embodiment, the inner ring side can have a larger maximum interference and a wider fit range for interference. On the other hand, the outer ring side has a narrow fit range for interference, but there is no problem because it may be an intermediate fit or the worst clearance as described above.

回転精度の悪化防止の効果の一つは、以下の理由によるものである。
即ち、軸(旋回台座)32の外周面と内輪11の内周面との間、及びハウジング(基台)31の内周面と外輪12の外周面との間がすきま嵌めで組み込まれた場合、図10(a)に示すように、2列の内輪11,11間及び外輪12,12間で軸芯が半径方向にずれる可能性が高い。このような芯ずれが生じた状態で、転がり軸受が回転した場合、もみすり運動のような振れ回りが生じ、回転精度が悪化する。一方、本発明では、予圧後にしまり嵌めで組み込まれているので、図10(b)のように、内輪11,11間及び外輪12,12間で芯ずれがなくなり、回転精度を向上することができる。
One of the effects of preventing the deterioration of rotational accuracy is due to the following reason.
That is, when the space between the outer peripheral surface of the shaft (swivel pedestal) 32 and the inner peripheral surface of the inner ring 11 and the inner peripheral surface of the housing (base) 31 and the outer peripheral surface of the outer ring 12 are assembled with a clearance fit. As shown in FIG. 10 (a), there is a high possibility that the axis is displaced in the radial direction between the two rows of inner rings 11, 11 and between the outer rings 12, 12. When the rolling bearing rotates in a state where such misalignment has occurred, a whirling motion such as a hulling motion occurs, and the rotational accuracy deteriorates. On the other hand, in the present invention, since it is incorporated with a tight fit after preloading, there is no misalignment between the inner rings 11 and 11 and between the outer rings 12 and 12, as shown in FIG. it can.

特に、本実施形態では、断面寸法比を0.1<B/H<0.63とした幅狭のアンギュラ玉軸受14が用いられているので、内外輪11,12の軸方向断面肉厚が薄く、予圧による内外輪11,12の膨収縮変形も大きくなるので、その効果が大きい。つまり、標準寸法の転がり軸受の場合には、内外輪11,12の断面肉厚が厚く、また、用途上の必要予圧荷重も小さかったので、予圧を付加しても内外輪11,12の膨収縮量はわずかであったので、嵌めあいすきまの影響は少なかった。しかし、幅狭のアンギュラ玉軸受14では、これに比べて予圧による内外輪11,12の膨収縮変形が大きく、今回のような考案が必要となる。 In particular, in this embodiment, the narrow angular ball bearing 14 having a cross-sectional dimension ratio of 0.1 <B / H <0.63 is used, so that the axial cross-sectional thickness of the inner and outer rings 11 and 12 is small. It is thin, and the expansion and contraction deformation of the inner and outer rings 11 and 12 due to preload is also increased, so the effect is great. That is, in the case of a rolling bearing having a standard size, the inner and outer rings 11 and 12 have a large cross-sectional thickness, and the required preload for application is small. Since the amount of shrinkage was slight, the effect of the fitting clearance was small. However, in the narrow angular contact ball bearing 14, the expansion and contraction deformation of the inner and outer rings 11 and 12 due to the preload is larger than that, and the present invention is required.

加えて、工作機械の回転テーブルや主軸旋回機構部、印刷機のドラム回転部等は高剛性を必要とし、かつ省スペース化が必要となるので、幅狭のアンギュラ玉軸受14は、これらの構造に有効である。また、剛性増加のため、設定する予圧荷重も、数百kg以上と大きいので膨収縮変形も大きくなり、上記効果をより発揮できる。 In addition, since the rotary table of the machine tool, the spindle turning mechanism part, the drum rotating part of the printing machine, etc. require high rigidity and space saving, the narrow angular ball bearing 14 has these structures. It is effective for. In addition, because the rigidity is increased, the preload to be set is as large as several hundred kg or more, so that the expansion and contraction deformation is increased, and the above effect can be exhibited more.

尚、本発明は、上述した実施形態に限定されるものでなく、適宜、変形、改良等が可能である。
なお、本発明の軸受装置は、本実施形態の用途以外、例えば、工作機械の回転テーブル・ロボットの旋回機構部や関節部・印刷機械のドラム等の回転機構部、ダイレクトモータ回転支持部等でも、同様の効果を発揮できる。特に、工作機械の回転テーブルや主軸旋回機構部、ダイレクトモータ回転支持部、ロボットの関節部や旋回機構部等においては、省スペース化と高剛性化を両立させる必要があり、軸方向に幅狭の軸受を使用すれば、予圧荷重による軌道輪の膨収縮量が大きいので、さらに上記の作用効果が向上する。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
The bearing device of the present invention can be used for other than the application of the present embodiment, for example, a rotary mechanism part of a machine tool, a turning mechanism part of a robot, a rotary part such as a joint part or a drum of a printing machine, a direct motor rotation support part, etc. The same effect can be exhibited. Especially for rotary tables of machine tools, spindle turning mechanisms, direct motor rotation support parts, robot joints and turning mechanisms, it is necessary to achieve both space saving and high rigidity, and narrow in the axial direction. If this bearing is used, since the amount of expansion and contraction of the raceway ring due to the preload is large, the above-described effects are further improved.

本発明の転がり軸受としては、本実施形態のアンギュラ玉軸受以外に、円すいころ軸受、深みぞ玉軸受、クロスローラ軸受、4点接触玉軸受等が適用できる。また、組合せ軸受の場合、必要に応じて、2列以上、例えば、3列組合せや4列組合せアンギュラ玉軸受としても良い。 As the rolling bearing of the present invention, a tapered roller bearing, a deep groove ball bearing, a cross roller bearing, a four-point contact ball bearing and the like can be applied in addition to the angular ball bearing of the present embodiment. Moreover, in the case of a combination bearing, it is good also as 2 rows or more, for example, a 3 row combination, and a 4 row combination angular contact ball bearing as needed.

さらに、モーメント剛性を向上させるため、組み合わせた軸受間に内輪間座や外輪間座を挿入してもよい。また、組合せ方法も、図2に示すような、接触角の向きをハの字形とした背面組合せではなく、逆ハの字形とした正面組合せとしてもよい。 Furthermore, in order to improve moment rigidity, an inner ring spacer or an outer ring spacer may be inserted between the combined bearings. Further, the combination method may be a front combination in which the direction of the contact angle is a cross-shaped shape as shown in FIG.

予圧の付加方法としては、2列以上の軸受の組合せによる定位置予圧方式の他、ばねを利用し、適正な予圧荷重を付加できる定圧予圧方式等を採用してもよい。予圧の付加方法や構造は適時、本考案の範囲で選定可能である。 As a method for applying the preload, in addition to a fixed position preload method using a combination of two or more rows of bearings, a constant pressure preload method capable of applying an appropriate preload using a spring may be adopted. The preload application method and structure can be selected in a timely manner within the scope of the present invention.

また、本実施形態の主軸旋回装置においては、基台31に形成した収容凹部34内に旋回台座32を回転自在に支持する場合について説明したが、これに限定されるものではなく、基台31の外側に旋回台座32を主軸旋回部用玉軸受10を介して回転自在に支持するようにしてもよい。 In the spindle turning device of the present embodiment, the case where the turning base 32 is rotatably supported in the housing recess 34 formed in the base 31 has been described, but the present invention is not limited to this, and the base 31 is not limited thereto. Alternatively, the swivel base 32 may be rotatably supported via the main shaft swivel ball bearing 10.

さらに、本実施形態では、軸32の外周面と内輪11の内周面との間、及び、ハウジング31の内周面と外輪12の外周面との間の各嵌め合いは、転がり軸受10に予圧が付与される前の状態においてすきま嵌めとし、転がり軸受10に予圧が付与された状態においてしまり嵌めとしているが、本発明は、これら嵌め合いの少なくとも一方が、転がり軸受10に予圧が付与された状態においてしまり嵌めとされればよく、一方の嵌め合いが予圧付与後にすきま嵌めの状態のままであってもよい。 Furthermore, in the present embodiment, each fit between the outer peripheral surface of the shaft 32 and the inner peripheral surface of the inner ring 11 and between the inner peripheral surface of the housing 31 and the outer peripheral surface of the outer ring 12 is in the rolling bearing 10. In the state before the preload is applied, the clearance fit is used, and in the state where the preload is applied to the rolling bearing 10, the fit is applied. However, in the present invention, at least one of these fits is applied to the rolling bearing 10. In this state, it is only necessary to make an interference fit, and one fit may remain in a clearance fit state after the preload is applied.

また、本発明は、これら嵌め合いの少なくとも一方が、転がり軸受10に予圧が付与される前の状態においてすきま嵌めであればよく、一方の嵌め合いが予圧付与前からしまり嵌めであってもよい。その場合、すきま嵌めとした他方の嵌め合いが、予圧付与後にしまり嵌めとされる。 In the present invention, at least one of these fits may be a clearance fit in a state before the preload is applied to the rolling bearing 10, and one fit may be a tight fit before the preload is applied. . In that case, the other fit, which is a clearance fit, is a tight fit after the preload is applied.

本発明は、例えば、産業機械、ロボットの関節部や旋回機構部、工作機械の回転テーブルや主軸旋回機構部、印刷機械のドラム等の回転機構部、ダイレクトモータ回転支持部、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置等の回転軸を支持する軸受装置及びその組立方法に好適に利用できる。 The present invention includes, for example, industrial machines, robot joints and turning mechanisms, rotary tables and spindle turning mechanisms for machine tools, rotation mechanisms such as drums for printing machines, direct motor rotation support parts, medical devices, semiconductors / It can be suitably used for a bearing device for supporting a rotating shaft such as a liquid crystal manufacturing apparatus, an optical and an optoelectronic device, and an assembling method thereof.

10 主軸旋回部用軸受(転がり軸受)
11 内輪
12 外輪
13 玉(転動体)
14 アンギュラ玉軸受
30 主軸旋回装置(軸受装置)
31 基台(ハウジング)
32 旋回台座(軸)
10 Bearing for spindle turning part (rolling bearing)
11 Inner ring 12 Outer ring 13 Ball (rolling element)
14 Angular contact ball bearing 30 Spindle turning device (bearing device)
31 base (housing)
32 swivel base (axis)

Claims (3)

軸と、ハウジングと、内輪が前記軸に外嵌されると共に、外輪が前記ハウジングに内嵌され、前記内輪と前記外輪との間に配置される複数の玉を有した転がり軸受と、を備える軸受装置であって、
前記軸の外周面と前記内輪の内周面とは、前記組み込み後の転がり軸受に予圧が付与される前の状態において、すきま嵌めとされ、前記組み込み後の転がり軸受に予圧が付与された状態において、前記内輪の内周面の半径方向への収縮によってしまり嵌めとされ、
さらに、前記軸受の外輪外径をφD、内輪内径をφd、玉のピッチ円直径をφdとした時に、φd<(φD+φd)/2の条件を満たし、かつ、前記組み込み後の転がり軸受に予圧が付与された状態において、内輪内径収縮量を外輪外径膨張量より大きく設定したことを特徴とする軸受装置。
A shaft, a housing, and an inner ring fitted to the shaft; and an outer ring fitted to the housing, and a rolling bearing having a plurality of balls disposed between the inner ring and the outer ring. A bearing device,
A state in which the outer peripheral surface of the shaft and the inner peripheral surface of the inner ring are clearance-fitted before the preload is applied to the rolling bearing after the assembly, and the preload is applied to the rolling bearing after the assembly In the inner ring, it is an interference fit by shrinkage in the radial direction of the inner peripheral surface,
Furthermore, the outer ring outer diameter of the bearing [phi] D, the inner ring inner diameter .phi.d, the pitch circle diameter of the ball when the .phi.d m, satisfies the φd m <(φD + φd) / 2 conditions, and the rolling bearing after the incorporation A bearing device, wherein an inner ring inner diameter contraction amount is set larger than an outer ring outer diameter expansion amount in a state where a preload is applied.
軸と、ハウジングと、内輪が前記軸に外嵌されると共に、外輪が前記ハウジングに内嵌され、前記内輪と前記外輪との間に配置される複数の玉を有した転がり軸受と、を備える軸受装置であって、
前記ハウジングの内周面と前記外輪の外周面とは、前記組み込み後の転がり軸受に予圧が付与される前の状態において、すきま嵌めとされ、前記組み込み後の転がり軸受に予圧が付与された状態において、前記外輪の外周面の半径方向への膨張によってしまり嵌めとされ、
さらに、前記軸受の外輪外径をφD、内輪内径をφd、玉のピッチ円直径をφdとした時に、φd<(φD+φd)/2の条件を満たし、かつ、前記組み込み後の転がり軸受に予圧が付与された状態において、内輪内径収縮量を外輪外径膨張量より大きく設定したことを特徴とする軸受装置。
A shaft, a housing, and an inner ring fitted to the shaft; and an outer ring fitted to the housing, and a rolling bearing having a plurality of balls disposed between the inner ring and the outer ring. A bearing device,
A state in which the inner peripheral surface of the housing and the outer peripheral surface of the outer ring are clearance fitted in a state before preload is applied to the rolling bearing after the assembly, and the preload is applied to the rolling bearing after the assembly In the above, an interference fit is obtained by expansion of the outer peripheral surface of the outer ring in the radial direction,
Furthermore, the outer ring outer diameter of the bearing [phi] D, the inner ring inner diameter .phi.d, the pitch circle diameter of the ball when the .phi.d m, satisfies the φd m <(φD + φd) / 2 conditions, and the rolling bearing after the incorporation A bearing device, wherein an inner ring inner diameter contraction amount is set larger than an outer ring outer diameter expansion amount in a state where a preload is applied.
前記転がり軸受は、軸方向断面幅Bと半径方向断面高さHとの断面寸法比(B/H)を、0.1<B/H<0.63とした玉軸受であることを特徴とする請求項1又は2に記載の軸受装置。 The rolling bearing is a ball bearing in which a sectional dimension ratio (B / H) between an axial sectional width B and a radial sectional height H is 0.1 <B / H <0.63. The bearing device according to claim 1 or 2.
JP2010265871A 2010-11-30 2010-11-30 Bearing device Pending JP2012117567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010265871A JP2012117567A (en) 2010-11-30 2010-11-30 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010265871A JP2012117567A (en) 2010-11-30 2010-11-30 Bearing device

Publications (1)

Publication Number Publication Date
JP2012117567A true JP2012117567A (en) 2012-06-21

Family

ID=46500652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010265871A Pending JP2012117567A (en) 2010-11-30 2010-11-30 Bearing device

Country Status (1)

Country Link
JP (1) JP2012117567A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108412901A (en) * 2018-04-28 2018-08-17 无锡民联汽车零部件有限公司 Self-luminous auxiliary repair type automobile bearing in circle
CN109027023A (en) * 2018-09-30 2018-12-18 安徽工程大学 For assisting the inner ring of determining of automatic assembling bearing to fill pearl assembly platform and application method
CN111486169A (en) * 2020-04-03 2020-08-04 浙江大学 Upper driving type main shaft complex for centrifugal hypergravity device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108412901A (en) * 2018-04-28 2018-08-17 无锡民联汽车零部件有限公司 Self-luminous auxiliary repair type automobile bearing in circle
CN109027023A (en) * 2018-09-30 2018-12-18 安徽工程大学 For assisting the inner ring of determining of automatic assembling bearing to fill pearl assembly platform and application method
CN109027023B (en) * 2018-09-30 2023-09-01 安徽工程大学 Fixed inner ring bead filling assembly platform for assisting automatic assembly of bearing and use method
CN111486169A (en) * 2020-04-03 2020-08-04 浙江大学 Upper driving type main shaft complex for centrifugal hypergravity device
CN111486169B (en) * 2020-04-03 2023-10-03 浙江大学 Upper driving type main shaft complex for centrifugal supergravity device

Similar Documents

Publication Publication Date Title
JP6469379B2 (en) Ball bearing type auxiliary bearing for magnetically suspended rotor system
JP2008057657A (en) Main spindle bearing structure of nc automatic lathe
JP2011163420A (en) Bearing structure and direct drive type wind turbine generator
JP2010001924A (en) Combination bearing
JP5304524B2 (en) Inner and outer rings and ball bearings
JP5704213B2 (en) Bearing device
JP2013194886A (en) Bearing device and rotating body
JP5453764B2 (en) Bearing device and assembly method thereof
JP2012117567A (en) Bearing device
JP2006326695A (en) Bearing device for main spindle of machine tool
JP4525476B2 (en) Preloading method for double row tapered roller bearing unit
JP5651966B2 (en) Roller bearing
JP5003498B2 (en) Bearing device and assembly method thereof
JP5218137B2 (en) Bearing device, rotary table of machine tool, and spindle device
JP2006105384A (en) Double row ball bearing
JP2008030132A (en) Spindle bearing structure of nc automatic lathe
JP2006258115A (en) Double row tapered roller bearing unit
JP2007218394A (en) Two-split bearing
JP7346923B2 (en) Combination tapered roller bearing and gearbox
JP2006220174A (en) Double row ball bearing
US20090046973A1 (en) Bearing retention method and apparatus
JP2007113777A (en) Rolling bearing device
JP4359944B2 (en) Bearing support device
JP2008014473A (en) Wheel bearing device
JP2009008211A (en) Roller bearing-bearing housing assembling body