WO2007077906A1 - 非水系キャパシタ及びその製造方法 - Google Patents

非水系キャパシタ及びその製造方法 Download PDF

Info

Publication number
WO2007077906A1
WO2007077906A1 PCT/JP2006/326174 JP2006326174W WO2007077906A1 WO 2007077906 A1 WO2007077906 A1 WO 2007077906A1 JP 2006326174 W JP2006326174 W JP 2006326174W WO 2007077906 A1 WO2007077906 A1 WO 2007077906A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
temperature
melting point
electrode unit
separator
Prior art date
Application number
PCT/JP2006/326174
Other languages
English (en)
French (fr)
Inventor
Shinji Naruse
Original Assignee
Dupont Teijin Advanced Papers, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dupont Teijin Advanced Papers, Ltd. filed Critical Dupont Teijin Advanced Papers, Ltd.
Priority to US12/087,053 priority Critical patent/US20090027830A1/en
Publication of WO2007077906A1 publication Critical patent/WO2007077906A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/20Reformation or processes for removal of impurities, e.g. scavenging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention utilizes the electric double layer that stores electricity discovered by Helmholtz in 1879, and uses carbon-based materials such as activated carbon, foam carbon, carbon nanotube, polyacene, and nanogate carbon. Electrochemical capacitors using electrodes, pseudocapacitors with acid reduction reactions, gear capacitors using electrodes such as metal oxides, conductive polymers, and organic radicals, and hybrid capacitors using batteries for one electrode Among capacitors, it relates to non-aqueous capacitors that use organic electrolyte as the electrolyte. Background art
  • the collector electrode, electrode and separator were each heated and dried under reduced pressure, and then assembled to produce an electrode unit.Then, the electrode unit was inserted into the case, impregnated with the electrolyte under reduced pressure, and then the case was sealed. A non-aqueous capacitor.
  • each of the collector electrode, the electrode, and the separator needs to be heated and dried under reduced pressure, which is complicated to manufacture. For this reason, a plurality of drying devices are required, and a wide space is required. Due to the property of activated carbon that is very easy to absorb moisture, there are problems such as the electrode re-adsorbs moisture during assembly after heating under reduced pressure and the withstand voltage decreases.
  • the manufacturing process can be simplified because the electrode unit is heated and dried under reduced pressure, and there is an advantage that a large space is not required because the drying device can be reduced.
  • the drying temperature must be lower than the low melting point and thermal decomposition temperature of cellulose, polyethylene, polyethylene terephthalate, etc. that make up the polyvinylidene fluoride separator contained in the binder used to assemble the electrode unit. Therefore, moisture cannot be removed sufficiently, and thus the obtained capacitor has a problem that its withstand voltage, energy density, and output density are not sufficient.
  • Japanese Patent Laid-Open No. 2 0 1-1 8 5 4 5 5 discloses a separator in the electrode unit of a non-aqueous capacitor in order to sufficiently remove the water contained in the electrode unit. It is disclosed that an electrode unit constituted by using a resin having a high softening temperature is dried at a temperature lower than the softening temperature. However, this publication does not clearly indicate the relationship between the drying temperature at which moisture can be reliably removed from the electrode knit and the temperature characteristics of the material constituting the electrode knit. Depending on the component material, the desired capacitor characteristics may not be obtained. Disclosure of the invention
  • An object of the present invention is to solve the above problems and provide a capacitor having a high withstand voltage, energy density, and output density.
  • the present inventors have developed a structure of the electrode unit. It was found that the above object can be achieved by using a material having a high melting point or a thermal decomposition onset temperature and drying at a specific temperature after assembling the electrode unit, thereby completing the present invention. It was.
  • the collector electrode, the electrode, and the separator are each 28 ° C.
  • the electrode unit is composed of a material having the above melting point or thermal decomposition start temperature (when the melting point is not expressed), and the electrode unit, after the assembly, out of the melting point or heat of the material constituting the electrode unit, and the solution start temperature
  • the present invention provides a non-aqueous capacitor characterized by being dried at a temperature of 10 ° C. lower than the lowest temperature.
  • the present invention also relates to a material having a melting point or a thermal decomposition starting temperature (when no melting point is expressed) of 28 ° C. or more for each of the collecting electrode, the electrode and the separator in the electrode unit composed of the collecting electrode, the electrode and the separator.
  • the electrode unit After constructing and assembling the electrode unit, the electrode unit is dried at a temperature not less than 100 ° C lower than the lowest temperature of the melting point of the material constituting the electrode unit or the thermal decomposition start temperature.
  • a non-aqueous capacitor manufacturing method is provided in which the electrode unit is housed in a case, the electrolyte is injected, and then the case is sealed.
  • the capacitor according to the present invention uses a material having a melting point or a thermal decomposition starting temperature (when the melting point is not expressed) of 28 ° C. or more as the material of the three members of the collector electrode, the electrode and the separator constituting the electrode unit. ; After assembling the electrode unit, the melting point or thermal decomposition starting temperature of the material having the lowest melting point or thermal decomposition starting temperature (if the melting point is not expressed) among the materials constituting the electrode unit (when the melting point is not expressed) ) By drying the electrode unit at a temperature above 10 o C lower than Since moisture can be removed, high withstand voltage, energy density, and output density can be achieved.
  • the “melting point” refers to a thermal measurement method such as DSC (Differential Sca ⁇ ⁇ ng. And al or ⁇ metry), D “A, D i ⁇ ferentia IT thermal analysis”.
  • DSC Denssion-Coupled Device
  • the melting point is defined as the temperature corresponding to the endothermic peak.
  • Thermal decomposition starting temperature J is the lowest temperature at which a substance decomposes and changes to a low mass when heat is applied to the substance. Usually measured using TGA (thermogravimetric analyzer) as the temperature at which the mass of the material starts to decrease when the material is heated at a constant rate of temperature rise.
  • the collector electrode constituting the electrode unit in the present invention is made of a material having a melting point or a thermal decomposition starting temperature (when the melting point is not expressed) of 280 ° C. or higher, and is not particularly limited as long as it is conductive. From the viewpoint of productivity and the like, a melting point or a thermal decomposition starting temperature (when the melting point is not expressed) is preferably 320 ° C or higher.
  • a melting point or a thermal decomposition starting temperature is preferably 320 ° C or higher.
  • the material for the current collecting electrode include a thin metal plate such as an aluminum thin plate and a platinum thin plate, and preferably include a lead wire portion.
  • the electrode constituting the electrode unit in the present invention is also made of a material having a melting point or a thermal decomposition starting temperature (when the melting point is not expressed) of 280 ° C. or higher, and is not particularly limited as long as it is conductive. However, from the viewpoint of productivity and the like, a melting point or a thermal decomposition starting temperature (when the melting point is not expressed) is preferably 320 ° C or higher. Electrode As materials, for example, activated carbon, foamed carbon, carbon 'nanotube, polyacene, nanogate, power gate, etc.
  • the electrodes can be a battery electrode.
  • the electrode may be mixed with the above-mentioned main agent, if necessary, with a conductive agent, a binder, etc., kneading method, compacting method, rolling method, coating method, .sintering method, doctor blade method, wet papermaking It can be produced by molding by a method or the like.
  • the conductive agent is made of a material having a melting point or thermal decomposition starting temperature (when the melting point is not expressed) of 28 ° C. or higher, and if it is conductive, the material is not particularly limited. From the viewpoint, melting point or thermal decomposition onset temperature (when melting point is not expressed) force ⁇ 3 20 ° C or more is preferable, for example, use of carbon-based materials such as carbon black, acetylene black, ketjen black Can do.
  • the above binder is not particularly limited as long as it is made of a material having a melting point or a thermal decomposition start temperature (when the melting point is not expressed) of 28 ° C. or more and can capture the main agent.
  • the melting point or the thermal decomposition start temperature (when the melting point is not expressed) is 320 ° C. or higher.
  • aramid wholly aromatic polyester
  • Wholly aromatic polyazo compounds wholly aromatic polyesters
  • wholly aromatic polyethers wholly aromatic polyethers
  • polyether ether kedon polyphenylene sulfide
  • poly-p-phenylene benzobisthiazole polybenzazoimidazole
  • poly-p- Fenylene benzobisoxazole polyimide, polyimide, bismaleimide 'lyazine
  • polyminobismaleimide polytetraph Forces such as fluoroethylene, ceramic, alumina, silica, alumina silica, glass, rock wool, silicon nitride, etc.
  • the separator constituting the electrode unit in the present invention is made of a material having a melting point or a thermal decomposition starting temperature (when no melting point is expressed) of 28 ° C. or more, has ion permeability, and causes problems such as a short circuit. If not, the material is not particularly limited. However, from the viewpoint of productivity, the material having a melting point or thermal decomposition starting temperature (when the melting point is not expressed) is preferably 320 ° C or higher.
  • amide wholly aromatic polyester, wholly aromatic polyazo compound, wholly aromatic polyester amide, wholly aromatic polyether, polyetheretherketone, polyphenylene sulfide, poly-p —Phenylene benzobis thiazole, Polybenzo midazole, Poly p-Phenylene benzobisoxazole, Polyimide, Polyimide, Sumerimide ⁇ lyazine, polyamino bismaleimide, poly ⁇ trifluoroethylene, ceramic, alumina, silica, alumina silicic force, glass, rock wool, silicon nitride, etc.
  • the internal resistance value represented by the following formula (1) described in Japanese Patent Application Laid-Open No.
  • 20 035-3 0 7 3 60 is equal to or less than 25 O jum and the Oken air permeability There is zero. 5 seconds 1 0 0 cm 3 or more, be used as a separator composed Arami de thin sheet material 2 component or the two components and Arami Dofuaipuriddo of Arami de fibers and fibrillated Arami de. Ru When Since the effect of increasing the power density is seen, it is preferable.
  • Electrode unit means a liquid in which an electrolyte is dissolved in a solvent, and those described later can be used.
  • electrical conductivity when electrolyte is injected into the separator means the electrical conductivity calculated from the measured AC impedance between the two electrodes with the electrolyte injected into the separator. .
  • the measurement frequency of the AC impedance is not particularly limited, but is preferably in the range of 1 kHz to 100 kHz.
  • the electrode unit in the present invention is an assembly of the collector electrode, the electrode and the separator, and there is no particular limitation on the configuration thereof.
  • the collector electrode Z electrode Z separator Z electrode Z collector electrode are stacked in this order.
  • Electrode Z collector electrode Z electrode Z separator electrode Collector electrode No electrode Stacked in the order of separators, repeated stacking of these, rolled up stacks of such stacks, etc. It is also possible to previously bond the stacked members with an adhesive or the like.
  • a composite sheet comprising an electrode member and a separator described in Japanese Patent Application Laid-Open No. 2 0 5 5-3 1 1 1 90, and having a separator having a volume specific resistance value of 100 ° C. cm or more. Can also be used.
  • Electrolyte Electrolyte:
  • the electrolytic solution used to impregnate the electrode unit is a liquid in which an electrolyte is dissolved in a solvent.
  • the solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, jetyl carbonate ethyl carbonate, Tylene carbonate, glutaronitrile, adiponitrile, acetonitonyl, methoxyacetonitrile, 3-methoxypropionitol, r-butyrolacton, r-valerolacdon, sulfolane, 3-methylsulfolane, nitroethane, nitromethane, trimethyl phosphate , N-methyloxazolidinone, N, N-dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, N, N '-Cymethylimidazolidinone, amidine, water, etc. and mixtures thereof be able to.
  • an ionic substance for example, a combination of the following cation and anion can be used.
  • Cations Quaternary ammonium ions, quaternary phosphonium ions, lithium ions, sodium ions, ammonium ions, hydrogen ions and mixtures thereof.
  • an ionic liquid such as an imidazolium salt, which has a low melting point and is a liquid salt even at room temperature, can be used as an electrolyte. Since the vapor pressure of ionic liquid is almost zero, it can be expected to extend the life of the capacitor and also provide flame retardancy. Drying the electrode unit:
  • the electrode unit assembled as described above has the lowest melting point or thermal decomposition starting temperature (when the melting point is not expressed) among the collecting electrode, the electrode and the separator constituting the electrode unit. It is dried at a temperature that is at least 100 ° C lower than the lowest of the melting point or thermal decomposition starting temperature (if the melting point is not expressed) of the material. From the viewpoint of shortening the manufacturing time of the capacitor, it is preferable that the drying temperature is high, and it is 50 ° C. or more lower than the lowest temperature among the melting point or the thermal decomposition starting temperature (when the melting point is not expressed). It is desirable. As for the upper limit of the drying temperature, the higher the temperature, the shorter the manufacturing time.
  • the drying temperature is the melting point or thermal decomposition starting temperature of the material having the lowest melting point or thermal decomposition starting temperature (if the melting point is not expressed) among the collector electrode, electrode and separator constituting the electrode unit (not expressing the melting point).
  • the temperature is 30 ° C lower than the above temperature and More preferably, the temperature is in the range of 50 ° C. lower than the temperature.
  • the atmosphere during drying should contain as little moisture as possible.
  • the electrode unit can be dried, for example, while flowing a dry inert gas such as argon or under reduced pressure.
  • the electrode unit adheres to the surface of the electrode unit.
  • drying under reduced pressure is preferred, and the atmospheric pressure is preferably 1 torr or less.
  • the drying time is not particularly limited as long as it can achieve the target withstand voltage, energy density, output density, etc. as a capacitor, but is preferably within 24 hours from the viewpoint of productivity, etc. Preferably it is within 15 hours.
  • the degree of drying is preferably such that the moisture content of the electrode after drying is 1700 ppm or less.
  • it is usually 1 It is desirable that it is not more than 3500 ppm, especially not more than 100 ppm. Therefore, it is desirable to dry the electrode unit under the above conditions until the moisture content of the electrode after drying is below the above limit.
  • the case in the present invention is not particularly limited as long as it can store and seal the electrode unit and the electrolyte.
  • an aluminum can case, an aluminum laminate case, an aluminum coin case, or the like can be used. it can.
  • the capacitor of the present invention can be obtained by housing the dried electrode unit in a case, injecting an electrolytic solution, and sealing the case.
  • the electrolyte is preferably impregnated with reduced pressure.
  • the capacitor of the present invention thus obtained generally retains a capacity of 50% or more, particularly 70% or more after being left floating for 50 hours at a voltage of 2.8 V and a temperature of 70 ° C. Can have a rate.
  • Example 1
  • Activated carbon activated by steam as the main component of the electrode material polytetrafluoroethylene resin (PT FE) as the binder, and ketjen black (KB) as the conductive material.
  • Activated carbon PTF EZKB 86 6. 5/7. 5 (wt%)
  • a sheet having a thickness of 1 15 m and a density of 0.6 g / cm 3 was obtained.
  • the electrode punched out to 50 X 3 Omm was bonded to a collector electrode aluminum foil (thickness 40 rri) using a conductive paint (phenol resin) to obtain a composite of the electrode and the collector electrode.
  • a separator composed of m-alamide and p-alamide (basis weight 24.4 gZm 2 , thickness, density 0.53 gZcm 3 ) An electrode unit was obtained by sandwiching between a pair of positive and negative electrodes.
  • the material with the lowest melting point or thermal decomposition onset temperature (when no melting point is expressed) among the materials composing the electrode constitutionald is poly (fluoroethylene), and its melting point is 327 ° C. Therefore, the electrode unit was dried under reduced pressure for 12 hours under the conditions of a temperature of 280 ° C and a pressure of 1 Torr or less.
  • the initial characteristics and float characteristics of the capacitor were measured by the following methods.
  • the charge / discharge measurement and the impedance measurement at the initial 1 c rate were performed, and the resistance was calculated.
  • the measurement conditions are as follows:
  • Measurement frequency 20000 Hz to 0.1 Hz
  • Example 2 Except for using a commercially available cellulose separator (basis weight 19.7 gZm 2 , thickness 42 m, density 0.47 gZcm 3 ), and drying the electrode unit at a temperature of 150 ° C. A capacitor was produced in the same manner as in Example 1, and the characteristics were measured in the same manner as in Example 1. The results are shown in Table 2 below.
  • the float charge characteristics of the capacitor of Example 1 of the present invention are better than those of the capacitor of Comparative Example 1, and the voltage is 2.8 V at a voltage of 2.8 V and a temperature of 70 ° C. It was confirmed that the retention rate of the capacitance after being left floating in the time floating state was 70 ⁇ 1 ⁇ 2 or more and the increase rate of the resistance was suppressed to within 500 ° ⁇ 1 ⁇ 2, and the withstand voltage was improved. This is thought to be the result of high-temperature drying of the electrode unit, which sufficiently removed water, and prevented gas generation due to decomposition of the electrolyte and electrolysis of Z or water.
  • the impedance was calculated from the value of 0.1 Hz.
  • the energy density of the capacitor of Example 1 and the energy density and output density of the capacitor of Example 1 were significantly improved, as is clear from Table 3.
  • the moisture content of the electrode was measured using EMD-WA 1 0.0 OSW (manufactured by Denshi Kagaku). That is, the activated carbon activated with water vapor was dried under the conditions of Example 1 or Comparative Example 1, then allowed to cool for 1 hour while maintaining the vacuum state, and then heated to 700 ° C at a rate of 60 ° CZ. Furthermore, holding for 8 minutes, the moisture content of the activated carbon was calculated from the amount of water desorbed at the time of temperature rising and holding. As a result, the moisture content was 2300 ppm under the drying conditions of Comparative Example 1, whereas it was 1 100 ppm under the drying conditions of Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本発明は、集電極と電極とセパレータとからなる電極ユニット及び電解液をケースに収納し、封緘してなるキャパシタにおいて、集電極、電極及びセパレータがそれぞれ280℃以上の融点または熱分解開始温度(融点を発現しない場合)を有する材料によって構成され、そして電極ユニットが、その組み立て後に、該電極ユニットを構成する材料の融点または熱分解開始温度のうち最も低い温度より100℃低い温度以上の温度で乾燥されたものである、耐電圧、エネルギー密度及び出力密度が高い非水系キャパシタを提供するものである。

Description

明細書 非水系キャパシタ及びその製造方法 技術分野
本発明は、 ヘルムホルツが 1 8 7 9年に発見した電気を蓄える電気二重層を 活用し、 活性炭、 泡状カーボン、 カーボン ·ナノチューブ、 ポリアセン、 ナノ ゲ一ト■カーボンなどのカーボン系材^ ^を電極とした電気化学キャパシタ、 酸 還元反応を伴う擬似容量も活用し、 金属酸化物、 導電性ポリマー、 有機ラジカ ルなどを電極としたギヤパシタ、 及び片方の電極に電池を活用したハイブリツ ドキャパシタなどのキャパシタでのうちで、 電解液として有機電解液を使用す る非水系キャパシタに関する。 背景技術
携帯通信機器や高速情報処理機器などの最近の進歩に象徴されるように、 ェ レク トロニクス機器の小型軽量化、 高性能化には目覚しいものがある。 なかで も、 小型、 軽量、 高容量で長期保存にも耐える高性能なキャパシタに対する期 待は大きく、 幅広く応用が図られ、 部品開発が急速に進展している。 キャパシ タは一般に電池と比較して長寿命かつ急速充放電が可能であることから、 電源 の平滑化、 ノイズ吸収などの従来の用途以外に、 近年、 電気自動車用、 ハイブ リッド自動車用、 燃料電池自動車用の二次電池としての用途が期待されている。 そのキャパシタとして、 特開 2 0 0 0— 2 4 3 4 5 3号公報には、 非水系電解 液中に 1対の電極が浸潰された構造を有するものが開示されている。 この非水 系キャパシタは、 含有水分除去の観点から、 以下の 2種類に分類される。
( 1 ) 集電極、 電極及びセパレータをそれぞれ加熱減圧乾燥した後、 これら を組み立てて電極ユニットを作製し、 次いで、 ケースに電極ユニットを挿入し、 電解液を減圧含浸した後、 ケースを封緘してなる非水系キャパシタ。 この場合、 集電極、 電極及びセパレータのそれぞれを加熱減圧乾燥すること が必要であり製造が煩雑である、 そのために複数の乾燥装置を必要とし広いス ペースが必要となる、 電極の構成部材として知られている活性炭の非常に水分 を吸収しやすい性質に由来して、 加熱減圧乾燥後組み立て時に電極が水分を再 吸着し、 耐電圧が低下する、 などの問題がある。
( 2 ) 集電極、 電極及びセパレ一タを組み立てた後、 これを加熱減圧下に乾 燥し、 得られる電極ユニットをケースに挿入した後、 非水系電解液を減圧含浸 し、 次いで、 記ケースを封緘してなる非水系キャパシタ。
この場合、 電極ュニットを組み立てた後に加熱減圧乾燥するため製造工程を 簡素化することができ、 乾燥装置を少なくすることができるため広いスペース を必要としないという利点があるが、 組み立て後の加熱減圧乾燥温度を、 例え ば、 電極ュニッ卜の組み立てに用いる結着剤に含まれるポリフッ化ビニリデン ゃセパレータを構成するセルロース、 ポリエチレン、 ポリエチレンテレフタテ レートなどがもつ低い融点及び熱分解温度以下にしなければならないため、 十 分に水分を除去することがでず、 従って、 得られるキャパシタは耐電圧、 エネ ルギー密度、 出力密度が十分でないという問題がある。
また、 特開 2 0 0 1 - 1 8 5 4 5 5号公報には、 電極ュニッ卜に含まれる水 分を十分に除去するために、 非水系キャパシタの電極ュニッ卜のうちのセパレ ータを軟化温度が高い樹脂を用いて構成し、 組み立てられた電極ュニットを該 軟化温度よりも低い温度で乾燥させることが開示されている。 しかし、 この公 開公報には、 電極 ニッ卜から水分を確実に除去することができる乾燥温度と 電極ュニッ卜を構成する材料の温度特性との間の関係が明示されておらず、 非 水系キャパシタの構成材料によっては所望のキャパシタ特性が得られない可能 性がある。 発明の開示
本発明の目的は、 上記の問題を解決し、 耐電圧、 エネルギー密度及び出力密 度の高いキャパシタを提供することである。 本発明者らは、 高容量化■大出力化による大電流に耐え、 耐電圧、 エネルギ 一密度、 出力密度の高いキャパシタを開^すべく鋭意検討を進めた結果、 今回、 電極ュニッ卜の構成材料として高い融点又は熱分解開始温度を有するものを使 用し且つ電極ュニッ卜の組み立て後に特定の温度で乾燥することにより上記の 目的を達成することができることを見い出し、 本発明を完成するに至った。 かく して、 本発明は、 集電極と電極とセパレータとからなる電極ュニット及 び電解液をケースに収納し、 封緘してなるキャパシタにおいて、 集電極、 電極 及ぴセパレータがそれぞれ 2 8 0 °C以上の融点または熱分解開始温度 (融点を 発現しない場合) を有する材料によって構成され、 そして電極ユニットが、 そ の組み立て後に、 該電極ュニッ卜を構成する材料の融点または熱 、解開始温度 のうち最も低い温度より 1 0 o °c低い温度以上の温度で乾燥されたものである ことを特徴とする非水系キャパシタを提供するものである。
本発明は、 また、 集電極と電極とセパレータからなる電極ユニットにおける 集電極、 電極及びセパレータをそれぞれ 2 8 0 °C以上の融点またば熱分解開始 温度 (融点を発現しない場合) を有する材料によって構成し、 電極ユニットを 組み立てた後に、 該電極ュニットを構成する材料の融点または熱分解開始温度 のうち最も低い温度より 1 0 0 °C低い温度以上の温度で該電極ュニットを乾燥 し、 その乾燥された電極ユニットをケースに収納し、 電解液を注入した後、 該 ケースを封緘することを特徴とする非水系キャパシタの製造方法を提供するも のである。 本発明のキャパシタは、 電極ユニットを構成する集電極、 電極及びセパレー タの 3部材の素材として、 融点又は熱分解開始温度 (融点を発現しない場合) が 2 8 0 °C以上の素材を使用し; 電極ュニッを組み立てた後に、 該電極ュニッ トを構成する素材の中で最も低い融点又は熱分解開始温度 (融点を発現しない 場合) を有する素材の融点又は熱分解開始温度 (融点を発現しない場合) より 1 0 o °c低い温度以上の温度で、 電極ュニットを乾燥したことにより、 十分に 水分を除去することができるため、 高い耐電圧、 エネルギー密度、 出力密度を 実現することができる。
以下、 本発明の非水系キャパシタについてさらに詳細に説明する。 本明細書において、 「融点」 は、 DSC (D i f f e r e n t i a l S c a η η ι n g .し a.l o r ι m e t r y ) 、 D 「A 、D i τ f e r e n t i a I T h e rma l A n a l y s i s) などの熱的測定方法により測定され る融点を意味する。 一般に、 ポリマーは、 単一でない分子量成分を含んでいる ことおよび結晶化の程度の違いなどを反映して幅広い融解挙動を示す。 本発明 においては、 DS C分析による吸熱ピークに対応する温度を以つて融点とする。 また、 「熱分解開始温度 J は、 或る物質に熱を加えたときに、 その物質が分解 して質量の小さいものに変化する最低の温度であり、 通常は TGA (熱重量分 析装置) を使用し、 一定の昇温速度で物質を加熱したときに、 物質の質量の減 少が開始する温度として測定される。 集電極:
本発明における電極ュニットを構成する集電極は、 融点又は熱分解開始温度 (融点を発現しない場合) が 280°C以上の素材からなり、 導電性であれば、 その材質には特に制限はないが、 生産性などの観点から、 融点又は熱分解開始 温度 (融点を発現しない場合) が 320°C以上であるのものが好ましい。 集電 極の材料としては、 例えば、 アルミニウム薄板、 白金薄板などの金属薄板が挙 げられ、 リード線の部分を含んでいることが好ましい。 電極:
本発明における電極ュニットを構成する電極もまた、 融点又は熱分解開始温 度 (融点を発現しない場合) が 280°C以上の素材からなり、 導電性であれば、 その材質には特に制限はないが、 生産性などの観点から、 融点又は熱分解開始 温度 (融点を発現しない場合) が 320°C以上であるものが好ましい。 電極の 素材としては、 例えば、 主剤として、 ヘルムホルツが 1 8 7 9年に発見した電 気を蓄える電気二重層を活用した、 活性炭、 泡状カーボン、 カーボン 'ナノチ ユーブ、 ポリアセン、 ナノゲート■力一ボンなどのカーボン系材料や、 酸還元 反応を伴う擬似容量も活用した、 金属酸化物、 導電性ポリマー、 有機ラジカル などの材料等が挙げられ、 片方の電極には電池の電極を使用することもできる。 電極は、 例えば、 上記主剤に、 必要に応じて、 導電剤、 結着剤などを混ぜ合わ せ、 混練法、 圧粉法、 圧延法、 塗布法、 .焼結法、 ドクターブレード法、 湿式抄 造法などによって成形することにより作製することができる。
上記導電剤は、 融点又は熱分解開始温度 (融点を発現しない場合) が 2 8 0 °C以上の素材からなり、 導電性であれば、 その材質には特に制限はないが、 生産性などの観点から、 融点又は熱分解開始温度 (融点を発現しない場合) 力《 3 2 0 °C以上であるものが好ましく、 例えば、 カーボンブラック、 アセチレン ブラック、 ケッチェンブラックなどのカーボン系材料を使用することができる。 上記結着剤もまた、 融点又は熱分解開始温度 (融点を発現しない場合) が 2 8 0 °C以上の素材からなり、 主剤を捕捉できるものであれば、 その材質には特 に制限はないが、 生産性などの観点から、 融点又は熱分解開始温度 (融点を発 現しない場合) が 3 2 0 °C以上であるものが好ましく、 具体的には、 例えば、 ァラミ ド、 全芳香族ポリエステル、 全芳香族ポリアゾ化合物、 全芳香族ポリエ ステルアミ ド、 全芳香族ポリエーテル、 ポリエー亍ルエーテルケドン、 ポリフ ェニレンスルフィ ド、 ポリ一 p—フエ二レンべンゾビスチアゾール、 ポリベン ゾイミダゾール、 ポリ一 p—フエ二レンべンゾビスォキサゾール、 ポリアミ ド ィミ ド、 ポリイミ ド、 ビスマレイミ ド ' 卜リアジン、 ポリマミノビスマレイミ ド、 ポリテトラフルォロエチレン、 セラミック、 アルミナ、 シリカ、 アルミナ シリカ、 ガラス、 ロックウール、 チッ化ゲイ素などが挙げられる力 特に、 主 剤の捕捉性のよいァラミ ド、 ポリテトラフルォロエチレンが好ましく使用され る。 セパレータ 本発明における電極ユニットを構成するセパレータとしては、 融点又は熱分 解開始温度 (融点を発現しない場合) が 2 8 0 °C以上の素材からなり、 イオン 透過性があり、 短絡などの問題が起きないものであれば、 その材質には特に制 限はないが、 生産性などの観点から、 融点又は熱分解開始温度 (融点を発現し ない場合) が 3 2 0 °C以上であるものが好ましく、 具体的には、 例えば、 ァラ ミ ド、 全芳香族ポリエステル、 全芳香族ポリアゾ化合物、 全芳香族ポリエステ ルアミ ド、 全芳香族ポリエーテル、 ポリエーテルエーテルケトン、 ポリフエ二 レンスルフィ ド、 ポリ一 p—フエ二レンべンゾビスチアゾール、 ポリべンゾィ ミダゾール、 ポリ一 p—フエ二レンべンゾビスォキサゾール、 ポリアミ ドイミ ド、 ポリイミ ド、 ビスマレイミ ド ' 卜リアジン、 ポリマミノビスマレイミ ド、 ポリ亍トラフルォロエチレン、 セラミック、 アルミナ、 シリカ、 アルミナシリ 力、 ガラス、 ロックウール、 チッ化ゲイ素などの材料からなるものが挙げられ る力《、 特に、 特開 2 0 0 5— 3 0 7 3 6 0号公報に記載されている、 下式 ( 1 ) で示される内部抵抗値が 2 5 O ju m以下であり且つ王研式透気度が 0 . 5秒 1 0 0 c m 3以上である、 ァラミ ド繊維とフィブリル化されたァラミ ド の 2成分又は該 2成分とァラミ ドフアイプリッドで構成されるァラミ ド薄葉材 をセパレータとして使用す.ると、 出力密度が高くなる効果がみられるので、 好 適である。
(内部抵抗値) = (電解液の電気伝導度) / (セパレータに電解液を注入 したときの電気伝導度) x ' (セパレータの厚み)
式 (1 ) ここで、 「電解液」 は、 溶媒中に電解質が溶解した液体を意味し、 後述するも のを使用することができる。 また、 rセパレータに電解液を注入したときの電 気伝導度」 は、 上記電解液をセパレータに注入した状態で 2枚の電極に挟み、 測定した交流インピーダンスから算出される電気伝導度を意味する。 交流イン ピーダンスの測定周波数については、 特に制限はないが、 1 k H z〜 1 0 0 k H zの範囲内が好ましい。 電極ュニット :
本発明における電極ユニットは、 上記集電極、 電極及びセパレータを組み立 てたものであり、 その構成には特に制限はなく、 例えば、 集電極 Z電極 Zセパ レータ Z電極 Z集電極の順に積み重ねたもの、 電極 Z集電極 Z電極 Zセパレー タ 電極 集電極ノ電極 セパレータの順に積み重ねたもの、 これらの積み重 ねを繰り返したもの、 このように積み重ねた積層体を巻き上げたものなどが挙 げられ、 上記積み重ねの各部材間を予め接着剤などで接着することも可能であ る。 また、 特開 2 0 0 5— 3 1 1 1 9 0号公報に記載されている電極部材とセ パレータからなリ、 セパレータの体積固有抵抗値が 1 0 1 ° Q c m以上である複 合体シートを使用することも可能である。 電解液:
本発明において上記電極ュニットを含浸するのに用いられる電解液は、 溶媒. 中に電解質が溶解した液体である。
該電解液に使用される溶媒、 電解質、 電解質の濃度等には特に制約はなく、 溶媒としては、 例えば、 エチレンカーボーネート、 プロピレンカーボネー卜、 ジメチルカーボネート、 ジェチルカーボネートェチルメチルカーボネート、 ブ チレンカーボネート、 グルタロニトリル、 アジポニトリル、 ァセトニトニル、 メ トキシァセトニトリル、 3—メ トキシプロピオ二トリル、 r—ブチロラク ト ン、 r一バレロラク ドン、 スルホラン、 3—メチルスルホラン、 ニトロェタン、 ニトロメタン、 リン酸卜リメチル、 N—メチルォキサゾリジノン、 N , N—ジ メチルホルムアミ ド、 N—メチルピロリ ドン、 ジメチルスルホキシド、 N , N ' —シメチルイミダゾリジノン、 アミジン、 水など及びそれらの混合物を使 用することができる。
また、 電解質としては、 イオン性の物質、 例えば、 以下のカチオンとァニォ ンの組み合わせを使用することができる。 1 ) カチオン:第 4級アンモニゥ厶イオン、 第 4級ホスホニゥムイオン、 リ チウムイオン、 ナトリウムイオン、 アンモニゥムイオン、 水素イオン及びそれ らの混合物など。
2 ) ァニオン:過塩素酸イオン、 ホウフッ化イオン、 六フッ化リン酸イオン、 硫酸イオン、 水酸化物イオン及びそれらの混合物など。
また、 低い融点を有し、 常温でも液状の塩であるイミダゾリゥム塩などのィ オン性液体も電解質として使用可能である。 イオン性液体は蒸気圧がほとんど ゼロであるため、 キャパシタの長寿命化が期待できるうえに、 難燃性を付与で きる可能性がある。 電極ュニッ卜の乾燥:
本発明においては、 上記の如ぐして組み立てられた電極ユニットは、 該電極 ュニットを構成する集電極、 電極及びセパレータの中で最も低い融点又は熱分 解開始温度 (融点を発現しない.場合) を有する素材の融点又は熱分解開始温度 (融点を発現しない場合) のうち最も低い温度より 1 0 0 °C低い温度以上の温 度で乾燥される。 キャパシタの製造時間の短縮という点から考えると、 乾燥温 度は高いほうが好ましく、 上記融点又は熱分解開始温度 (融点を発現しない場 合) のうち最も低い温度より 5 0 °C低い温度以上であることが望ましい。 また、 乾燥温度の上限に関しては、 高ければ高いほど製造時間が短縮されるが、 素材 の融点又は熱分解開始温度 (融点を発現しない場合) に近くなると、 組み立て られた電極ユニットが変形し、 キャパシタとしての容量、 インピーダンスなど の特性が劣化するなどの問題が生じる場合がある。 したがって、 乾燥温度は、 電極ュニットを構成する集電極、 電極及びセパレータの中で最も低い融点又は 熱分解開始温度 (融点を発現しない場合) を有する素材の融点又は熱分解開始 温度 (融点を発現しない場合) よりも 3 0 °C低い温度以下で且つ該温度よりも 1 o o °c低い温度以上の範囲内が好まし、 製造時間の観点から、 上記温度より 3 0 °C低い温度以下で且つ該温度よリも 5 0 °C低い温度以上の範囲内がさらに 好ましい。 また、 乾燥時の雰囲気はできるだけ水分を含まないことが望ましい。 電極ュ ニッ卜の乾燥は、 具体的には、 例えば、 乾燥したアルゴンなどの不活性ガスを 流動させながら或いは減圧した状態で行うことが可能であるが、 特に、 電極ュ ニッ卜の表面に付着した水分を極限まで除去するためにもまた水の沸点を降下 させるためにも、 減圧乾燥が好ましく、 雰囲気の圧力としては 1 トル以下が好 ましい。
乾燥時間は、 キャパシタとして目標とする耐電圧、 エネルギー密度、 出力密 度などを達成することができる範囲であれば特に制限はないが、 生産性などの 観点から、 2 4時間以内が好ましく、 さらに好ましくは 1 5時間以内である。 また、 乾燥の程度は、 乾燥後の電極の含有水分率が 1 7 0 0 p p m以下であ ることが好ましく、 さらに、 耐電圧、 エネルギー密度、 出力密度を大幅に向上 させるためには、 通常 1 3 5 0 p p m以下、 特に 1 0 0 0 p p m以下であるこ とが望ましい。 したがって、 電極ユニットの乾燥は、 上記の条件下に、 乾燥後 の電極の含有水分率が上記限界.以下になるまで行うことが望ましい。 ケース ·■
本発明におけるケースは、 上記電極ュニッ卜と電解液を収納し且つ封緘する ことができるものであれば特に制限はなく、 例えば、 アルミ缶ケース、 アルミ ラミネートケース、 アルミコインケースなどを使用することができる。 キャパシタ :
上記乾燥した電極ユニットをケースに収納し、 電解液を注入した後、 ケース を封緘することにより、 本発明のキャパシタを得ることができる。 電解液は減 圧含浸するのが好ましい。
かくして得られる本発明のキャパシタは、 電圧 2 . 8 V及び温度 7 0 °Cにお いて 5 0 0時間浮動状態で放置した後において、 一般に 5 0 %以上、 特に 7 0 %以上の容量の保持率を有することができる。 実施例
' 以下、 本発明を実施例を挙げてさらに具体的に説明する。 なお、 これらの実 施例は、 単なる例示であり、 本発明の範囲を何ら限定するためのものではない。 実施例 1
く電極の作製〉 '
電極材料の主剤として水蒸気賦活した活性炭、 結着剤としてポリテトラフル ォロエチレン樹脂 (PT FE) および導電材としてケッチェンブラック (K B) を用い、 活性炭 P T F EZKB = 86 6. 5/7. 5 (w t %) の組 成でシート化し、 厚さ 1 1 5 m及び密度 0. 6 g/cm3の電極を得た。
く電極ユニットの作製〉
集電極アルミ箔 (厚み 40 rri) に導電性塗料 (フエノール樹脂系) を用い て 50 X 3 Ommに打抜いた上記電極を接着し、 電極と集電極の複合体を得た。 特開 2005— 307360号公報に記載の実施例 2の方法にしたがって、 m—ァラミ ドと p—ァラミ ドからなるセパレータ (坪量 24. 4 gZm2、 厚 み 、 密度 0. 53 gZcm3) を作製し、 正負極 1対の上記複合体の 間に挟み電極ユニットを得た。
く電極ユニットの乾燥〉
上記電極ュニッドを構成する素材のなかでもっとも低い融点又は熱分解開始 温度 (融点を発現しない場合) をもつ素材はポリ亍卜ラフルォロエチレンであ リ、 その融点は 327°Cである。 そこで、 上記電極ユニットを温度 280°C及 び圧力 1 トル以下の条件にて 1 2時間減圧乾燥した。
くキャパシタの作製 >
乾燥した雰囲気中で、 乾燥後の電極ュニットをアルミラミネート外装に収納 し、 外装の三方を封口状態にし'、 その中に電解液として 1. 5Mの TEMAB F4ZP C (卜リエチルメチルアンモニゥム■テトラフルォロボーレイ トをプ ロピレンカーボネートに溶解した液) を注入し、 減圧含浸した後、 残りの一方 を減圧封口して、 下記表 1に示す構成のキャパシタを作製した。 :キャパシタの構成
Figure imgf000012_0001
く特性評価〉
上記キャパシタの初期特性及びフロート特性を以下の方法で測定した。
1 ) 初期充放電特性
初期特性として、 初期における 1 cレートでの充放電測定およびインピーダ ンス測定を行い、 抵抗を算出した。 測定条件は下記のとおりである:
初期容量測定 (25°C)
充電: CCCV 4. 2mA (1 C) 、 2. 8V— 2時間 ( * ) 放電: CC 4. 2mA ( 1 C) N 0. 01 V (* *) (*) CCCV :定電流定電圧 ( * * ) CC : :定電流 インピーダンス測定 (25°C)
測定状態:放電末
測定周波数: 20000 H z〜0. 1 H z
振幅 (△ E ) : 1 OmV
2) 浮動 (フロート) 充電特性 フロート充電特性として、 2. 8 Vの充電を印加した状態で 70°Cの環境に て保存を 500時間行った。 500時間のフロート終了時において、 容量の確 認とインピーダンスを測定し、 抵抗を算出した。 測定条件は下記のとおりであ る:
フロート試験
充電: 2. 8 V— 500時間 (70°C)
容量測定 (25°C)
充電: CCCV 4. 2mA (1 C) 、 2. 8V— 2時間 放電: CC 4. 2mA ( 1 C) . O. 01
インピーダンス (25°C)
測定状態:放電末
測定周波数: 200ひ OH z〜0. 1 H z
振幅 (△ E) : 1 OmV 比較例 1
市販されているキャパシタ用のセルロースセパレータ(坪量 1 9. 7 gZm2、 厚み 42 m、 密度 0. 47 gZcm3) を使用し、 電極ユニットの乾燥を温 度 1 50°Cで行った以外は、 上記実施例 1と同様の方法でキャパシタを作製し、 実施例 1と同様にして特性を測定した。 それらの結果を下記表 2に示す。
表 2
Figure imgf000014_0001
表 2から明らかなように、 フロート充電特性は、 本発明実施例 1のキャパシ タが比較例 1のキャパシタに比べて良い結果であり、 電圧 2 . 8 V及び温度 7 0 °Cにおいて 5 0 0時間浮動状態で放置した後の容量の保持率が 7 0 <½以上、 抵抗の増加率が 5 0 0 <½以内に抑えられ、 耐電圧の向上が確認された。 これは 電極ュニッ卜の高温乾燥により、 水分が十分に除去され、 電解液の分解及び Z 又は水の電気分解によるガス発生が抑止された結果であると考えられる。 さらに、 上記結果をもとに、 下式 (2 ) 、 ( 3 ) により、 実施例 1のキャパ シタ及び比較例 1のキャパシタのエネルギー密度及び出力密度を算出した。 そ の結果を表 3に示す。 (エネルギー密度) =0. 5 x (容量) X (電圧) 2 式 (2)
(出力密度) =0. 25 X (電圧) 2 (インピーダンス) 式 (3) 表 3
Figure imgf000015_0001
但し、 インピーダンスは 0.1Hzの値より計算した。 表 3から明らかなように、 実施例 1のキャパシタには、 エネルギー密度及び 表 3から明らかなように、 実施例 1のキャパシタには、 エネルギー密度及び出 力密度ともに大幅な向上が認められた。
また、 EMD—WA 1 0.0 OSW (電子科学製) を使用して電極の水分含有 率を測定した。 すなわち、 水蒸気賦活した活性炭を、 実施例 1又は比較例 1の 条件で乾燥した後、 真空状態を保ったまま 1時間放冷し、 次いで、 60°CZ分 の速度で 700°Cまで昇温し、 さらに、 8分保持して、 昇温時と保持時の水の 脱離量から活性炭の含有水分率を計算した。 その結果、 含有水分率は、 比較例 1の乾燥条件では 2300 p p mであったのに対し、 実施例 1の乾燥条件では 1 1 00 p pmであった。 これらの計算値に電極中の活性炭比率 (86%) を 乗ずると、 比較例 1の乾燥条件では 1 978 p p mであるのに対し、 実施例 1 の乾燥条件では 946 p pmとなり、 実施例 1の乾燥条件では水分が大幅に除 去されており、 エネルギー密度、 出力密度の向上には高温乾燥による水分の除 去が有効であることが認められた。

Claims

請求の範囲
1 . 集電極と電極とセパレータとからなる電極ユニット及び電解液をケー スに収納し、 封緘してなるキャパシタにおいて、 集電極、 電極及びセパレータ がそれぞれ 2 8 0 °C以上の融点または熱分解開始温度 (融点を発現しない場 合) を有する材料によって構成され、 そして電極ユニットが、 その組み立て後 に、 該電極ユニットを構成する材料の融点または熱分解開始温度のうち最も低 い温度より 1 0 0 °C低い温度以上の温度で乾燥されたものであることを特徴と する非水系キャパシタ。
2 . 集電極、 電極及びセパレータがそれぞれ 3 2 0 °C以上の融点または熱 分解開始温度 (融点を発現しない場合) を有する材料によって構成される請求 の範囲第 1項に記載の非水系キャパシタ。
3 . 電極ユニットが、 その組み立て後に、 .該電極ユニットを構成する材料 の融点または熱分解開始温度のうち最も低い温度より 5 0 °C低い温度以上の温 度で乾燥されたものである請求の範囲第 1項に記載の非水系キャパシタ。
4 . 乾燥温度が、 電極ユニットを構成する集電極、 電極及びセパレータの 中で最も低い融点又は熱分解開始温度 (融点を発現しない場合) を有する素材 の融点又は熱分解開始温度 (融点を発現しない場合) よりも 3 0 °C低い温度以 下で且つ該温度よリも 1 0 0 °C低い温度以上の範囲内である請求の範囲第 1項 に記載の非水系キャパシタ。
5 . 乾燥温度が、 電極ユニットを構成する集電極、 電極及びセパレータの 中で最も低い融点又は熱分解開始温度 (融点を発現しない場合) を有する素材 の融点又は熱分解開始温度 (融点を発現しない場合) よりも 3 0 °C低い温度以 下で且つ該温度よリも 50°C低い温度以上の範囲内である請求の範囲第 4項に 記載の非水系キャパシタ。
6. 乾燥後の電極の含有水分率が 1 700 p pm以下であることを特徴と する請求の範囲第 1項に記載の非水系キャパシタ。
7. 電圧 2. 8 V及び温度 70°Cにおいて 500時間浮動状態で放置した 後の容量の保持率が 700/0以上である請求の範囲第 1項に記載の非水系キャパ シタ。
8. 集電極と電極とセパレータからなる電極ユニットにおける集電極、 電 極及びセパレータをそれぞれ 280°C以上の融点または熱分解開始温度 (融点 を発現しない場合) を有する材料によって構成し、 電極ユニットを組み立てた 後に、 該電極ュニットを構成する材料の融点または熱分解開始温度のうち最も 低い温度よリ 1 00°C低い温度以上の温度で該電極ュニッ卜を乾燥し、 その乾 燥された電極ユニットをケースに収納し、 電解液を注入した後、 該ケース 封 緘することを特徴とする非水系キャパシタの製造方法。
9. 乾燥を電極の含有水分率が 1 700 p pm以下になるまで行うことを 特徴とする請求の範囲第 8項に記載の方法。
PCT/JP2006/326174 2005-12-28 2006-12-21 非水系キャパシタ及びその製造方法 WO2007077906A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/087,053 US20090027830A1 (en) 2005-12-28 2006-12-21 Non-Aqueous Capacitor and Method for Manufacturing the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005379916 2005-12-28
JP2005-379916 2005-12-28
JP2006-073898 2006-03-17
JP2006073898A JP2007201389A (ja) 2005-12-28 2006-03-17 非水系キャパシタ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2007077906A1 true WO2007077906A1 (ja) 2007-07-12

Family

ID=38228256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326174 WO2007077906A1 (ja) 2005-12-28 2006-12-21 非水系キャパシタ及びその製造方法

Country Status (5)

Country Link
US (1) US20090027830A1 (ja)
JP (1) JP2007201389A (ja)
KR (1) KR20080081994A (ja)
TW (1) TW200741778A (ja)
WO (1) WO2007077906A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192403A (ja) * 2009-02-20 2010-09-02 Tdk Corp 電極、電極の製造方法及びリチウムイオン二次電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109355A (ja) * 2008-09-30 2010-05-13 Nippon Chemicon Corp 電気二重層キャパシタ
US10016998B2 (en) * 2015-07-14 2018-07-10 Toshiba Tec Kabushiki Kaisha Printing apparatus, printing method, and non-transitory recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185455A (ja) * 1999-12-24 2001-07-06 Japan Vilene Co Ltd 電気二重層キャパシタの製造方法
JP2004193571A (ja) * 2002-11-29 2004-07-08 Honda Motor Co Ltd 電気二重層コンデンサ用の分極性電極及び電気二重層コンデンサ用の分極性電極の製造方法並びに電気二重層コンデンサの製造方法
WO2005101432A1 (ja) * 2004-04-16 2005-10-27 Mitsubishi Paper Mills Limited 電気化学素子用セパレータ
JP2005307360A (ja) * 2004-04-16 2005-11-04 Du Pont Teijin Advanced Paper Kk アラミド薄葉材およびそれを用いた電気電子部品
JP2005327935A (ja) * 2004-05-14 2005-11-24 Nippon Sheet Glass Co Ltd 電気二重層キャパシタ用セパレータ及び電気二重層キャパシタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185455A (ja) * 1999-12-24 2001-07-06 Japan Vilene Co Ltd 電気二重層キャパシタの製造方法
JP2004193571A (ja) * 2002-11-29 2004-07-08 Honda Motor Co Ltd 電気二重層コンデンサ用の分極性電極及び電気二重層コンデンサ用の分極性電極の製造方法並びに電気二重層コンデンサの製造方法
WO2005101432A1 (ja) * 2004-04-16 2005-10-27 Mitsubishi Paper Mills Limited 電気化学素子用セパレータ
JP2005307360A (ja) * 2004-04-16 2005-11-04 Du Pont Teijin Advanced Paper Kk アラミド薄葉材およびそれを用いた電気電子部品
JP2005327935A (ja) * 2004-05-14 2005-11-24 Nippon Sheet Glass Co Ltd 電気二重層キャパシタ用セパレータ及び電気二重層キャパシタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192403A (ja) * 2009-02-20 2010-09-02 Tdk Corp 電極、電極の製造方法及びリチウムイオン二次電池
US9450230B2 (en) 2009-02-20 2016-09-20 Tdk Corporation Lithium-ion secondary battery including polybenzimidazole and method of manufacturing lithium-ion secondary battery

Also Published As

Publication number Publication date
TW200741778A (en) 2007-11-01
JP2007201389A (ja) 2007-08-09
US20090027830A1 (en) 2009-01-29
KR20080081994A (ko) 2008-09-10

Similar Documents

Publication Publication Date Title
US8845994B2 (en) Electrode active material having high capacitance, method for producing the same, and electrode and energy storage device comprising the same
US20080083626A1 (en) Ionic compound
JP5392355B2 (ja) 電気二重層キャパシタ
WO2006132444A1 (ja) 電気二重層キャパシタ用電極および電気二重層キャパシタ
KR101793040B1 (ko) 울트라커패시터용 전극활물질의 제조방법, 상기 울트라커패시터용 전극활물질을 이용한 울트라커패시터 전극의 제조방법 및 울트라커패시터
EP1615244B1 (en) Electric double-layer capacitor
JP6765857B2 (ja) リチウムイオンキャパシタ
TW201526048A (zh) 具有改善老化性能的超級電容器
EP1033728A1 (en) Method for producing an electric double layer capacitor
KR20130028423A (ko) 그래핀/금속산화물 나노 복합체를 이용한 슈퍼커패시터용 전극
EP1085541B1 (en) Method for manufacturing an electrochemical capacitor
WO2007077906A1 (ja) 非水系キャパシタ及びその製造方法
WO2013146464A1 (ja) 電極材料、及びこの電極材料を用いたキャパシタ、二次電池
JP5158839B2 (ja) 非水電解液系電気化学デバイス
JP2012079813A (ja) 蓄電デバイスの製造方法
JP2005044821A (ja) 電気二重層キャパシタ
JP4997279B2 (ja) ハイブリッドスーパーキャパシタ
JP2008166309A (ja) リチウムイオンキャパシタ
JP4370019B2 (ja) 電気二重層コンデンサの電界賦活方法
JP2008091778A (ja) 電気二重層キャパシタ用非水電解液及びそれを備えた非水電解液電気二重層キャパシタ
JP4453174B2 (ja) 電気二重層キャパシタ
JP2019029406A (ja) 密封型蓄電素子の製造方法
JP2007180434A (ja) リチウムイオンキャパシタ
KR101583525B1 (ko) 슈퍼캐패시터용 전해액 및 이를 함유한 슈퍼캐패시터
TW201322289A (zh) 電容器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049031.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12087053

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087018397

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06835192

Country of ref document: EP

Kind code of ref document: A1