WO2007076746A1 - Optisches abbildungssystem zur wellenfrontprüfung - Google Patents

Optisches abbildungssystem zur wellenfrontprüfung Download PDF

Info

Publication number
WO2007076746A1
WO2007076746A1 PCT/DE2006/002067 DE2006002067W WO2007076746A1 WO 2007076746 A1 WO2007076746 A1 WO 2007076746A1 DE 2006002067 W DE2006002067 W DE 2006002067W WO 2007076746 A1 WO2007076746 A1 WO 2007076746A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
imaging system
optical imaging
concave
concave mirror
Prior art date
Application number
PCT/DE2006/002067
Other languages
English (en)
French (fr)
Inventor
Stefan Franz
Jörg WUNDERLICH
Ullrich Krüger
Original Assignee
Jenoptik Laser, Optik, Systeme Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Laser, Optik, Systeme Gmbh filed Critical Jenoptik Laser, Optik, Systeme Gmbh
Publication of WO2007076746A1 publication Critical patent/WO2007076746A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • G02B17/0621Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0626Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using three curved mirrors
    • G02B17/0642Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using three curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods

Definitions

  • the invention relates to an optical imaging system for wavefront inspection, which provides mirror optics for wavefront transformation.
  • imaging optical systems for wavefront transformation are required, in order to be able to achieve wavefront matching to the test object.
  • the imaging optical systems should be suitable for large horringsö Maschinenbauen.
  • the opening of the optical system may be small.
  • the imaging system should provide sufficient space for other optical components and allow simple means a beam adjustment for specimens with different opening angles to the receiver.
  • this object is achieved by an optical imaging system for wavefront inspection, which provides mirror optics for wavefront transformation achieved that a first, serving for pupil imaging of a specimen concave mirror and a sometimesaufhouseder second concave mirror with reflective surfaces in off-axis positions facing each other and parallel staggered mirror axes have at least approximately the same off-axis angles.
  • first and the second concave mirrors are designed as parabolic mirrors.
  • the first and the second concave mirrors are designed as ellipsoidal mirrors.
  • the two concave mirrors may have a mutual distance, in which an intermediate image generated by the first concave mirror lies at least approximately in the middle between the two concave mirrors, so that sufficient space is available for a beam splitter of a test arrangement for which the optical imaging system is provided is available.
  • the invention may further be configured such that the first concave mirror, on the examination side, faces a further concave mirror with a mirrored surface in the off-axis position, the focal points of the two concave mirrors coinciding.
  • an output-side intermediate optical imaging system can also be provided.
  • the optical imaging system according to the invention is preferably provided for arrangements for the optical testing of lenses by having a arranged between the two concave mirrors beam splitter for coupling collimated illumination radiation and arranged between the first concave mirror and a reflector fürlingssuit Scheme and the second concave mirror output side is followed by a receiver system ,
  • the receiver system in such an arrangement consists of a microlens array and a receiver array.
  • the optical imaging system according to the invention can be used in an interferometric test arrangement as a spectrally wideband interferometer lens to z. B. with a camera as a receiver system to be able to record an interferogram.
  • convergent wavefronts offer advantages.
  • the illumination radiation is formed coherent and from the beam splitter go out a reference and a guided over the first concave mirror arm.
  • Fig. 1 shows an inventive imaging system
  • Fig. 3 is a modified optical imaging system
  • FIG. 4 shows the optical imaging system according to FIG. 3 in a test arrangement with a Shack-Hartmann sensor
  • Fig. 6 is an optical imaging system with an output side intermediate optical imaging system
  • FIG. 7 shows a test arrangement with a Shack-Hartmann sensor, which contains an optical imaging system with ellipsoid mirrors
  • the imaging system according to FIG. 1 comprises a first examination-side concave mirror, preferably designed as a parabolic mirror 1, and a second correction concave mirror in the form of a parabolic mirror 2, which are arranged in such a way that the mirror axes S 1 -S 1 , S 2 -S 2 are parallel to one another offset and the off-axis angle ⁇ , ß are equal.
  • coherent radiation of a substantially punctiform illumination source 3 is coupled directly or preferably via an optical fiber 4 and via a collimator 5, such.
  • a parabolic mirror or lens optics guided and parallelized.
  • a beam splitter 6 divides the resulting plane wave into two partial waves, one of which is directed into a reference arm 7 and the other into a measuring arm 8.
  • the reference arm 7 can be designed in different lengths.
  • the reference mirror 9 is at a distance from the beam splitter 6, the Distance between the intermediate image ZB to the beam splitter 6 is the same (names A, A 'on dashed circle), so that the edge region of the reference mirror 9 is sufficiently sharp imaged.
  • a second embodiment includes a reference mirror 9 'at a distance corresponding to the sum of the optical paths in the measuring arm 8. This has the advantage of being able to use light of shorter coherence lengths and thus also applications of white-light interferometry.
  • the first inspection-side parabolic mirror 1 of the optical imaging system converts the plane wavefronts arriving via the beam splitter 6 into spherical waves, which preferably pass twice through the test object 10 twice, so that the wavefronts are impressed with the aberrations of the test object 10.
  • the second correction parabolic mirror 2 aligns the image generated by the first parabolic mirror 1 obliquely in the beam path, so that the recording of an interferogram with a camera 12 is ensured for interferometric detection of the wavefronts.
  • the image of the test piece 10 is to shut off the stray light by a sufficiently small aperture. This can be done on the one hand through the opening 13 of the interferometric test arrangement.
  • a scattered light aperture not shown, can be positioned in the rear focal point 14 of the test arrangement, the point of intersection of the beams in front of the camera 12.
  • a preferred off-axis angle should be chosen, with the focal point just outside the parallel beam.
  • the field diaphragm FB to be imaged and corresponding to the opening of the test object 10 lies in front of the test object 10 in FIGS. 2 and 4. It can also be located in or behind the test object 10. Although a distance is provided as the preferred distance of the two parabolic mirrors 1, 2, in which the intermediate image ZB is located in the middle between the parabolic mirrors 1, 2, but the distance to adjust the magnification can also be variable.
  • the optical imaging system according to the invention is also suitable for Hartmann wavefront analysis, which does not require an interferometer setup and in which the wavefront to be examined is split into sub-apertures by pinholes whose further propagation indicates the local wavefront tilt according to the Hartmann test.
  • collimated wavefronts are advantageous, for which reason the optical imaging system according to FIG. 3 has an output-side collimator lens 15 after the parabolic mirror 2.
  • a plano-convex lens is suitable for this purpose.
  • a microlens array 16 decomposes the incoming wavefront into subareas which are focused onto a receiver array 17. From the displacement of the focus points to the desired position, the local wavefront tilt can be calculated via the focal length of the lenslets of the microlens array 16. The integration of the wavefront tilt gives the wavefront shape.
  • the illumination source 3 need not be coherent.
  • a further concave mirror designed as a parabolic mirror 18 is provided on the specimen side as a collimator, so that flat specimens can be measured.
  • the parabolic mirror 18 is arranged such that its focal point coincides with the focal point of the first parabolic mirror 1, which is denoted by F r G.
  • An output optical intermediate imaging system 19 (FIG. 6) is advantageous when the receiver is housed in a cooling container for cooling purposes, such as in a refrigerator. B. in measurements in the infrared range. The resulting large working distance to the receiver can be overcome in this way.
  • the invention is not limited solely to the use of parabolic mirror geometries. Should z. B. an ideal Kugelwellentransformation be made, this Ellipsoids are in place of paraboloids.
  • test arrangement which contains an optical imaging system with ellipsoid mirrors 1 ', 2' is shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

Bei einem optischen Abbildungssystem zur Wellenfrontprüfung besteht die Aufgabe, ein optisches Abbildungssystem bereitzustellen, das Prüflinge in einem großen Wellenlängenbereich bis zum Pupillenrand mit ausreichender Schärfe abbildet. Zur Wellenfronttransformation sind Spiegeloptiken vorgesehen, wobei ein erster, zur Pupillenabbildung eines Prüflings dienender Hohlspiegel und ein bildaufrichtender zweiter Hohlspiegel mit spiegelnden Flächen in Off-Axis-Stellungen einander zugewandt sind und parallel zueinander versetzt angeordnete Spiegelachsen bei zumindest annähernd gleichen Off-Axis-Winkeln aufweisen.

Description

Optisches Abbildungssystem zur Wellenfrontprüfung
Die Erfindung bezieht sich auf ein optisches Abbildungssystem zur Wellenfrontprüfung, das zur Wellenfronttransformation Spiegeloptiken vorsieht.
Werden für die Prüfung von Objektiven Kugelwellen benötigt, sind abbildende optische Systeme zur Wellenfronttransformation erforderlich, um dadurch eine Wellenfrontanpassung an den Prüfling erreichen zu können. Die abbildenden optischen Systeme sollen für große Prüflingsöffnungen geeignet sein. Die Öffnung des optischen Systems darf klein sein.
Es ist bekannt, dass sich Paraboloide für eine Transformation von ebenen Wellen in Kugelwellen eignen. Für einen obstruktionsfreien Strahlengang werden diese hier in Off- Axis-Position benutzt. Dabei besteht ein wesentlicher Nachteil darin, dass die Pupillenabbildung leicht gewölbt und insbesondere durch eine erhebliche Bildfeldneigung stark fehlerbehaftet ist. Die bestehende Forderung, nach welcher der Rand des Prüflings ausreichend scharf abzubilden ist, um beugungsbedingte Messfehler am Prüflingsrand zu reduzieren, kann deshalb nicht erfüllt werden.
Außerdem besteht der Nachteil, dass das Pupillenbild sehr nahe an dem Paraboloiden liegt, wodurch der Bauraum für weitere optische Elemente, wie z. B. Strahlteiler, sehr eingeschränkt ist.
Deshalb ist es die Aufgabe der Erfindung, diese Probleme zu lösen und ein optisches Abbildungssystem bereitzustellen, das Prüflinge in einem großen Wellenlängenbereich bis zum Pupillenrand mit ausreichender Schärfe abbildet.
Zusätzlich soll das Abbildungssystem genügend Bauraum für weitere optische Bauelemente schaffen und mit einfachen Mitteln eine Strahlanpassung bei Prüflingen mit unterschiedlichen Öffnungswinkeln an den Empfänger ermöglichen.
Erfindungsgemäß wird diese Aufgabe bei einem optischen Abbildungssystem zur Wellenfrontprüfung, das zur Wellenfronttransformation Spiegeloptiken vorsieht, dadurch erreicht, dass ein erster, zur Pupillenabbildung eines Prüflings dienender Hohlspiegel und ein bildaufrichtender zweiter Hohlspiegel mit spiegelnden Flächen in Off-Axis-Stellungen einander zugewandt sind und parallel zueinander versetzt angeordnete Spiegelachsen bei zumindest annähernd gleichen Off-Axis-Winkeln aufweisen.
Besonders zweckmäßige und vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen optischen Abbildungssystems ergeben sich aus den abhängigen Ansprüchen.
In einer bevorzugten Ausgestaltungsvariante der Erfindung ist vorgesehen, dass der erste und der zweite Hohlspiegel als Parabolspiegel ausgebildet sind.
Alternativ zur vorgenannten Ausgestaltung kann vorgesehen sein, dass der erste und der zweite Hohlspiegel als Ellipsoidspiegel ausgebildet sind.
In beiden Fällen ist es vorteilhaft, wenn dem bildaufrichtenden zweiten Hohlspiegel im Strahlengang eine Kollimatoroptik nachgeordnet ist.
In einer weiteren Ausgestaltung können die beiden Hohlspiegel einen gegenseitigen Abstand aufweisen, bei dem ein von dem ersten Hohlspiegel erzeugtes Zwischenbild zumindest annähernd in der Mitte zwischen beiden Hohlspiegeln liegt, so dass für einen Strahlteiler einer Prüfanordnung, für die das optische Abbildungssystem vorgesehen ist, ausreichend Platz zur Verfügung steht.
Durch unterschiedliche Abstände zwischen den Hohlspiegeln, die durch Verschiebung entlang der Spiegelachsen erreicht werden kann, wird gewährleistet, dass das optische Abbildungssystem für Prüflinge mit unterschiedlichen Öffnungswinkeln geeignet ist. Somit kann der Öffnungswinkel an die Sensorgröße angepasst werden, ohne dass ein umfangreicher Austausch von optischen Bauelementen erforderlich ist. Die Erfindung kann weiterhin derart ausgestaltet sein, dass dem ersten Hohlspiegel prüflingsseitig ein weiterer Hohlspiegel mit spiegelnder Fläche in Off-Axis-Stellung zugewandt ist, wobei die Brennpunkte der beiden Hohlspiegel zusammenfallen.
Ferner kann auch ein ausgangsseitiges optisches Zwischenabbildungssystem vorgesehen sein.
Das erfindungsgemäße optische Abbildungssystem ist bevorzugt für Anordnungen zur optischen Prüfung von Objektiven geschaffen, indem es einen zwischen den beiden Hohlspiegeln angeordneten Strahlteiler zur Einkopplung von kollimierter Beleuchtungsstrahlung und einen zwischen dem ersten Hohlspiegel und einem Reflektor angeordneten Prüflingsaufnahmebereich aufweist und dem zweiten Hohlspiegel ausgangsseitig ein Empfängersystem nachgeordnet ist.
Werden die nach dem bildaufrichtenden zweiten Hohlspiegel noch divergenten Wellenfronten mit Hilfe der vorteilhaft dem bildaufrichtenden zweiten Hohlspiegel im Strahlengang nachgeordneten Kollimatoroptik in konvergente Wellenfronten transformiert, können besonders vorteilhaft Shack-Hartmann-Wellenfrontsensoren zur Anwendung kommen. Das Empfängersystem besteht bei einer derartigen Anordnung aus einem Mikrolinsenarray und einem Empfängerarray.
Alternativ zur vorgenannten Ausgestaltung kann das erfindungsgemäße optische Abbildungssystem in einer interferometrischen Prüfanordnung als spektral breitbandiges Interferometerobjektiv eingesetzt werden, um z. B. mit einer Kamera als Empfängersystem ein Interferogramm aufnehmen zu können. Auch hier bieten konvergente Wellenfronten Vorteile.
Bei einer derartigen Prüfanordnung ist die Beleuchtungsstrahlung kohärent ausgebildet und von dem Strahlteiler gehen ein Referenz- und ein über den ersten Hohlspiegel geführter Messarm aus.
Die Erfindung soll nachstehend anhand der schematischen Zeichnung näher erläutert werden. Es zeigen: Fig. 1 ein erfindungsgemäßes Abbildungssystem
Fig. 2 eine interferometrische Prüfanordnung zur Vermessung von Objektiven
Fig. 3 ein modifiziertes optisches Abbildungssystem
Fig. 4 das optische Abbildungssystem gemäß Fig. 3 in einer Prüfanordnung mit einem Shack-Hartmann-Sensor
Fig. 5 ein optisches Abbildungssystem zur Ebenheitsmessung von ebenen Prüflingen
Fig. 6 ein optisches Abbildungssystem mit einem ausgangsseitigen optischen Zwischenabbildungssystem
Fig. 7 eine Prüfanordnung mit einem Shack-Hartmann-Sensor, die ein optisches Abbildungssystem mit Ellipsoidspiegeln enthält
Das Abbildungssystem gemäß Fig. 1 umfasst einen ersten prüflingsseitigen, bevorzugt als Parabolspiegel 1 ausgebildeten Hohlspiegel und einen zweiten Korrektur-Hohlspiegel in Form eines Parabolspiegels 2, die derart angeordnet sind, dass die Spiegelachsen S1-S1, S2- S2 parallel zueinander versetzt liegen und die Off-Axis-Winkel α, ß gleich groß sind.
Kommt das erfindungsgemäße optische Abbildungssystem in einer interferometrischen Prüfanordnung gemäß Fig. 2 zur Anwendung, wird kohärente Strahlung einer im Wesentlichen punktförmigen Beleuchtungsquelle 3 direkt oder bevorzugt über eine optische Faser 4 eingekoppelt und über einen Kollimator 5, wie z. B. einen Parabolspiegel oder eine Linsenoptik, geführt und parallelisiert.
Ein Strahlteiler 6 teilt die resultierende Planwelle in zwei Teilwellen auf, von denen eine in einen Referenzarm 7 und die andere in einen Messarm 8 gerichtet ist.
Der Referenzarm 7 kann in unterschiedlichen Längen ausgeführt sein. In einer ersten Ausführung liegt der Referenzspiegel 9 in einem Abstand zum Strahlteiler 6, der dem Abstand des Zwischenbildes ZB zum Strahlteiler 6 gleich ist (Bezeichnungen A, A' auf gestricheltem Kreis), so dass auch der Randbereich des Referenzspiegels 9 hinreichend scharf abgebildet wird.
Eine zweite Ausführung enthält einen Referenzspiegel 9' in einer Entfernung, die der Summe der optischen Wege im Messarm 8 entspricht. Das hat den Vorteil, Licht kürzerer Kohärenzlängen und somit auch Anwendungen der Weißlichtinterferometrie verwenden zu können.
Schließlich ist es möglich, den Referenzarm 7 und den Messarm 8 weitgehend identisch aufzubauen, falls die Abbildung des Referenzspiegels 9 korrigiert sein muss (Linnik- Anordnung).
Der erste prüflingsseitige Parabolspiegel 1 des erfindungsgemäßen optischen Abbildungssystems wandelt die über den Strahlteiler 6 ankommenden ebenen Wellenfronten in Kugelwellen um, die den Prüfling 10 aufgrund eines im Strahlengang nachgeordneten Planspiegels 1 1 bevorzugt zweimal durchlaufen, so dass den Wellenfronten die Abberationen des Prüflings 10 aufgeprägt werden.
Der zweite Korrektur-Parabolspiegel 2 richtet das vom ersten Parabolspiegel 1 erzeugte schräg im Strahlengang liegende Bild auf, so dass zum interferometrischen Nachweis der Wellenfronten die Aufnahme eines Interferogramms mit einer Kamera 12 gewährleistet ist.
Die Abbildung des Prüflings 10 ist zur Ausschaltung von Streulicht durch eine hinreichend kleine Blendenöffnung abzublenden. Das kann zum einen durch die Öffnung 13 der interferometrischen Prüfanordnung erfolgen. Andererseits kann auch eine nicht dargestellte Streulichtblende im rückwärtigen Brennpunkt 14 der Prüfanordnung, dem Kreuzungspunkt der Strahlen vor der Kamera 12 positioniert werden. Um die Zugänglichkeit für die Streulichtblende zu gewährleisten, sollte ein Vorzugs-Off- Axis-Winkel gewählt werden, bei dem der Brennpunkt gerade noch außerhalb des Parallelstrahles liegt.
Die abzubildende und der Öffnung des Prüflings 10 entsprechende Feldblende FB liegt in den Figuren 2 und 4 vor dem Prüfling 10. Sie kann aber auch im oder hinter dem Prüfling 10 liegen. Zwar ist als Vorzugsabstand der beiden Parabolspiegel 1 , 2 ein Abstand vorgesehen, bei dem das Zwischenbild ZB in der Mitte zwischen den Parabolspiegeln 1 , 2 liegt, doch kann der Abstand zur Einstellung des Abbildungsmaßstabes auch variabel sein.
Das erfindungsgemäße optische Abbildungssystem ist auch für eine Wellenfrontanalyse nach Hartmann geeignet, die keinen Interferometeraufbau erfordert und bei der die zu untersuchende Wellenfront durch Lochblenden in Subaperturen zerlegt wird, deren weitere Propagation die lokale Wellenfrontneigung gemäß dem Hartmann-Test anzeigt. Vorteilhaft sind jedoch kollimierte Wellenfronten, weshalb das optische Abbildungssystem gemäß Fig. 3 nach dem Parabolspiegel 2 eine ausgangsseitige Kollimatoroptik 15 aufweist. Im einfachsten Fall eignet sich hierfür eine Plankonvexlinse.
Bei einer lichtstärkeren Variante nach Shack zerlegt ein Mikrolinsenarray 16 gemäß Fig. 4 die ankommende Wellenfront in Teilbereiche, welche auf ein Empfängerarray 17 fokussiert werden. Aus der Verschiebung der Fokuspunkte zu deren Soll-Lage kann über die Brennweite der Lenslets des Mikrolinsenarrays 16 die lokale Wellenfrontneigung errechnet werden. Die Integration der Wellenfrontneigung ergibt die Wellenfrontform.
Da keine Interferenz notwendig ist, muss die Beleuchtungsquelle 3 zudem nicht kohärent sein.
Selbstverständlich beschränken sich die Einsatzmöglichkeiten nicht auf die beiden hier genannten, jedoch bevorzugten Ausführungen.
Weitere Ausführungen sind z. B. mit Quadri-Lateral-Shearing-Interferometem (QWLSI) gegeben, die eine (fehlerbehaftete) Wellenfront in vier identische Wellen zerlegen und zueinander nach unterschiedlichen Varianten „versetzt" wieder zur Interferenz bringen. In einer vorteilhaften Ausgestaltung gemäß Fig. 5 ist prüflingsseitig als Kollimator ein weiterer, als Parabolspiegel 18 ausgebildeter Hohlspiegel vorgesehen, so dass ebene Prüflinge vermessen werden können. Der Parabolspiegel 18 ist derart angeordnet, dass sein Brennpunkt mit dem Brennpunkt des ersten Parabolspiegels 1 zusammenfällt, was mit Fr G bezeichnet ist.
Ein ausgangsseitiges optisches Zwischenabbildungssystem 19 (Fig. 6) ist vorteilhaft, wenn der Empfänger zu Kühlzwecken in einem Kühlbehälter untergebracht ist, wie z. B. bei Messungen im Infrarotbereich. Der resultierende große Arbeitsabstand zu dem Empfänger kann auf diese Weise überwunden werden.
Die Erfindung beschränkt sich nicht allein auf die Verwendung von parabolischen Spiegelgeometrien. Soll z. B. eine ideale Kugelwellentransformation vorgenommen werden, eignen sich hierfür Ellipsoide an Stelle von Paraboloiden.
Ein Ausführungsbeispiel für eine Prüfanordnung, die ein optisches Abbildungssystem mit Ellipsoidspiegeln 1 ', 2' enthält, ist in Fig. 7 dargestellt.
Im Unterschied zur Prüfanordnung gemäß Fig. 4 kann auf einen Beleuchtungskollimator verzichtet werden, da die Beleuchtung direkt im Brennpunkt des Ellipsoiden eingebracht werden kann.

Claims

Patentansprüche
1. Optisches Abbildungssystem zur Wellenfrontprüfung, das zur Wellenfronttransformation Spiegeloptiken vorsieht, dadurch gekennzeichnet, dass ein erster, zur Pupillenabbildung eines Prüflings dienender Hohlspiegel und ein bildaufrichtender zweiter Hohlspiegel mit spiegelnden Flächen in Off-Axis-Stellungen einander zugewandt sind und parallel zueinander versetzt angeordnete Spiegelachsen (S1-S1, S2-S2) bei zumindest annähernd gleichen Off-Axis-Winkeln aufweisen.
2. Optisches Abbildungssystem nach Anspruch 1 , dadurch gekennzeichnet, dass dem bildaufrichtenden zweiten Hohlspiegel im Strahlengang eine Kollimatoroptik (15) nachgeordnet ist.
3. Optisches Abbildungssystem nach Anspruch 2, dadurch gekennzeichnet, dass die beiden Hohlspiegel einen gegenseitigen Abstand aufweisen, bei dem ein von dem ersten Hohlspiegel erzeugtes Zwischenbild zumindest annähernd in der Mitte zwischen beiden Hohlspiegeln liegt.
4. Optisches Abbildungssystem nach Anspruch 3, dadurch gekennzeichnet, dass die beiden Hohlspiegel entlang der Spiegelachsen (S1-S1, S2-S2) zur gegenseitigen Abstandsänderung verschiebbar sind.
5. Optisches Abbildungssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass dem Hohlspiegel prüflingsseitig ein weiterer Hohlspiegel mit spiegelnder Fläche in Off-Axis-Stellung zugewandt ist, wobei die Brennpunkte der beiden Hohlspiegel zusammenfallen.
6. Optisches Abbildungssystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein ausgangsseitiges optisches Zwischenabbildungssystem (19) vorgesehen ist.
7. Optisches Abbildungssystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der erste und der zweite Hohlspiegel als Parabolspiegel (1 , 2) ausgebildet sind.
8. Optisches Abbildungssystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der erste und der zweite Hohlspiegel als Ellipsoidspiegel (V, 2') ausgebildet sind.
9. Anordnung zur Prüfung von Objektiven mit einem optischen Abbildungssystem nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das optische Abbildungssystem einen zwischen den beiden Hohlspiegeln angeordneten Strahlteiler (6) zur Einkopplung von Beleuchtungsstrahlung und einen zwischen dem ersten Hohlspiegel und einem Reflektor (1 1) angeordneten Prüflingsaufnahmebereich aufweist, und dass dem zweiten Hohlspiegel ausgangsseitig ein Empfängersystem nachgeordnet ist.
10. Anordnung nach Anspruch 9, dadurch gekennzeichnet, dass das Empfängersystem aus einem Mikrolinsenarray (16) und einem Empfängerarray (17) besteht.
1 1. Anordnung nach Anspruch 9, dadurch gekennzeichnet, dass die Beleuchtungsstrahlung kohärent ausgebildet ist, dass von dem Strahlteiler (6) ein Referenzarm (7) und ein über den ersten Hohlspiegel geführter Messarm (8) ausgehen, und dass als Empfängersystem eine zur Aufnahme eines Interferogramms ausgebildete Kamera (12) vorgesehen ist.
12. Anordnung nach Anspruch 1 1 , dadurch gekennzeichnet, dass der Referenzarm (7) einen Referenzspiegel (9) in einem Abstand zum Strahlteiler (6) aufweist, der dem Abstand des Zwischenbildes (ZB) zum Strahlteiler 6 gleich ist.
13. Anordnung nach Anspruch 1 1 , dadurch gekennzeichnet, dass der Referenzarm (7) in einer der Summe der optischen Wege im Messarm 8 entsprechenden Entfernung von dem Strahlteiler (6) einen Referenzspiegel (9') aufweist.
PCT/DE2006/002067 2005-12-22 2006-11-24 Optisches abbildungssystem zur wellenfrontprüfung WO2007076746A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005062232.1 2005-12-22
DE200510062232 DE102005062232B3 (de) 2005-12-22 2005-12-22 Optisches Abbildungssystem zur Wellenfrontprüfung

Publications (1)

Publication Number Publication Date
WO2007076746A1 true WO2007076746A1 (de) 2007-07-12

Family

ID=37890762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/002067 WO2007076746A1 (de) 2005-12-22 2006-11-24 Optisches abbildungssystem zur wellenfrontprüfung

Country Status (2)

Country Link
DE (1) DE102005062232B3 (de)
WO (1) WO2007076746A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932179A (zh) * 2017-02-24 2017-07-07 湖北航天技术研究院总体设计所 基于光栅尺与经纬仪标定离轴抛物镜离轴量的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB714340A (en) * 1950-07-24 1954-08-25 Theodor Zobel Interference- or combined interference-schlieren apparatus with unusually large measuring field
US4995721A (en) * 1990-03-05 1991-02-26 Imo Industries, Inc. Two-dimensional spectrometer
JPH10160582A (ja) * 1996-12-02 1998-06-19 Nikon Corp 透過波面測定用干渉計
JP2004279345A (ja) * 2003-03-18 2004-10-07 Canon Inc 曲面ミラー及び面形状の測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4443058A (en) * 1981-09-22 1984-04-17 The United States Of America As Represented By The Secretary Of The Army Test image projector for testing imaging devices
AUPS190002A0 (en) * 2002-04-23 2002-05-30 University Of Adelaide, The Optical testing method and apparatus
JP2005294404A (ja) * 2004-03-31 2005-10-20 Canon Inc 測定装置、測定方法及びそれを有する露光装置及び露光方法、それを利用したデバイス製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB714340A (en) * 1950-07-24 1954-08-25 Theodor Zobel Interference- or combined interference-schlieren apparatus with unusually large measuring field
US4995721A (en) * 1990-03-05 1991-02-26 Imo Industries, Inc. Two-dimensional spectrometer
JPH10160582A (ja) * 1996-12-02 1998-06-19 Nikon Corp 透過波面測定用干渉計
JP2004279345A (ja) * 2003-03-18 2004-10-07 Canon Inc 曲面ミラー及び面形状の測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932179A (zh) * 2017-02-24 2017-07-07 湖北航天技术研究院总体设计所 基于光栅尺与经纬仪标定离轴抛物镜离轴量的方法及装置

Also Published As

Publication number Publication date
DE102005062232B3 (de) 2007-06-14

Similar Documents

Publication Publication Date Title
EP0370229B1 (de) Interferometrisches Verfahren zur Prüfung von asphärische Wellenfronten erzeugenden optischen Elementen
DE102009037841B4 (de) Optisches System mit Wellenfrontanalysesystem und Baugruppe mit Wellenfrontanalysesystem für ein Mikroskop mit Mikroskopchassis
DE102008047400B9 (de) Augenchirurgie-Messsystem
DE102007019679A1 (de) Operationsmikroskop mit OCT-System
CH697225B1 (de) Verfahren zur Gewinnung von Topogrammen und Tomogrammen der Augenstruktur.
DE10039239A1 (de) Optische Messvorrichtung
DE10121516A1 (de) Vorrichtung und Verfahren zur Verminderung der Wirkungen kohärenter Bildfehler in einem Interferometer
EP3374731B1 (de) Verkippte objektwellen nutzendes und ein fizeau-interferometerobjektiv aufweisendes interferometer
DE102006055070B4 (de) Verfahren und Vorrichtung zum interferometrischen Vermessen einer Form eines Testobjekts
DE102005042733B3 (de) Verfahren und Anordnung zur Spektral-Interferometrie mit chromatischer Tiefenaufspaltung, insbesondere auch Mirau-Interferometer
WO2007076746A1 (de) Optisches abbildungssystem zur wellenfrontprüfung
DE10304822A1 (de) Verfahren und Vorrichtung zur Bestimmung der Polarisationszustandsbeeinflussung durch ein optisches System und Analysator
DE102018111466A1 (de) Verfahren zur justage einer messvorrichtung mittels eines justagekörpers, justagekörper und verfahren zur justage eines justagekörpers
DE10325601B3 (de) Schaltbares Punktlichtquellen-Array und dessen Verwendung in der Interferometrie
DE19748552C2 (de) Auflichtmikroskop
DE10351142B4 (de) Vorrichtungen und Verfahren zur Messung von thermisch induzierten Oberflächendeformationen
DE102021202909A1 (de) Messvorrichtung zum interferometrischen Vermessen einer Oberflächenform
DE102007032446A1 (de) Verfahren zum interferometrischen Bestimmen einer optischen Weglänge und Interferometeranordnung
DE102007054283B4 (de) Anordnung zur Aufteilung von Strahlenbündeln für ein Interferometer zur Bildgebung an stark streuenden Proben geringer Reflexion
DE102020205891A1 (de) Verfahren und Messvorrichtung zum interferometrischen Vermessen einer Form einer Oberfläche
DE102017001524B4 (de) Anordnung zur Vermessung zumindest teilweise reflektierender Oberflächen
DE102006021538A1 (de) Interferometer
DE102017222734B4 (de) Objektiv für eine Wellenfrontmessende Vorrichtung zur optischen Messung mindestens einer gekrümmten Messoberfläche
DE4432313C2 (de) Vorrichtung zur Untersuchung von Oberflächentopographien mittels Streifen-Triangulation
DE1447159B1 (de) Interferometer Okular

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06818094

Country of ref document: EP

Kind code of ref document: A1