WO2007078993A1 - Bottom gate thin film transistors - Google Patents
Bottom gate thin film transistors Download PDFInfo
- Publication number
- WO2007078993A1 WO2007078993A1 PCT/US2006/048804 US2006048804W WO2007078993A1 WO 2007078993 A1 WO2007078993 A1 WO 2007078993A1 US 2006048804 W US2006048804 W US 2006048804W WO 2007078993 A1 WO2007078993 A1 WO 2007078993A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- group
- independently
- unbranched
- branched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/623—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/468—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
- H10K10/471—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/40—Organosilicon compounds, e.g. TIPS pentacene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/466—Lateral bottom-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/484—Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
- H10K10/488—Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
Definitions
- This invention relates to bottom gate thin film transistors including the semiconductor of the present disclosure.
- the semiconductor may be solvent coated over previously generated layers of the transistor during manufacture.
- WO 2005/055248 A2 purportedly discloses certain substituted pentacenes and polymers in top gate thin film transistors.
- the present invention provides a transistor comprising: a substrate; a gate electrode; a semiconducting material not located between the substrate and the gate electrode; a source electrode in contact with the semiconducting material; a drain electrode in contact with the semiconducting material; and a dielectric material in contact with the gate electrode and the semiconducting material; wherein the semiconducting material comprises: 1-99.9% by weight of a polymer having a dielectric constant at IkHz of greater than 3.3; 0.1-99% by weight of a compound according to Formula I:
- each R* is independently selected from H and CH3, more typically H 5 and each R.2 is independently selected from branched or unbranched C2-C18 alkanes, branched or unbranched Cl -C 18 alkyl alcohols, branched or unbranched C2-C18 alkenes, C4-C8 aryls or heteroaryls, C5-C32 alkylaryl or alkyl-heteroaryl, a ferrocenyl, or more typically SiR ⁇ where each R ⁇ is independently selected from hydrogen, branched or unbranched C 1-C 10 alkanes, branched or unbranched Cl-ClO alkyl alcohols or branched or unbranched C2 ⁇
- ClO alkenes where more typically each R-* is independently selected from branched or unbranched Cl-ClO alkanes. Most typically the compound according to formula I is 6,13- bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene).
- the polymer having a dielectric constant at IkHz of greater than 3.3 is typically selected from the group consisting of: poly(4-cyanomethyl styrene) andpoly(4-vinylphenol) and most typically is poly(4- vinylphenol).
- Typical polymers may also include polymers containing cyano groups such as cyanopullulans.
- the source and drain electrodes may be in contact with the dielectric material or not in contact with the dielectric material.
- Fig. 1 is a schematic depiction of the layers present in a top contact/bottom gate thin film transistor.
- Fig. 2 is a schematic depiction of the layers present in a bottom contact/bottom gate thin film transistor.
- Fig. 3 is a schematic depiction of the layers present in a top contact/top gate thin film transistor.
- Fig. 4 is a schematic depiction of the layers present in a bottom contact/top gate thin film transistor.
- Thin film transistors show promise in the development of lightweight, inexpensive and readily reproduced electronic devices, in particular where they may be made by solvent coating techniques, such as printing techniques.
- Thin films transistors are known in four principle geometries. With reference to each of Fig. 1, representing atop contact/bottom gate thin film transistor, Fig. 2, representing a bottom contact/bottom gate thin film transistor, Fig. 3, representing a top contact/top gate thin film transistor, and Fig. 4, representing a bottom contact/top gate thin film transistor, thin film transistor 100 includes substrate 10, gate electrode 20, dielectric layer 30, semiconductor layer 40, source electrode 50, and drain electrode 60. Typically, each of the source electrode 50 and drain electrode 60 will overlap the gate electrode 20 to a slight extent.
- the gate electrode 20 is above the dielectric layer 30 and both the gate electrode 20 and the dielectric layer 30 are above the semiconductor layer 40.
- the gate electrode 20 is below dielectric layer 30 and both the gate electrode 20 and the dielectric layer 30 are below the semiconductor layer 40.
- the materials of the present invention permit the construction of a bottom gate transistor with a solvent coated semiconductor, due to the formulation of a semiconductor coating composition that can be coated over the dielectric.
- the semiconductor layer of the thin film transistor of the present disclosure may be made by any suitable method, including solvent coating methods, but also including dry methods, melt processing, vapor deposition, or the like.
- the materials of the semiconductor layer may be carried in any suitable solvent, which may include ketones, aromatic hydrocarbons, and the like.
- the solvent is organic.
- the solvent is aprotic.
- the semiconductor layer according to the present disclosure includes a functionalized pentacene compound according to Formula I:
- each R ⁇ is independently selected from H and CH3 and each R ⁇ is independently selected from branched or unbranched C2-C18 alkanes, branched or unbranched Cl-Cl 8 alkyl alcohols, branched or unbranched C2-C18 alkenes, C4-C8 aryls or heteroaryls, C5-
- each R ⁇ is independently selected from hydrogen, branched or unbranched Cl-ClO alkanes, branched or unbranched Cl-ClO alkyl alcohols or branched or unbranched C2-C10 alkenes.
- each R* is H.
- each R ⁇ is SiR ⁇ . More typically each R ⁇ is SiR ⁇ and each R ⁇ is independently selected from branched or unbranched Cl-ClO alkanes.
- the compound is 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), shown in formula II:
- the semiconductor layer contains the compound of Formula I or of Formula II in an amount of 0.1-99% by weight, more typically 0.1-10%.
- the semiconductor layer according to the present disclosure includes a polymer having a dielectric constant at IkHz of greater than 3.3, and more typically greater than 3.5, and in some embodiments may be greater than 4.0, and in some embodiments may be greater than 4.5.
- the polymer typically has a M.W. of at least 1,000 and more typically at least 5,000.
- Typical polymers include poly(4-cyanomethyl styrene) and poly(4- vinylphenol).
- Typical polymers may also include polymers containing cyano groups such as cyanopullulans.
- Typical polymers also include those described in U.S. Patent Publication No. 2004/0222412 Al .
- Polymers described therein include substantially nonfluorinated organic polymers having repeat units of the formulas:
- each R 1 is independently H, Cl 5 Br, I, an aryl group, or an organic group that includes a crosslinkable group
- each R 2 is independently H, an aryl group, or R 4
- each R 3 is independently H or methyl
- each R 5 is independently an alkyl group, a halogen, or R 4
- each R 4 is independently an organic group comprising at least one CN group and having a molecular weight of about 30 to about 200 per CN group
- n 0-3; with the proviso that at least one repeat unit in the polymer includes an R 4 .
- the semiconductor layer contains the polymer in an amount of 1-99.9% by weight.
- Polymer A is a nitrile-containing styrene-maleic anhydride copolymer that is described in U.S. Patent Publication No. 2004/0222412 AL The synthesis is described therein at paragraphs 107 and 108 under the caption "Example 1, Synthesis of Polymer 1," as follows:
- TIPS-pentacene 6,13-bis(triisopropylsilylethynyl)pentacene
- Formula II 6,13-bis(triisopropylsilylethynyl)pentacene
- a high dielectric constant polymer was made with the compositions indicated in Table I.
- TIPS-pentacene was synthesized as disclosed in U.S. 6,690,029 Bl at Example 1.
- Poly(4-vinylphenol) MW 9,000 to 11,000 Sp.gr. 1.16 (PVP) was obtained from Polyscience, Inc. Warrington, PA.
- Poly(4-cyanomethyl styrene) was made by the method described for "polymer 4" in U.S. Patent Publication No. 2004/0222412 Al . All solutions were prepared by mixing the components overnight and filtering the resulting mixture through a 0.2 micron filter.
- Test transistors examples 1-10 were made on single crystal (i.e., ⁇ 100> orientation), heavily doped, p-type silicon wafers that were obtained from Silicon Valley Microelectronics (San Jose, CA).
- the wafers as purchased have a 1000 A layer of high temperature thermal silicon oxide layer on one face and a 5000 A layer of aluminum metal vapor deposited on the opposite face.
- the doped wafer capped with aluminum served as the gate electrode and the silicon oxide functioned as the gate dielectric when organic thin film transistors (OTFTs) were prepared.
- solution A, B, C, D or E was applied by either spin coating or knife coating method followed by either air drying or an anneal step (heating to 120 0 C for 10 minutes), as noted in Table II.
- Knife coating was accomplished with a Gardco 4" micron film coater by application of a portion of the solution to the knife edge and pulling the coated over the substrate.
- Spin coating was accomplished according to the following protocol: 1st stage 500 RPM for 10 sec Acceleration 2 (166 rpm/sec), 2nd stage 2000 RPM for 20 sec
- the devices were completed by patterned vapor deposition of gold source and drain electrodes through a shadow mask onto the semiconductor layer.
- the devices had a channel length of 60 to 100 ⁇ m and a channel width of 1000 ⁇ m.
- Bottom contact device example 9 was made by patterned vapor deposition of gold source and drain electrodes through a shadow mask onto the dielectric to give a channel length of 60 to 100 ⁇ m and a channel width of 1000 ⁇ m.
- the semiconductor was then knife coated over the entire structure.
- Bottom contact device examples 10 and 11 were made by first inkjet printing silver nanoparticle ink onto the dielectric layer (InkJet Silver Conductor, AG-IJ-100-Sl, bulk resistivity 4-32 ⁇ cm, from Cabot Printable Electronics and Displays, Albuqerque, New Mexico, Batch AG-062005-A). The sample was then cured at 125°C for 11 minutes followed by treating the sample with a 0.1 mmol solution of perfluorothiophenol in toluene for 1 hour. The indicated semiconductor solution was deposited by knife coating over the entire structure and the sample was allowed to air dry or annealed at 120 0 C for 10 minutes.
- Transistor performance was tested at room temperature in air using a Semiconductor Parameter Analyzer (model 4145 A from Hewlett-Packard, Palo Alto, California).
- the square root of the drain-source current (Id 5 ) was plotted as a function of gate-source bias (Vg S ), from +10 V to -40 V for a constant drain-source bias (Vds) of -40 V.
- Vg S gate-source bias
- Vds constant drain-source bias
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Thin Film Transistor (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP06847918A EP1969621A4 (en) | 2005-12-28 | 2006-12-21 | THIN FILM TRANSISTORS WITH UNDER-GATE |
| JP2008548628A JP2009522781A (ja) | 2005-12-28 | 2006-12-21 | ボトムゲート型薄膜トランジスタ |
| CN2006800492813A CN101346808B (zh) | 2005-12-28 | 2006-12-21 | 底栅电极薄膜晶体管 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/275,367 | 2005-12-28 | ||
| US11/275,367 US7514710B2 (en) | 2005-12-28 | 2005-12-28 | Bottom gate thin film transistors |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2007078993A1 true WO2007078993A1 (en) | 2007-07-12 |
Family
ID=38228545
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2006/048804 Ceased WO2007078993A1 (en) | 2005-12-28 | 2006-12-21 | Bottom gate thin film transistors |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US7514710B2 (enExample) |
| EP (1) | EP1969621A4 (enExample) |
| JP (1) | JP2009522781A (enExample) |
| CN (1) | CN101346808B (enExample) |
| WO (1) | WO2007078993A1 (enExample) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012160382A1 (en) | 2011-05-26 | 2012-11-29 | The Centre For Process Innovation Ltd | Semiconductor compounds |
| WO2012160383A1 (en) | 2011-05-26 | 2012-11-29 | The Centre For Process Innovation Ltd | Transistors and methods for making them |
| WO2012164282A1 (en) | 2011-05-31 | 2012-12-06 | Smartkem Limited | Organic semiconductor compositions |
| WO2013124683A1 (en) | 2012-02-23 | 2013-08-29 | Smartkem Limited | Organic semiconductor compositions |
| FR3002366A1 (fr) * | 2013-02-20 | 2014-08-22 | Commissariat Energie Atomique | Dispositif electronique comprenant une couche en un materiau semi-conducteur et son procede de fabrication |
| KR20160052602A (ko) * | 2013-08-28 | 2016-05-12 | 스마트켐 리미티드 | 고분자 유기 반도체 조성물 |
| GB2542563A (en) * | 2015-09-22 | 2017-03-29 | Cambridge Display Tech Ltd | Pentacene derivatives with C-alkyne solubilising units and their applications as small molecule organic semiconductors |
| WO2020143624A1 (zh) | 2019-01-07 | 2020-07-16 | 纽多维有限公司 | 制剂和层 |
| US11258017B2 (en) | 2016-04-27 | 2022-02-22 | Wuhan Xinqu Chuangrou Optoelectronics Technology Co., Ltd | Semiconducting compositions comprising semiconducting polymers |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ITMI20051901A1 (it) * | 2005-10-10 | 2007-04-11 | St Microelectronics Srl | Processo di fabbricazione di tramsistori a film sottile in materiale organico e transistore |
| US20070146426A1 (en) * | 2005-12-28 | 2007-06-28 | Nelson Brian K | All-inkjet printed thin film transistor |
| KR100976572B1 (ko) * | 2008-02-26 | 2010-08-17 | 고려대학교 산학협력단 | 유기 박막 트랜지스터의 제조방법 |
| JP5406284B2 (ja) | 2008-06-11 | 2014-02-05 | スリーエム イノベイティブ プロパティズ カンパニー | 有機半導体の堆積のための混合溶媒系 |
| US7948016B1 (en) * | 2009-11-03 | 2011-05-24 | 3M Innovative Properties Company | Off-center deposition of organic semiconductor in an organic semiconductor device |
| US8450779B2 (en) * | 2010-03-08 | 2013-05-28 | International Business Machines Corporation | Graphene based three-dimensional integrated circuit device |
| CN103151461A (zh) * | 2013-02-27 | 2013-06-12 | 京东方科技集团股份有限公司 | 一种有机薄膜晶体管及其制备方法和制备装置 |
| CN103255480B (zh) * | 2013-04-27 | 2015-12-02 | 中国科学院合肥物质科学研究院 | 大尺寸6,13-双(三异丙基甲硅烷基乙炔基)并五苯薄晶体的制备方法 |
| JP5704771B2 (ja) * | 2013-12-27 | 2015-04-22 | 独立行政法人科学技術振興機構 | ペンタセンキノン誘導体及びその製造方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1416069A1 (en) * | 2001-08-09 | 2004-05-06 | Asahi Kasei Kabushiki Kaisha | Organic semiconductor element |
| US6913944B2 (en) * | 2002-12-26 | 2005-07-05 | Konica Minolta Holdings, Inc. | Organic thin-film transistor manufacturing method, organic thin-film transistor, and organic thin-film transistor sheet |
| US6963080B2 (en) * | 2001-11-26 | 2005-11-08 | International Business Machines Corporation | Thin film transistors using solution processed pentacene precursor as organic semiconductor |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6326640B1 (en) * | 1996-01-29 | 2001-12-04 | Motorola, Inc. | Organic thin film transistor with enhanced carrier mobility |
| DE69840914D1 (de) | 1997-10-14 | 2009-07-30 | Patterning Technologies Ltd | Methode zur Herstellung eines elektrischen Kondensators |
| US6690029B1 (en) | 2001-08-24 | 2004-02-10 | University Of Kentucky Research Foundation | Substituted pentacenes and electronic devices made with substituted pentacenes |
| JP2005505142A (ja) | 2001-10-01 | 2005-02-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 電子デバイス及び構成並びに方法 |
| EP2204861A1 (en) * | 2001-12-19 | 2010-07-07 | Merck Patent GmbH | Organic field effect transistor with an organic dielectric |
| US7098525B2 (en) * | 2003-05-08 | 2006-08-29 | 3M Innovative Properties Company | Organic polymers, electronic devices, and methods |
| US6861664B2 (en) * | 2003-07-25 | 2005-03-01 | Xerox Corporation | Device with n-type semiconductor |
| JP5089986B2 (ja) | 2003-11-28 | 2012-12-05 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 有機半導体層およびその改善 |
| US7700366B2 (en) * | 2003-12-04 | 2010-04-20 | Massachusetts Institute Of Technology | Fluorescent, semi-conductive polymers, and devices comprising them |
| US7655809B2 (en) * | 2004-05-18 | 2010-02-02 | University Of Ottawa | Compounds comprising a linear series of five fused carbon rings, and preparation thereof |
| US7319153B2 (en) * | 2005-07-29 | 2008-01-15 | 3M Innovative Properties Company | 6,13-Bis(thienyl)pentacene compounds |
-
2005
- 2005-12-28 US US11/275,367 patent/US7514710B2/en not_active Expired - Fee Related
-
2006
- 2006-12-21 EP EP06847918A patent/EP1969621A4/en not_active Withdrawn
- 2006-12-21 JP JP2008548628A patent/JP2009522781A/ja active Pending
- 2006-12-21 WO PCT/US2006/048804 patent/WO2007078993A1/en not_active Ceased
- 2006-12-21 CN CN2006800492813A patent/CN101346808B/zh not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1416069A1 (en) * | 2001-08-09 | 2004-05-06 | Asahi Kasei Kabushiki Kaisha | Organic semiconductor element |
| US6963080B2 (en) * | 2001-11-26 | 2005-11-08 | International Business Machines Corporation | Thin film transistors using solution processed pentacene precursor as organic semiconductor |
| US6913944B2 (en) * | 2002-12-26 | 2005-07-05 | Konica Minolta Holdings, Inc. | Organic thin-film transistor manufacturing method, organic thin-film transistor, and organic thin-film transistor sheet |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP1969621A4 * |
Cited By (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140175409A1 (en) * | 2011-05-26 | 2014-06-26 | Centre For Process Innovation Limited | Transistors and methods for making them |
| WO2012160383A1 (en) | 2011-05-26 | 2012-11-29 | The Centre For Process Innovation Ltd | Transistors and methods for making them |
| US10121970B2 (en) | 2011-05-26 | 2018-11-06 | Wuhan Xinqu Chuangrou Optoelectronics Technology Co., Ltd. | Transistors and methods for making them |
| WO2012160382A1 (en) | 2011-05-26 | 2012-11-29 | The Centre For Process Innovation Ltd | Semiconductor compounds |
| US9431145B2 (en) | 2011-05-26 | 2016-08-30 | Neudrive Limited | Transistors and methods for making them |
| US9406886B2 (en) | 2011-05-26 | 2016-08-02 | Neudrive Limited | Semiconductor compounds |
| EP2715818B1 (en) | 2011-05-31 | 2016-09-14 | Smartkem Limited | Organic semiconductor compositions |
| EP3024039A1 (en) * | 2011-05-31 | 2016-05-25 | SmartKem Limited | Organic semiconductor compositions |
| WO2012164282A1 (en) | 2011-05-31 | 2012-12-06 | Smartkem Limited | Organic semiconductor compositions |
| GB2491810B (en) * | 2011-05-31 | 2018-03-21 | Smartkem Ltd | Organic semiconductor compositions |
| US9525146B2 (en) | 2011-05-31 | 2016-12-20 | Smartkem Limited | Organic semiconductor compositions |
| GB2491810A (en) * | 2011-05-31 | 2012-12-19 | Smartkem Ltd | Organic semiconductor compositions |
| KR102055029B1 (ko) | 2012-02-23 | 2019-12-11 | 스마트켐 리미티드 | 유기 반도체 조성물 |
| WO2013124682A1 (en) | 2012-02-23 | 2013-08-29 | Smartkem Limited | Organic semiconductor compositions |
| KR20140138197A (ko) * | 2012-02-23 | 2014-12-03 | 스마트켐 리미티드 | 유기 반도체 조성물 |
| KR20140138198A (ko) * | 2012-02-23 | 2014-12-03 | 스마트켐 리미티드 | 유기 반도체 조성물 |
| EP3998304A2 (en) | 2012-02-23 | 2022-05-18 | SmartKem Limited | Organic semiconductor compositions |
| KR20140135783A (ko) * | 2012-02-23 | 2014-11-26 | 스마트켐 리미티드 | 유기 반도체 조성물 |
| WO2013124685A1 (en) | 2012-02-23 | 2013-08-29 | Smartkem Limited | Organic semiconductor compositions |
| WO2013124683A1 (en) | 2012-02-23 | 2013-08-29 | Smartkem Limited | Organic semiconductor compositions |
| US10833274B2 (en) | 2012-02-23 | 2020-11-10 | Smartkem Limited | Organic semiconductor compositions |
| US10707420B2 (en) | 2012-02-23 | 2020-07-07 | Smartkem Limited | Polycyclic aromatic hydrocarbon copolymer-containing organic semiconductor compositions |
| US10580989B2 (en) | 2012-02-23 | 2020-03-03 | Smartkem Limited | Organic semiconductor compositions |
| US9799830B2 (en) | 2012-02-23 | 2017-10-24 | Smartkem Limited | Organic semiconductor compositions |
| WO2013124684A1 (en) | 2012-02-23 | 2013-08-29 | Smartkem Limited | Organic semiconductor compositions |
| US9997710B2 (en) | 2012-02-23 | 2018-06-12 | Smartkem Limited | Polycyclic aromatic hydrocarbon polymers |
| US10050202B2 (en) | 2012-02-23 | 2018-08-14 | Smartkem Limited | Polycylc aromatic hydrocarbon copolymers and their use as organic semiconductors |
| US10056551B2 (en) | 2012-02-23 | 2018-08-21 | Smartkem Limited | Polycyclic aromatic hydrocarbon polymers and their use as organic semiconductors |
| US10056550B2 (en) | 2012-02-23 | 2018-08-21 | Smartkem Limited | Polycyclic aromatic hydrocarbon copolymers and their use as organic semiconductors |
| KR102077484B1 (ko) | 2012-02-23 | 2020-02-14 | 스마트켐 리미티드 | 유기 반도체 조성물 |
| WO2013124686A1 (en) | 2012-02-23 | 2013-08-29 | Smartkem Limited | Organic semiconductor compositions |
| KR101998450B1 (ko) | 2012-02-23 | 2019-07-09 | 스마트켐 리미티드 | 유기 반도체 조성물 |
| US10497874B2 (en) | 2012-02-23 | 2019-12-03 | Smartkem Limited | Organic semiconductor compositions |
| KR102055028B1 (ko) | 2012-02-23 | 2019-12-11 | 스마트켐 리미티드 | 유기 반도체 조성물 |
| KR20140135784A (ko) * | 2012-02-23 | 2014-11-26 | 스마트켐 리미티드 | 유기 반도체 조성물 |
| FR3002366A1 (fr) * | 2013-02-20 | 2014-08-22 | Commissariat Energie Atomique | Dispositif electronique comprenant une couche en un materiau semi-conducteur et son procede de fabrication |
| WO2014128607A1 (fr) * | 2013-02-20 | 2014-08-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dispositif electronique comprenant une couche en un materiau semi-conducteur et son procede de fabrication |
| US10069071B2 (en) | 2013-08-28 | 2018-09-04 | Smartkem Limited | Polycyclic aromatic hydrocarbon copolymers |
| KR102091906B1 (ko) | 2013-08-28 | 2020-03-20 | 스마트켐 리미티드 | 고분자 유기 반도체 조성물 |
| KR20160052602A (ko) * | 2013-08-28 | 2016-05-12 | 스마트켐 리미티드 | 고분자 유기 반도체 조성물 |
| GB2542563A (en) * | 2015-09-22 | 2017-03-29 | Cambridge Display Tech Ltd | Pentacene derivatives with C-alkyne solubilising units and their applications as small molecule organic semiconductors |
| US11258017B2 (en) | 2016-04-27 | 2022-02-22 | Wuhan Xinqu Chuangrou Optoelectronics Technology Co., Ltd | Semiconducting compositions comprising semiconducting polymers |
| WO2020143624A1 (zh) | 2019-01-07 | 2020-07-16 | 纽多维有限公司 | 制剂和层 |
Also Published As
| Publication number | Publication date |
|---|---|
| US7514710B2 (en) | 2009-04-07 |
| EP1969621A4 (en) | 2011-08-24 |
| CN101346808A (zh) | 2009-01-14 |
| CN101346808B (zh) | 2010-05-26 |
| JP2009522781A (ja) | 2009-06-11 |
| EP1969621A1 (en) | 2008-09-17 |
| US20070158643A1 (en) | 2007-07-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7514710B2 (en) | Bottom gate thin film transistors | |
| EP1620885B1 (en) | Organic polymers, electronic devices, and methods | |
| EP1620884B1 (en) | Organic polymers, laminates, and capacitors | |
| US7352000B2 (en) | Organic thin film transistor with polymeric interface | |
| EP2975649A1 (en) | Field effect transistor | |
| US20070146426A1 (en) | All-inkjet printed thin film transistor | |
| CN101310368B (zh) | 电子器件、可印刷分散体及制备含电介质电子器件的方法 | |
| US9721697B2 (en) | Organic polymeric bi-metallic composites | |
| US8692238B2 (en) | Semiconductor devices and methods of preparation | |
| JP5470686B2 (ja) | 絶縁層、電子デバイス、電界効果トランジスタ及びポリビニルチオフェノール | |
| US7863694B2 (en) | Organic thin film transistors | |
| CN108484885B (zh) | 一种基于多环芳烃的共轭聚合物的应用 | |
| JP5534228B2 (ja) | 薄膜トランジスタ用ゲート絶縁膜形成剤 | |
| US7345303B2 (en) | Organic thin-film transistors | |
| US20080121871A1 (en) | Mononuclear star-branched polymer dielectric material and organic thin film transistor | |
| JP2009278087A (ja) | 有機薄膜トランジスター | |
| CN101654517A (zh) | 高分子半导体及制备方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200680049281.3 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2008548628 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006847918 Country of ref document: EP |