JP5556590B2 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP5556590B2
JP5556590B2 JP2010241737A JP2010241737A JP5556590B2 JP 5556590 B2 JP5556590 B2 JP 5556590B2 JP 2010241737 A JP2010241737 A JP 2010241737A JP 2010241737 A JP2010241737 A JP 2010241737A JP 5556590 B2 JP5556590 B2 JP 5556590B2
Authority
JP
Japan
Prior art keywords
rolling
rolling bearing
bearing
raceway surface
ring raceway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010241737A
Other languages
Japanese (ja)
Other versions
JP2012092919A (en
Inventor
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010241737A priority Critical patent/JP5556590B2/en
Publication of JP2012092919A publication Critical patent/JP2012092919A/en
Application granted granted Critical
Publication of JP5556590B2 publication Critical patent/JP5556590B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • F16C33/412Massive or moulded comb cages, e.g. snap ball cages
    • F16C33/414Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages
    • F16C33/416Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages made from plastic, e.g. injection moulded comb cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement

Description

本発明は、例えば、産業機械、ロボットの関節部や旋回機構部、工作機械の主軸、回転テーブルや主軸旋回機構部、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置等の回転支持部に用いられる転がり軸受に関する。   The present invention includes, for example, industrial machinery, robot joints and turning mechanisms, spindles of machine tools, rotary tables and spindle turning mechanisms, medical equipment, semiconductor / liquid crystal manufacturing apparatuses, optical and optoelectronic devices, and the like. The present invention relates to a rolling bearing used in the above.

従来の転がり軸受として、図9に示すように、円周方向の一ヶ所に切断部14を設けた合成樹脂製の冠形保持器15が提案されている(例えば、特許文献1及び2参照)。特許文献1に記載の転がり軸受では、切断部14を設けることで、内外輪及び玉と保持器との熱膨張係数の違い等により玉とポケット部19との間に発生する突っ張り力を緩和して保持器の摩耗等を防止することが記載されている。   As a conventional rolling bearing, as shown in FIG. 9, a synthetic resin crown-shaped cage 15 provided with a cutting portion 14 at one place in the circumferential direction has been proposed (for example, see Patent Documents 1 and 2). . In the rolling bearing described in Patent Document 1, by providing the cutting portion 14, the tensile force generated between the ball and the pocket portion 19 due to the difference in thermal expansion coefficient between the inner and outer rings and the ball and the cage is alleviated. It is described that the wear of the cage is prevented.

また、特許文献2に記載の転がり軸受では、円周方向の一ヶ所に切断部14が設けられるとともに、切断部14の円周方向幅を温度変化と吸水率変化による保持器の伸長分とし、軌道輪との案内すきまを確保することが記載されている。   Further, in the rolling bearing described in Patent Document 2, the cutting portion 14 is provided at one place in the circumferential direction, and the circumferential width of the cutting portion 14 is defined as the extension of the cage due to the temperature change and the water absorption change, It is described that a guide clearance with the raceway is secured.

ところで、特許文献1に記載の転がり軸受では、玉案内方式を採用して、玉とポケット19との間の半径方向すきまは小さく設定されているので、軸受の回転による昇温で、軸受各部品(例えば、内輪、外輪及び玉が軸受鋼、保持器がポリアミド樹脂などの合成樹脂で形成されている場合)間の線膨張係数の差により保持器が相対的に膨張する際に、半径方向には膨張しにくく、相対膨張分は円周方向に向かう。   By the way, in the rolling bearing described in Patent Document 1, the ball guide method is adopted, and the radial clearance between the ball and the pocket 19 is set to be small. (For example, when the inner ring, outer ring and ball are made of bearing steel, and the cage is made of a synthetic resin such as polyamide resin) Is difficult to expand, and the relative expansion is in the circumferential direction.

その結果、保持器の切断部14の円周方向すきまΔLが小さくなり、使用環境温度も含めて軸受の昇温値が高い場合、保持器の切断部14の円周方向の端面同士が突っ張り干渉して、該干渉部での発熱や摩耗、損傷が生じるという問題がある。また、保持器がポリアミド樹脂などの一般的な汎用合成樹脂で形成されている場合は、空気中の水分を吸収して膨張することもあり、吸水による膨張量が加わることも問題である。   As a result, when the circumferential clearance ΔL of the cage cutting portion 14 becomes small and the bearing temperature rise including the operating environment temperature is high, the circumferential end surfaces of the cage cutting portion 14 interfere with each other. Thus, there is a problem that heat generation, wear, and damage occur in the interference portion. In addition, when the cage is formed of a general general-purpose synthetic resin such as a polyamide resin, the cage may expand by absorbing moisture in the air, and the amount of expansion due to water absorption is also a problem.

また、特許文献2に記載の転がり軸受では、切断部14の円周方向幅を温度変化と吸水率変化による保持器の伸長分(温度膨張+吸水膨張)としているが、切断部14の円周方向幅が広くなりすぎてしまい、温度上昇が小さい条件や乾燥した雰囲気条件では、切断部14の円周方向幅の変化が小さく、切断部14を挟んだ部分での玉間の円周方向の距離が他の玉間の円周方向距離より大きくなり、玉の円周方向の不等配が発生する。   Moreover, in the rolling bearing described in Patent Document 2, the circumferential width of the cutting portion 14 is set to the extension of the cage due to the temperature change and the water absorption change (temperature expansion + water absorption expansion). In the condition where the direction width becomes too wide and the temperature rise is small or the dry atmosphere condition, the change in the circumferential width of the cutting portion 14 is small, and the circumferential direction between the balls at the portion sandwiching the cutting portion 14 is small. The distance becomes larger than the circumferential distance between the other balls, and uneven distribution of the balls in the circumferential direction occurs.

玉の円周方向の不等配が生じると、軸受の径方向の剛性が円周位相で不均一(玉の円周方向の不等配部の位相で剛性低下)になるため、軸受回転時に玉の公転周期に対応した振れ回り、いわゆるNRRO値(内輪2回転に約1回の周期)が増加する。特に、回転精度が要求される工作機械の主軸、回転テーブル及び主軸の旋回機構部などの回転支持部に本軸受を使用した場合、回転軸の振れ回りが大きくなり(NRRO値が大)、フライス加工などでは加工面に縞模様が発生したり、旋盤加工などでは加工面の引き目不良や真円度悪化などが発生したりするという問題がある。   If the balls are not evenly distributed in the circumferential direction, the radial rigidity of the bearing will be non-uniform in the circumferential phase (decrease in rigidity due to the phase of the unevenly distributed portion of the ball in the circumferential direction). A swing corresponding to the revolution period of the ball, a so-called NRRO value (a cycle of about once per two rotations of the inner ring) increases. In particular, when this bearing is used in a rotation support part such as a spindle of a machine tool, a rotary table, and a turning mechanism part of the spindle that require rotational accuracy, the rotation of the rotary shaft becomes large (NRRO value is large), and milling There is a problem that a striped pattern is generated on the processed surface in machining, and a stitching defect on the processed surface or a deterioration in roundness occurs in lathe processing.

特開2003−336640号公報JP 2003-336640 A 特開2006−226496号公報JP 2006-226696 A

本発明は、このような不都合を解消するためになされたものであり、その目的は、円周方向の一ヶ所に切断部を設けた構造の保持器を採用した転がり軸受を、高回転精度が要求される用途に使用した場合でも、回転非同期振れ(NRRO)の増加を低く抑えることである。   The present invention has been made in order to eliminate such inconveniences, and the purpose of the present invention is to provide a rolling bearing that employs a cage having a structure in which a cutting portion is provided at one place in the circumferential direction, and has high rotational accuracy. Even when used for required applications, the increase in rotational asynchronous runout (NRRO) is to be kept low.

上記目的を達成するために、請求項1に係る転がり軸受は、外周面に内輪軌道面を有する内輪と、内周面に外輪軌道面を有する外輪と、前記内輪軌道面と前記外輪軌道面との間に転動自在に設けられた複数の転動体と、円周方向の少なくとも一カ所に切断部が形成され、前記複数の転動体を円周方向に略等間隔で保持する合成樹脂製の保持器と、を備え、前記切断部を挟む2つのポケット部に挿入される転動体の径寸法を、その他のポケット部に挿入される転動体の径寸法よりも大きくしたことを特徴としている。   In order to achieve the above object, a rolling bearing according to claim 1 includes an inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, the inner ring raceway surface, and the outer ring raceway surface. And a plurality of rolling elements provided so as to freely roll between, and a cutting portion is formed in at least one place in the circumferential direction, and the plurality of rolling elements are made of a synthetic resin that holds the rolling elements at substantially equal intervals in the circumferential direction. A rolling element inserted into two pocket portions sandwiching the cutting portion, and having a larger diameter than rolling elements inserted into other pocket portions.

また、請求項2に係る転がり軸受は、外周面に内輪軌道面を有する内輪と、内周面に外輪軌道面を有する外輪と、前記内輪軌道面と前記外輪軌道面との間に転動自在に設けられた複数の転動体と、円周方向の少なくとも一カ所に切断部が形成され、前記複数の転動体を円周方向に略等間隔で保持する合成樹脂製の保持器と、を備え、前記切断部を挟む2つのポケット部に挿入される転動体の縦弾性率を、その他のポケット部に挿入される転動体の縦弾性率よりも大きくしたことを特徴としている。   The rolling bearing according to claim 2 is rollable between an inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, and the inner ring raceway surface and the outer ring raceway surface. A plurality of rolling elements provided on the synthetic resin, and a synthetic resin cage that has a cutting portion formed in at least one place in the circumferential direction and holds the plurality of rolling elements at substantially equal intervals in the circumferential direction. The longitudinal elastic modulus of the rolling element inserted into the two pocket portions sandwiching the cutting portion is larger than the longitudinal elastic modulus of the rolling element inserted into the other pocket portion.

さらに、請求項3に係る転がり軸受は、請求項1又は2に係る発明において、前記切断面の少なくとも一方に、潤滑剤を溜めるための凹溝部を設けたことを特徴としている。   Furthermore, the rolling bearing according to a third aspect is characterized in that, in the invention according to the first or second aspect, at least one of the cut surfaces is provided with a concave groove for storing a lubricant.

さらに、請求項4に係る転がり軸受は、請求項1乃至3に係る発明において、前記転動体が、玉であることを特徴としている。   Furthermore, the rolling bearing according to claim 4 is characterized in that, in the invention according to claims 1 to 3, the rolling element is a ball.

さらに、請求項5に係る転がり軸受は、請求項1乃至3に係る発明において、前記転動体が、円筒ころであることを特徴としている。 Furthermore, the rolling bearing according to claim 5 is characterized in that, in the invention according to claims 1 to 3, the rolling element is a cylindrical roller.

本技術の転がり軸受は以上のような構成としたため、軸受に高回転精度が要求される場合であっても、回転非同期振れ(NRRO)の増加を抑制することが可能となり、回転中に保持器と玉間突っ張り損傷などの不具合を生じることなく、かつ、回転精度に優れた転がり軸受の実現が可能となる。   Since the rolling bearing of the present technology is configured as described above, an increase in rotational asynchronous runout (NRRO) can be suppressed even when high rotational accuracy is required for the bearing. Thus, it is possible to realize a rolling bearing that does not cause problems such as ball striking damage and that has excellent rotational accuracy.

本発明の第1実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 1st Embodiment of this invention. 図1に示す転がり軸受に組み込まれた冠形保持器の断面図である。FIG. 2 is a cross-sectional view of a crown-shaped cage incorporated in the rolling bearing shown in FIG. 1. 図1に示す転がり軸受に組み込まれた冠形保持器の部分的斜視図である。FIG. 2 is a partial perspective view of a crown-shaped cage incorporated in the rolling bearing shown in FIG. 1. 図2の矢印B方向から見た一部を破断した図である。It is the figure which fractured | ruptured the part seen from the arrow B direction of FIG. 図1に示す転がり軸受に組み込まれた冠形保持器と転動体の構成を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the structure of the crown-shaped holder | retainer integrated in the rolling bearing shown in FIG. 1, and a rolling element. 本発明の第2実施形態に係る転がり軸受に組み込まれた冠形保持器と転動体の構成を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the structure of the crown-shaped holder | retainer integrated in the rolling bearing which concerns on 2nd Embodiment of this invention, and a rolling element. 本発明の第3実施形態に係る転がり軸受に組み込まれた冠形保持器と転動体の構成を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the structure of the crown-shaped holder | retainer integrated in the rolling bearing which concerns on 3rd Embodiment of this invention, and a rolling element. 本発明の第4実施形態に係る転がり軸受に組み込まれた冠形保持器と転動体の構成を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the structure of the crown-shaped holder | retainer integrated in the rolling bearing which concerns on 4th Embodiment of this invention, and a rolling element. 従来の保持器を軸方向から見た要部断面図である。It is principal part sectional drawing which looked at the conventional cage | basket from the axial direction.

以下、本発明の実施の形態について図を参照して説明する。図1は本発明の第1の実施の形態を示す単列玉軸受を2列組み合わせた状態を示す要部断面図、図2は玉案内保持器を示す断面図、図3は保持器を径方向内側から見た部分斜視図、図4は図2の矢印B方向から見た矢視図、図5は図1に示す転がり軸受に組み込まれた冠形保持器と転動体の構成を説明するための要部断面図、図6は本発明の第2実施形態に係る転がり軸受に組み込まれた冠形保持器と転動体の構成を説明するための要部断面図、図7は本発明の第3実施形態に係る転がり軸受に組み込まれた冠形保持器と転動体の構成を説明するための要部断面図、図8は本発明の第4実施形態に係る転がり軸受に組み込まれた冠形保持器と転動体の構成を説明するための要部断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of an essential part showing a state in which two rows of single-row ball bearings according to the first embodiment of the present invention are combined, FIG. 2 is a cross-sectional view showing a ball guide cage, and FIG. 4 is a partial perspective view as seen from the inner side in the direction, FIG. 4 is an arrow view as seen from the direction of arrow B in FIG. 2, and FIG. 5 illustrates the configuration of the crown-shaped cage and rolling elements incorporated in the rolling bearing shown in FIG. FIG. 6 is a cross-sectional view of a main part for explaining the configuration of a crown-shaped cage and rolling elements incorporated in a rolling bearing according to a second embodiment of the present invention, and FIG. Sectional drawing for demonstrating the structure of the crown-shaped cage and rolling element incorporated in the rolling bearing according to the third embodiment, FIG. 8 is a crown incorporated in the rolling bearing according to the fourth embodiment of the present invention. It is principal part sectional drawing for demonstrating the structure of a shape holder and a rolling element.

図1に示すように、本実施形態の転がり軸受10(以下、幅狭玉軸受10とも称す)は、アンギュラ玉軸受とされており、2列のアンギュラ玉軸受を背面組合せ(接触角がハの字となる配列)としている。各転がり軸受10は、外周面に内輪軌道面11aを有する内輪11と、内周面に外輪軌道面12aを有する外輪12と、内輪軌道面11aと外輪軌道面12aとの間に転動自在に設けられた複数の玉(転動体)13と、円周方向の一カ所に切断部14(図5参照)が形成され、複数の玉13を円周方向に略等間隔で保持する合成樹脂製の冠形保持器15と、を備える。また、2列の幅狭玉軸受10の各外輪12の軸方向外側の端部内周面には、それぞれ非接触型のシール部材16が装着されている。なお、シール部材16は、接触型タイプでもよく、また、材料、形状は特に限定されない。   As shown in FIG. 1, a rolling bearing 10 (hereinafter also referred to as a narrow ball bearing 10) of this embodiment is an angular ball bearing, and two rows of angular ball bearings are combined in the back (contact angle is C). Array). Each rolling bearing 10 is freely rollable between an inner ring 11 having an inner ring raceway surface 11a on an outer peripheral surface, an outer ring 12 having an outer ring raceway surface 12a on an inner peripheral surface, and an inner ring raceway surface 11a and an outer ring raceway surface 12a. A plurality of balls (rolling elements) 13 provided, and a cutting portion 14 (see FIG. 5) is formed at one place in the circumferential direction, and the plurality of balls 13 is made of a synthetic resin that holds the balls 13 in the circumferential direction at substantially equal intervals. The crown-shaped cage 15 is provided. Further, non-contact type seal members 16 are mounted on the inner peripheral surfaces of the outer ends of the outer rings 12 of the two rows of narrow ball bearings 10 in the axial direction. The seal member 16 may be a contact type, and the material and shape are not particularly limited.

ここで、本実施形態では、軸方向の省スペース化を図るため、転がり軸受10の軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)をB/H<0.63としている。   In this embodiment, in order to save space in the axial direction, the axial sectional width B and the radial sectional height H of the rolling bearing 10 (= (outer ring outer diameter D−inner ring inner diameter d) / 2) and The cross-sectional dimension ratio (B / H) is set to B / H <0.63.

なお、B/Hは、理論的にはB/H>0であるが、現実的には、使用する玉径や保持器、シール部材の設計、選定等を加味すると、B/H>0.10、好ましくはB/H>0.20、より好ましくはB/H>0.30とする。   B / H is theoretically B / H> 0, but in reality, considering the design, selection, etc. of the ball diameter, cage, and seal member to be used, B / H> 0. 10, preferably B / H> 0.20, more preferably B / H> 0.30.

また、国際標準化機構(ISO)で規定されている標準寸法玉軸受の場合、B/Hが1.0前後のものが多くを占める。したがって、B/H<0.5に設定すれば、標準玉軸受約1列分の幅方向スペースで2列分の幅狭玉軸受10を配設させることができ、省スペース化が図れる。   Further, in the case of standard size ball bearings defined by the International Organization for Standardization (ISO), those with a B / H of around 1.0 account for the majority. Therefore, if B / H <0.5 is set, the narrow ball bearings 10 for two rows can be disposed in the width direction space for about one row of standard ball bearings, and space saving can be achieved.

また、アンギュラ玉軸受の場合、1列では一方向の軸方向荷重しか受けられず、また、モーメント荷重を受けることはできないが、2列以上組合わせることで、両方向の軸方向荷重やモーメント荷重の負荷が可能となる。また、予圧を付加することもできるので、省スペース化と共にラジアル剛性やアキシャル剛性及びモーメント剛性なども大きくすることができる。   In the case of angular contact ball bearings, only one axial load can be received in one row and moment load cannot be received. However, by combining two or more rows, the axial load and moment load in both directions can be reduced. Load becomes possible. In addition, since preload can be applied, it is possible to save space and increase radial rigidity, axial rigidity, moment rigidity, and the like.

また、B/H<0.25に設定すれば、さらなる省スペース化と共に、標準玉軸受約1列分の幅方向スペースで4列の幅狭玉軸受を配設させることができ、さらに剛性の向上が可能である。   Moreover, if B / H <0.25, it is possible to arrange four rows of narrow ball bearings in a space in the width direction of about one row of standard ball bearings with further space saving, and further increase rigidity. Improvement is possible.

また、(B/H)=0.63未満とすることで、軸やハウジングに軸受を組み込んだ場合(特に、軸やハウジングとすきま嵌合で組み込んだ場合)、外輪を端面押え、内輪を軸受ナット等でそれぞれ固定した場合の内外輪の変形(特に真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転精度不良、あるいは、発熱増大、摩耗や焼付き等の不具合を防止することができる。   Also, by setting (B / H) to less than 0.63, when the bearing is incorporated in the shaft or housing (especially when it is assembled by clearance fitting with the shaft or housing), the outer ring is pressed against the end face, and the inner ring is the bearing. It is possible to suppress deformation of the inner and outer rings (especially worsening of roundness) when they are fixed with nuts, etc., as well as torque failure and rotation accuracy caused by deformation, or problems such as increased heat generation, wear and seizure. Can be prevented.

さらに、(B/H)=0.63未満とすることで、軸受の幅寸法が従来の標準単列玉軸受の約半分となるので、玉径も従来の玉軸受の半分程度となるが、逆に1列あたりの玉数が少なくとも2倍以上に増加し、軸受剛性は従来の玉軸受に対して増加する。   Furthermore, by setting (B / H) to less than 0.63, the width of the bearing is about half that of a conventional standard single-row ball bearing, so the ball diameter is also about half that of a conventional ball bearing. Conversely, the number of balls per row increases at least twice, and the bearing stiffness increases compared to conventional ball bearings.

また、国際標準化機構(ISO)で規定されている寸法系列が18(例えば、6820)、19(例えば、6938)、10(例えば、7016A)、02(例えば、7224C)、03(例えば、7350A)などの標準寸法玉軸受では、軸受内径寸法がφ5mm〜φ500mmにおいては、断面寸法比(B/H)はB/H=0.63〜1.17となっているが、本実施形態の幅狭玉軸受10は、軸方向に幅狭としたので、上述の断面寸法比に該当しないものとなる。   The dimension series defined by the International Organization for Standardization (ISO) is 18 (for example, 6820), 19 (for example, 6938), 10 (for example, 7016A), 02 (for example, 7224C), 03 (for example, 7350A). In the case of standard size ball bearings such as the above, when the inner diameter of the bearing is φ5 mm to φ500 mm, the cross-sectional dimension ratio (B / H) is B / H = 0.63 to 1.17. Since the ball bearing 10 is narrow in the axial direction, it does not correspond to the above-described cross-sectional dimension ratio.

本実施形態の幅狭玉軸受10では、軸受の負荷容量や剛性を上げるために、円周方向に隣り合う玉13間のピッチは極力小さくし、できる限り玉数を多くしている。通常の玉軸受では、玉数は多くとも30〜40個以下/1列程度であるが、本実施形態では、50個以上、好ましくは60個以上、より好ましくは70個以上/1列としている。   In the narrow ball bearing 10 of this embodiment, in order to increase the load capacity and rigidity of the bearing, the pitch between the balls 13 adjacent in the circumferential direction is made as small as possible, and the number of balls is increased as much as possible. In a normal ball bearing, the number of balls is at most about 30 to 40 or less per row, but in this embodiment, 50 or more, preferably 60 or more, more preferably 70 or more per row. .

アンギュラ玉軸受の場合、接触角は、大きなモーメント荷重を負荷した際に、内外輪みぞ肩部への玉と内外輪みぞ接触部の乗り上げを抑えるため、概ね60°以下、望ましくは50°以下、さらに望ましくは40°以下がよいが、20°未満の場合は、許容アキシャル荷重やモーメント剛性が低下するので好ましくない。本実施形態における適正な玉径は、シール部材等の装着有無により変化するが、剛性を増加させるため、極端に玉径を小さくすると、玉と内外輪の軌道みぞとの接触部間の面圧が増加し、耐圧痕性が低下するおそれがあるため、概ね、軸受幅(B)の30〜90%が望ましい。   In the case of an angular contact ball bearing, the contact angle is approximately 60 ° or less, preferably 50 ° or less in order to suppress the ball and the inner / outer ring groove contact portion from riding on the shoulder portion of the inner / outer ring groove when a large moment load is applied. More preferably, it is 40 ° or less, but if it is less than 20 °, the allowable axial load and moment rigidity are lowered, which is not preferable. The appropriate ball diameter in the present embodiment varies depending on whether or not a seal member or the like is mounted. However, in order to increase rigidity, if the ball diameter is extremely reduced, the surface pressure between the contact portions between the balls and the track grooves of the inner and outer rings is reduced. In general, the pressure resistance is likely to be reduced, so that generally 30 to 90% of the bearing width (B) is desirable.

更に、本実施形態では、玉13の軸方向ピッチをできるだけ組合せ側端面の反対側にずらし(図1:X>X)、保持器15のリング部17(図2〜図5参照)が軸受組合せ端面側になるように配置しており、リング部17の軸方向肉厚を大きくし、また、モーメント剛性を上げるための作用点間距離を大きくとれるようにしている。 Furthermore, in this embodiment, the axial pitch of the balls 13 is shifted as much as possible to the side opposite to the combination side end face (FIG. 1: X 1 > X 2 ), and the ring portion 17 (see FIGS. 2 to 5) of the cage 15 is provided. It is arranged so as to be on the bearing combination end face side, so that the axial thickness of the ring portion 17 is increased, and the distance between operating points for increasing moment rigidity can be increased.

また、軸受の材料としては、標準の軸受鋼(SUJ2やSUJ3)など、特に限定されないが、必要に応じて、これらの材料で、軸受の寸法安定性や耐摩耗性などの機械的性質を向上させるために、内輪11及び外輪12の少なくとも一方に、サブゼロ処理を施してもよい。   In addition, the bearing material is not particularly limited, such as standard bearing steel (SUJ2 or SUJ3), but if necessary, these materials improve mechanical properties such as dimensional stability and wear resistance of the bearing. In order to achieve this, sub-zero processing may be performed on at least one of the inner ring 11 and the outer ring 12.

サブゼロ処理の方法としては、例えば、焼入れ直後に、液体窒素を用いて−150°C程度の雰囲気とし、本サブゼロ処理後に焼戻しを行なう。そして、サブゼロ処理と焼戻し処理とを数回繰り返す。冷却溶媒として、液体窒素使用のサブゼロ処理では、繰り返し回数は多くとも3回程度でかまわない。サブゼロ処理によって、組織中の残留オーステナイト(γR)がマルテンサイトに変態する。併せて、結晶粒の安定化も促進されるので、これにより経時寸法変化の防止と耐摩耗性などの機械的性質が向上する。   As a sub-zero treatment method, for example, immediately after quenching, an atmosphere of about −150 ° C. is formed using liquid nitrogen, and tempering is performed after the sub-zero treatment. Then, the sub-zero process and the tempering process are repeated several times. In the sub-zero treatment using liquid nitrogen as the cooling solvent, the number of repetitions may be at most about 3. Residual austenite (γR) in the structure is transformed into martensite by the sub-zero treatment. In addition, since the stabilization of the crystal grains is promoted, this improves the mechanical properties such as prevention of dimensional change with time and wear resistance.

本実施形態の場合、内輪11及び外輪12の軸方向幅が狭いので、そりや真円度不良などの経時寸法変化が発生しやすい傾向がある。したがって、サブゼロ処理により、前記経時寸法変化を抑制することができ、特に、軸受精度が必要な工作機械の回転テーブルや主軸旋回機構部、印刷機械のドラム等の回転機構部などの回転支持部に本実施形態の幅狭玉軸受10を使用する場合、軸受精度劣化による機器の精度不具合を防止でき、長期的に良好な機能を保持することができる。   In the case of the present embodiment, since the axial widths of the inner ring 11 and the outer ring 12 are narrow, there is a tendency that dimensional changes such as warpage and roundness failure tend to occur. Accordingly, the sub-zero treatment can suppress the dimensional change with time, and in particular, in rotation support parts such as a rotary table of a machine tool, a spindle turning mechanism part, and a rotary mechanism part such as a drum of a printing machine that require bearing accuracy. When the narrow ball bearing 10 of the present embodiment is used, it is possible to prevent malfunctions of the equipment due to deterioration of the bearing accuracy, and it is possible to maintain a good function in the long term.

また、例えば真空用途や腐食環境などでは、軸受鋼以外に、耐食材料であるステンレス鋼系材料(例えば、SUS440C等のマルテンサイト系ステンレス鋼材料やSUS304等のオーステナイト系ステンレス鋼材料、SUS630等の析出硬化系ステンレス鋼材料など)、チタン合金やセラミック系材料(例えば、Si34 ,SiC,Al2
3 ,ZrO2など)を採用してもよい。
For example, in vacuum applications and corrosive environments, in addition to bearing steel, stainless steel materials that are corrosion resistant materials (for example, martensitic stainless steel materials such as SUS440C, austenitic stainless steel materials such as SUS304, precipitation of SUS630, etc.) Hardened stainless steel materials), titanium alloys and ceramic materials (eg, Si 3 N 4 , SiC, Al 2)
O 3 , ZrO 2, etc.) may be employed.

潤滑方法も特に限定されず、一般的な使用環境では、鉱油系グリースや合成油系(例えば、リチウム系、ウレア系等)のグリースや油を使用でき、真空用途などでは、フッ素系のグリースまたは油、あるいはフッ素樹脂、MOS2 などの固体潤滑剤を使用することができる。 The lubrication method is not particularly limited, and mineral oil grease or synthetic oil grease (for example, lithium or urea) or oil can be used in a general usage environment. Oil, or a solid lubricant such as fluororesin or MOS 2 can be used.

玉案内保持器15は、図2〜図4に示すように、リング部17と、このリング部17の一端部に周方向に略等間隔で複数箇所軸方向に突設された柱部18と、各柱部18間に形成されて玉13を周方向に転動可能に保持する多数のポケット部19と、このポケット部19のリング部17とは反対側の先端部に形成された玉13の抜け出しを防止する一対の玉係止部とを備えた柔軟性のある冠形保持器の構成を有する。この保持器15の材料は、例えば、ポリアミド、ポリアセタール、ポリフェニレンサルファイド等の合成樹脂材とし、必要に応じて、合成樹脂材にガラス繊維や炭素繊維等の補強材を混入した材料を用いる。   As shown in FIGS. 2 to 4, the ball guide retainer 15 includes a ring portion 17, and column portions 18 projecting in a plurality of axial directions at substantially equal intervals in the circumferential direction on one end portion of the ring portion 17. A large number of pockets 19 formed between the pillars 18 to hold the balls 13 so as to roll in the circumferential direction, and the balls 13 formed at the tip of the pockets 19 on the side opposite to the ring parts 17. And a pair of ball locking portions that prevent the slipping out of the flexible crown-shaped cage. The material of the cage 15 is, for example, a synthetic resin material such as polyamide, polyacetal, or polyphenylene sulfide, and a material in which a reinforcing material such as glass fiber or carbon fiber is mixed into the synthetic resin material is used as necessary.

また、保持器15は、図5に示すように、リング部17の少なくとも円周方向の一箇所で互いに隣り合うポケット部19間を予め切断して切断部14を形成し、切断部14を挟む2つのポケット部19に挿入される転動体13aの径寸法を、その他のポケット部19に挿入される転動体13bの径寸法よりも大きくした構造としている。ここで、ΔLは軸受の温度上昇や保持器の吸水を考慮した切断部14の最適すき間である。   Further, as shown in FIG. 5, the retainer 15 cuts between the pocket portions 19 adjacent to each other at least at one place in the circumferential direction of the ring portion 17 to form a cut portion 14, and sandwiches the cut portion 14. The diameters of the rolling elements 13a inserted into the two pocket portions 19 are larger than the diameter dimensions of the rolling elements 13b inserted into the other pocket portions 19. Here, ΔL is the optimum clearance of the cut portion 14 in consideration of the temperature rise of the bearing and water absorption of the cage.

本実施形態のような幅狭玉軸受10では、冠型保持器15の円周方向に切断部14を形成し、さらに、切断部14を挟む2つのポケット部19に挿入される転動体13aの径寸法を、その他のポケット部19に挿入される転動体13bの径寸法よりも大きくしたことで、以下のような効果を奏する。   In the narrow ball bearing 10 as in the present embodiment, the cutting portion 14 is formed in the circumferential direction of the crown-shaped cage 15, and the rolling elements 13 a inserted into the two pocket portions 19 sandwiching the cutting portion 14. By making the diameter dimension larger than the diameter dimension of the rolling element 13b inserted into the other pocket part 19, the following effects are produced.

即ち、図9に示す従来の保持器15に、全て同じ径寸法の転動体13を挿入する場合、切断部14の部分では他の部分に比べて転動体13間の円周方向ピッチが大きくなるため、転動体13の不等配によって半径方向の剛性バランスに違いが生じ、それに起因して転動体13の公転周期(=保持器の回転周期)毎の回転振れ(回転非同期振れ:NRRO)が増加することが懸念される。   That is, when the rolling elements 13 having the same diameter are inserted into the conventional cage 15 shown in FIG. 9, the circumferential pitch between the rolling elements 13 is larger in the cut portion 14 than in the other portions. For this reason, a difference occurs in the rigidity balance in the radial direction due to the uneven distribution of the rolling elements 13, and as a result, a rotational runout (rotational asynchronous runout: NRRO) for each revolution cycle (= rotation cycle of the cage) of the rolling body 13 occurs. There is concern about the increase.

一方、本実施形態では、切断部14を挟む2つのポケット部19に挿入する転動体13aの径寸法を、その他のポケット部19に挿入される転動体13bの径寸法よりも大きくする構成としているので、転動体13の不等配に起因する半径方向の剛性バランスの違いが相殺されるので、NRROの増加を抑制することが可能となる。また、転動体13と保持器15間の円周方向すきまは、所定の条件における軸受の温度上昇による保持器の相対膨張及び吸水膨張による円周方向すきま減少分などを見込み、減少後に円周方向すきまが0とならないすきまとする。   On the other hand, in this embodiment, it is set as the structure which makes the radial dimension of the rolling element 13a inserted in the two pocket parts 19 which pinch | interpose the cutting part 14 larger than the radial dimension of the rolling element 13b inserted in the other pocket part 19. As a result, the difference in the rigidity balance in the radial direction due to the uneven distribution of the rolling elements 13 is canceled out, so that an increase in NRRO can be suppressed. Further, the circumferential clearance between the rolling element 13 and the cage 15 is expected to reduce the circumferential clearance due to the relative expansion of the cage due to the temperature rise of the bearing and the water absorption expansion under a predetermined condition. The clearance does not become zero.

次に、図6を参照して、本発明の第2実施形態に係る転がり軸受10を説明する。この転がり軸受10では、切断部14を挟む2つのポケット部19に挿入する転動体13aの縦弾性率を、その他のポケット部19に挿入される転動体13bの縦弾性率よりも大きくしており、その他の構成は本発明の第1実施形態と同様である。このような構成とすることで、転動体13の不等配に起因する半径方向の剛性バランスの違いが相殺されるので、NRROの増加を抑制することが可能となる。   Next, with reference to FIG. 6, the rolling bearing 10 which concerns on 2nd Embodiment of this invention is demonstrated. In this rolling bearing 10, the longitudinal elastic modulus of the rolling element 13 a inserted into the two pocket portions 19 sandwiching the cutting portion 14 is made larger than the longitudinal elastic modulus of the rolling element 13 b inserted into the other pocket portions 19. Other configurations are the same as those of the first embodiment of the present invention. By adopting such a configuration, the difference in the rigidity balance in the radial direction due to the uneven distribution of the rolling elements 13 is offset, so that an increase in NRRO can be suppressed.

次に、図7を参照して、本発明の第3実施形態に係る転がり軸受10を説明する。この転がり軸受10では、第1または第2の実施形態の転がり軸受10において、保持器15の切断部14の切断面に潤滑剤を溜めるための凹溝20aを設けた構成としている。図7に示すように潤滑剤を保持する凹溝20aを設ければ、切断部14における保持器15の接触部の潤滑条件を向上させることが可能となる。また、図7に示すように凹溝20aを軸方向に開口する形状にすれば、射出成形で保持器15を製造する場合、型を軸方向に離型する方式(アキシャアルドロー方式)で型から保持器15を取り出す際、型との干渉が無く取り出しが容易となる。なお、潤滑剤を保持する凹溝20aは、切断部の少なくとも一方に設ければ良い。   Next, with reference to FIG. 7, the rolling bearing 10 which concerns on 3rd Embodiment of this invention is demonstrated. This rolling bearing 10 is configured such that in the rolling bearing 10 of the first or second embodiment, a concave groove 20a for collecting a lubricant is provided on the cut surface of the cutting portion 14 of the cage 15. As shown in FIG. 7, if the concave groove 20 a that holds the lubricant is provided, it is possible to improve the lubrication condition of the contact portion of the cage 15 in the cutting portion 14. In addition, if the groove 20a is opened in the axial direction as shown in FIG. 7, when the cage 15 is manufactured by injection molding, the mold is released in the axial direction (axial axial draw). When the cage 15 is taken out from the mold, it can be easily taken out without interference with the mold. The concave groove 20a that holds the lubricant may be provided in at least one of the cut portions.

次に、図8を参照して、本発明の第4実施形態に係る転がり軸受10を説明する。この転がり軸受10では、第1または第2の実施形態の転がり軸受10において第3実施形態と同様に潤滑剤を溜めるための凹溝20bを設けた構造としているが、凹溝20bの形状を溝開口部より溝底部の幅を広くした構成としている。図8に示すような凹溝20b形状とすれば、保持器回転時に遠心力が作用しても潤滑剤を凹溝20b内部に保持する効果が高まり、軸受回転時における切断部14での摩擦による発熱がさらに軽減し、摩耗や損傷を確実に防止することができる。   Next, with reference to FIG. 8, the rolling bearing 10 which concerns on 4th Embodiment of this invention is demonstrated. The rolling bearing 10 has a structure in which the rolling groove 10b of the first or second embodiment is provided with a concave groove 20b for storing a lubricant as in the third embodiment. However, the shape of the concave groove 20b is a groove. The width of the groove bottom is wider than the opening. If the groove 20b has a shape as shown in FIG. 8, the effect of retaining the lubricant inside the groove 20b is enhanced even when centrifugal force is applied during rotation of the cage, and the friction at the cutting portion 14 during rotation of the bearing is increased. Heat generation is further reduced, and wear and damage can be reliably prevented.

本発明の転がり軸受は、例えば、産業機械、ロボットの関節部や旋回機構部、工作機械の主軸、回転テーブルや主軸旋回機構部、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置等の回転支持部に好適に利用できる。   The rolling bearing of the present invention includes, for example, industrial machines, robot joints and turning mechanisms, machine tool spindles, rotary tables and spindle turning mechanisms, medical equipment, semiconductor / liquid crystal manufacturing apparatuses, optical and optoelectronic devices, etc. It can utilize suitably for a rotation support part.

10 転がり軸受
11a 内輪軌道面
11 内輪
12a 外輪軌道面
12 外輪
13 転動体
14 切断部
15 保持器
16 シール部材
17 リング部
18 柱部
19 ポケット部
DESCRIPTION OF SYMBOLS 10 Rolling bearing 11a Inner ring raceway surface 11 Inner ring 12a Outer ring raceway surface 12 Outer ring 13 Rolling body 14 Cutting part 15 Cage 16 Seal member 17 Ring part 18 Column part 19 Pocket part

Claims (5)

外周面に内輪軌道面を有する内輪と、内周面に外輪軌道面を有する外輪と、前記内輪軌道面と前記外輪軌道面との間に転動自在に設けられた複数の転動体と、円周方向の少なくとも一カ所に切断部が形成され、前記複数の転動体を円周方向に略等間隔で保持する合成樹脂製の保持器と、を備えた転がり軸受において、前記切断部を挟む2つのポケット部に挿入される転動体の径寸法を、その他のポケット部に挿入される転動体の径寸法よりも大きくしたことを特徴とする転がり軸受。   An inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, a plurality of rolling elements provided rotatably between the inner ring raceway surface and the outer ring raceway surface, A rolling bearing provided with a synthetic resin cage having a cutting portion formed in at least one circumferential direction and holding the plurality of rolling elements at substantially equal intervals in the circumferential direction. A rolling bearing characterized in that a diameter of a rolling element inserted into one pocket portion is larger than a diameter of a rolling element inserted into another pocket portion. 外周面に内輪軌道面を有する内輪と、内周面に外輪軌道面を有する外輪と、前記内輪軌道面と前記外輪軌道面との間に転動自在に設けられた複数の転動体と、円周方向の少なくとも一カ所に切断部が形成され、前記複数の転動体を円周方向に略等間隔で保持する合成樹脂製の保持器と、を備えた転がり軸受において、前記切断部を挟む2つのポケット部に挿入される転動体の縦弾性率を、その他のポケット部に挿入される転動体の縦弾性率よりも大きくしたことを特徴とする転がり軸受。   An inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, a plurality of rolling elements provided rotatably between the inner ring raceway surface and the outer ring raceway surface, A rolling bearing provided with a synthetic resin cage having a cutting portion formed in at least one circumferential direction and holding the plurality of rolling elements at substantially equal intervals in the circumferential direction. A rolling bearing characterized in that a longitudinal elastic modulus of a rolling element inserted into one pocket portion is larger than a longitudinal elastic modulus of a rolling element inserted into another pocket portion. 前記切断面の少なくとも一方に、潤滑剤を溜めるための凹溝部を設けたことを特徴とする請求項1又は2に記載の転がり軸受。 The rolling bearing according to claim 1, wherein a concave groove for storing a lubricant is provided on at least one of the cut surfaces. 前記転動体が、玉であることを特徴とする請求項1乃至3に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the rolling element is a ball. 前記転動体が、円筒ころであることを特徴とする請求項1乃至3に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the rolling element is a cylindrical roller.
JP2010241737A 2010-10-28 2010-10-28 Rolling bearing Expired - Fee Related JP5556590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010241737A JP5556590B2 (en) 2010-10-28 2010-10-28 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010241737A JP5556590B2 (en) 2010-10-28 2010-10-28 Rolling bearing

Publications (2)

Publication Number Publication Date
JP2012092919A JP2012092919A (en) 2012-05-17
JP5556590B2 true JP5556590B2 (en) 2014-07-23

Family

ID=46386467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010241737A Expired - Fee Related JP5556590B2 (en) 2010-10-28 2010-10-28 Rolling bearing

Country Status (1)

Country Link
JP (1) JP5556590B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336640A (en) * 2002-05-16 2003-11-28 Nsk Ltd Multi-point contact ball bearing
JP2006226496A (en) * 2005-02-21 2006-08-31 Ntn Corp Roller bearing and resin-made retainer for roller bearing
JP4577125B2 (en) * 2005-07-04 2010-11-10 株式会社ジェイテクト Rolling bearing
JP5034962B2 (en) * 2008-01-15 2012-09-26 日本精工株式会社 Rolling bearing
JP2009228682A (en) * 2008-03-19 2009-10-08 Ntn Corp Divided type retainer for rolling bearing, and rolling bearing with divided type retainer

Also Published As

Publication number Publication date
JP2012092919A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP3207410U (en) Rolling bearing
KR101057311B1 (en) Ball bearing for spindle turning of machine tool and spindle spindle of machine tool using same
JP6515026B2 (en) Ball bearing, motor and spindle device using it
JP2008240796A (en) Angular contact ball bearing with seal, and spindle device
WO2015141021A1 (en) Angular ball bearing
JP5187279B2 (en) Rolling bearing
JP2006329420A (en) Bearing device for robot arm joint part, and ball bearing
JP4743176B2 (en) Combination ball bearings and double row ball bearings
JP5092383B2 (en) Ball bearing for machine tool main spindle
WO2015146811A1 (en) Angular ball bearing
JP5034962B2 (en) Rolling bearing
JP2006329265A (en) Rolling bearing
JP2011153683A (en) Angular ball bearing
JP2006105384A (en) Double row ball bearing
JP5556590B2 (en) Rolling bearing
JP5233199B2 (en) Angular contact ball bearings
JP2003042160A (en) Angular contact ball bearing and main bearing
JP4715961B2 (en) Rotary table device for machine tools
JP2011226614A (en) Rolling bearing
JP4636035B2 (en) Rolling bearing
JP5724275B2 (en) Rolling bearing
JP2011247358A (en) Duplex ball bearing and double-row ball bearing
JP2006046380A (en) Ball bearing
JP2006153094A (en) Ball bearing and rotary table device for machine tool using ball bearing
JP5397508B2 (en) Ball bearing for machine tool main spindle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131021

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131021

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees