WO2007075081A1 - Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop - Google Patents

Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop Download PDF

Info

Publication number
WO2007075081A1
WO2007075081A1 PCT/NL2005/000899 NL2005000899W WO2007075081A1 WO 2007075081 A1 WO2007075081 A1 WO 2007075081A1 NL 2005000899 W NL2005000899 W NL 2005000899W WO 2007075081 A1 WO2007075081 A1 WO 2007075081A1
Authority
WO
WIPO (PCT)
Prior art keywords
genus
rearing
euseius
mite
neoseiulus
Prior art date
Application number
PCT/NL2005/000899
Other languages
French (fr)
Inventor
Karel Jozef Florent Bolckmans
Yvonne Maria Van Houten
Adelmar Emmanuel Van Baal
Marisa Castagnoli
Roberto Nannelli
Sauro Simoni
Original Assignee
Koppert B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT05825571T priority Critical patent/ATE476099T1/en
Priority to AP2008004530A priority patent/AP2977A/en
Application filed by Koppert B.V. filed Critical Koppert B.V.
Priority to PCT/NL2005/000899 priority patent/WO2007075081A1/en
Priority to PT05825571T priority patent/PT1965634E/en
Priority to BRPI0520809A priority patent/BRPI0520809B1/en
Priority to AU2005339589A priority patent/AU2005339589B2/en
Priority to DE602005022784T priority patent/DE602005022784D1/en
Priority to NZ569350A priority patent/NZ569350A/en
Priority to KR1020147026002A priority patent/KR20140135988A/en
Priority to ES05825571T priority patent/ES2349941T3/en
Priority to EP05825571A priority patent/EP1965634B1/en
Priority to DK05825571.2T priority patent/DK1965634T3/en
Priority to MX2008008480A priority patent/MX277715B/en
Priority to JP2008548446A priority patent/JP5393155B2/en
Priority to EA200870126A priority patent/EA022197B1/en
Priority to CNA2005800525615A priority patent/CN101374409A/en
Priority to KR1020087018509A priority patent/KR101549254B1/en
Priority to US12/158,447 priority patent/US8957279B2/en
Priority to CA2635546A priority patent/CA2635546C/en
Priority to PL05825571T priority patent/PL1965634T3/en
Publication of WO2007075081A1 publication Critical patent/WO2007075081A1/en
Priority to TNP2008000281A priority patent/TNSN08281A1/en
Priority to IL192463A priority patent/IL192463A/en
Priority to EC2008008586A priority patent/ECSP088586A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/10Animals; Substances produced thereby or obtained therefrom
    • A01N63/14Insects

Definitions

  • Mite composition comprising Glycyphagidae and phytoseiid mites, use thereof.
  • This invention according to a first aspect relates to a novel mite composition comprising at least one species from the Glycyphagidae and at least one phytoseiid mite species.
  • the invention relates to a novel method for rearing a phytoseiid predatory mite species.
  • the invention relates to a novel use of an Astigmatid mite species selected from the family of the Glycyphagidae as a factitious host, for rearing a phytoseiid predatory mite species.
  • the invention relates to a novel rearing system for rearing a phytoseiid predatory mite species.
  • the invention relates to the use of the mite composition or the rearing system for the control of crop pests.
  • the invention relates to a method for biological pest control in a crop employing the mite composition according to the invention.
  • Phytoseiid predatory mites ⁇ Phytoseiidae
  • the most important thrips species in greenhouse crops are Western Flower Thrips (Frankliniella occidentalis) and Onion Thrips (Thrips tabaci) . They can be controlled with the predatory mites Neoseiulus cucumeris and Neoseiulus barker! (Hansen, L. S. and Geyti, J., 1985; Ramakers, P.M.J, and van Lieburg, M.J., 1982; Ramakers, P.M.J.
  • pest-in-first involves obvious risks of introducing the pest and requires a lot of experience.
  • the best known example of pest-in-first is the release of two-spotted spider mites (Tetranychus urticae) together or prior to the release of the phytosei ⁇ d mite Phytoseiulus persimilis.
  • Neoseiulus cucumeris alternatively a controlled release rearing system (as disclosed by Sampson, C. (1998) or in GB2393890) can be used for preventive release of this phytoseiid mite species.
  • This controlled release rearing system consists of a sachet with a compartment which contains a food mixture, consisting of bran, yeast and wheat germ; a population of the grain mite Tyrophagus putrescentiae and a population of the predatory mite Neoseiulus cucumeris.
  • the grain mite Tyrophagus putrescentiae will reproduce and develop an active population on the food mixture and serves as a factitious host for the predatory mite population.
  • the sachets are hung in the crop with suitable means, e.g. by means of a hook and will continuously release predatory mites over a period of 4 to 6 weeks.
  • a slow-release sachet is not needed and the product can be applied on the crop as a loose material, comprising of suitable rearing medium with a population of the grain mite Tyrophagus putrescentiae and the phytoseiid Neoseiulus cucumeris.
  • Neoseiulus cucumeris has a rather weak numerical response to the presence of food, large quantities of predatory mites have to be released into a crop in order to have sufficient pest control. This is economically possible because Neoseiulus cucumeris can be economically reared in very large quantities on the grain mite Tyrophagus putrescentiae, which may be reared in sufficient amounts on the above described food mixture . Although there are much more efficient predatory mites for thrips control with a higher predation rate and numerical response, such as TyphiodromaIus limonicus and Iphiseius degenerans, Neoseiulus cucumeris is still the most commonly used species because it can easily be reared in very large quantities .
  • Iphiseius degenerans is mass-reared on Castor Bean Plants ⁇ Ricinus communis L., Euphorbiaceae) which provide a continuous supply of pollen on which the mites can develop large populations. Because of the large surface and high • investment in greenhouses needed for growing the plants and because of the laborious harvesting techniques, the cost price of Iphiseius degerenans is very high compared to Neoseiulus cucumeris. Due to this high cost price growers can only release very low numbers, typically 1000-2000 predatory mites per hectare.
  • Iphiseius degenerans is limited to peppers ⁇ Capsicum annuum L.) , which provide sufficient pollen on which the predatory mites can develop a population, which is sufficient for pest control. Because only small numbers of mites can be released at the beginning of the growing season, it takes several months before the population of Iphiseius degenerans is at sufficient strength in a crop in order to be able to have a significant impact on Thrips pest populations .
  • Two-spotted Spider Mites (Tetranychus urticae) are successfully controlled in greenhouse and outdoor crops worldwide by releasing predatory mites.
  • the most important species are Phytoseiulus persimilis (Hussey, N. W. and Scopes, N. E.A.,
  • Neoseiulus cucumeris and Neoseiulus barker! with the aid of a factitious host mite species from the genus Tyrophagus, in particular Tyrophagus putrescentiae, Tyrophagus tropicus, Tyrophagus casei (Sampson, C, 1998; Jacobson, R.J., 1995; Bennison, J.A. and R. Jacobson, 1991; Karg et al . , 1987; and GB293890) and from the genus Acarus, in particular Acarus siro (Beglyarov et al . , 1990) and Acarus farris (Hansen, L. S. and J. Geyti, 1985; Ramakers, P.M.J, and van Lieburg, M. J. , 1982), which all belong to the family of the Acaridea.
  • Neoseiulus cucumeris The most common rearing host for Neoseiulus cucumeris is Tyrophagus putrescentiae.
  • An important disadvantage of Tyrophagus putrescentiae is that it can cause plant damage to young plant leaves when it is present on crops, e.g. when used as a factitious host in slow release breeding sachets similar to that disclosed by (Sampson, C, 1998) or in GB293890. This is especially the case in cucumber crops during periods of high humidity especially if this is combined with a low light intensity.
  • Castagnoli et al . have also described the possibility of mass-rearing Neoseiulus calif ' ornicus (Castagnoli, M. and S.
  • House Dust Mite Dermatophagoides farinae As a factitious rearing host.
  • House Dust Mites Dermatophagoides farinae and Dermatophagoides pteronyssinus
  • allergens implicated in allergic asthma, rhinitis, conjunctivitis and dermatitis.
  • Neoseiulus californicus is on bean plants ⁇ Phaseolus vulgaris) infested with two-spotted spider mites ⁇ Tetranychus urticae) or pacific mites ⁇ Tetranychus pacificus) in greenhouses which results in a rather high cost price. Due to the cost price of mites which are reared in this system, only relatively low numbers can be released to control pests in a crop. Development of a mas-rearing method with a factitious host which can be reared on a suitable medium would result in a much lower cost price and therefore allow the release of much higher numbers as biocontrol agents in crops.
  • Neoseiulus fallacis .
  • Astigmatid mite species from the family of the Glycyphagidae may be used as a factitious host for a great number of phytoseiid predatory mite species.
  • the invention relates to a mite composition
  • a mite composition comprising a rearing population of a phytoseiid predatory mite species and a factitious host population comprising at least one species selected from the family of the Glycyphagidae.
  • the mite composition according to the invention preferably comprises a limited number of different species. It will be understood that the mite composition will comprise at least two distict species, the phytoseiid mite and the factitious host selected from the Glycyphagidae. Jt is however possible that the mite composition comprises more than two species e.g. by comprising more than one, such as two or three factitious host species or by comprising more that one, such as two or three, phytoseiid mite species. Jt is however less preferred that the mite composition comprises more that one phytoseiid mite species, as intraguild predation may occur.
  • the phytoseiid predatory mite species which are most likely to be able to feed on species selected from the Glycyphagidae and in particular Lepidoglyphus destructor or Glycyphagus domesticus are oligophagous phytoseiid predatory mite species.
  • An oligophagous phytoseiid predatory mite species is a phytoseiid predatory mite species which is able to use at least a few different prey species as a food source for its population development (reproduction and complete development of its individuals from egg to sexually mature adult) .
  • oligophagous predatory mite species in this specification includes a polyphagous mite species, being a predatory mite which can use a great number of prey species as a food source for its reproduction and complete development.
  • oligophagous predatory mite species is to be understood to mean a non-monophagous predatory mite species such as predatory mite species from the genus Phytoseiulus which have a very narrow host range which is mostly limited to the genus Tetranychus .
  • Factitious host species and factitious prey species are species which inhabit a different natural habitat then the phytoseiid predatory mite, but nevertheless one or more life stages of the factitious host or factitious prey are suitable prey for at least one life stage of the phytoseiid predatory mite. Because factitious hosts and factitious preys inhabit a different natural habitat than phytoseiid predatory mites, whose natural habitat is the phyllosphere of plants, phytoseiids normally do not feed on them in nature.
  • a factitious prey is a prey on which a phytoseiid mite species may be able to prey, however development of egg to sexually mature adult is not efficient. A very low fecundity and high mortality is observed during development from egg to adult, resulting in a population increase of less than 50% in 7 days under mass-rearing conditions.
  • Phytoseiid predatory mites have their natural habitat on plants where they prey on pest organisms (insects and mites) . They may be isolated from their natural habitats as described by de Moraes et al . , 2004.
  • Glycyphagidae are described by Hughes, A.M. (1977) . Based on the disclosure of this document the skilled person will be able to isolate specific species from this family from their natural habitat. As described by Hughes, A.M. (1977) Glycyphagidae are associated with insects or small mammals or nests of small mammals and social insects such as bees. They are typically associated with houses, stables and with storage or processing of dried food products such as granaries and flour mills. In houses they can be found in materials such as floor dust, damp and mouldy wall paper, felt, dried animal skins, storage of stored food products and in upholstery made from processed plant fibres.
  • composition according to the invention provides a new association of mites, which does not occur naturally, as the phytoseiid predatory mites inhabit a different habitat than the Glycyphagidae.
  • Campynodromus aberrans (Oudemans 1930) is collected in felt bands during Autumn with the goal to release them in other orchards in the next spring. Apart from Typhlodromus aberrans, the spider mite Tetranychus telarius is collected. Predation of Typhlodromus aberrans on Tetranychus telarius is described. It is described that after fully having eradicated the spider mite Tetranychus telarius from the felt bands Typhlodromus aberrans fed on a non-specified species of Glycyphagus which was present in the felt bands. No information is given about reproduction of T. aberrans on the unspecified Glycyphagus species, only about predation.
  • composition according to the invention is not only suitable for mass-rearing of a phytoseiid predatory mite.
  • composition according to the invention also comprises mobile preying life stages of a phytoseiid predatory mite, or life stages which can develop into these mobile life stages, it can also be employed as a biological crop protection agent .
  • the composition comprises a carrier for the individuals of the populations.
  • the carrier can be any solid material which is suitable to provide a carrier surface to the individuals.
  • the carrier provides a porous medium, which allows exchanges of metabolic gases and heat produced by the mite populations.
  • suitable carriers are plant materials such as (wheat) bran, buckwheat husks, rice husks, saw dust, corn cob grits etcetera.
  • a food substance suitable for the development of the factitious host population is added to the composition.
  • the carrier itself may comprise a suitable food substance.
  • a suitable food substance may be similar to that described by Parkinson, CL. , 1992; Solomon, M. E. & Cunnington, A.M., 1963; Chmielewski, W, 1971a; Chmielewski, W, 1971b or GB2393890.
  • the phytoseiid predatory mite is selected from: - the subfamily of the Amblyseiinae, such as from the Genus Amblyseius, e.g. Amblyseius andersoni, Amblyseius swirskii or Amblyseius largoensis, from the genus Euseius e.g.
  • Euseius finlandicus Euseius hibisci, Euseius ovalis, Euseius victoriensis, Euseius stipulatus, Euseius scutalis, Euseius tularensis, Euseius addoensis, Euseius concordis, Euseius ho or Euseius citri, from the genus Neoseiulus e.g.
  • Neoseiulus barkeri Neoseiulus californicus, Neoseiulus cucumeris, Neoseiulus longispinosus, Neoseiulus womersleyi, Neoseiulus idaeus, Neoseiulus anonymus or Neoseiulus fallacis, from the genus Typhlodromalus e.g. Typhlodromalus limonicus, Typhlodromalus aripo or Typhlodromalus peregrinus from the genus Typhlodromips e.g. Typhlodromips montdorensis;
  • Typhlodromalus e.g. Typhlodromalus limonicus
  • Typhlodromalus aripo or Typhlodromalus peregrinus from the genus Typhlodromips e.g. Typhlodromips montd
  • the phytoseiid predatory mite species may be considered as being oligophagous predatory mite species.
  • the phytoseiid predatory mite according to a preferred embodiment of the invention is selected from the subfamily
  • the phytoseiid predatory mite is selected as Amblyseius swirskii , Neoseiulus fallacis, Neoseiulus californicus, Typhlodromips montdorensis, Neoseiulus womersleyi, Euseius ovalis or Euseius scutalis .
  • Amblyseius swirskii Neoseiulus fallacis
  • Neoseiulus californicus Typhlodromips montdorensis
  • Neoseiulus womersleyi Neoseiulus womersleyi
  • Euseius ovalis or Euseius scutalis
  • Neoseiulus fa.lla.cis is commercially available. However, this predatory mite is mass-reared on its natural prey, which involves large investments.
  • the present invention now for the first time discloses a mite composition, comprising a species from the family of the Glycyphagidae as a factitious host, which can be used for economic rearing of these and other phytoseiid predatory mite species. Making it possible to use them as an augmentative biological pest control agent .
  • phytoseiid predatory mite species is selected from a species other than those, which are particularly preferred.
  • rearing must be understood to include the propagation and increase of a population by means of sexual reproduction.
  • a rearing population may comprise sexually mature adults from both sexes, and/or individuals of both sexes of other life stages, e.g. eggs and/or nymphs, which can mature to sexually mature adults.
  • Alternative the rearing population may comprise one or more fertilized females. In essence the rearing population is capable of increasing the number of its individuals by means of sexual reproduction.
  • the factitious host population is a rearing population, as defined above, such that it may sustain or even develop itself to a certain degree. If the factitious host is provided as a rearing population, preferably a food substance for the factitious host is also provided.
  • the food substance may be similar to a food substance as disclosed in Solomon, M. E. and Cunnington, A.M., 1963; Parkinson, CL. , 1992;
  • the factitious host is preferably selected from the subfamily
  • Ctenoglyphinae such as from the genus Diamesoglyphus e.g. D. intermedins or from the genus Ctenoglyphus, e.g. C. plumiger, C. canestrinii , C. palmifer; the subfamily Glycyphaginae, such as from the genus Blomia, e.g. B. freeman! or from the genus
  • Glycyphagus e.g. G. ornatus, G. bicaudatus, G. privatus, G. domesticus, or from the genus Lepidoglyphus e.g. L. michaeli,
  • L. fustifer L. destructor, or from the genus Austroglycyphagus, e.g. A. geniculatus; from the subfamily
  • Aeroglyphinae such as from the genus Aeroglyphus, e.g. A. robustus; from the subfamily Labidophorinae, such as from the genus Gohieria, e.g. G. fusca; or from the subfamily
  • Nycteriglyphinae such as from the genus Coproglyphus, e.g. C. Stammer! , and more preferably is selected from the subfamily Glycyphaginae , more preferably from the genus Glycyphagus or the genus Lepidoglyphus most preferably selected from G. domesticus or L. destructor. Contrary to Tyrophagus putrescentiae, for the Glycyphagidae and in particular Lepidoglyphus destructor and Glycyphagus domesticus no damage to crops has been observed in comparative field trials.
  • a factitious host from this selection will have benefits when the composition according to the invention is used for crop protection in such a way that individuals of the factitious host population may come in contact with the crop e.g. when applied directly on or in the vicinity of the crop or when used in slow/controlled/ sustained release sachets.
  • Glycyphagidae and particularly of Lepidoglyphus destructor and Glycyphagus domesticus are considered to be cosmopolitan species. As such international trade of products comprising one of them will encounter less regulatory restrictions as is encountered in many countries for foreign species.
  • Glycyphagidae and in particular Lepidoglyphus destructor and Glycyphagus domesticus are beneficial to commercially mass-rear certain phytoseiid predatory mite species which cannot be reared on
  • Tyrophagus spp . or Acarus spp . such as Neoseiulus fallacis and Neoseiulus californicus .
  • Lepidoglyphus destructorand Glycyphagus domesticus are in particular suitable factitious hosts for Neoseiulus californicus and for Neoseiulus fallacis as these predators can feed on multiple life stages and under certain circumstances all life stages of these hosts.
  • the number of individuals of the phytoseiid predatory mite species relative to the number of individuals of the factitious host may be from about 1000:1 to 1:20, such as about 100:1 to 1:20 e.g. 1:1 to 1:10, preferably about-1:4, 1:5 or 1:7.
  • the relative numbers may depend on the specific intended use of the composition and/or the stage of development of phytoseiid mite population on the factitious host. In general compositions wherein individuals of the factitious host are present in excess to the individuals of the phytoseiid mite are preferred for rearing of the phytoseiid mite species, so that sufficient prey is provided to the phytoseiid mite. However, as the phytoseiid mite population will increase while preying on the factitious host, the relative number of individuals of the phytoseiid mite species will increase.
  • a composition comprising a high relative number of the phytoseiid predatory mite may be formed from a composition comprising a smaller relative number and allowing the rearing population of the phytoseiid predatory mite to develop by preying on the factitious host.
  • a composition comprising a small relative number of the phytoseiid predatory mite can be formed by mixing a composition comprising a higher relative number with a composition comprising a smaller relative number, including a composition comprising solely the factitious host, optionally in combination with the carrier and/or a food substance suitable for the factitious host.
  • the mite composition comprises a further nutritional source for the phytoseiid mite.
  • the term nutritional source should be understood to comprise any source of material that may serve as nutrition for the phytoseiid mite.
  • a nutritional source may comprise an artificial diet, such as described in US6,129,935.
  • the prey may comprise a factitious host such as a species selected from the family of the Carpoglyphidae such as from the genus Carpoglyphus, preferably the species Carpoglyphus lactis or from other families or genera belonging to the Astigmata.
  • the phytoseiid mite is presented with a more diverse diet. It has been observed that combination of nutritional sources may lead to synergetic effects with respect to the predator's responses in terms of growth and/or reproduction .
  • the present invention relates to a method for rearing the phytoseiid predatory mite species.
  • the method comprises providing a composition according to the invention and allowing individuals of said phytoseiid predatory mite to prey on individuals of said factitious host population.
  • the composition is e.g. maintained at 18-35 °C, preferably 20-30 0 C, more preferably 20-25°C, most preferably 22-25°C.
  • Suitable relative humidity ranges are between 60-95 %, preferably 70-90 %. These temperature and relative humidity intervals are in general also suitable to maintain the factitious host species.
  • the composition comprises a carrier which can provide a porous medium and a food substance for the factitious host species, and that the factitious host species is maintained as a three dimensional culture on the carrier. In such a three dimensional culture members of the factitious host species are free to move in three dimensions.
  • the three dimensional culture is obtained by providing the carrier in a three dimensional layer, i.e. a layer having three dimensions, of which two dimensions are larger then one dimension.
  • a three dimensional layer i.e. a layer having three dimensions, of which two dimensions are larger then one dimension.
  • Exemplary is a horizontal layer with a length and breadth in the order of metres and a certain thickness in the order of centimetres.
  • a three dimensional layer is preferred because it will allow sufficient exchange of metabolic heat and gasses and will provide a larger production volume compared to a two dimensional layer.
  • the invention is aimed to the use of an Astigmatid mite selected from the family of the Glycyphagidae as a factitious host for rearing a phytoseiid predatory mite .
  • the Astigmatid mite is preferably selected from the subfamily Ctenoglyphinae, such as from the genus Diamesoglyphus e.g. D. intermedins or from the genus Ctenoglyphus, e.g. C. plumiger, C. canestrinii , C. palmifer; the subfamily
  • Glycyphaginae such as from the genus Blomia, e.g. B. freemani or from the genus Glycyphagus, e.g. G. ornatus, G. bicaudatus, G. privatus, G. domesticus, or from the genus Lepidoglyphus e.g. L. michaeli , L. fustifer, L. destructor, or from the genus Austroglycyphagus, e.g. A. geniculatus; from the subfamily Aeroglyphinae, such as from the genus Aeroglyphus, e.g. A.
  • Glycyphaginae preferably is selected from the genus Glycyphagus or the genus Lepidoglyphus, most preferably selected from G. domesticus or L. destructor.
  • the phytoseiid predatory mite is preferably selected from:
  • Amblyseiinae such as from the Genus Amblyseius, e.g. Ai ⁇ blyseius andersoni, Amblyseius swirskii,
  • Amblyseius largoensis or Neoseiulus fallacis from the genus Euseius e.g. Euseius finlandicus, Euseius hibisci, Euseius ovalis, Euseius victoriensis, Euseius stipulatus, Euseius scutalis, Euseius tularensis, Euseius addoensis, Euseius concordis, Euseius ho, or Euseius citri, from the genus Euseius e.g. Euseius finlandicus, Euseius hibisci, Euseius ovalis, Euseius victoriensis, Euseius stipulatus, Euseius scutalis, Euseius tularensis, Euseius addoensis, Euseius concordis, Euseius ho, or Euseius citri, from the gen
  • Neoseiulus e.g. Neoseiulus barkeri, Neoseiulus californicus, Neoseiulus cucumeris, Neoseiulus longispinosus, Neoseiulus womersleyi , Neoseiulus idaeus, Neoseiulus anonymus or Neoseiulus fallacis, from the genus Typhlodromalus e.g. Typhlodromalus limonicus, Typhlodromalus aripo or
  • Typhlodromalus peregrinus from the genus Typhlodromips e.g. Typhlodromips montdorensis;
  • the subfamily of the Typhlodrominae such as from the genus Galendromus e.g. Galendromus occidentalis, from the genus Typhlodromus e.g. Typhlodromus pyri, Typhlodromus doreenae or Typhlodromus athiasae.
  • a selection from the subfamily of the Amblyseiinae is preferred.
  • the invention relates to a rearing system for rearing the phytoseiid predatory mite.
  • the rearing system comprises a container holding the composition according to the invention.
  • the container may be of any type which is suitable for restraining individuals of both populations.
  • the rearing system may comprise means which facilitate exchange of metabolic gases and heat between it's interior and it's exterior such as ventilation holes.
  • ventilation holes must not allow the substantial escape of individuals of the populations from the container. This can be effected by creating a barrier on or around the ventilation holes which prevents the substantial escape of mites from the container while facilitating exchange of gases and metabolic heat .
  • the factitious host may be replenished from a source comprising the factitious host, preferably together with the carrier and/or food substance for the factitious host.
  • the rearing system may be suitable for mass-rearing the phytoseiid mite species.
  • the rearing system may also be used for releasing the phytoseiid predatory mite in a crop.
  • the container can be rendered suitable to release mobile stages of the phytoseiid predatory mite at a certain moment. This can be effected by providing a closed opening in the container which can be opened. Alternatively or in combination therewith a relatively small releasing opening may be provided in the container, such that the number of phytoseiid mobile stages which leave the container in a given time interval is restricted. In this way the rearing system may function similar to the slow release or sustained release system as disclosed by Sampson, C, 1998 and in GB2393890.
  • the container is preferably dimensioned such that it can be hung in the crop or placed at the basis of the crop.
  • the container may be provided with hanging means, such as a cord or a hook.
  • the invention is aimed at the use of the composition or the rearing system for controlling crop pests in a commercial crop.
  • the pest may be selected from, white flies, such as Trialeurodes vaporariorum or Bemisia tabaci; thrips, such as Thrips tabaci or
  • Frankliniella spp. such as Frankliniella occidentalis
  • spider mites such as Tetranychus urticae or Panonychus spp.
  • tarsonemid mites such as Polyphagotarsonemus latus
  • eriophyid mites such as the tomato russet mite Aculops lycopersici
  • mealybug crawlers such as from the Citrus Mealybug Planococcus citri
  • scale crawlers such as from the California Red Scale Aonidiella aurantii .
  • Neoseiulus californicus, Neoseiulus fallacis, Neoseiulus womersleyi the preferred target pests are spider mites belonging to the genus Tetranychus and Panonychus, tarsonemid mites such as the Broad Mite Polyphagotarsonemus latus and the Cyclamen Mite Tarsonemus pallidus .
  • tarsonemid mites such as the Broad Mite Polyphagotarsonemus latus and the Cyclamen Mite Tarsonemus pallidus .
  • thrips such as Franliniella occidentalis
  • eriophyid mites such as the Tomato Russet Mite Aculops lycopersici.
  • the crop may be selected from, but is not restricted to (greenhouse) vegetable crops such as tomatoes ⁇ Lycopersicon esculentum) , peppers ⁇ Capsicum annuum) , eggplants [Solanum melogena) , Curcubits ⁇ Cucurbitaceae) such as cucumbers (Cucumis sativa) , melons ⁇ Cucumis melo) , watermelons ⁇ Citrullus lanatus) ; soft fruit (such as strawberries ⁇ Fragaria x ananassa) , raspberries ⁇ Rubus ideaus) ) , (greenhouse) ornamental crops (such as roses, gerberas, chrysanthemums) , tree crops such as Citrus spp., almonds, banana's or open field crops such as cotton, corn.
  • greenhouse vegetable crops
  • tomatoes ⁇ Lycopersicon esculentum) , peppers ⁇ Capsicum annuum)
  • the invention further relates to a method for biological pest control in a crop comprising providing a composition according to the invention to said crop.
  • the pest may be selected similarly as in the use according to the invention.
  • the composition may be provided by applying an amount of said composition in the vicinity, such as on or at the basis of a number of crop plants.
  • the composition may be provided to the crop plant simply by spreading it on the crop plant or at the basis of the crop plant as is common practice for employing predatory mite compositions for augmentative biological pest control .
  • the amount of the composition which may be provided to each individual crop plant by way of spreading may range from 1-20 ml such as 1-10 ml, preferably 2-5 ml when applying at the basis of the crop plants and 0,1 - 5 ml when applying on the leaf canopy of the plants.
  • the composition may be provided to the number of crop plants in the rearing system according to the invention which is suitable for releasing the phytoseiid predatory mite in a crop.
  • the rearing system may be placed in the vicinity, such as in or at the basis, of a number of crop plants .
  • Commercial crops are normally densely cultivated.
  • the phytoseiid predatory mites may spread from one crop plant to another.
  • the number of crop plants which must be provided with the composition according to the invention in order to provide sufficient crop protection may depend on the specific circumstances and can be easily determined by the skilled person based on his experience in the field.
  • the number of phytoseiid predatory mites released per hectare is more determining. This number may range from 1000-4 million per hectare, typically 100.000 - 1 million or 50.000 - 500.000 per hectare. These numbers may be released once or multiple times per growing season, depending on climatic conditions, pest pressure and usage of harmful pesticides .
  • the crop is selected as described in relation to the use of the composition.
  • N. fallacis adults were taken from an N. fallacis mass-culture on the food source L. destructor, which was started a few weeks earlier. 20 young adult females and 8 males were picked up from this mass- culture and transferred to four freshly prepared rearing containers. 5 females and 2 males of JW. fallacis were placed in each one. In all of them as a food source was placed an ample amount of L. destructor.
  • test cultures were located in a climate room under controlled temperature (25 0 C) and humidity (75%) conditions. After two or three days in these conditions, they were taken out.
  • Four new rearing containers similar to the previous ones, were prepared to transfer the same 5 females and 2 males previously used. Ample amount of L. destructor as a food source were added to each test culture as in the previous step. After transferring the males and females, the number of eggs was counted in the rearing containers from which they were transferred.
  • the old rearing systems were conserved in the climate room during two or three days for a second counting in order to detect some possible hidden offspring, after which they were destroyed. Similar to the old rearing systems, the new ones were also maintained to repeat the same procedure. Every day the residual amount of L. destructor in each rearing container was checked. If necessary a sufficient amount was added. Every two or three days data were obtained by evaluating the number of offsprings of both the new rearing (first counting) and the old one (second counting) . Based on the number of females and on the total amount of offspring which was found on each rearing container, the mean number of eggs laid per female per day was obtained.
  • the mean ranges from 1.80 to 2.63 eggs / female / day. For the whole period, the general mean is 2.14 eggs per female per day. The total amount of eggs laid per female is about 23 over a 11 days period. Comparing the mean number of eggs laid per female per day for the first, second, third and fourth independent rearing container, these are 2.07, 2.09, 2.42 and 2.00, respectively.
  • Table 1 Food source: all stages of L. destructor. Data of the mean number of eggs laid per N. fallacis female per day for the 4 independent rearing systems and for the global experiment .
  • the mean ranges from 1.25 to 3.33 eggs / female / day.
  • the general mean is 2.27 eggs per female per day.
  • the total amount of eggs laid per female is about 31 over a 14 days period. Comparing the mean number of eggs laid per female per day for the first, second, third and fourth independent rearing container, these are 2.50, 2.44,
  • the eggs of N. californicus oviposited in the first 2 days were removed.
  • the egg laid the successive two days were daily collected; some of them were placed on new RU in small groups to calculate mortality and sex ratio, the others were singly isolated to calculate development times and egg-to-egg- time. From the progeny newly virgin females were confined with a mature male and the each couple daily followed for then day to register oviposition and female longevity on the period.
  • the coeval eggs obtained were collected and used to start the second generation on L. destructor: the procedure used for the first generation was repeated for the second and third generation.
  • Neoseiulus californicus (Acari : Phytoseiidae) , Experimental & Applied Acarology, 23, pp 217-234.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Microbiology (AREA)
  • Agronomy & Crop Science (AREA)
  • Insects & Arthropods (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a novel mite composition comprising a population of a phytoseiid predatory mite species and a factitious host population comprising a species selected from the Glycyphagidae , which may be employed for rearing said phytoseiid predatory mite species or for releasing the phytoseiid predatory mite species in a crop. According to further aspects the invention relates to a method for rearing a phytoseiid predatory mite species, to the use of the mite composition and to a method for biological pest control in a crop, which employ the mite composition.

Description

Mite composition comprising Glycyphagidae and phytoseiid mites, use thereof. Method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop.
This invention according to a first aspect relates to a novel mite composition comprising at least one species from the Glycyphagidae and at least one phytoseiid mite species.
According to a second aspect the invention relates to a novel method for rearing a phytoseiid predatory mite species. According to a third aspect the invention relates to a novel use of an Astigmatid mite species selected from the family of the Glycyphagidae as a factitious host, for rearing a phytoseiid predatory mite species. According to a fourth aspect the invention relates to a novel rearing system for rearing a phytoseiid predatory mite species. According to a fifth aspect the invention relates to the use of the mite composition or the rearing system for the control of crop pests. According to yet further aspects the invention relates to a method for biological pest control in a crop employing the mite composition according to the invention.
In the following description and claims the names of the phytoseiid mite subfamilies, genera and species is as referred to in de Moraes, G.J. et al . , 2004, unless otherwise stated. In the following description and claims the names of the Glycyphagidae subfamilies, genera and species is as referred to in Hughes, A.M., 1977, unless otherwise stated. An overview of the referenced families, subfamilies, genera and species is provided in figs. 1 and 2.
Phytoseiid predatory mites {Phytoseiidae) are widely used for biological control of spider mites and thrips in greenhouse crops . The most important thrips species in greenhouse crops are Western Flower Thrips (Frankliniella occidentalis) and Onion Thrips (Thrips tabaci) . They can be controlled with the predatory mites Neoseiulus cucumeris and Neoseiulus barker! (Hansen, L. S. and Geyti, J., 1985; Ramakers, P.M.J, and van Lieburg, M.J., 1982; Ramakers, P.M.J. , 1989; Sampson, C, 1998; and Jacobson, R.J., 1995) and Iphiseius degenerans (Ramakers, P.M.J, and Voet, S. J. P., 1996). In the absence of prey these species are able to establish, develop and maintain in crops which provide a continuous supply of pollen, such as sweet peppers {Capsicum annuum L.) and eggplants (Solarium melogena) . Therefore they can be released preventively in these crops, before the suitable target pest prey is present. Also they are able to survive and continue to develop once the target pest has been controlled. The possibility for preventive releases is very important in order to obtain a robust biological control program. Excellent results are obtained with preventive release of predatory mites (because the prey can be controlled immediately when it enters the crop). In crops where pollen is not freely available, such as for example cucumbers and most ornamental crops, these phytoseiid mite species cannot be released preventively unless food is artificially provided. This can e.g. be done by dusting artificially collected plant pollen on the crop.
Alternatively, or in addition to this, this could also be done by releasing the target pest prey before or together with releasing the phytoseiid predatory mites. This method, known as pest-in-first , involves obvious risks of introducing the pest and requires a lot of experience. The best known example of pest-in-first is the release of two-spotted spider mites (Tetranychus urticae) together or prior to the release of the phytoseiϊd mite Phytoseiulus persimilis.
In the case of Neoseiulus cucumeris alternatively a controlled release rearing system (as disclosed by Sampson, C. (1998) or in GB2393890) can be used for preventive release of this phytoseiid mite species. This controlled release rearing system consists of a sachet with a compartment which contains a food mixture, consisting of bran, yeast and wheat germ; a population of the grain mite Tyrophagus putrescentiae and a population of the predatory mite Neoseiulus cucumeris. The grain mite Tyrophagus putrescentiae will reproduce and develop an active population on the food mixture and serves as a factitious host for the predatory mite population. The sachets are hung in the crop with suitable means, e.g. by means of a hook and will continuously release predatory mites over a period of 4 to 6 weeks.
In crops which provide a continuous supply of pollen or in case pest populations are already present, a slow-release sachet is not needed and the product can be applied on the crop as a loose material, comprising of suitable rearing medium with a population of the grain mite Tyrophagus putrescentiae and the phytoseiid Neoseiulus cucumeris.
Because Neoseiulus cucumeris has a rather weak numerical response to the presence of food, large quantities of predatory mites have to be released into a crop in order to have sufficient pest control. This is economically possible because Neoseiulus cucumeris can be economically reared in very large quantities on the grain mite Tyrophagus putrescentiae, which may be reared in sufficient amounts on the above described food mixture . Although there are much more efficient predatory mites for thrips control with a higher predation rate and numerical response, such as TyphiodromaIus limonicus and Iphiseius degenerans, Neoseiulus cucumeris is still the most commonly used species because it can easily be reared in very large quantities .
Iphiseius degenerans is mass-reared on Castor Bean Plants {Ricinus communis L., Euphorbiaceae) which provide a continuous supply of pollen on which the mites can develop large populations. Because of the large surface and high • investment in greenhouses needed for growing the plants and because of the laborious harvesting techniques, the cost price of Iphiseius degerenans is very high compared to Neoseiulus cucumeris. Due to this high cost price growers can only release very low numbers, typically 1000-2000 predatory mites per hectare. Therefore, the application of Iphiseius degenerans is limited to peppers {Capsicum annuum L.) , which provide sufficient pollen on which the predatory mites can develop a population, which is sufficient for pest control. Because only small numbers of mites can be released at the beginning of the growing season, it takes several months before the population of Iphiseius degenerans is at sufficient strength in a crop in order to be able to have a significant impact on Thrips pest populations .
Two-spotted Spider Mites (Tetranychus urticae) are successfully controlled in greenhouse and outdoor crops worldwide by releasing predatory mites. The most important species are Phytoseiulus persimilis (Hussey, N. W. and Scopes, N. E.A.,
1985) , which is the oldest mite which is commercially available for biological control and Neoseiulus californicus (Wei-Lan Ma and Laing, J. E., 1973) . Both predatory mites are mass-reared on their natural host Tetranychus urticae on bean plants {Phaseolus vulgaris) in greenhouses. Castagnoli, M. and Simoni,
S. (1999) have also described a method for mass-rearing Neoseiulus californicus on the House Dust Mite Dermatophagoides farinae. However, House Dust Mites (Dermatophagoides farinae and Dermatophagoid.es pteronyssinus) produce important allergens, implicated in allergic asthma, rhinitis, conjunctivitis and dermatitis. Therefore their use in controlled release rearing systems for releasing predatory mites in crops has disadvantages. Another disadvantage is that when House Dust Mites are used for mass-rearing purposes, extensive measures are necessary for worker protection. Scientific literature reports many predatory mites which are highly effective against damaging crop pest species such as white flies, thrips, spider mites, tarsonemid mites and eriophyid mites, but, due to the absence of an efficient and cost-effective mass-rearing system, only a few species are commercially available for biological pest control purposes. Recent research has indicated the potential of the predatory mites Amblyseius swirskii, Euseius ovalis, Euseius scutalis and Typhiodromalus limonicus as very efficient biological control agents of thrips {Thrips tabaci and Frankliniella occidentalis) and whiteflies (Trialeurodes vaporariorum and Bemisia tabaci) (Nomikou, M. , Janssen, A. ,
Schraag, R. and Sabelis, M. W. , 2001; Messelink, G. & Steenpaal, S. 2003; Messelink, G. 2004; Messelink, G. & Steenpaal, S. 2004; Bolckmans, K. & Moerman, M. 2004; Messelink, G. & Pijnakker, J. 2004; Teich, Y. 1966; Swirski, E. et al . , 1967). However, the practical usability of these and other phytoseiid predatory mites as an augmentative biological control agent depends on the availability of a suitable method for mass- rearing there predatory mites .
To date only Amblyseius swirskii is commercially available for biological control of whiteflies. Recently this phytoseiid mite was introduced to the market by Koppert B. V. Commercial market introduction of Amblyseius swirskii was possible due to the development of a commercially feasible method for mass-rearing this predatory mite, which involves the use of Carpoglyphus lactis as a factitious host. This method is part of the subject matter of the pending non-prepublished international application NL2004/000930.
The reason, that only recently a predatory mite, which preys on white flies, has become commercially available, is probably because despite the known predation of predatory mites on whiteflies their usability as augmentative biological control agents against whiteflies has not been recognized in the art. In augmentative biological control, biological agents are released in a crop for the control of a pest .
Even more important, with the exception of the recently developed rearing system for Amblyseius swirskii , no economic mass-rearing systems, necessary for allowing the release of large numbers of predatory mites into a crop, which is of utmost importance for their usability as an augmentative biological control agent, are available in the art for predatory mite species, e.g. those which could potentially be efficacious against whiteflies or other crop pests.
Biological control of crop pests with predatory mites which can be economically reared in large quantities on a factitious host mite in a rearing medium would be very advantageous because such a rearing system uses a limited surface. Furthermore in such a system rearing of the predatory mite can be performed in controlled climate rooms. As such it does not require large investments in greenhouses and crops .
The prior art describes rearing of Neoseiulus cucumeris and Neoseiulus barker! with the aid of a factitious host mite species from the genus Tyrophagus, in particular Tyrophagus putrescentiae, Tyrophagus tropicus, Tyrophagus casei (Sampson, C, 1998; Jacobson, R.J., 1995; Bennison, J.A. and R. Jacobson, 1991; Karg et al . , 1987; and GB293890) and from the genus Acarus, in particular Acarus siro (Beglyarov et al . , 1990) and Acarus farris (Hansen, L. S. and J. Geyti, 1985; Ramakers, P.M.J, and van Lieburg, M. J. , 1982), which all belong to the family of the Acaridea.
The most common rearing host for Neoseiulus cucumeris is Tyrophagus putrescentiae. An important disadvantage of Tyrophagus putrescentiae is that it can cause plant damage to young plant leaves when it is present on crops, e.g. when used as a factitious host in slow release breeding sachets similar to that disclosed by (Sampson, C, 1998) or in GB293890. This is especially the case in cucumber crops during periods of high humidity especially if this is combined with a low light intensity. Castagnoli et al . have also described the possibility of mass-rearing Neoseiulus calif'ornicus (Castagnoli, M. and S. Simoni, 1999) and Neoseiulus cucumeris (Castagnoli, M., 1989) on the House Dust Mite Dermatophagoides farinae as a factitious rearing host. However, House Dust Mites (Dermatophagoides farinae and Dermatophagoides pteronyssinus) produce important allergens, implicated in allergic asthma, rhinitis, conjunctivitis and dermatitis.
Therefore the traditional method for mass-rearing Neoseiulus californicus is on bean plants {Phaseolus vulgaris) infested with two-spotted spider mites {Tetranychus urticae) or pacific mites {Tetranychus pacificus) in greenhouses which results in a rather high cost price. Due to the cost price of mites which are reared in this system, only relatively low numbers can be released to control pests in a crop. Development of a mas-rearing method with a factitious host which can be reared on a suitable medium would result in a much lower cost price and therefore allow the release of much higher numbers as biocontrol agents in crops. The factious hosts, which are known in the prior art, such as Tyrophagus spp., Acarus spp. are only suitable for mass-rearing a limited number of phytoseiid mite species. For example the phytoseiid mites N. californicus and N. fallacis cannot be reared efficiently on Tyrophagus putrescentiae and Acarus siro.
Thus there is a need in the art for additional factitious hosts which can be used for mass rearing beneficial mites, such as predatory mites. Especially for rearing of Amblyseius swirskii , Neoseiulus fallacis, Neoseiulus californicus, Typhiodromips montdorensis, Neoseiulus womersleyi, Euseius ovalis or Euseius scutalis . For many phytoseiid predatory mite species only rearing on plant pollen has been disclosed in literature. Rearing on pollen necessitates either large greenhouse areas for the production of plants such as Castor Bean Plants (Ricinus communis) to obtain sufficient pollen, or collecting suitable plant pollen such as from Cattail (Typha spp.) or Oak (Quercus spp.) outdoors. Collecting plant pollen outdoors is very labour intensive and therefore expensive and only limited quantities can be collected. Honeybee collected plant pollen is unsuitable for rearing predatory mites .
For A. swirskii mite rearing has only been disclosed in the art using pollen (Messelink, G. & Pijnakker, J. 2004) or eggs from the lepidopterans Corcyra cephalonica or Ephestia kuehniella (Romeih, A. H. M. et al . , 2004).
Rearing on lepidopteran eggs requires large investments in production facilities and thus is very expensive. Also, rearing on lepidopteran eggs is not suitable for several mite species such as for example Neoseiulus californicus and
Neoseiulus fallacis .
In addition to this mass-rearing of Amblyseius swirskii on the factitious host Carpoglyphus lactis is now known. In order to fully comply with the demands of the market, additional factitious hosts are necessary.
It has now been found that Astigmatid mite species from the family of the Glycyphagidae may be used as a factitious host for a great number of phytoseiid predatory mite species.
Thus according to a first aspect the invention relates to a mite composition comprising a rearing population of a phytoseiid predatory mite species and a factitious host population comprising at least one species selected from the family of the Glycyphagidae.
The mite composition according to the invention preferably comprises a limited number of different species. It will be understood that the mite composition will comprise at least two distict species, the phytoseiid mite and the factitious host selected from the Glycyphagidae. Jt is however possible that the mite composition comprises more than two species e.g. by comprising more than one, such as two or three factitious host species or by comprising more that one, such as two or three, phytoseiid mite species. Jt is however less preferred that the mite composition comprises more that one phytoseiid mite species, as intraguild predation may occur.
The phytoseiid predatory mite species which are most likely to be able to feed on species selected from the Glycyphagidae and in particular Lepidoglyphus destructor or Glycyphagus domesticus are oligophagous phytoseiid predatory mite species. An oligophagous phytoseiid predatory mite species is a phytoseiid predatory mite species which is able to use at least a few different prey species as a food source for its population development (reproduction and complete development of its individuals from egg to sexually mature adult) . As such the term oligophagous predatory mite species in this specification includes a polyphagous mite species, being a predatory mite which can use a great number of prey species as a food source for its reproduction and complete development. Thus the term oligophagous predatory mite species is to be understood to mean a non-monophagous predatory mite species such as predatory mite species from the genus Phytoseiulus which have a very narrow host range which is mostly limited to the genus Tetranychus .
Factitious host species and factitious prey species are species which inhabit a different natural habitat then the phytoseiid predatory mite, but nevertheless one or more life stages of the factitious host or factitious prey are suitable prey for at least one life stage of the phytoseiid predatory mite. Because factitious hosts and factitious preys inhabit a different natural habitat than phytoseiid predatory mites, whose natural habitat is the phyllosphere of plants, phytoseiids normally do not feed on them in nature. The phytoseiid predatory mite has the ability to reproduce and develop efficiently from egg to sexually mature adult when feeding upon a diet of the factitious host such that the number of individuals in the rearing population of the phytoseiid mite can grow with at least 50%, preferably 75%, more preferably 100% in 7 days (T=25'C; RH=80% feeding ad libidum) .
In contrast to this, a factitious prey is a prey on which a phytoseiid mite species may be able to prey, however development of egg to sexually mature adult is not efficient. A very low fecundity and high mortality is observed during development from egg to adult, resulting in a population increase of less than 50% in 7 days under mass-rearing conditions. As such, when feeding on a diet consisting solely of a factitious prey, a rearing population of a phytoseiid predatory mite will not be able to increase the number of its individuals by at least 50%, in 7 days time (T=25"C; RH=80%, feeding ad libidum) , which is considered a minimum requirement for commercial mass-rearing.
Phytoseiid predatory mites have their natural habitat on plants where they prey on pest organisms (insects and mites) . They may be isolated from their natural habitats as described by de Moraes et al . , 2004.
Glycyphagidae are described by Hughes, A.M. (1977) . Based on the disclosure of this document the skilled person will be able to isolate specific species from this family from their natural habitat. As described by Hughes, A.M. (1977) Glycyphagidae are associated with insects or small mammals or nests of small mammals and social insects such as bees. They are typically associated with houses, stables and with storage or processing of dried food products such as granaries and flour mills. In houses they can be found in materials such as floor dust, damp and mouldy wall paper, felt, dried animal skins, storage of stored food products and in upholstery made from processed plant fibres. In animal stables they can be found in materials such as hay, straw, floor dust, dried animal food (pellets or flour), stored grains and poultry droppings. Typical stored food products on which Glycyphagidae can be found are flour, grains, cereals, cheese, ham, dried fish, dried yeast, seeds and dried fruit. Thus the composition according to the invention provides a new association of mites, which does not occur naturally, as the phytoseiid predatory mites inhabit a different habitat than the Glycyphagidae.
Dyadechko, N. P. and Chizhik, R.I. (1972) disclose experiments wherein Typhlodromus aberrans (currently known as
Campynodromus aberrans (Oudemans 1930) ) is collected in felt bands during Autumn with the goal to release them in other orchards in the next spring. Apart from Typhlodromus aberrans, the spider mite Tetranychus telarius is collected. Predation of Typhlodromus aberrans on Tetranychus telarius is described. It is described that after fully having eradicated the spider mite Tetranychus telarius from the felt bands Typhlodromus aberrans fed on a non-specified species of Glycyphagus which was present in the felt bands. No information is given about reproduction of T. aberrans on the unspecified Glycyphagus species, only about predation. The composition according to the invention is not only suitable for mass-rearing of a phytoseiid predatory mite. As it also comprises mobile preying life stages of a phytoseiid predatory mite, or life stages which can develop into these mobile life stages, it can also be employed as a biological crop protection agent .
In a preferred embodiment the composition comprises a carrier for the individuals of the populations. The carrier can be any solid material which is suitable to provide a carrier surface to the individuals. Preferably the carrier provides a porous medium, which allows exchanges of metabolic gases and heat produced by the mite populations. Examples of suitable carriers are plant materials such as (wheat) bran, buckwheat husks, rice husks, saw dust, corn cob grits etcetera.
It is further preferred if a food substance suitable for the development of the factitious host population is added to the composition. Alternatively the carrier itself may comprise a suitable food substance. A suitable food substance may be similar to that described by Parkinson, CL. , 1992; Solomon, M. E. & Cunnington, A.M., 1963; Chmielewski, W, 1971a; Chmielewski, W, 1971b or GB2393890.
According to a preferred embodiment of the composition the phytoseiid predatory mite is selected from: - the subfamily of the Amblyseiinae, such as from the Genus Amblyseius, e.g. Amblyseius andersoni, Amblyseius swirskii or Amblyseius largoensis, from the genus Euseius e.g. Euseius finlandicus, Euseius hibisci, Euseius ovalis, Euseius victoriensis, Euseius stipulatus, Euseius scutalis, Euseius tularensis, Euseius addoensis, Euseius concordis, Euseius ho or Euseius citri, from the genus Neoseiulus e.g. Neoseiulus barkeri , Neoseiulus californicus, Neoseiulus cucumeris, Neoseiulus longispinosus, Neoseiulus womersleyi, Neoseiulus idaeus, Neoseiulus anonymus or Neoseiulus fallacis, from the genus Typhlodromalus e.g. Typhlodromalus limonicus, Typhlodromalus aripo or Typhlodromalus peregrinus from the genus Typhlodromips e.g. Typhlodromips montdorensis;
- the subfamily of the Typhlodrominae, such as from the genus Galendromus e.g. Galendromus occidentalis, from the genus Typhlodromus e.g. Typhlodromus pyri , Typhlodromus doreenae or Typhlodromus athiasae. These phytoseiid predatory mite species may be considered as being oligophagous predatory mite species. The phytoseiid predatory mite according to a preferred embodiment of the invention is selected from the subfamily
Amblyseiinae as described by De Moraes et al . , 2004. In a further preferred embodiment the phytoseiid predatory mite is selected as Amblyseius swirskii , Neoseiulus fallacis, Neoseiulus californicus, Typhlodromips montdorensis, Neoseiulus womersleyi, Euseius ovalis or Euseius scutalis . For these species economic mass-rearing on a factitious host mite has not been disclosed in the art, with the exception of A. swirskii and N. californicus .
Mass-rearing of Neoseiulus californicus on Dermatophagoides farinae has been described in the art
(Castagnoli, M. and Simoni, S. (1999)) as discussed above. However, this is associated with problems relating to the allergens carried by Dermatophagoidea.. Mass-rearing of this species on Tetranychus urticae or Tetranychus pacificus on bean plants {Phaseolus vulgaris) in greenhouses or outdoors has also been described in the art (Hendrickson, R. M. , Jr. , (1980) ; Glasshouse Crops Research Institute, UK. (1976) ) , as discussed above. However, this is associated with high investments in greenhouses and high input of labour, material and energy.
Commercial mass-rearing of Amblyseius swirskii has only been publicly disclosed with the use of the factitious host Carpoglyphus lactis as a factitious host. It will be beneficial to provide additional factitious hosts for the mass-rearing of this predatory mite.
For Typhlodronmips montdorensis, Neoseiulus womersleyi , Euseius ovalis and Euseius scutalis laboratory-scale rearing on plant pollen has been disclosed. However, commercial mass- rearing on pollen is expensive and thus not economically favourable .
Neoseiulus fa.lla.cis is commercially available. However, this predatory mite is mass-reared on its natural prey, which involves large investments.
The present invention now for the first time discloses a mite composition, comprising a species from the family of the Glycyphagidae as a factitious host, which can be used for economic rearing of these and other phytoseiid predatory mite species. Making it possible to use them as an augmentative biological pest control agent .
It should however be understood that in certain embodiments of the invention the phytoseiid predatory mite species is selected from a species other than those, which are particularly preferred.
Differences in acceptance of the factitious host may be observed between different strains of the phytoseiid predatory mite species. Furthermore, it might be possible to breed a strain, which is adapted to a specific factitious host by selective breeding.
In this specification the term rearing must be understood to include the propagation and increase of a population by means of sexual reproduction.
A rearing population may comprise sexually mature adults from both sexes, and/or individuals of both sexes of other life stages, e.g. eggs and/or nymphs, which can mature to sexually mature adults. Alternative the rearing population may comprise one or more fertilized females. In essence the rearing population is capable of increasing the number of its individuals by means of sexual reproduction.
Preferably the factitious host population is a rearing population, as defined above, such that it may sustain or even develop itself to a certain degree. If the factitious host is provided as a rearing population, preferably a food substance for the factitious host is also provided. The food substance may be similar to a food substance as disclosed in Solomon, M. E. and Cunnington, A.M., 1963; Parkinson, CL. , 1992;
Ramakers, P.M.J, and van Lieburg, M.J., 1982; GB2393890.
The factitious host is preferably selected from the subfamily
Ctenoglyphinae, such as from the genus Diamesoglyphus e.g. D. intermedins or from the genus Ctenoglyphus, e.g. C. plumiger, C. canestrinii , C. palmifer; the subfamily Glycyphaginae, such as from the genus Blomia, e.g. B. freeman! or from the genus
Glycyphagus, e.g. G. ornatus, G. bicaudatus, G. privatus, G. domesticus, or from the genus Lepidoglyphus e.g. L. michaeli,
L. fustifer, L. destructor, or from the genus Austroglycyphagus, e.g. A. geniculatus; from the subfamily
Aeroglyphinae, such as from the genus Aeroglyphus, e.g. A. robustus; from the subfamily Labidophorinae, such as from the genus Gohieria, e.g. G. fusca; or from the subfamily
Nycteriglyphinae such as from the genus Coproglyphus, e.g. C. Stammer! , and more preferably is selected from the subfamily Glycyphaginae , more preferably from the genus Glycyphagus or the genus Lepidoglyphus most preferably selected from G. domesticus or L. destructor. Contrary to Tyrophagus putrescentiae, for the Glycyphagidae and in particular Lepidoglyphus destructor and Glycyphagus domesticus no damage to crops has been observed in comparative field trials. Therefore, a factitious host from this selection will have benefits when the composition according to the invention is used for crop protection in such a way that individuals of the factitious host population may come in contact with the crop e.g. when applied directly on or in the vicinity of the crop or when used in slow/controlled/ sustained release sachets.
A further benefit of the Glycyphagidae and particularly of Lepidoglyphus destructor and Glycyphagus domesticus is that they are considered to be cosmopolitan species. As such international trade of products comprising one of them will encounter less regulatory restrictions as is encountered in many countries for foreign species.
A further benefit of the Glycyphagidae and in particular Lepidoglyphus destructor and Glycyphagus domesticus is that they can be used to commercially mass-rear certain phytoseiid predatory mite species which cannot be reared on
Tyrophagus spp . or Acarus spp . , such as Neoseiulus fallacis and Neoseiulus californicus .
Also it has been found that Lepidoglyphus destructorand Glycyphagus domesticus are in particular suitable factitious hosts for Neoseiulus californicus and for Neoseiulus fallacis as these predators can feed on multiple life stages and under certain circumstances all life stages of these hosts. In the composition the number of individuals of the phytoseiid predatory mite species relative to the number of individuals of the factitious host may be from about 1000:1 to 1:20, such as about 100:1 to 1:20 e.g. 1:1 to 1:10, preferably about-1:4, 1:5 or 1:7.
The relative numbers may depend on the specific intended use of the composition and/or the stage of development of phytoseiid mite population on the factitious host. In general compositions wherein individuals of the factitious host are present in excess to the individuals of the phytoseiid mite are preferred for rearing of the phytoseiid mite species, so that sufficient prey is provided to the phytoseiid mite. However, as the phytoseiid mite population will increase while preying on the factitious host, the relative number of individuals of the phytoseiid mite species will increase.
A composition comprising a high relative number of the phytoseiid predatory mite may be formed from a composition comprising a smaller relative number and allowing the rearing population of the phytoseiid predatory mite to develop by preying on the factitious host. Alternatively a composition comprising a small relative number of the phytoseiid predatory mite can be formed by mixing a composition comprising a higher relative number with a composition comprising a smaller relative number, including a composition comprising solely the factitious host, optionally in combination with the carrier and/or a food substance suitable for the factitious host.
According to a preferred embodiment the mite composition comprises a further nutritional source for the phytoseiid mite. The term nutritional source should be understood to comprise any source of material that may serve as nutrition for the phytoseiid mite. Such a nutritional source may comprise an artificial diet, such as described in US6,129,935. However, as a nutritional source plant pollen or a prey are preferred. The prey may comprise a factitious host such as a species selected from the family of the Carpoglyphidae such as from the genus Carpoglyphus, preferably the species Carpoglyphus lactis or from other families or genera belonging to the Astigmata. By presenting an additional nutritional source, the phytoseiid mite is presented with a more diverse diet. It has been observed that combination of nutritional sources may lead to synergetic effects with respect to the predator's responses in terms of growth and/or reproduction .
According to a further aspect the present invention relates to a method for rearing the phytoseiid predatory mite species. The method comprises providing a composition according to the invention and allowing individuals of said phytoseiid predatory mite to prey on individuals of said factitious host population.
For an optimal development of the phytoseiid predatory mite, the composition is e.g. maintained at 18-35 °C, preferably 20-300C, more preferably 20-25°C, most preferably 22-25°C. Suitable relative humidity ranges are between 60-95 %, preferably 70-90 %. These temperature and relative humidity intervals are in general also suitable to maintain the factitious host species. It is preferred that the composition comprises a carrier which can provide a porous medium and a food substance for the factitious host species, and that the factitious host species is maintained as a three dimensional culture on the carrier. In such a three dimensional culture members of the factitious host species are free to move in three dimensions. In this way they may infest a larger volume of the carrier and utilise the food substance more optimally. Considering the size of the mobile stages of the phytoseiid predatory mite species relative to individuals of the factitious host, this organism will in general also infest the total volume of the carrier, when foraging for the factitious host. Preferably the three dimensional culture is obtained by providing the carrier in a three dimensional layer, i.e. a layer having three dimensions, of which two dimensions are larger then one dimension. Exemplary is a horizontal layer with a length and breadth in the order of metres and a certain thickness in the order of centimetres. A three dimensional layer is preferred because it will allow sufficient exchange of metabolic heat and gasses and will provide a larger production volume compared to a two dimensional layer.
According to a further aspect the invention is aimed to the use of an Astigmatid mite selected from the family of the Glycyphagidae as a factitious host for rearing a phytoseiid predatory mite .
The Astigmatid mite is preferably selected from the subfamily Ctenoglyphinae, such as from the genus Diamesoglyphus e.g. D. intermedins or from the genus Ctenoglyphus, e.g. C. plumiger, C. canestrinii , C. palmifer; the subfamily
Glycyphaginae, such as from the genus Blomia, e.g. B. freemani or from the genus Glycyphagus, e.g. G. ornatus, G. bicaudatus, G. privatus, G. domesticus, or from the genus Lepidoglyphus e.g. L. michaeli , L. fustifer, L. destructor, or from the genus Austroglycyphagus, e.g. A. geniculatus; from the subfamily Aeroglyphinae, such as from the genus Aeroglyphus, e.g. A. robustus; from the subfamily Labidophorinae, such as from the genus Gohieria, e.g. G. fusca; or from the subfamily Nycteriglyphinae such as from the genus Coproglyphus, e.g. C. Stammeri, and more preferably is selected from the subfamily
Glycyphaginae, and preferably is selected from the genus Glycyphagus or the genus Lepidoglyphus, most preferably selected from G. domesticus or L. destructor.
The phytoseiid predatory mite is preferably selected from:
- the subfamily of the Amblyseiinae, such as from the Genus Amblyseius, e.g. Aiήblyseius andersoni, Amblyseius swirskii,
Amblyseius largoensis or Neoseiulus fallacis, from the genus Euseius e.g. Euseius finlandicus, Euseius hibisci, Euseius ovalis, Euseius victoriensis, Euseius stipulatus, Euseius scutalis, Euseius tularensis, Euseius addoensis, Euseius concordis, Euseius ho, or Euseius citri, from the genus
Neoseiulus e.g. Neoseiulus barkeri, Neoseiulus californicus, Neoseiulus cucumeris, Neoseiulus longispinosus, Neoseiulus womersleyi , Neoseiulus idaeus, Neoseiulus anonymus or Neoseiulus fallacis, from the genus Typhlodromalus e.g. Typhlodromalus limonicus, Typhlodromalus aripo or
Typhlodromalus peregrinus from the genus Typhlodromips e.g. Typhlodromips montdorensis;
- the subfamily of the Typhlodrominae, such as from the genus Galendromus e.g. Galendromus occidentalis, from the genus Typhlodromus e.g. Typhlodromus pyri, Typhlodromus doreenae or Typhlodromus athiasae.
A selection from the subfamily of the Amblyseiinae is preferred.
According to a further aspect the invention relates to a rearing system for rearing the phytoseiid predatory mite.
The rearing system comprises a container holding the composition according to the invention. The container may be of any type which is suitable for restraining individuals of both populations. The rearing system may comprise means which facilitate exchange of metabolic gases and heat between it's interior and it's exterior such as ventilation holes. Such ventilation holes must not allow the substantial escape of individuals of the populations from the container. This can be effected by creating a barrier on or around the ventilation holes which prevents the substantial escape of mites from the container while facilitating exchange of gases and metabolic heat .
Due to predation of the phytoseiid predatory mites the number of individuals of the factitious host in the composition will decrease. If necessary, the factitious host may be replenished from a source comprising the factitious host, preferably together with the carrier and/or food substance for the factitious host.
The rearing system may be suitable for mass-rearing the phytoseiid mite species. Alternatively the rearing system may also be used for releasing the phytoseiid predatory mite in a crop. In this case it is preferred that the container can be rendered suitable to release mobile stages of the phytoseiid predatory mite at a certain moment. This can be effected by providing a closed opening in the container which can be opened. Alternatively or in combination therewith a relatively small releasing opening may be provided in the container, such that the number of phytoseiid mobile stages which leave the container in a given time interval is restricted. In this way the rearing system may function similar to the slow release or sustained release system as disclosed by Sampson, C, 1998 and in GB2393890.
In such a rearing system for releasing the phytoseiid predatory mite in a crop the container is preferably dimensioned such that it can be hung in the crop or placed at the basis of the crop. For hanging in the crop the container may be provided with hanging means, such as a cord or a hook.
According to a further aspect the invention is aimed at the use of the composition or the rearing system for controlling crop pests in a commercial crop.
Depending on the species of phytoseiid mite they can be used to control different pest species. The pest may be selected from, white flies, such as Trialeurodes vaporariorum or Bemisia tabaci; thrips, such as Thrips tabaci or
Frankliniella spp. , such as Frankliniella occidentalis; spider mites such as Tetranychus urticae or Panonychus spp. ; tarsonemid mites such as Polyphagotarsonemus latus; eriophyid mites such as the tomato russet mite Aculops lycopersici; mealybug crawlers such as from the Citrus Mealybug Planococcus citri; scale crawlers such as from the California Red Scale Aonidiella aurantii .
The phytoseiid predatory mites Amblyseius swirskii, Euseius ovalis and Euseius scutalis have shown a good efficacy for controlling whiteflies and thrips. In the case of
Neoseiulus californicus, Neoseiulus fallacis, Neoseiulus womersleyi the preferred target pests are spider mites belonging to the genus Tetranychus and Panonychus, tarsonemid mites such as the Broad Mite Polyphagotarsonemus latus and the Cyclamen Mite Tarsonemus pallidus . In the case of Neoseiulus womersleyi good efficacy has been shown against thrips such as Franliniella occidentalis and against eriophyid mites such as the Tomato Russet Mite Aculops lycopersici.
The crop may be selected from, but is not restricted to (greenhouse) vegetable crops such as tomatoes {Lycopersicon esculentum) , peppers {Capsicum annuum) , eggplants [Solanum melogena) , Curcubits {Cucurbitaceae) such as cucumbers (Cucumis sativa) , melons {Cucumis melo) , watermelons {Citrullus lanatus) ; soft fruit (such as strawberries {Fragaria x ananassa) , raspberries {Rubus ideaus) ) , (greenhouse) ornamental crops (such as roses, gerberas, chrysanthemums) , tree crops such as Citrus spp., almonds, banana's or open field crops such as cotton, corn.
The invention further relates to a method for biological pest control in a crop comprising providing a composition according to the invention to said crop. The pest may be selected similarly as in the use according to the invention.
In the method according to the invention the composition may be provided by applying an amount of said composition in the vicinity, such as on or at the basis of a number of crop plants. The composition may be provided to the crop plant simply by spreading it on the crop plant or at the basis of the crop plant as is common practice for employing predatory mite compositions for augmentative biological pest control . The amount of the composition which may be provided to each individual crop plant by way of spreading may range from 1-20 ml such as 1-10 ml, preferably 2-5 ml when applying at the basis of the crop plants and 0,1 - 5 ml when applying on the leaf canopy of the plants.
Alternatively the composition may be provided to the number of crop plants in the rearing system according to the invention which is suitable for releasing the phytoseiid predatory mite in a crop. The rearing system may be placed in the vicinity, such as in or at the basis, of a number of crop plants . In the method for biological pest control according to the invention it may not be necessary to provide the composition to all crop plants. As commercial crops are normally densely cultivated. The phytoseiid predatory mites may spread from one crop plant to another. The number of crop plants which must be provided with the composition according to the invention in order to provide sufficient crop protection may depend on the specific circumstances and can be easily determined by the skilled person based on his experience in the field. Usually the number of phytoseiid predatory mites released per hectare is more determining. This number may range from 1000-4 million per hectare, typically 100.000 - 1 million or 50.000 - 500.000 per hectare. These numbers may be released once or multiple times per growing season, depending on climatic conditions, pest pressure and usage of harmful pesticides .
In a further preferred embodiment of the method for biological pest control according to the invention the crop is selected as described in relation to the use of the composition.
The invention will now be further described with reference to the following examples, which show non-limiting embodiments of different aspects of the invention.
Experiment 1 Oviposition test of N. fallacis on L. destructor. MATERIAL AND METHODS
At the beginning of the experiment the N. fallacis adults were taken from an N. fallacis mass-culture on the food source L. destructor, which was started a few weeks earlier. 20 young adult females and 8 males were picked up from this mass- culture and transferred to four freshly prepared rearing containers. 5 females and 2 males of JW. fallacis were placed in each one. In all of them as a food source was placed an ample amount of L. destructor.
Once the four test cultures were prepared, they were located in a climate room under controlled temperature (250C) and humidity (75%) conditions. After two or three days in these conditions, they were taken out. Four new rearing containers, similar to the previous ones, were prepared to transfer the same 5 females and 2 males previously used. Ample amount of L. destructor as a food source were added to each test culture as in the previous step. After transferring the males and females, the number of eggs was counted in the rearing containers from which they were transferred.
The old rearing systems were conserved in the climate room during two or three days for a second counting in order to detect some possible hidden offspring, after which they were destroyed. Similar to the old rearing systems, the new ones were also maintained to repeat the same procedure. Every day the residual amount of L. destructor in each rearing container was checked. If necessary a sufficient amount was added. Every two or three days data were obtained by evaluating the number of offsprings of both the new rearing (first counting) and the old one (second counting) . Based on the number of females and on the total amount of offspring which was found on each rearing container, the mean number of eggs laid per female per day was obtained.
RESULTS
When comparing the evolution of the number of eggs laid per female during the total experiment (making one counting assessment each 2-3 days), the mean ranges from 1.80 to 2.63 eggs / female / day. For the whole period, the general mean is 2.14 eggs per female per day. The total amount of eggs laid per female is about 23 over a 11 days period. Comparing the mean number of eggs laid per female per day for the first, second, third and fourth independent rearing container, these are 2.07, 2.09, 2.42 and 2.00, respectively. The experimental data is presented in table 1 below. Table 1. Food source: all stages of L. destructor. Data of the mean number of eggs laid per N. fallacis female per day for the 4 independent rearing systems and for the global experiment .
Figure imgf000027_0001
Experiment 2: Ovipostion test of N. californicus on L. destructor
In essence similar to the method described in experiment 1 oviposition test were performed for N. fallacis . These experiments differed as follows:
Instead of 4 subexperiments with 5 female A. fallacis, 4 subexperiments with 4 female N. californicus were conducted. -'" The testing period with N. californicus was 14 days in stead of 11 days.
RESULTS
When comparing the evolution of the number of eggs laid per female during the total experiment (making one counting assessment each 2-3 days), the mean ranges from 1.25 to 3.33 eggs / female / day.
For the whole period, the general mean is 2.27 eggs per female per day. The total amount of eggs laid per female is about 31 over a 14 days period. Comparing the mean number of eggs laid per female per day for the first, second, third and fourth independent rearing container, these are 2.50, 2.44,
2.49 and 1.70, respectively. The experimental data is presented in table 2 below.
Table 2. Food source: all stages of L. destructor. Data of the mean number of eggs laid per N. californicus female per dayfor the 4 independent rearing systems and for the global experiment .
Figure imgf000028_0001
2.44
Figure imgf000029_0001
Biological parameters of JW. californicus in the first 3 generation and after adaptation on Lep±doglyphus destructor
Experimental procedures - N. californicus was collected from mass rearing on Quercus spp. pollen maintained at about 25 'C, RH>80% and 16L: 8D. The experiment was performed at the same conditions. The rearing units (RU) were a plastic arena (diameter about cm 4.5), surrounded by wetted cotton and partially covered . Young ovipositing females of N. californicus were put in the RU and fed with L. destructor. The prey (all stages) was added to arenas in such a way as to daily maintain an amount of prey higher than the phytoseiid consumption.
The eggs of N. californicus oviposited in the first 2 days were removed. The egg laid the successive two days were daily collected; some of them were placed on new RU in small groups to calculate mortality and sex ratio, the others were singly isolated to calculate development times and egg-to-egg- time. From the progeny newly virgin females were confined with a mature male and the each couple daily followed for then day to register oviposition and female longevity on the period.
The coeval eggs obtained were collected and used to start the second generation on L. destructor: the procedure used for the first generation was repeated for the second and third generation.
The performance of N. californicus on L. destructor was evaluated on the first-third generations and on an adapted strain (more than one year and half feeding on L. destructor)
Table 3. Biological parameters of N. californicus on L. destructor (25 'C + 2'C, RH >80%, photoperiod 16L: 8D)
Figure imgf000030_0001
Demographic parameters of N. californicus on L. destructor
Data obtained on L. destructor were used to calculate rg and rm. The values obtained were summarized in the Table 4.
Table 4. Net reproductive rate (rg) and estimate intrinsic growth rate (rm) of N. californicus on L. destructor in the different generation at 25 "C and RH >80%
Figure imgf000031_0001
References
Athias-Henriot , C. (1962) Amblyseius swirskii, un nouveau phytoseiide voisin d'A. andersoni (Acariens anactinotriches) . Annales de l'Ecole Nationale d' Agriculture d1 Alger, Algeria, 3, 1-7.
Beglyarov et al . , 1990, Flour mite for mass breeding of phytoseiids, Zashchita-Rastenii, no. 10, pp 25. Bennison, J.A. and Jacobson, R., 1991, Integrated control of Frankliniella occidentalis (Pergande) in UK cucumber crops - evaluation of a controlled release system of introducing
Amblyseius cucumeris, Med. Fac . Landbouww. Rijksuniv. Gent, 56/2a, pp 251-255.
Bolckmans, K. & Moerman, M. 2004, Nieuwe roofmijt verandert bestrijding in paprika. Groenten & Fruit 41: 24-25 Castaqnoli, M., 1989, Biologia e prospettive di allevamento massale di Amblyseius cucumeris (Oud.) (Acarina: Pyroglyphidae) com preda .
Castaqnoli, M. and Simoni, S., 1999, Effect of long-term feeding history on functional and numerical response of Neoseiulus californicus (Acari : Phytoseiidae) , Experimental & Applied Acarology, 23, pp 217-234.
Castaqnoli M., Simoni S., Biliotti N., 1999, Mass-rearing of Amblyseius californicus on two alternative food source - In: J. Bruin, L. P. S. van der Geest and M. W. Sabelis (eds) , Ecology and Evolution of the Acari, Kluwer Acad, Publ . , Dordrecht, The Nederlands, pp. 425-431.
Chant, D .A., and J.A. , McMurtrv, 2004, A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) : Part III. The tribe Amblyseiini wainstein, subtribe Amblyseiina N. subtribe. Internat . J.Acarol . , vol.30, Nr.3, p.171-228.
Chmielewski, W., 1971 (a) , Wyniki badan morfologicznych, biologicznych i ekologicznych nad roztoczkiem suszowym, Carpoglyphus lactis (L.) (The results of investigations on the morphology, biology and ecology of the dried-fruit mite, Carpoglyphus lactis (L.)), Prace-Naukowe-Instytutu-Ochrony- Roslin. 1971, publ . 1972, 13: 1, 87-106. Chmielewski, W., 1971 (b) , Morfologia, biologia i ekologia Carpoglyphus lactis (L., 1758) (Glycyphagidae, Acarina) (The morphology, biology and ecology of Carpoglyphus lactis (L., 1758) (Glycyphagidae, Acarina) ) , Prace-Naukowe-Instytutu- Ochrony-Roslin. 1971, publ. 1972, 13: 2, 63-166. De Moraes, G.J., McMurtry, J.A. , Denmark, H.A. &
Campos, CB. , 2004. A revised catalog of the mite family Phytoseiidae . Magnolia Press Auckland New Zealand 494 pp.
Dyadechko, N. P. & Chizhik, 1972 (On the multiplication of yphlodromus) (in Russian) . Zashch. Rast . 17(2) :22. Glasshouse Crops Research Institute, UK. 1976, Biological Pest Control. Rearing parasites and predators. Grow. Bull. Glasshouse Crops Res. Inst.: 23 pp.
Hansen, L. S. and Geyti. J., 1985, Possibilities and limitation of the use of Amblyseius McKenziei Sch. & Pr. for biological control of thrips (Thrips tabaci Lind.) On glasshouse corps of cucumber, Department of Zoology, Danish Research Centre for Plant Protection, Lyngby, Denmark, ppl45- 150.
Hendrickson, R.M. , Jr., 1980, Continuous production of predacious mites in the greenhouse. J.N. Y. Entomol . Soc . 88(4) : 252-256.
Hughes, A.M., 1977, The mites of stored food and houses . ■ Ministry of Agriculture, Fisheries and Food, Technical
Bulletin No. 9: pp 133-186 Hussey, N. W. and N.E.A. Scopes, 1985, Biological Pest
Control: the Glasshouse Experience. Poole, UK.: Blandford Press (Ithaca, N. Y.. : Cornell University Press) Jacobson, R. J. , 1995, Integrated pest management in cucumbers - prevention of establishment of Frankliniella occidentalis (Pergande) , Med. Fac . Landbouww. Univ. Gent, 60/3a, pp 857-863. Karq et al . , 1987, Advantages of oligophagous predatory- mites for biological control, Institute of Plant Protection Klenmachnow, pp 66-73.
Kara et al . , 1989, Fortschritte bei der Anwendung von Raubmilben zur biologischen Schadlingsbekampfung in Gewachshausern, Gartenbau, 36, pp 44-46.
Karq, W. , 1989 , Die όkologische Differenzierung der Faubmilbarten der ϋberfamilie Phytoseiidea KARG (Acarina, Parasitiformes) , Zool . Jb. Syst . 116, pp 31-46.
Messelink, G. & Steenpaal, S. 2003, Nieuwe roofmij ten tegen trips in komkommer. Groenten & Fruit 43: 34-35.
Messelink, G. 2004, Nieuwe roofmijt wint met overmacht in komkommer. Groenten & Fruit 35: 22-23.
Messelink, G. & Pijnakker, J. 2004, Roofmij ten bestrijden wittevlieg. Vakblad voor de Bloemisterij 43: 62. Messelink, G. & Steenpaal, S. 2004, Roofmijt nu ook kaswittevlieg de baas. Groenten & Fruit 45: 26-27.
McMurtry, J.A. and CroftB. A., 1997, Life-styles of phytoseiid mites and their role in biological control, Annual Review of Entomology, Vol. 42: 291-321. Nomikou, M., Janssen, A., Schraag, R. and Sabelis, M.W. , 2001 , Phytoseiid predators as biological control agents for Bemisia tabaci . Exp .Appl .Acarol . 25: 270-290
Parkinson, C.L., 1992, "Culturing free-living astigmatid mites." Arachnida: Proceedings of a one day symposium on spiders and their allies held on Saturday 21st November 1987 at the Zoological Society of London, eds . Cooper, J. E., Pearce- Kelly,P, Williams, D. L. , p. 62-70. Ramakers, P.M.J, and Van Lieburg, M.J., 1982, Start of commercial production and introduction of Amblyseius mckenzei Sch. Sc Pr. (Acarina: Phytoseiidae) for the control of Thrips tabaci Lind. (Thysanoptera : Thripidae) in glasshouses, Med. Fac. Landbouww. Rijksuniv. Gent, 47/2, pp 541-545.
Ramakers, P.M.J. , 1989, Large scale introductions of Phytoseiid predators to control thrips on cucumber, Med. Fac. Landbouww. Rijksuniv. Gent, 54/3a, pp 923-929.
Ramakers, P.M.J, and Voet , S. J. P., 1996, Introduction of Amblyseius degenerans for thrips control in sweet peppers with potted castor beans as banker plants. IOBC/WPRS working group on integrated control in glasshouses 19(1): 127-130.
Rasmy et al . , 1987, A new diet for reproduction of two predaceous mites Amblyseius gossipi and Agistemus exsertus (Acari : Phytoseiidae, Stigmaeidae) , Entomophaga 32(3), pp 277- 280.
Romeih, A.H.M., El-Saidy, E. M .A. and El Arnaouty, S.A., 2004 , Suitability Of Two Lepidopteran Eggs As Alternative Preys For Rearing Some Predatory Mites. The first Arab Conference of Applied Biological Pest Control, Cairo, Egypt, 5-7 April 2004.
Swirski, E., Amitai, S. and Dorzia, N., 1967, Laboratory studies on the feeding, development and oviposition of the predaceous mite Amblyseius rubini Swirksi and Amitai an Amblyseius swirskii Athias-Henriot (Acarina: Phytoseiidae) on various kiinds of food substances. Israel J.Agric.Res. 17:101- 119
Sampson, C, 1998, The commercial development of an Amblyseius cucumeris controlled release method for the control of Frankliniella occidentalis in protected crops, The 1998 Brighton conference - Pests & Diseases, 5B-4, pp 409-416.
Solomon, M. E. and Cunninqton, A.M., 1963, Rearing acaroid mites, Agricultural Research Council, Pest Infestation Laboratory, Slough, England, pp 399-403.
Teich, Y. 1966, Mites of the family of Phytoseiidae as predators of the tobacco whitefly, Bemisia tabaci Gennadius . Israel J. Agric . Res. 16: 141-142.
Wei-Lan Ma and J. E. Laing, 1973, Biology -- of Amblyseius (Neoseiulus) californicus, Entomophaga, 47-60.

Claims

Claims
1. Mite composition comprising:
- a rearing population of a phytoseiid predatory mite species,
- a factitious host population,
- and optionally a carrier for individuals of said populations, characterised in that the factitious host population comprises at least one species selected from the family of the Glyciphagidae.
2. Composition according to claim 1, wherein the phytoseiid predatory mite species is selected from: the subfamily of the Amblyseiinae, such as from the Genus Amblyseius, e.g. Amblyseius andersoni, Amblyseius swirskii or Amblyseius largoensis, from the genus Euseius e.g. Euseius finlandicus, Euseius hibisci, Euseius ovalis, Euseius victoriensis, Euseius stipulatus, Euseius scutalis, Euseius tularensis, Euseius addoensis, Euseius concordis, Euseius ho or Euseius citri, from the genus Neoseiulus e.g. Neoseiulus barkeri, Neoseiulus californicus, Neoseiulus cucumeris,
Neoseiulus longispinosus, Neoseiulus womersleyi , Neoseiulus idaeus, Neoseiulus anonymus or Neoseiulus fallacis, from the genus Typhlodromalus e.g. Typhlodromalus limonicus, Typhlodromalus aripo or Typhlodromalus peregrinus from the genus Typhlodromips e.g. Typhlodromips montdorensis;
- the subfamily of the Typhlodrominae, such as from the genus Galendromus e.g. Galendromus occidentalis, from the genus Typhlodromus e.g. Typhlodromus pyri, Typhlodromus doreenae or Typhlodromus athiasae.
3. Composition according to claim 1-2, comprising a food substance suitable for said factitious host population.
4. Composition according to claim 1-3, wherein the factitious host population is a rearing population.
5. Composition according to claim 1-4, wherein the number of individuals of the phytoseiid predatory mite species relative to the number of individuals of the factitious host is from about 100:1 to 1:20, such as about 1:1 to 1:10, e.g. about 1:4, 1:5 or 1:7.
6. Composition according to claim 1-5, wherein the factitious host species is selected from the subfamily Ctenoglyphinae, such as from the genus Diamesoglyphus e.g. D. intermedins or from the genus Ctenoglyphus, e.g. C. plumiger, C. canestrinii, C. palmifer; the subfamily Glycyphaginae, such as from the genus Blomia, e.g. B. freemani or from the genus Glycyphagus, e.g. G. ornatus, G. bicaudatus, G. privatus, G. domesticus, or from the genus Lepidoglyphus e.g. L. michaeli, L. fustifer, L. destructor, or from the genus Austroglycyphagus, e.g. A. geniculatus; from the subfamily Aeroglyphinaef such as from the genus Aeroglyphus, e.g. A. robustus; from the subfamily Labidophorinae, such as from the genus Gohieria, e.g. G. fusca; or from the subfamily
Nycteriglyphinae such as from the genus Coproglyphus, e.g. C. Stammer!, and more preferably is selected from the subfamily Glycyphaginae, more preferablby is selected from the genus Glycyphagus or the genus Lepidoglyphus most preferably selected from G. domesticus or L. destructor.
7. Composition according to claims 1-6 comprising a further nutritional source for the phytoseiid mite, such as pollen or a prey.
8. Composition according to claim I1. wherein the prey comprises a factitious host such as a species selected from the family of the Carpoglyphidae such as from the genus Carpoglyphus, preferably the species Carpoglyphus lactis.
9. Composition according to claim 1-8, with the proviso that the phytoseiid mite is not selected as Amblyseius swirskii .
10. Method for rearing a phytoseiid predatory mite comprising:
- providing a composition according to claim 1-9,
- allowing individuals of said phytoseiid predatory mite to prey on individuals of said factitious host population.
11. Method according to claim 10, wherein the composition is maintained at 18-350C and/or 60-95% relative humidity.
12. Method according to claim 10-11, wherein said composition comprises a carrier and a suitable food substance and the factitious host population is maintained as a three- dimensional culture on the carrier.
13. Use of an astigmatid mite selected from the family of the Glycyphagidae, as a factitious host for rearing a phytoseiid predatory mite.
14. Use according to claim 13, wherein the phytoseiid mite is selected from:
- the subfamily of the Amblyseiinae, such as from the Genus Amblyseius, e.g. Amblyseius andersoni, Amblyseius swirskii or Amblyseius largoensis, from the genus Euseius e.g. Euseius finlandicus, Euseius hibisci, Euseius ovalis, Euseius victoriensis, Euseius stipulatus, Euseius scutalis, Euseius tularensis, Euseius addoensis, Euseius concordis, Euseius ho or Euseius citri, from the genus Neoseiulus e.g. Neoseiulus barkeri, Neoseiulus californicus, Neoseiulus cucumeris, Neoseiulus longispinosus, Neoseiulus womersleyi, Neoseiulus idaeus, Neoseiulus anonymus or Neoseiulus fallacis, from the genus Typhlodromaluβ e.g. Typhlodromalus limonicus, Typhlodromalus aripo or Typhiodromalus peregrinus from the genus Typhlodromips e.g. Typhlodromips montdorensis;
- the subfamily of the Typhlodrominae, such as from the genus Galendromus e.g. Galendromus occidentalis, from the genus Typhlodromus e.g. Typhlodromus pyri, Typhlodromus doreenae or Typhlodromus athiasae.
15. Use according to claim 13-14 with the proviso that the phytoseiid mite is not selected as Amblyseius swirskii .
16. Rearing system for rearing a phytoseiid predatory mite, which system comprises a container holding the composition according to claim 1-9.
17. Rearing system according to claim 16, wherein said container comprises an exit for at least one mobile life stage of the phytoseiid mite.
18. Rearing system according to claim 17, wherein said exit is suitable for providing a sustained release of said at least one mobile life stage.
19. Use of the composition according to claim 1-9 or the rearing system according to claim 17-18 for controlling a crop pest.
20. Use according to claim 19 wherein the crop pest is selected from white flies, such as Trialeurodes vaporariorum or Bemisia tabaci; thrips, such as Thrips tabaci or Frankliniella spp. , such as Frankliniella occidentalis; spider mites such as Tetranychus spp. such as Tetranychus urticae, Teranychus evansi and Teranychus kanzawai or Panonychus spp. such Panonychus ulmi ; tarsonemid mites such as Polyphagotarsonemus latus or Tarsonemus pallidus; eriophyid mites such as Aculops lycopersici; mealybug crawlers such as from Panonychus citri; scale crawlers such as from Aonidiella aurantii .
21. Use according to claim 20, wherein the crop is selected from (greenhouse) vegetable crops such as tomatoes {Lycopersicon esculentum) , peppers {Capsicum annuum, eggplants
{Solanum melogena) , Curcubits (Cucurbitaceae) such as cucumbers (Cucumis sativa) , melons {Cucumis melo) , watermelons {Citrullus lanatus) ; soft fruit (such as strawberries {Fragar±a x ananassa) , raspberries {Rubus ideaus) ) , (greenhouse) ornamental crops (such as roses, gerberas, chrysanthemums) , tree crops such as Citrus spp . , almonds, banana's or open field crops such as cotton-, corn.
22. Method for biological pest control in a crop comprising providing a composition according to claim 1-9 to said crop.
23. Method according to claim 22 wherein the pest is selected from white flies, such as Trialeurodes vaporariorum or Bemisia tabaci; thrips, such as Thrips tabaci or Frankliniella spp. , such as Frankliniella occidentalis; spider mites such as Tetranychus spp. such as Tetranychus urticae, Teranychus evansi and Teranychus kanzawai or Panonychus spp. Such as Panonychus ulmi; tarsonemid mites such as Polyphagotarsonemus latus or Tarsonemus pallidus; eriophyid mites such as Aculops lycopersici; mealybug crawlers such as from Panonychus citri; scale crawlers such as from Aonidiella aurantii .
24. Method according to any of the claims 22-23, wherein the composition is provided by applying an amount of said composition in the vicinity, such as at the basis, of a number of crop plants, preferably each crop plant.
25. Method according to claim 24, wherein the amount is from 1-10 ml, preferably 2-5 ml.
26. Method according to claim 22-23, wherein the composition is provided in the rearing system according to claim 17-19, by placing said rearing system in the vicinity, of a number of crop plants, preferably each crop plant, such as by hanging said rearing system in said crop plant .
27. Method according to any of the claims 22-26, wherein the crop is selected from (greenhouse) vegetable crops such as tomatoes (Lycopersicon esculentum) , peppers {Capsicum annuum) , eggplants {Solarium melogena) , Curcubits {Cucurbitaceae) such as cucumbers {Cucumis sativa) , melons {Cucumis melo) , watermelons {Citrullus lanatus) ; soft fruit (such as strawberries {Fragaria x ananassa) , raspberries {Rubus ideaus) ) , (greenhouse) ornamental crops (such as roses, gerberas, chrysanthemums), tree crops such as Citrus spp., almonds, banana's or open field crops such as cotton, corn.
PCT/NL2005/000899 2005-12-29 2005-12-29 Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop WO2007075081A1 (en)

Priority Applications (23)

Application Number Priority Date Filing Date Title
MX2008008480A MX277715B (en) 2005-12-29 2005-12-29 Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
DK05825571.2T DK1965634T3 (en) 2005-12-29 2005-12-29 Middle composition includes. glycyphagidae and phytoseid mites, use thereof, method of cultivating a phytoseid predator mite, rearing system to raise said phytoseide predator mite and biological pest control methods on a crop
PCT/NL2005/000899 WO2007075081A1 (en) 2005-12-29 2005-12-29 Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
AP2008004530A AP2977A (en) 2005-12-29 2005-12-29 Mite composition comprising glycyphagidae and phytg said phytoseiid predatory mite and methods for boseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for reariniological pest control on a crop
BRPI0520809A BRPI0520809B1 (en) 2005-12-29 2005-12-29 system for breeding a phytoseiid predatory mite, and method for biological pest control in an agricultural crop.
AU2005339589A AU2005339589B2 (en) 2005-12-29 2005-12-29 Mite composition comprising Glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
JP2008548446A JP5393155B2 (en) 2005-12-29 2005-12-29 Mite composition including mite mite and mite, use thereof, method for breeding predatory mites, breeding system for breeding the predatory mites, and biological pest control method for crops
NZ569350A NZ569350A (en) 2005-12-29 2005-12-29 Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
KR1020147026002A KR20140135988A (en) 2005-12-29 2005-12-29 Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
ES05825571T ES2349941T3 (en) 2005-12-29 2005-12-29 COMPOSITION OF MUSHROOMS THAT INCLUDES GLYCYPHAGIDAE AND PHYTOSEIDOS MUSHROOMS, ITS USE, METHOD FOR THE BREEDING OF A PHYTOSEED PREDATORY MUSHROOM, BODY SYSTEM OF SUCH PREDATORY MUSHROOM AND METHODS FOR THE BIOLOGICAL CONTROL OF COSECEC PESTS.
EP05825571A EP1965634B1 (en) 2005-12-29 2005-12-29 Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
AT05825571T ATE476099T1 (en) 2005-12-29 2005-12-29 MITE PRODUCT CONTAINING GLYCYPHAGIDAE AND PHYTOSEIIDAE MITES, ITS USE, METHOD FOR BREEDING A PREDATORY MITE OF THE FAMILY PHYTOSEIIDAE, REARING SYSTEM FOR THE BREEDING OF THIS PREDATORY MITE FROM THE FAMILY PHYTOSEIIDAE, AND METHOD FOR BIOLOGICAL PEST CONTROL UNG IN A CULTURE
PT05825571T PT1965634E (en) 2005-12-29 2005-12-29 Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
DE602005022784T DE602005022784D1 (en) 2005-12-29 2005-12-29 MILB PRODUCT CONTAINING GLYCYPHAGIDAE AND PHYTOSIDEIDAL MILBES, ITS USE, METHOD OF ROSING A SPECIAL MILBER OF THE FAMILY PHYTOSEIIDAE, RESTORATION SYSTEM FOR THE FARMING OF THESE RARE MILK FROM THE FAMILY OF PHYTOSIS IDES, AND METHOD FOR BIOLOGICAL PESTICIDATION ON A CULTURE
EA200870126A EA022197B1 (en) 2005-12-29 2005-12-29 Composition for biological pest control on plants, use thereof, a container for rearing a phytoseiid predatory mite, and methods for rearing a phytoseiid predatory mite and for biological pest control on a crop
CNA2005800525615A CN101374409A (en) 2005-12-29 2005-12-29 Mite composition containing sweet-mite-eating species and phytoseiid mite, purpose thereof, method for breeding predatism phytoseiid mite, breeding system for breeding the predatism phytoseiid miteand
KR1020087018509A KR101549254B1 (en) 2005-12-29 2005-12-29 Mite composition comprising glycyphagidae and phytoseiid mites use thereof method for rearing a phytoseiid predatory mite rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
US12/158,447 US8957279B2 (en) 2005-12-29 2005-12-29 Mite composition comprising Glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
CA2635546A CA2635546C (en) 2005-12-29 2005-12-29 Phytoseiid mite rearing methods and methods for biological pest control
PL05825571T PL1965634T3 (en) 2005-12-29 2005-12-29 Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
TNP2008000281A TNSN08281A1 (en) 2005-12-29 2008-06-23 Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite,rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
IL192463A IL192463A (en) 2005-12-29 2008-06-26 Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
EC2008008586A ECSP088586A (en) 2005-12-29 2008-06-27 Composition of the tick including glycyphagidae and phytoseiid ticks, their use, breeding method of the phytoseiid predatory tick, breeding system for the aforementioned phytoseiid predatory tick and control methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/NL2005/000899 WO2007075081A1 (en) 2005-12-29 2005-12-29 Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop

Publications (1)

Publication Number Publication Date
WO2007075081A1 true WO2007075081A1 (en) 2007-07-05

Family

ID=36791099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2005/000899 WO2007075081A1 (en) 2005-12-29 2005-12-29 Mite composition comprising glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop

Country Status (22)

Country Link
US (1) US8957279B2 (en)
EP (1) EP1965634B1 (en)
JP (1) JP5393155B2 (en)
KR (2) KR101549254B1 (en)
CN (1) CN101374409A (en)
AP (1) AP2977A (en)
AT (1) ATE476099T1 (en)
AU (1) AU2005339589B2 (en)
BR (1) BRPI0520809B1 (en)
CA (1) CA2635546C (en)
DE (1) DE602005022784D1 (en)
DK (1) DK1965634T3 (en)
EA (1) EA022197B1 (en)
EC (1) ECSP088586A (en)
ES (1) ES2349941T3 (en)
IL (1) IL192463A (en)
MX (1) MX277715B (en)
NZ (1) NZ569350A (en)
PL (1) PL1965634T3 (en)
PT (1) PT1965634E (en)
TN (1) TNSN08281A1 (en)
WO (1) WO2007075081A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010009342A1 (en) * 2010-02-25 2011-08-25 BIOCARE Gesellschaft für biologische Schutzmittel mbH, 37574 Application unit for the application of a beneficial reproduction colony in a agricultural or horticultural stock
EP2380436A1 (en) * 2010-04-23 2011-10-26 Agrobio S.L. Mite composition, method for rearing a phytoseiid predatory mite species, and use of the composition for controlling crop pests
DE102010033048A1 (en) 2010-08-02 2012-02-02 Katz Biotech Ag Use of a microencapsulated food substrate
EP2232986A3 (en) * 2009-03-26 2013-02-27 Agrobio S.L. Mite composition, the rearing thereof and methods for application of the composition in biological control systems
NL1039058C2 (en) * 2011-09-20 2013-03-21 Koppert Bv Phytoseiid predatory mite releasing system and method for production.
EP2612551A1 (en) 2012-01-04 2013-07-10 Koppert B.V. Mite composition comprising a predatory mite and immobilized prey contacted with a fungus reducing agent and methods and uses related to the use of said composition
WO2013103295A1 (en) 2012-01-04 2013-07-11 Koppert B.V. Mite composition, carrier, method for rearing mites and uses related thereto
FR2992148A1 (en) * 2012-06-22 2013-12-27 Invivo Agrosolutions COMPOSITION COMPRISING ARTHROPODS AND EGGS OF ASTIGMATES
EP2764775A1 (en) * 2013-02-07 2014-08-13 Biobest NV Mite rearing methods
EP2982242A1 (en) 2014-08-06 2016-02-10 Agrobio S.L. Mite composition, the rearing thereof and methods for application of the composition in biological control systems.
EP3527072A1 (en) * 2018-02-14 2019-08-21 Agrobio S.L. Method and device for distributing beneficial mites
WO2019171374A1 (en) 2018-03-05 2019-09-12 Bio-Bee Sde Eliyahu Ltd. Novel methods for rearing and controlled release of biological control agents
WO2020070334A1 (en) 2018-10-05 2020-04-09 Biobest Group N.V. Mite composition and method for rearing mites
FR3100102A1 (en) 2019-09-03 2021-03-05 Bio-Bee Sde Eliyahu Ltd. New methods of breeding and controlled release of predatory mites
BE1027502A1 (en) 2019-09-03 2021-03-10 Bio Bee Sde Eliyahu Ltd New breeding and controlled release processes for predatory mites
WO2021044404A1 (en) 2019-09-03 2021-03-11 Bio-Bee Sde Eliyahu Ltd. Novel methods for rearing and controlled release of predatory mites
NL2023756A (en) 2019-09-03 2021-05-04 Bio Bee Sde Eliyahu Ltd Novel methods for rearing and controlled release of predatory mites
WO2021110934A1 (en) 2019-12-04 2021-06-10 Biobest Group N.V. Mite composition and method for rearing mites
CN113678790A (en) * 2021-07-30 2021-11-23 浙江省农业科学院 Method for optimizing Babylonia wasp population structure in host conversion mode
US20220110313A1 (en) * 2018-07-31 2022-04-14 Bioline France Biological Control System Comprising Predator Acarians In A Case
WO2023094479A1 (en) 2021-11-23 2023-06-01 Biobest Group N.V. Mite compositions and methods for feeding mites
WO2023117121A1 (en) 2021-12-23 2023-06-29 Biobest Group N.V. Mite composition and method for rearing mites
BE1030252A1 (en) 2021-12-08 2023-08-30 The Real Ipm Co Kenya Ltd Mite composition and method of feeding predatory mites
WO2023170145A1 (en) 2022-03-08 2023-09-14 Biobest Group N.V. Mite composition and method for feeding predatory mites

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101961000B (en) * 2010-10-29 2013-11-06 中国农业科学院植物保护研究所 Method for breeding large amount of Stratiolaelaps scimitus and Hypoaspis aculeifer (Canestrini) artificially
KR101044051B1 (en) * 2010-12-23 2011-06-23 주식회사 세실 Filler composition for breeding natural enemies, breeding composition for natural enemies, and controlling composition for insect pests comprising expanded chaff
WO2012086863A1 (en) * 2010-12-23 2012-06-28 주식회사 세실 Filler composition including expanded and softened chaff for breeding natural enemies, composition including expanded and softened chaff for breeding natural enemies, and composition including expanded and softened chaff for controlling insect pests
CN102511452B (en) * 2011-12-31 2014-11-26 中国农业科学院植物保护研究所 Novel method for artificial mass rearing of Amblyseius orientalis
CN103621493B (en) * 2013-11-14 2015-12-02 于丽辰 The biological control method of chestnut unguiculus mite
CN105210732B (en) * 2015-09-08 2018-09-14 云南省烟草公司玉溪市公司 A method of utilizing predation acarid control tobacco-plant pest-insect
NL2016103B1 (en) 2016-01-15 2017-08-02 Koppert Bv System for releasing beneficial mites and uses thereof.
CN106358877A (en) * 2016-09-13 2017-02-01 广东省生物资源应用研究所 Application of Pyemotes zhonghuajia in preparing preparation for biological prevention and control of diaphorina citri
CN106508812A (en) * 2016-10-13 2017-03-22 江西新龙生物科技股份有限公司 Rapid and efficient propagation method for neoseiulus barkeri
WO2019017776A1 (en) 2017-07-16 2019-01-24 Koppert B.V. System for releasing beneficial mites and uses thereof
CN108633842A (en) * 2018-04-10 2018-10-12 首伯农(北京)生物技术有限公司 A method of raising tarsonemid
CN109043130B (en) * 2018-08-31 2021-07-20 西南大学 Liquid artificial feed for neoseiulus pasteurii and preparation method thereof
CN113287576A (en) * 2021-05-13 2021-08-24 南昌大学 Method for artificial feeding of euseiulus nissei in simulated habitat
KR102455764B1 (en) 2021-10-27 2022-10-18 경북대학교 산학협력단 Mass-breeding apparatus of mites for natural enermy
CN115428770A (en) * 2022-11-09 2022-12-06 云南省烟草公司昆明市公司 Method for adjusting egg laying time of ladybug by using alternative feed
CN116349656B (en) * 2023-05-26 2023-08-22 云南省烟草公司昆明市公司 Method for large-scale propagation of noctuid black egg bees

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4646683A (en) * 1985-10-11 1987-03-03 Biofac, Inc. Method and apparatus for producing parasitic mites
JPH03108433A (en) * 1989-09-21 1991-05-08 Hokkaido Univ Container suitable for multiplication of acarids of family phytoseiidae of very small natural enemy, large amount of multiplication of same acarids using same container and preservation or transportation of same acarids using same container
GB2393890A (en) 2004-02-17 2004-04-14 Syngenta Bioline Ltd System for Providing Beneficial Organisms
US20050178337A1 (en) * 2004-02-17 2005-08-18 Syngenta Participations Ag System for providing beneficial insects or mites
WO2006057552A1 (en) * 2004-12-31 2006-06-01 Koppert B. V. Mite composition, use thereof, method for rearing the phytoseiid predatory mite amblyseius sirskii, rearing system for rearing said phytoseiid mite and methods for biological pest control on a crop
WO2006071107A1 (en) * 2004-12-31 2006-07-06 Koppert B.V. Mite composition, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2168680B (en) 1984-12-21 1989-06-14 Bunting Peter Eric Distribution of living arthropods or the like
JP3547173B2 (en) * 1994-07-28 2004-07-28 農薬バイオテクノロジー開発技術研究組合 Mite propagation method
US6129935A (en) 1998-05-15 2000-10-10 Entomos, Llc Methods for rearing insects, mites, and other beneficial organisms

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4646683A (en) * 1985-10-11 1987-03-03 Biofac, Inc. Method and apparatus for producing parasitic mites
JPH03108433A (en) * 1989-09-21 1991-05-08 Hokkaido Univ Container suitable for multiplication of acarids of family phytoseiidae of very small natural enemy, large amount of multiplication of same acarids using same container and preservation or transportation of same acarids using same container
GB2393890A (en) 2004-02-17 2004-04-14 Syngenta Bioline Ltd System for Providing Beneficial Organisms
US20050178337A1 (en) * 2004-02-17 2005-08-18 Syngenta Participations Ag System for providing beneficial insects or mites
WO2006057552A1 (en) * 2004-12-31 2006-06-01 Koppert B. V. Mite composition, use thereof, method for rearing the phytoseiid predatory mite amblyseius sirskii, rearing system for rearing said phytoseiid mite and methods for biological pest control on a crop
WO2006071107A1 (en) * 2004-12-31 2006-07-06 Koppert B.V. Mite composition, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 293 (C - 0853) 25 July 1991 (1991-07-25) *
RODRIGUEZ J G,MCMURTRY J A: "Nutritional ecology of insects, mites, spiders, and related invertebrates: Nutritional Ecology of Phytoseiid Mites.", March 1987, JOHN WILEY & SONS, NEW YORK, ISBN: 047180617X, XP008068054 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2232986A3 (en) * 2009-03-26 2013-02-27 Agrobio S.L. Mite composition, the rearing thereof and methods for application of the composition in biological control systems
DE102010009342A1 (en) * 2010-02-25 2011-08-25 BIOCARE Gesellschaft für biologische Schutzmittel mbH, 37574 Application unit for the application of a beneficial reproduction colony in a agricultural or horticultural stock
EP2380436A1 (en) * 2010-04-23 2011-10-26 Agrobio S.L. Mite composition, method for rearing a phytoseiid predatory mite species, and use of the composition for controlling crop pests
WO2011131791A1 (en) * 2010-04-23 2011-10-27 Agrobío S.L. Mite composition, method for rearing a phytoseiid predatory mite species, and use of the composition for controlling crop pests
US10945442B2 (en) 2010-04-23 2021-03-16 Agrobío S.L. Mite composition, method for rearing a phytoseiid predatory mite species, and use of the composition for controlling crop pests
EP2415356A2 (en) 2010-08-02 2012-02-08 Katz Biotech AG Microcapsule nutrition substrate for breeding predatory spiders
DE102010033048A1 (en) 2010-08-02 2012-02-02 Katz Biotech Ag Use of a microencapsulated food substrate
WO2013043050A1 (en) 2011-09-20 2013-03-28 Koppert B.V. Phytoseiid predatory mite releasing system and method for production.
US9693540B2 (en) 2011-09-20 2017-07-04 Koppert B.V. Phytoseiid predatory mite releasing system and method for production
NL1039058C2 (en) * 2011-09-20 2013-03-21 Koppert Bv Phytoseiid predatory mite releasing system and method for production.
JP2014531209A (en) * 2011-09-20 2014-11-27 コッパート・ベスローテン・フェンノートシャップ Predatory mite release system and method of preparation.
US11026409B2 (en) 2011-09-20 2021-06-08 Koppert B.V. Phytoseiid predatory mite releasing system and method for production
US20170325430A1 (en) * 2011-09-20 2017-11-16 Koppert B.V. Phytoseiid Predatory Mite Releasing System and Method for Production
WO2013103295A1 (en) 2012-01-04 2013-07-11 Koppert B.V. Mite composition, carrier, method for rearing mites and uses related thereto
RU2617961C2 (en) * 2012-01-04 2017-04-28 КОППЕРТ Би. Ви. Mites composition containing predatory mite and immobilized pray in contact with agent destroying fungus and related methods and applications using said composition
WO2013103294A1 (en) * 2012-01-04 2013-07-11 Koppert B.V. Mite composition comprising a predatory mite and immobilized prey contacted with a fungus reducing agent and methods and uses related to the use of said composition
US9781937B2 (en) 2012-01-04 2017-10-10 Koppert B.V. Mite composition comprising a predatory mite and immobilized prey contacted with a fungus reducing agent and methods and uses related to the use of said composition
EP2612551A1 (en) 2012-01-04 2013-07-10 Koppert B.V. Mite composition comprising a predatory mite and immobilized prey contacted with a fungus reducing agent and methods and uses related to the use of said composition
EP3165087A1 (en) 2012-01-04 2017-05-10 Koppert B.V. Mite composition, carrier, method for rearing mites and uses related thereto
WO2013190142A1 (en) * 2012-06-22 2013-12-27 Invivo Agrosolutions Composition comprising arthropods and astigmatid mite eggs
US11638417B2 (en) 2012-06-22 2023-05-02 Bioline Agrosciences France Composition comprising arthropods and astigmatid mite eggs
FR2992148A1 (en) * 2012-06-22 2013-12-27 Invivo Agrosolutions COMPOSITION COMPRISING ARTHROPODS AND EGGS OF ASTIGMATES
US10966413B2 (en) 2012-06-22 2021-04-06 Agrosolutions Composition comprising arthropods and astigmatid mite eggs
EP2764775A1 (en) * 2013-02-07 2014-08-13 Biobest NV Mite rearing methods
BE1021080B1 (en) * 2013-02-07 2016-01-19 Biobest Belgium Nv METHODS FOR GROWING MUNS.
WO2014122242A1 (en) * 2013-02-07 2014-08-14 Biobest N.V. Mite rearing methods
US9992982B2 (en) 2013-02-07 2018-06-12 Biobest Belgium N.V. Mite rearing methods
EP3039964A1 (en) * 2013-02-07 2016-07-06 Biobest Belgium NV Mite rearing methods
EP2982242A1 (en) 2014-08-06 2016-02-10 Agrobio S.L. Mite composition, the rearing thereof and methods for application of the composition in biological control systems.
EP3527072A1 (en) * 2018-02-14 2019-08-21 Agrobio S.L. Method and device for distributing beneficial mites
WO2019158311A1 (en) * 2018-02-14 2019-08-22 Agrobío S.L. Method and device for distributing beneficial mites
WO2019171374A1 (en) 2018-03-05 2019-09-12 Bio-Bee Sde Eliyahu Ltd. Novel methods for rearing and controlled release of biological control agents
US20220110313A1 (en) * 2018-07-31 2022-04-14 Bioline France Biological Control System Comprising Predator Acarians In A Case
BE1026685A1 (en) 2018-10-05 2020-04-30 Biobest Group N V Mite composition and method for growing mites
WO2020070334A1 (en) 2018-10-05 2020-04-09 Biobest Group N.V. Mite composition and method for rearing mites
NL2023756A (en) 2019-09-03 2021-05-04 Bio Bee Sde Eliyahu Ltd Novel methods for rearing and controlled release of predatory mites
WO2021044404A1 (en) 2019-09-03 2021-03-11 Bio-Bee Sde Eliyahu Ltd. Novel methods for rearing and controlled release of predatory mites
FR3100102A1 (en) 2019-09-03 2021-03-05 Bio-Bee Sde Eliyahu Ltd. New methods of breeding and controlled release of predatory mites
BE1027502A1 (en) 2019-09-03 2021-03-10 Bio Bee Sde Eliyahu Ltd New breeding and controlled release processes for predatory mites
WO2021110934A1 (en) 2019-12-04 2021-06-10 Biobest Group N.V. Mite composition and method for rearing mites
BE1027819A1 (en) 2019-12-04 2021-06-28 Biobest Group N V Mites composition and method for breeding mites
CN113678790A (en) * 2021-07-30 2021-11-23 浙江省农业科学院 Method for optimizing Babylonia wasp population structure in host conversion mode
CN113678790B (en) * 2021-07-30 2023-02-24 浙江省农业科学院 Method for optimizing Babylonia wasp population structure in host conversion mode
WO2023094479A1 (en) 2021-11-23 2023-06-01 Biobest Group N.V. Mite compositions and methods for feeding mites
BE1029947A1 (en) 2021-11-23 2023-06-15 The Real Ipm Co Kenya Ltd Mite compositions and methods of feeding mites
BE1030252A1 (en) 2021-12-08 2023-08-30 The Real Ipm Co Kenya Ltd Mite composition and method of feeding predatory mites
WO2023117121A1 (en) 2021-12-23 2023-06-29 Biobest Group N.V. Mite composition and method for rearing mites
WO2023170145A1 (en) 2022-03-08 2023-09-14 Biobest Group N.V. Mite composition and method for feeding predatory mites
BE1030324A1 (en) 2022-03-08 2023-10-02 Biobest Group N V Mite composition and method of feeding predatory mites

Also Published As

Publication number Publication date
DK1965634T3 (en) 2010-11-15
BRPI0520809B1 (en) 2016-02-10
CA2635546C (en) 2017-05-16
PL1965634T3 (en) 2011-03-31
US20090205057A1 (en) 2009-08-13
AP2977A (en) 2014-09-30
IL192463A (en) 2012-08-30
NZ569350A (en) 2010-05-28
ES2349941T3 (en) 2011-01-13
EA022197B1 (en) 2015-11-30
PT1965634E (en) 2010-11-10
US8957279B2 (en) 2015-02-17
AU2005339589B2 (en) 2012-08-23
MX277715B (en) 2010-07-30
IL192463A0 (en) 2011-08-01
JP2009522256A (en) 2009-06-11
ATE476099T1 (en) 2010-08-15
DE602005022784D1 (en) 2010-09-16
EP1965634B1 (en) 2010-08-04
EP1965634A1 (en) 2008-09-10
BRPI0520809A2 (en) 2009-06-23
ECSP088586A (en) 2008-07-30
KR20080085063A (en) 2008-09-22
AP2008004530A0 (en) 2008-08-31
EA200870126A1 (en) 2009-02-27
JP5393155B2 (en) 2014-01-22
CA2635546A1 (en) 2007-07-05
CN101374409A (en) 2009-02-25
TNSN08281A1 (en) 2009-10-30
KR101549254B1 (en) 2015-09-11
AU2005339589A1 (en) 2007-07-05
KR20140135988A (en) 2014-11-27

Similar Documents

Publication Publication Date Title
AU2005339589B2 (en) Mite composition comprising Glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
US8097248B2 (en) Mite composition, use thereof, method for rearing the phytoseiid predatory mite Amblyseius sirskii, rearing system for rearing said phytoseiid mite and methods for biological pest control on a crop
AU2004326012C1 (en) Mite composition, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop
KR20070110008A (en) Mite composition, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005339589

Country of ref document: AU

Ref document number: 569350

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2005825571

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2635546

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/008480

Country of ref document: MX

Ref document number: 08066521

Country of ref document: CO

Ref document number: 2623/KOLNP/2008

Country of ref document: IN

Ref document number: CR2008-010121

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 2008061105

Country of ref document: EG

WWE Wipo information: entry into national phase

Ref document number: 2008548446

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: AP/P/2008/004530

Country of ref document: AP

ENP Entry into the national phase

Ref document number: 2005339589

Country of ref document: AU

Date of ref document: 20051229

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: DZP2008000480

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 1020087018509

Country of ref document: KR

Ref document number: 200870126

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: a200808570

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 200580052561.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12158447

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0520809

Country of ref document: BR

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1020147026002

Country of ref document: KR