WO2007074673A1 - アナログデジタル変換装置とそれを用いた車両用電源装置 - Google Patents
アナログデジタル変換装置とそれを用いた車両用電源装置 Download PDFInfo
- Publication number
- WO2007074673A1 WO2007074673A1 PCT/JP2006/325218 JP2006325218W WO2007074673A1 WO 2007074673 A1 WO2007074673 A1 WO 2007074673A1 JP 2006325218 W JP2006325218 W JP 2006325218W WO 2007074673 A1 WO2007074673 A1 WO 2007074673A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- analog
- voltage
- digital
- digital output
- error
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
- H03M1/1033—Calibration over the full range of the converter, e.g. for correcting differential non-linearity
- H03M1/1038—Calibration over the full range of the converter, e.g. for correcting differential non-linearity by storing corrected or correction values in one or more digital look-up tables
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
Definitions
- the present invention relates to an analog-to-digital conversion device that converts an analog input voltage into a digital signal, and to a vehicle power supply device that uses it to perform emergency power backup for a vehicle load.
- An analog-to-digital conversion device that converts an analog input voltage into a digital signal is originally converted into a digital signal linearly with respect to the analog input voltage and output.
- the output may deviate from the true value due to the characteristics of the analog-to-digital converter itself and the influence of peripheral circuits such as noise, resulting in a non-linear output that includes errors.
- Patent Document 1 discloses a method for correcting an error based on a reference voltage.
- the block circuit diagram is shown in FIG.
- the analog-to-digital conversion device 411 roughly comprises a plurality of analog-digital conversion units and a calculation unit.
- the reference analog signal generation unit 415 generates a constant voltage Vref. Then, the constant voltage Vref is divided by the resistors R6 and R7, and the reference voltage V7 is obtained.
- the reference voltage V7 is an analog voltage, and is input to the reference analog-to-digital converter 417, thereby generating a digital output V7Da.
- the digital output V7Da is input to the comparison correction value generation unit 494.
- the digital reference value storage unit 493 stores a digital reference value V7 Dr determined in advance, and the digital reference value V7Dr is also input to the comparison correction value generation unit 494.
- the comparison correction value generation unit 494 uses the digital output V7Da and the digital reference value V
- Vdd is the output voltage of the power supply circuit, and this output voltage is the power supply for each circuit block.
- the digital reference value storage unit 493 stores a digital reference value V7Dr for the reference voltage V7 in advance. This value is indicated by the square point (true value) in FIG. Accordingly, the comparison correction value generation unit 494 outputs the difference between the two as an error AD. Since the error AD is uniformly determined as an error regardless of the analog input voltage, this conventional example assumes that the digital output is on the bold dotted line in FIG. In other words, the digital output is considered to be translated from the straight line showing the true value by an error AD in the upward direction of the Y axis.
- the error ⁇ D is made uniform.
- the analog-to-digital conversion unit always translates by an error ⁇ D and can be sufficiently corrected with conventional technology if it has such high precision, but an actual general analog-to-digital conversion unit is not necessarily
- the error ⁇ D cannot be determined by just one error, and the error ⁇ D also becomes nonlinear depending on the analog input voltage. Therefore, if the conventional technology is used as it is, the accuracy may be degraded.
- Such a vehicle power supply device detects the voltage of each capacitor in order to monitor the state of the capacitor. Since voltage detection is performed by a microcomputer as a control unit, an analog-digital converter is usually required. At this time, when a conventional analog-digital converter is used, in a voltage region where error correction accuracy is insufficient, such as an arbitrary analog voltage V5 in FIG. 15, the capacitor voltage is normal even though it is abnormal. There is a problem that reliability may not be obtained. there were.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2004-304738
- the analog-digital conversion device of the present invention and the vehicle power supply device using the analog-digital conversion device have a plurality of reference voltages, obtain errors with respect to each reference voltage in advance, and errors in digital output corresponding to adjacent reference voltages occur. In the case of the same sign, the average value is determined, and in the case of a different sign, 0 is determined as the reference error of the digital output section divided by the digital output corresponding to each input reference voltage. The reference error of the digital output section in which the digital output for is subtracted from the digital output is output as a corrected digital output.
- an analog-to-digital converter with high error correction accuracy can be realized by correcting with a reference error corresponding to a digital output value from a plurality of reference errors.
- FIG. 1 is a block circuit diagram of an analog-digital conversion apparatus according to Embodiment 1 of the present invention.
- FIG. 2 is a correlation diagram between an analog input voltage and a digital output showing a first correction state of the analog-to-digital converter according to Embodiment 1 of the present invention.
- FIG. 3 is a correlation diagram between an analog input voltage and a digital output showing an example of correction in the first correction state of the analog-to-digital converter according to Embodiment 1 of the present invention.
- FIG. 4 is a correlation diagram between an analog input voltage and a digital output, showing a second correction state of the analog-to-digital converter according to Embodiment 1 of the present invention.
- FIG. 5 is a correlation diagram between an analog input voltage and a digital output showing an example of correction in the second correction state of the analog-to-digital converter according to Embodiment 1 of the present invention.
- FIG. 6 is a correlation diagram between an analog input voltage and a digital output, showing a third correction state of the analog-to-digital converter according to Embodiment 1 of the present invention.
- FIG. 7 is a correlation diagram between an analog input voltage and a digital output, illustrating a correction example in the third correction state of the analog-to-digital converter according to Embodiment 1 of the present invention.
- FIG. 8 is a block circuit diagram of a vehicle power supply device using the analog-digital conversion device according to the second embodiment of the present invention.
- FIG. 9 is a block circuit diagram of a vehicle power supply device using the analog-digital conversion device according to the third embodiment of the present invention.
- FIG. 10A is a flowchart of a main routine showing the operation of the vehicle power supply device using the analog-digital conversion device in the third embodiment of the present invention.
- FIG. 10B is a flowchart of an interrupt routine showing the operation of the vehicle power supply device using the analog-digital conversion device in the third embodiment of the present invention.
- FIG. 11 is a block circuit diagram of a vehicle power supply device using the analog-digital conversion device according to the fourth embodiment of the present invention.
- FIG. 12 is a block circuit diagram of a vehicle power supply device using the analog-digital conversion device according to the fifth embodiment of the present invention.
- FIG. 13 is a flowchart of a main routine showing the operation of the vehicle power supply device using the analog-digital conversion device in the fifth embodiment of the present invention.
- FIG. 14 is a block circuit diagram of a conventional analog-digital converter.
- FIG. 15 is a correlation diagram between an analog input voltage and a digital output, showing a correction example of a conventional analog-digital converter.
- control unit control unit
- FIG. 1 is a block circuit diagram of an analog-digital conversion apparatus according to Embodiment 1 of the present invention.
- the microcomputer 100 includes an internal arithmetic processing 16-bit arithmetic unit 100a, an internal memory 100b, and a port control unit 100c that controls an input port and an output port, which will be described later.
- An analog-digital converter 101 is built-in. As a result, the transmission distance between the analog-digital conversion unit 101 and the calculation unit 100a can be shortened, so that the influence of external noise and the like can be reduced, contributing to higher accuracy.
- the analog-to-digital conversion unit 101 converts the analog input voltage into a digital output accordingly.
- the arithmetic unit 100a reads the digital output, performs error correction, obtains a corrected digital output, and then outputs the corrected digital output from the output port 103.
- the force for directly outputting the corrected digital output from the output port 103 may be used in the microcomputer 100.
- a selection switch 104 for selecting one of the plurality of input ports 102 is also built in the micro computer 100 and controlled by the port control unit 100c. In the first embodiment, since two ports are used as the input port 102, they are designated as the input ports 102a and 102b.
- An analog input voltage multiplexer 105 and a reference voltage multiplexer 106 are sequentially connected to the two input ports 102a and 102b. These are switching units for selecting any one of a plurality of inputs. Multi for analog input voltage
- the input selection of the plexer 105 and the reference voltage multiplexer 106 is controlled by the microcomputer 100. Specifically, one input is selected by the signal of the selection port 107 connected to the port control unit 100c.
- the analog input voltage multiplexer 105 is connected to a plurality of analog input voltages. Specifically, the analog input to be read is divided by a resistor 108 and input to the analog input voltage multiplexer 105. The reason for this configuration is to suppress the analog input within the withstand voltage of the analog input voltage multiplexer 105.
- a plurality of reference voltages are connected to the reference voltage multiplexer 106. Therefore, a plurality of reference voltages that can also obtain the output voltage force of the Zener diode 109 as the reference voltage source are connected to the analog-digital conversion unit 101 via the reference voltage multiplexer 106 as the switching unit.
- the reference voltage As the reference voltage, four types of voltages are used as shown in FIG. These use a voltage intermediate between the ground level (0 V) and the output voltage of the Zener diode 109.
- the output voltage of the Zener diode 109 is 2.5 V, which is equal to the maximum analog input voltage Vr of the analog digital conversion unit 101.
- the reference voltage can be generated by dividing the accurate output voltage of the Zener diode 109 with a high-precision resistor 110 such as a metal film resistor. By changing the resistance value of the high-precision resistor 110, four different voltages are connected to the input terminal of the reference voltage multiplexer 106.
- the reference voltage is not limited to four points but may be more. In this case, error correction with higher accuracy is possible.
- a plurality of high precision resistors 110 may be connected in series, and the midpoint voltage of each may be used as a reference voltage.
- the analog input is specifically reduced to a voltage of 1Z8 by the resistor 108, so that the maximum analog input voltage Vr (2.5V) is 8 times, that is, up to 20V. It is configured to support analog input.
- Vr 2.5V
- the voltage range is set to around 5V (4V to 6V), and the maximum voltage of the analog input is assumed to be 12V.
- the four reference voltages correspond to analog inputs 4V, 5V, 6V, and 12V so as to set many in the vicinity of 5V, respectively, that is, multiplied by 1/8, that is, 0.5V, 0.625V
- the resistance value of the high-precision resistor 110 may be determined to be 0.75V and 1.5V, respectively. That is, a plurality of reference voltages may be set in a range that requires the accuracy of the analog input voltage. According to such a configuration, it is possible to perform error correction more accurately for a specific range of the analog input voltage.
- FIG. 2 is a correlation diagram between the analog input voltage and the digital output showing the first correction state of the analog-digital conversion apparatus according to Embodiment 1 of the present invention.
- the microcomputer 100 is connected to the maximum analog input voltage Vr (2.5 V) that is the output voltage of the Zener diode 109.
- Vr the output voltage of the Zener diode 109.
- the analog input voltage is the ground (OV) which is the minimum value
- the digital output of the analog-to-digital converter 101 is the minimum value 0
- the analog input voltage is the maximum analog input voltage Vr
- the analog-to-digital conversion is performed.
- the digital output of section 101 to the maximum value LM.
- the true value of the digital output of the analog-to-digital converter 101 is the origin as indicated by the thin solid line in FIG. 2 on the plane in which the horizontal axis represents the analog input voltage and the vertical axis represents the digital output. It exists on the straight line that connects the coordinate (0, 0) and the maximum value LM at the maximum analog input voltage Vr, that is, the coordinates (Vr, LM). Therefore, if a digital output is output based on an arbitrary analog input voltage so as to follow the linear relationship, an accurate output without error is obtained.
- the analog-digital conversion unit 101 has the origin and the maximum value position. Even if the target is decided, it does not necessarily have an error that is not output in a linear relationship. Correspondingly, a specific operation performed by the analog-digital conversion apparatus in the first embodiment will be described with reference to FIG.
- the microcomputer 100 determines a plurality of digital outputs corresponding to a plurality of reference voltages generated by the high-precision resistor 110 by controlling the reference voltage multiplexer 106 serving as a switching unit.
- the reference voltage multiplexer 106 is instructed to select a reference voltage VI (eg, 0.5 V).
- a reference voltage VI eg, 0.5 V
- the reference voltage V 1 that has become the output of the reference voltage multiplexer 106 is input as an analog input voltage to the analog-to-digital converter 101 via the input port 102 b and the selection switch 104.
- the microcomputer 100 knows that the current analog input voltage is the reference voltage VI (0.5 V). Therefore, the arithmetic unit 100a obtains, as an error A L1, a value obtained by subtracting the true value L1R of the digital output from which the true linear force obtained by force calculation can be obtained from the digital output L1D at the reference voltage VI (0.5 V). .
- the error A L1 is stored in the internal memory 1 OOb.
- the reference voltage is sequentially switched by the reference voltage multiplexer 106, and the errors A L2, A L3, and A L4 with respect to the reference voltages V2, V3, and V4 are respectively obtained by the arithmetic unit 100a. .
- the errors A L2, A L3, and A L4 are stored in the internal memory 100b.
- values greater than the true value are output from the analog-to-digital conversion unit 101 at all reference voltages between the origin 0 V and the maximum analog input voltage Vr. Since the error is defined as a value obtained by subtracting the true value from the output force of the analog-digital converter 101, the signs of the errors A L1, A L2, A L3, and A L4 are all positive.
- a reference error with respect to an arbitrary analog input voltage is obtained as follows.
- the reference error is an error correction amount for correcting the digital output obtained from the analog-digital conversion unit 101 for an arbitrary analog input voltage.
- the reference error in each interval can be determined, for example, the interval between the reference voltage VI and the reference voltage V2, and the interval between the reference voltage V2 and the reference voltage V3. For example, it is considered that more accurate error correction can be performed for each voltage section.
- the digital output is not divided for each section, but the digital output is divided for each section.
- the digital output section is divided using digital outputs L1D, L2D, L3D, and L4D corresponding to the reference voltages VI, V2, V3, and V4.
- the values of these digital outputs L1D, L2D, L3D, and L4D are all stored in the internal memory 100b.
- the digital output in the case of FIG. 2 is divided into five sections: 0 to L1D, LID to L2D, L2D to L3D, L3D to L4D, and L4D to LM.
- the reference error in each section is determined by the method described later.
- the digital output LxD obtained by the analog-to-digital converter 101 for an arbitrary analog input voltage Vx is based on which of the above-mentioned five sections is included, and the reference in the included section It is corrected by subtracting the error.
- the reference error is basically obtained by averaging the errors in the adjacent sections. However, if the error between adjacent sections is different, the reference error is 0. This case will be described later. To do.
- the error at the origin and the maximum value LM is assumed to be zero. Therefore, for the digital output sections 0 to L1D and L4D to LM, the reference error is half of the errors A L1 and A L4, respectively.
- the reference error is obtained according to the above determination method, in the case of FIG. 2, since all errors are positive, the signs of adjacent errors coincide in all sections. Therefore, the average of adjacent errors is obtained as the reference error.
- the reference error obtained in this way is attached with a sign as described below.
- one reference error is applied depending on which of the sections 1) to 5) the digital output corresponding to an arbitrary analog input voltage is included in.
- the sum of the true value and the reference error in each digital output section at this time is shown by a thick dotted line in FIG.
- FIG. 3 is a correlation diagram between the analog input voltage and the digital output showing an example of correction in the first correction state of the analog-to-digital converter according to Embodiment 1 of the present invention.
- an arbitrary analog input voltage Vx obtained by dividing a certain analog input by a resistor 108 is converted into an analog-to-digital converter 101 via an analog input voltage multiplexer 105, an input port 102a, and a selection switch 104. Is input.
- the digital output LxD (diamond point) of the analog digital converter 101 is included in the digital output section L2D to L3D as shown in Fig. 3, so the digital output Lx D is corrected with the reference error A L23 in this section. (Subtract). Therefore, the corrected digital output Lx from the calculation unit 100a is obtained by LxD-AL23.
- This corrected digital output Lx is indicated by a circle in FIG. Compared to the digital output LxD before correction, the corrected digital output Lx is plotted very close to the true straight line, indicating that the error correction is extremely good.
- the analog input voltage multiplexer 105 is switched and another arbitrary analog input voltage Vy is input to the analog-digital conversion unit 101. Since the digital output LyD (diamond point) at this time is included in the digital output section L4D to LM as shown in Fig. 3, the digital output LyD is corrected with the reference error AL4M in this section. Therefore, the corrected digital output Ly is obtained by LyD-AL4M.
- the digital output Ly after correction is indicated by a circle in FIG.
- the digital output LyD before correction does not deviate significantly from the thick solid line in FIG. 2, that is, the digital output characteristics of the analog-to-digital converter 101, so the digital output LyD near the analog input voltage Vy is a true straight line. Plotted nearby.
- the thick solid line in Fig. 2 is close to the true line, so the reference error AL4M also decreases accordingly.
- the corrected digital output Ly is also plotted near the true line equivalent to the digital output LyD. Therefore, it can be seen that the corrected digital output Ly is also well corrected.
- the error correction method of the first embodiment it is close to the true value straight line!
- the reference error decreases in the force section, and the reference error increases in the digital output section far from the true linear force. Therefore, unlike the conventional correction of the analog input voltage V5 in FIG. 15, the error AD is uniformly subtracted, so that the accuracy is not deteriorated and no matter what analog input voltage is input, it is satisfactory. Error correction can be performed.
- FIG. 4 is a correlation diagram between an analog input voltage and a digital output, showing a second correction state of the analog-to-digital converter according to Embodiment 1 of the present invention.
- Figure 4 shows the digital outputs L1D and L2D (diamond points) for the input reference voltages VI and V2.
- the digital outputs L3D and L4D for the reference voltages V3 and V4 are smaller than the ideal values L1R and L2R (square points) on the true line. Is greater than the ideal values L3R and L4R on the true line. Therefore, the reference voltages V3 and V4 are the same as in FIG.
- FIG. 5 is a correlation diagram between the analog input voltage and the digital output showing an example of correction in the second correction state of the analog-to-digital converter according to Embodiment 1 of the present invention.
- the horizontal and vertical axes are the same as in FIG.
- This corrected digital output Lx is indicated by a circle in FIG. Compared to the digital output LxD before correction, the corrected digital output Lx is plotted very close to the true line. Therefore, it can be seen that the error correction is very good.
- FIG. 6 is a correlation diagram between the analog input voltage and the digital output, showing a third correction state of the analog-to-digital converter according to Embodiment 1 of the present invention.
- the horizontal and vertical axes are the same as in FIG. First, Fig. 6 shows the digital outputs L1D and L3D for the reference voltages VI, V3, and V4 where only the digital output L2D (diamond point) for the input reference voltage V2 is smaller than the ideal value L2R (square point) on the true value line. , L4D is greater than the ideal values L1R, L3R, L4R on the true line. Therefore, the reference voltages VI, V3, and V4 are the same as in FIG.
- FIG. 7 is a correlation diagram between the analog input voltage and the digital output, illustrating a correction example in the third correction state of the analog-to-digital converter according to Embodiment 1 of the present invention.
- the horizontal and vertical axes are the same as in FIG.
- the digital output Lx after correction is indicated by a circle in FIG. Since the digital output LxD and the corrected digital output Lx are equal, the rhombus points and the circle points overlap. In this case, the digital output LxD is originally close to the true straight line! Since it was plotted there, it can be seen that a sufficiently high-precision digital output can be obtained without error correction.
- the analog-digital conversion device of the present invention includes the analog-digital conversion unit 101 that converts an analog input voltage into a digital output, and the analog-digital conversion unit 101.
- a reference voltage source connected via a switching unit, and a microcomputer 100 that is connected to the switching unit, reads a digital output, and obtains and outputs a corrected digital output. Then, the microcomputer 100 controls the switching unit to obtain a plurality of digital outputs corresponding to a plurality of reference voltages obtained from the reference voltage source, and then, from the plurality of digital outputs, obtains a comprehensive determination.
- the step of obtaining the error is a step of determining the reference error of the digital output section divided by the digital output corresponding to the adjacent reference voltage as an average of the errors when the signs of the errors of the adjacent reference voltages match.
- the signs of the errors of the adjacent reference voltages do not match, there is a step of determining the reference error of the digital output section divided by the digital output corresponding to the adjacent reference voltage as 0.
- the corrected digital output is obtained by subtracting the reference error of the digital output section in which the digital output corresponding to the arbitrary analog input voltage is included.
- an analog-to-digital converter that can be corrected with multiple reference errors and can be corrected more accurately and with higher accuracy is obtained.
- an analog-digital conversion apparatus that can reduce the possibility of poor accuracy of the corrected digital output is obtained by correcting the reference error as 0 so as not to be corrected. It is done.
- FIG. 8 is a block circuit diagram of a vehicle power supply device using the analog-digital conversion device according to Embodiment 2 of the present invention.
- a main power supply 113 that is a battery is connected to a vehicle load 111 that controls vehicle braking via a main power switch 112 that also has a diode force.
- the main power switch 112 is provided to prevent any current from flowing into the main power supply 113.
- the vehicle load 111 has a built-in voltage stabilization circuit (not shown), the main power supply 113 is below a predetermined voltage (for example, 9.5V) that cannot drive the vehicle load 111.
- a power backup unit 114 (indicated by a thin dotted line in FIG. 8) for supplying driving power to the vehicle load 111 is connected!
- the power supply backup unit 114 has a built-in capacitor unit 115 that includes a plurality of capacitor capacitors as an emergency power source.
- the drive power can be continuously supplied from the capacitor unit 115 to the vehicle load 111 in an auxiliary manner.
- the capacitor unit 115 is connected to a charging circuit 116 for charging from the power of the main power source 113 when the vehicle is started, and a discharging circuit 117 for discharging the power of the capacitor unit 115 when the vehicle is finished using. Accordingly, since the capacitor unit 115 is discharged when the vehicle is not used, it is possible to extend the life of the capacitor.
- the output of the capacitor unit 115 is connected to the power supply switching switch 118.
- the power supply switching switch 118 is a two-way switch, and as shown in FIG. 8, a capacitor cut 115 is connected to one of them and a main power supply 113 is connected to the other.
- a vehicle load 111 is connected to the common terminal. Therefore, the power source to be supplied to the vehicle load 111 can be selected by the power source switching switch 118. In other words, the power supply switching switch 118 can switch the power supply source to either the main power supply 113 or the capacitor unit 115.
- the power source switch 118 has a structure (for example, a relay) that can be switched by an external signal.
- the capacitor unit 115 needs to detect a voltage in order to monitor the states of a plurality of capacitors. Therefore, a signal line for outputting the voltage of each capacitor is connected to the analog-to-digital converter 120 described in the first embodiment (shown by a thick dotted line in FIG. 8) via a resistor divider circuit 119. Therefore, the analog-digital converter 120 can read the voltages of a plurality of capacitors.
- the internal configuration of analog-digital conversion device 120 is the same as that described in the first embodiment.
- a control unit that controls power supply backup unit 114 is built in microcomputer 100 of analog-digital converter 120.
- the microcomputer 100 is connected with signal lines for controlling the charging circuit 116, the discharging circuit 117, and the power supply switching switch 118 and for transmitting and receiving data. Then, the control unit controls the charging circuit 116, the discharging circuit 117, and the power supply switching switch 118.
- the microcomputer 100 switches the power switch 118 to the main power 113 side to supply power to the vehicle load 111, and controls the charging circuit 116 to charge the capacitor 115. Send a signal. In response, the charging circuit 116 charges until the capacitor unit 115 is fully charged.
- the microcomputer 100 uses the Zener diode 109 and the high-precision resistor 110 to obtain the reference error corresponding to each digital output section described in the first embodiment while switching the reference voltage with the reference voltage multiplexer 106. Store in the internal memory 100b.
- the selection signal output of the selection port 107 is wired so as to simultaneously switch both the analog input voltage multiplexer 105 and the reference voltage multiplexer 106. This is because there is no correlation between the output of the analog input voltage multiplexer 105 and the output of the reference voltage multiplexer 106. Therefore, since it is possible to switch at the same time, wiring can be simplified by sharing the selection port 107 as shown in FIG.
- the microcomputer 100 interrupts the charging and obtains the internal resistance value of the capacitor unit 115 from the voltage obtained at that time.
- the internal capacitance value is obtained from the voltage change rate per unit time of the capacitor unit 115.
- the microcomputer 100 compares the current internal resistance value of the capacitor unit 115 with a predetermined limit value of the internal resistance value relative to the current internal capacitance value, thereby degrading the capacitor unit 115. Judging the status (life).
- the internal resistance value and the internal capacitance value of the capacitor unit 115 can be measured with high accuracy by detecting the voltage using the analog-digital conversion apparatus of the first embodiment. Therefore, in the past, life judgment was performed with a margin to the life limit, but in Embodiment 2, it can be used to near the life limit.
- the microcomputer 100 monitors the overcharge state of each capacitor of the capacitor unit 115. Specifically, first, the voltage of each capacitor is input to the analog input voltage multiplexer 105 included in the analog-to-digital converter 120 via the resistance dividing circuit 119. Note that the reason for using the resistor divider circuit 119 is to convert the voltage into a voltage that can be processed by the analog-to-digital converter 101 built in the microcomputer 100, as described in the first embodiment. I'm dropping it.
- the microcomputer 100 sequentially selects each capacitor, and each capacitor voltage is input to the analog-digital conversion unit 101 via the input port 102a and the selection switch 104 built in the microcomputer 100.
- the analog-digital converter 101 outputs a digital output corresponding to the analog input voltage to the arithmetic unit 100a.
- the arithmetic unit 100a obtains the digital output after correction by the correction method described in the first embodiment. Based on this value, the overcharge status of each capacitor is monitored.
- each capacitor voltage is obtained with high accuracy in this way, extremely reliable charging is performed with a low possibility of overcharging and the like.
- the power backup unit 114 is in a standby state until the main power supply 113 becomes abnormal.
- the microcomputer 100 monitors the state of each capacitor of the capacitor unit 115 by voltage detection!
- the voltage of the main power supply 113 (detected by the charging circuit 116) becomes the default voltage due to the failure of the main power supply 113 or the occurrence of abnormalities such as damage or disconnection of the surrounding wiring. (9.5 V) or less, the microcomputer 100 sets the power switch 118 to the capacitor switch 11 Switch to the 5 side to supply driving power to the vehicle load 111 as an auxiliary. As a result, even if the main power supply 113 becomes abnormal, the vehicle can be braked and the vehicle can be stopped safely.
- the reference error is obtained at any time during which the analog input voltage multiplexer 105 is not used when the vehicle is running as well as when the vehicle is started. As a result, even if the reference error drifts as a whole due to, for example, the influence of noise during traveling of the vehicle, the reference error can be re-determined accordingly, so that the correction accuracy increases. As a result, the reliability of the vehicle power supply device can be improved.
- the use of the analog-digital conversion device according to Embodiment 1 allows the voltage of capacitor capacitor 115 as an auxiliary power source to be detected with high accuracy at all times.
- the accuracy of monitoring and life judgment has been improved, and a vehicular power supply system has been realized that can provide extremely high reliability as a power backup unit for vehicle braking in an emergency.
- FIG. 9 is a block circuit diagram of a vehicle power supply device using the analog-digital conversion device according to Embodiment 3 of the present invention.
- a main power supply 213 that is a battery is connected to a vehicle load 210 that controls vehicle braking via a main power supply switch 211 that also has a diode force.
- a power backup unit for supplying auxiliary driving power to the vehicle load 210 when the main power source 213 becomes lower than a predetermined voltage at which the vehicle load 210 cannot be driven. 214 (indicated by the dotted line in Fig. 9) is connected.
- the power backup unit 214 has a built-in capacitor unit 216 to which a plurality of electric double layer capacitors are connected as an emergency power source.
- a switch 217 and a second switch 218 are connected in series.
- the first switch 217 and the second switch 218 are configured so that on / off can be controlled by an external signal.
- relays are used. ON without a diode Since a relay with little voltage drop is used, it is not necessary to configure the capacitor unit 216 with a large number of capacitors in anticipation of the voltage drop of the diode.
- Voltage VI between vehicle load 210 and first switch 217, voltage V2 between first switch 217 and second switch 218, and voltage V3 between second switch 218 and capacitor unit 216 are voltages, respectively.
- the detection circuit 219 can be used for measurement.
- the voltage VI to V3 can be switched in the voltage detection circuit 219 and measured sequentially.
- the analog-digital converter 220 is also connected to a vehicle control CPU (not shown), and is provided with a signal input / output terminal 250 for that purpose.
- a discharge circuit 221 composed of several high-resistance resistors is connected between the first switch 217 and the second switch 218. The other end of the discharge circuit 221 is connected to the ground.
- the voltage V2 becomes the ground level. Therefore, in the third embodiment, the default value of the voltage V2 necessary for determining the short-circuit failure is the ground level. In other words, if the force voltage V2 described later is at the ground level, it is determined that a short circuit failure has occurred.
- the default value of voltage V2 is not limited to the ground level, but a certain default value may be set, and if it is less than that, it may be determined that a short circuit failure has occurred.
- a resistance divider circuit 222 is connected between the capacitor unit 216 and the analog-digital converter 220 as in the second embodiment. Therefore, since the operation is the same as in the second embodiment, it is possible to always detect the voltage of the capacitor unit 216 with high accuracy and to obtain high reliability.
- FIGS. 10A and 10B are flowcharts showing the operation of the vehicle power supply device using the analog-digital conversion device according to Embodiment 3 of the present invention. It is a chart. Specifically, FIG. 10A shows a flowchart of the main routine of the failure determination software stored in advance in the analog-to-digital converter 220, and FIG. 10B shows an interrupt routine executed by interrupting at certain time intervals. A flowchart is shown.
- the voltage detection circuit 219 reads the voltage VI and determines whether or not it is larger than the predetermined voltage (S2).
- the predetermined voltage is a minimum voltage at which the vehicle load 210 can be driven. Therefore, if the voltage VI (corresponding to the voltage of the main power supply 213) is equal to or lower than the predetermined voltage (No in S2), the main power supply 213 is also abnormal in the initial force, so that the type of error signal is set as the main power supply error (S3 ), And output an abnormal signal to the vehicle control CPU (S4).
- the vehicle control CPU issues a warning to the driver, etc., and prompts repairs at the maintenance shop.
- the main power supply 213 is abnormal and the vehicle cannot travel. Therefore, it is not necessary to supply auxiliary power from the power backup unit 214 to the vehicle load 210. Since it is not necessary to operate the interrupt routine after the abnormal signal is output, interrupt is disabled (S5) and the main routine is terminated.
- both the first switch 217 and the second switch 218 are turned off (S6).
- the voltage V2 is read by the voltage detection circuit 219 (S7).
- the read voltage is transmitted to the analog-digital converter 220.
- the circuit portion of the voltage V2 is connected to the ground via the discharge circuit 221. Therefore, if both the first switch 217 and the second switch 218 are off, the electric charge of the circuit portion to which the voltage V2 is applied is discharged to the ground by the discharge circuit 221.
- the pressure V2 must be at the ground level which is the default value of the third embodiment.
- the fault signal type is set to short fault (S9), jumped to S4, and the operation after the fault signal output is performed.
- a discharge circuit 221 is connected to the circuit portion to which the voltage V2 is applied, and this is composed of a resistor having a high resistance value. Therefore, since the current flowing through the discharge circuit 221 is very small, it is possible to suppress useless current consumption.
- the second switch 218 is turned on (S16).
- the second switch 218 is not a diode, no voltage drop occurs, and the voltage V3 corresponding to the capacitor unit 216 becomes substantially equal to the voltage V2.
- the first switch 217 is off, the voltage V2 is not applied to the main power supply 213 side.
- the voltages V2 and V3 across the second switch 218 are read by the voltage detection circuit 219 (S17).
- the read voltage is transmitted to the analog-digital converter 220.
- the failure judgment operation is performed every predetermined time (for example, on the order of 10 minutes) which does not need to be repeated many times in a short period of time. Therefore, it waits until the predetermined time elapses (S21).
- the main role of the interrupt routine is to quickly switch to the capacitor unit 216 whenever an abnormality of the main power supply 213 occurs. To achieve this, interrupt handling is used. As a result, it is possible to deal with the abnormality determination of the main power supply 213, which is apparently independent of the execution of the main routine.
- the analog-to-digital converter 220 always counts a certain time (for example, a fraction of a second), and interrupts every certain time. An activation signal is issued. Therefore, the analog-to-digital converter 220 is configured such that an interrupt is permitted in the main routine, and if an interrupt activation signal is output, the main routine jumps to the interrupt routine no matter what part of the main routine is executed.
- the interrupt is first prohibited (S50), and then VI corresponding to the voltage of the main power supply 213 is read into the analog-to-digital converter 220 through the voltage detection circuit 219 (S51).
- VI is larger than a predetermined voltage as the main power source 213 (S52). If VI is larger than the predetermined voltage (Yes in S52), the main power supply 213 is normal, and jumps to S60 to enable the interrupt, and then returns from the interrupt routine. As a result, the execution of the main routine is continued again where it was interrupted by interrupt processing during execution of the main routine. On the other hand, if VI is equal to or lower than the predetermined voltage (No in S52), the main power supply 213 is abnormal in voltage. Therefore, immediately after turning on the first switch 217 and the second switch 218 (S53), An abnormal signal is output (S54, S55).
- the first switch 217 and the second switch 218 have been found to be normal by the failure determination operation. This is because if there is an error, interrupts are prohibited in S5 of the main routine, so S53 will not be executed. In other words, the fact that S53 can be executed means that the first switch 217 and the second switch 218 are normal. Therefore, both switches can be surely turned on, and extremely high reliability can be obtained.
- the electric power of capacitor unit 216 is supplied to vehicle load 210. Since the main power supply 213 is lower than the predetermined voltage, the voltage of the capacitor unit 216 is higher than the voltage of the main power supply 213. Is not supplied to the main power source 213.
- the voltage of the main power supply 213 may recover.
- VI is compared with a predetermined voltage (S57). If VI is greater than the predetermined voltage (Yes in S57), the voltage of the main power supply 213 has been recovered, and an abnormality release signal is output to the vehicle control CPU (S58). Thereafter, by turning off both the first switch 217 and the second switch 218 (S59), the power supply source to the vehicle load 210 is switched from the capacitor unit 216 to the main power supply 213. Next, since the main power supply 213 has recovered, the interrupt is permitted to return to the normal operation (S60), and then the process returns to the main register.
- the interrupt routine described above is executed every few seconds, the output voltage of the main power supply 213 remains at the default voltage even during the failure judgment operation of the first switch 217 and the second switch 218. In the following cases, the failure judgment operation is immediately stopped, and switching to the capacitor unit 216 can be performed by turning on the first switch 217 and the second switch 218 very early. wear.
- main power supply 213 can be immediately switched to the main power supply 213 when the voltage of the main power supply 213 is restored, these operations can provide extremely high reliability as a vehicular power supply device.
- a failure determination operation first, a short failure in first switch 217 and second switch 218 is determined, then an open failure in first switch 217 is determined, and then Force that is the order for judging the open failure of 2 switch 218 This may be in any order. However, as explained in S15 of FIG. 10A, when the open failure of the first switch 217 and the open failure of the second switch 218 are judged to have failed, if there is no failure, the first switch 217 and the second switch After turning off 218, it is necessary to wait for a predetermined time (0.1 second in the third embodiment).
- FIG. 11 is a block circuit diagram of a vehicle power supply device using the analog-digital conversion device according to Embodiment 4 of the present invention.
- the same components as those in FIG. 9 are denoted by the same reference numerals, and detailed description thereof is omitted. That is, the characteristic part of the fourth embodiment has a configuration in which the first switch 217 and the second switch 218 are connected by inverting the directions of the two P-channel FETs 217a and 218a, respectively, as shown in FIG. This is the point.
- both switches are configured by a total of four FETs.
- the two FETs 217a and 218a are connected with their directions reversed, the directions of the parasitic diodes 217b and 218b of each pair of FETs 217a and 218a are reversed.
- Two sets of FETs 217a and 218a are wired so that on / off control is simultaneously performed for each set by the analog-digital converter 220. In this way using FET217a, 218a Therefore, a switch configuration with almost no voltage drop at the time of on-state can be obtained.
- the failure determination operation for example, the first switch 217 is turned on and the second switch 218 is turned off. If the first switch 217 is not faulty, it will be VI V2.However, since the direction of the parasitic diode 218b is reversed, an inrush current flows from V 2 to V3. This prevents V2 voltage instability. As a result, the reliability of failure determination can be improved. Note that the failure determination operation is exactly the same as in FIG. 10A and FIG. 10B of the third embodiment, and thus detailed description thereof is omitted.
- a force using a P-channel FET for the switch may be an N-channel FET.
- failure determination operations may be performed in any order as in the third embodiment.
- FIG. 12 is a block circuit diagram of a vehicle power supply device using the analog-digital conversion device according to Embodiment 5 of the present invention. 12, the same components as those in FIG. 11 are denoted by the same reference numerals, and detailed description thereof is omitted. That is, the characteristic part of the configuration of the fifth embodiment is that the first switch 217 and the second switch 218 are each one P-channel FET 217a, 218a as shown in FIG. is there.
- the total number of FETs can be halved compared to the fourth embodiment, and the cost can be reduced.
- this configuration causes the problem of inrush current. That is, for example, it is assumed that a failure determination operation is in the state of the following switch condition. That is, turn on the first switch 217 Assume that the second switch 218 is in the off state. In this case, the voltage VI and the voltage V2 are almost equal (V1 V2) unless the first switch 217 has failed.
- the parasitic diode 218b exists in the second switch 218 in the direction shown in FIG. 12, when the voltage V2 is larger than the voltage V3 (V2> V3), the parasitic diode 218b causes the second switch 218b to 218 becomes conductive. Therefore, if the voltage V2 is greater than the voltage V3 (V2> V3), an inrush current flows through the second switch 218 and the voltage V2 becomes unstable. Therefore, the reliability of failure determination becomes low. This problem can occur in the same manner even when the first switch 217 is off and the second switch 218 is on.
- the absolute value of the voltage difference between the vehicle load 210 and the voltage VI between the first switch 217 and the voltage V3 between the second switch 218 and the capacitor unit 216 is used. If the value (I V1 -V3 I) is equal to or greater than the preset value (minimum voltage difference at which the inrush current flows), the open failure judgment operation of the first switch 217 and the second switch 218 is not performed.
- the absolute value of the difference between the voltage VI and the voltage V3 is less than the predetermined value, that is, both are substantially equal. This means that only when an open failure is determined.
- the voltage VI and the voltage V2 are almost equal (assuming VI Since the voltage V3 is almost equal (V1 V3), the voltage V2 and the voltage V3 are also almost equal (V2 V3), so the inrush current does not flow because the voltage across the parasitic diode 218b is almost equal. Failure determination is possible in a stable state.
- FIG. 13 is a flowchart of a main routine showing the operation of the vehicle power supply device using the analog-digital conversion device according to the fifth embodiment of the present invention.
- the same operation as in FIG. 10A uses the same step number, and a detailed description thereof is omitted.
- steps S1 to S8 in the main routine are the same as in FIG. 10A.
- the voltage detection circuit 219 reads the voltages VI and V3 and transmits them to the analog-to-digital converter 220 (S 100). ).
- the absolute value of the difference between the voltage VI and the voltage V3 is calculated, and it is determined whether or not it is equal to or greater than a predetermined value (S101). If it is equal to or greater than the default value (Yes in S101), an inrush current will flow if the next open fault judgment is made and correct judgment cannot be made, so the open fault judgment routine (S10 to S20) will be skipped. To avoid running. Therefore, in this case, jump and execute the operation after waiting for a predetermined time (S21). On the other hand, if the absolute value of the difference between VI and V3 is less than the default value (No in S101), an inrush current will not flow, so open failure determination will continue (S10 and later).
- N-channel FETs may be used for both switches.
- the failure determination operations may be performed in any order.
- the analog-to-digital converter that is effective in the present invention corrects with a reference error corresponding to the value of the obtained digital output from a plurality of reference errors, so that the error correction accuracy can be improved and the analog input can be improved.
- Voltage power Useful for digital signal converters, etc., and the power supply for vehicles that use it can monitor voltage with high accuracy, so it can be used as an emergency power supply for vehicular loads that require particularly high reliability. Useful for backup.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
アナログデジタル変換装置とそれを用いた車両用電源装置は、あらかじめ複数の基準電圧に対する誤差を求め、隣り合う基準電圧に対応したデジタル出力の誤差が同符号の場合は平均値を、異符号の場合は0を、入力されたそれぞれの基準電圧に対応するデジタル出力により区分されるデジタル出力区間の基準誤差として決定しておき、任意のアナログ入力電圧に対するデジタル出力が包含されているデジタル出力区間の基準誤差を、デジタル出力から差し引いて補正後デジタル出力として出力するようにした。
Description
アナログデジタル変換装置とそれを用いた車両用電源装置 技術分野
[0001] 本発明は、アナログ入力電圧をデジタル信号に変換するアナログデジタル変換装 置と、それを用いて車両用負荷に対して非常時の電源バックアップを行う車両用電 源装置に関する。
背景技術
[0002] アナログ入力電圧をデジタル信号に変換するアナログデジタル変換装置は、本来 アナログ入力電圧に対してリニアにデジタル信号に変換し出力するものである。しか し、実際にはアナログデジタル変換装置自体の特性やノイズ等の周辺回路の影響に より、真値から外れ、誤差を含んだノンリニア (非線形)な出力となる場合がある。
[0003] これに対し、従来、基準電圧を基に誤差を補正する方法が、例えば特許文献 1に 開示されている。そのブロック回路図を図 14に示す。
[0004] 図 14に示すようにアナログデジタル変換装置 411は、大まかに分類すると複数のァ ナログデジタル変換部と演算部力 構成されて 、る。
[0005] このように構成された従来のアナログデジタル変換装置 411の動作にっ 、て説明 する。まず、基準アナログ信号生成部 415により一定電圧 Vrefが生成される。そして 、一定電圧 Vrefが抵抗 R6、 R7により分割され、基準電圧 V7が得られる。基準電圧 V7はアナログ電圧であり、基準アナログデジタル変換部 417に入力されることにより デジタル出力 V7Daが生成される。そして、デジタル出力 V7Daは比較補正値生成 部 494に入力される。
[0006] 一方、デジタル基準値記憶部 493には、あら力じめ定められたデジタル基準値 V7 Drが記憶されており、デジタル基準値 V7Drも比較補正値生成部 494に入力される
[0007] このようにして、比較補正値生成部 494はデジタル出力 V7Daとデジタル基準値 V
7Drの差を演算することによって、誤差 A Dを求める。
[0008] この状態で、任意のアナログ電圧 V9が第 1アナログデジタル変換部 431に入力さ
れるとデジタル出力 V9Daが生成され、デジタル出力 V9Daは第 1誤差補正演算部 4 91に入力される。この時、誤差 A Dも入力されるので、第 1誤差補正演算部 491で両 者の差を求めることにより第 1真値 V9D=V9Da— A Dが出力されている。
[0009] 同様に、任意のアナログ電圧 V5が第 2アナログデジタル変換部 432に入力されると デジタル出力 V5Daが生成され、第 2誤差補正演算部 492に入力される。この時、誤 差 A Dも入力されるので、第 2誤差補正演算部 492は両者の差を求めることにより第 2真値 V5D=V5Da— A Dを出力している。なお、図 14において、 Vddは電源回路 の出力電圧であり、この出力電圧が各回路ブロックの電源となっている。
[0010] 以上の補正方法について図 15を用いて説明する。図 15において、横軸はアナ口 グ入力電圧、縦軸はデジタル出力を示す。次に、上記した動作を順次、説明する。
[0011] まず、図 15の横軸の V7として示すように基準電圧 V7を基準アナログデジタル変換 部 417に入力すると、縦軸の V7Daとして示すようにデジタル出力としてひし形点で 示したデジタル出力 V7Daが得られる。
[0012] 一方、デジタル基準値記憶部 493には、あらかじめ基準電圧 V7に対するデジタル 基準値 V7Drが記憶されている。この値は図 15の四角点 (真値)で示されている。従 つて、比較補正値生成部 494は両者の差を誤差 A Dとして出力する。誤差 A Dはど のようなアナログ入力電圧であっても一律に誤差として決定されるので、この従来例 ではデジタル出力は図 15の太点線上に乗ると仮定していることになる。すなわち、デ ジタル出力は、真値を示す直線から、誤差 A Dだけ Y軸の上側方向に平行移動して いるとみなしている。
[0013] これにより、任意のアナログ入力電圧 V9が第 1アナログデジタル変換部 431に入力 されると、その出力 V9Daから誤差 A Dを差し引いた値、すなわち第 1真値 V9D (丸 点)が補正後デジタル出力として、第 1誤差補正演算部 491から出力されている。
[0014] 同様に、任意のアナログ入力電圧 V5が第 2アナログデジタル変換部 432に入力さ れると、その出力 V5Daから誤差 A Dを差し引いた第 2真値 V5D (丸点)が補正後デ ジタル出力として、第 2誤差補正演算部 492から出力されている。
[0015] このようにして、任意のアナログ入力電圧に対する補正後デジタル出力を得ている 。以上のような従来のアナログデジタル変換装置において、例えば図 15に示したよう
に任意のアナログ電圧 V9が入力された場合に、確かに補正前デジタル出力 V9Da に比べて補正後デジタル出力 V9Dは真値 V9Drに近づいている。従って、補正の効 果が得られることがゎカゝる。
[0016] しかし、例えば、任意のアナログ電圧 V5が入力された場合で、補正前デジタル出 力 V5Daが元々真値 V5Drに近力 、ことも想定される。従って、補正後のデジタル出 力 V5Dがかえつて真値 V5Dr力も遠ざ力つてしま 、、誤差を増長する可能性があると いう課題があった。
[0017] これは、誤差 Δ Dを一律にしてしまったためである。すなわち、アナログデジタル変 換部が必ず誤差 Δ Dだけ平行移動して 、るような高精度のものであれば従来の技術 でも十分補正可能であるが、実際の一般的なアナログデジタル変換部は必ずしも誤 差 Δ Dを 1つだけで決定できず、アナログ入力電圧に応じて誤差 Δ Dも非線形になる 特性を有する場合が多い。ゆえに、従来の技術をそのまま使用すると、力えって精度 が劣化する可能性がある。
[0018] このような従来のアナログデジタル変換装置を車両用電源装置に用いる場合を考 えると、以下の課題が懸念される。
[0019] 近年、ハイブリッドカーや電気自動車の開発が急速に進められている力 それに伴 い車両の制動も油圧制御を電気的に行うシステムとなる。そのため、電源としてのバ ッテリから何らかの原因で電力の供給が断たれると油圧制御ができなくなり、車両の 制動が不可能になる可能性がある。
[0020] そこで、バッテリとは別に補助電源として大容量キャパシタ等を搭載することにより、 バッテリの非常時に、電気的な油圧制御を行って車両を制動する電子制御部に駆動 電力を供給できる車両用電源装置が提案されている。
[0021] このような車両用電源装置はキャパシタの状態監視等のために、それぞれのキャパ シタの電圧を検出している。電圧検出は制御部であるマイクロコンピュータによって 実施されているので、通常アナログデジタル変換装置が必要となる。この際、従来の アナログデジタル変換装置を用いると、例えば図 15の任意のアナログ電圧 V5のよう に誤差補正の精度が不十分な電圧領域においては、キャパシタ電圧が異常にもか 力わらず正常と判断してしまう可能性があり、信頼性が十分得られないという課題が
あった。
特許文献 1:特開 2004— 304738号公報
発明の開示
[0022] 本発明のアナログデジタル変換装置とそれを用いた車両用電源装置は、基準電圧 を複数とし、あらかじめ各々の基準電圧に対する誤差を求め、隣り合う基準電圧に対 応したデジタル出力の誤差が同符号の場合は平均値を、異符号の場合は 0を、入力 されたそれぞれの基準電圧に対応するデジタル出力により区分されるデジタル出力 区間の基準誤差として決定しておき、任意のアナログ入力電圧に対するデジタル出 力が包含されているデジタル出力区間の基準誤差を、デジタル出力から差し引いて 補正後デジタル出力として出力するようにしたものである。
[0023] このような構成によって、複数の基準誤差の中からデジタル出力の値に対応する基 準誤差で補正することにより、誤差補正の精度が高いアナログデジタル変換装置を 実現できる。
図面の簡単な説明
[0024] [図 1]図 1は本発明の実施の形態 1におけるアナログデジタル変換装置のブロック回 路図である。
[図 2]図 2は本発明の実施の形態 1におけるアナログデジタル変換装置の第 1の補正 状態を示すアナログ入力電圧とデジタル出力の相関図である。
[図 3]図 3は本発明の実施の形態 1におけるアナログデジタル変換装置の第 1の補正 状態における補正例を示すアナログ入力電圧とデジタル出力の相関図である。
[図 4]図 4は本発明の実施の形態 1におけるアナログデジタル変換装置の第 2の補正 状態を示すアナログ入力電圧とデジタル出力の相関図である。
[図 5]図 5は本発明の実施の形態 1におけるアナログデジタル変換装置の第 2の補正 状態における補正例を示すアナログ入力電圧とデジタル出力の相関図である。
[図 6]図 6は本発明の実施の形態 1におけるアナログデジタル変換装置の第 3の補正 状態を示すアナログ入力電圧とデジタル出力の相関図である。
[図 7]図 7は本発明の実施の形態 1におけるアナログデジタル変換装置の第 3の補正 状態における補正例を示すアナログ入力電圧とデジタル出力の相関図である。
圆 8]図 8は本発明の実施の形態 2におけるアナログデジタル変換装置を用いた車両 用電源装置のブロック回路図である。
圆 9]図 9は本発明の実施の形態 3におけるアナログデジタル変換装置を用いた車両 用電源装置のブロック回路図である。
[図 10A]図 10Aは本発明の実施の形態 3におけるアナログデジタル変換装置を用い た車両用電源装置の動作を示すメインルーチンのフローチャートである。
[図 10B]図 10Bは本発明の実施の形態 3におけるアナログデジタル変換装置を用い た車両用電源装置の動作を示す割り込みルーチンのフローチャートである。
圆 11]図 11は本発明の実施の形態 4におけるアナログデジタル変換装置を用いた車 両用電源装置のブロック回路図である。
圆 12]図 12は本発明の実施の形態 5におけるアナログデジタル変換装置を用いた車 両用電源装置のブロック回路図である。
圆 13]図 13は本発明の実施の形態 5におけるアナログデジタル変換装置を用いた車 両用電源装置の動作を示すメインルーチンのフローチャートである。
[図 14]図 14は従来のアナログデジタル変換装置のブロック回路図である。
[図 15]図 15は従来のアナログデジタル変換装置の補正例を示すアナログ入力電圧 とデジタル出力の相関図である。
符号の説明
100 マイクロコンピュータ
100C ポート制御部(制御部)
101 アナログデジタル変換部
106 基準電圧用マルチプレクサ (切替部)
109 ツエナーダイオード (基準電圧源)
110 高精度抵抗
111, 210 車両用負荷
113, 213 主電源
114, 214 電源バックアップユニット
115, 216 キャパシタユニット
116 充電回路
117 放電回路
118 電源切替スィッチ
120, 220 アナログデジタル変換装置
発明を実施するための最良の形態
[0026] 以下、本発明を実施するための最良の形態について図面を参照しながら説明する
[0027] (実施の形態 1)
図 1は本発明の実施の形態 1におけるアナログデジタル変換装置のブロック回路図 である。図 1に示すように、マイクロコンピュータ 100は内部演算処理 16ビットの演算 部 100a、内部メモリ 100b、および後述する入力ポートと出力ポートを制御するポート 制御部 100cから構成されているとともに、 10ビットのアナログデジタル変換部 101が 内蔵されている。これにより、アナログデジタル変換部 101と演算部 100aの伝達距離 を短縮することができるので、外部ノイズ等の影響を低減することができ、高精度化に 寄与する。
[0028] アナログデジタル変換部 101は複数の入力ポート 102の内、選択された入力ポート 102からアナログ入力電圧が入力されると、それに応じてデジタル出力に変換する。 また、演算部 100aはそのデジタル出力を読み込み、誤差補正を行って補正後デジ タル出力を求めた後、出力ポート 103からその補正後デジタル出力を出力する。な お、本実施の形態 1では補正後デジタル出力を出力ポート 103から直接出力してい る力 これはマイクロコンピュータ 100内で使用する構成としてもよい。
[0029] また、複数の入力ポート 102の内、 1つを選択する選択スィッチ 104もマイクロコンビ ユータ 100に内蔵され、ポート制御部 100cにより制御されている。なお、本実施の形 態 1では入力ポート 102として 2ポートを使用しているので、それらを入力ポート 102a 、 102bとする。
[0030] 2つの入力ポート 102a、 102bには、順にアナログ入力電圧用マルチプレクサ 105 と基準電圧用マルチプレクサ 106が接続されている。これらは、いずれも複数の入力 に対していずれか 1つを選択するための切替部である。アナログ入力電圧用マルチ
プレクサ 105と基準電圧用マルチプレクサ 106の入力選択はマイクロコンピュータ 10 0により制御されており、具体的にはポート制御部 100cに接続された選択ポート 107 の信号により 1つの入力が選択される。
[0031] アナログ入力電圧用マルチプレクサ 105には複数のアナログ入力電圧が接続され ている。具体的には、読み込みを行うアナログ入力に対して抵抗 108により抵抗分割 して力 、アナログ入力電圧用マルチプレクサ 105に入力するようにしている。このよ うに構成する理由は、アナログ入力電圧用マルチプレクサ 105の耐電圧以内にアナ ログ入力を抑えるためである。
[0032] なお、図 1では点線で示すように省略している力 他に複数のアナログ入力があつ ても、同様に抵抗分割した状態でアナログ入力電圧用マルチプレクサ 105に入力さ れるようにしている。
[0033] 一方、基準電圧用マルチプレクサ 106には複数の基準電圧が接続されている。従 つて、アナログデジタル変換部 101には、切替部としての基準電圧用マルチプレクサ 106を介して、基準電圧源としてのツエナーダイオード 109の出力電圧力も得られる 複数の基準電圧が接続される構成となる。
[0034] 基準電圧は図 1に示すように 4種類の電圧を用いている。これらは、グランドレベル( 0V)とツエナーダイオード 109の出力電圧の中間の電圧を使用している。本実施の 形態 1では、ツエナーダイオード 109の出力電圧は 2. 5Vで、これがアナログデジタ ル変換部 101の最大アナログ入力電圧 Vrと等しくなる。
[0035] 基準電圧の生成は、正確なツエナーダイオード 109の出力電圧を例えば金属皮膜 抵抗等の高精度抵抗 110により抵抗分割することで得て ヽる。この高精度抵抗 110 の抵抗値を違えることで、互いに異なる電圧 4点を基準電圧用マルチプレクサ 106の 入力端子に接続している。ここで、基準電圧は 4点に限定されるものではなぐさらに 多くてもよい。この場合はさらに高精度な誤差補正が可能となる。また、配線を簡略 化するために、高精度抵抗 110は直列に複数接続して、それぞれの中点電圧を基 準電圧としてもよい。
[0036] なお、本実施の形態 1では具体的にアナログ入力を抵抗 108によって 1Z8の電圧 に落としているので、最大アナログ入力電圧 Vr (2. 5V)の 8倍、すなわち 20Vまでの
アナログ入力に対応するように構成している。これに対し、例えば精度よく誤差補正 を行 ヽた 、電圧範囲を 5V近傍 (4V〜6V)とし、さらに測定した 、アナログ入力の最 大電圧が 12Vであると仮定する。この場合には、 4つの基準電圧は 5V近傍を多く設 定するようにアナログ入力 4V、 5V、 6V、 12Vに対応して、それぞれ 1/8倍した値、 すなわち 0. 5V、0. 625V, 0. 75V, 1. 5Vとなるように高精度抵抗 110の抵抗値を それぞれ決定してもよい。すなわち、複数の基準電圧はアナログ入力電圧の精度を 必要とする範囲に多く設定してもよい。このような構成によれば、アナログ入力電圧の 特定の範囲について、さらに精度よく誤差補正することが可能となる。
[0037] 次に、上記したように構成されたアナログデジタル変換装置の誤差補正方法につ いて、図面を用いて説明する。図 2は本発明の実施の形態 1におけるアナログデジタ ル変換装置の第 1の補正状態を示すアナログ入力電圧とデジタル出力の相関図で ある。
[0038] まず、マイクロコンピュータ 100にはツエナーダイオード 109の出力電圧である最大 アナログ入力電圧 Vr (2. 5V)が接続されていると想定する。そして、アナログ入力電 圧が最小値であるグランド (OV)の場合にアナログデジタル変換部 101のデジタル出 力が最小値 0となり、アナログ入力電圧が最大アナログ入力電圧 Vrの場合にアナ口 グデジタル変換部 101のデジタル出力が最大値 LMになるように設定する。既に述 ベたようにアナログデジタル変換部 101には 10ビットのものを用いているので、その 分解能は 210= 1024である。従って、アナログデジタル変換部 101はアナログ入力 電圧がグランドレベル (0V)の場合は 0を、アナログ入力電圧が 2. 5Vの場合は最大 値 LM= 1023をデジタル出力として出力する。
[0039] ここで、アナログデジタル変換部 101のデジタル出力における真値は、横軸にアナ ログ入力電圧を、縦軸にデジタル出力を定義した平面上で、図 2の細実線で示したよ うに原点の座標(0、 0)と、最大アナログ入力電圧 Vrにおける最大値 LM、すなわち 座標 (Vr、 LM)とを結ぶ直線上に存在する。従って、その直線関係に従うように、任 意のアナログ入力電圧に基づいて、デジタル出力が出力されれば、誤差のない正確 な出力が得られたことになる。
[0040] しかし、背景技術で述べたように、アナログデジタル変換部 101は原点と最大値座
標が決まっていても、必ずしもその間が直線関係で出力されるものではなぐ誤差を 有しているものである。これに対応して、本実施の形態 1におけるアナログデジタル変 換装置が行う具体的な動作について、図 2を用いて説明する。
[0041] ここまでの説明にお 、て、図 2の原点の座標(0、 0)と最大値の座標 (Vr、 LM)が決 まり、その間の真値に相当する直線の入出力関係(以下、「真値直線」という)が得ら れた。次に、マイクロコンピュータ 100は切替部である基準電圧用マルチプレクサ 10 6を制御して高精度抵抗 110により生成される複数の基準電圧に対応した複数のデ ジタル出力を求める。
[0042] 具体的には、まず基準電圧 VI (例えば 0. 5V)を選択するように基準電圧用マルチ プレクサ 106が指示を受ける。その結果、基準電圧用マルチプレクサ 106の出力とな つた基準電圧 V 1は入力ポート 102b、選択スィッチ 104を介してアナログデジタル変 換部 101にアナログ入力電圧として入力される。
[0043] この時、入力された基準電圧 VIに対して、理想的には図 2の真値直線上の四角点 で示した真値 L1Rというデジタル出力が本来、出力されるべきである。しかし、実際に はアナログデジタル変換部 101の能力や周囲回路の影響等によりひし形点で示した L1Dというデジタル出力が得られる。
[0044] この場合、マイクロコンピュータ 100は、現在のアナログ入力電圧が基準電圧 VI (0 . 5V)であることがわかっている。従って、演算部 100aは基準電圧 VI (0. 5V)にお けるデジタル出力 L1Dから、あら力じめ求めた真値直線力も得られるデジタル出力の 真値 L1Rを差し引いた値を誤差 A L1として求める。そして、誤差 A L1が内部メモリ 1 OOb〖こ記'隐される。
[0045] 以後、同様にして、順次基準電圧を基準電圧用マルチプレクサ 106により切り替え て、基準電圧 V2、 V3、 V4に対する誤差 A L2、 A L3、 A L4が演算部 100aによりそ れぞれ求められる。そして、誤差 A L2、 A L3、 A L4が内部メモリ 100bに記憶される 。なお、図 2の例では、原点の 0Vと最大アナログ入力電圧 Vrとの中間の全ての基準 電圧において、真値より大きい値がアナログデジタル変換部 101より出力されている 。そして、誤差はアナログデジタル変換部 101の出力力も真値を差し引いた値として 定義しているので、誤差 A L1、 A L2、 A L3、 A L4の符号は全て正となる。
[0046] 次に、任意のアナログ入力電圧に対する基準誤差を以下のようにして求める。なお 、基準誤差とは、任意のアナログ入力電圧についてアナログデジタル変換部 101か ら得られるデジタル出力に対して補正するための誤差補正量である。
[0047] ここまでの説明において、原点の OVと最大アナログ入力電圧 Vrの間で 4点の中間 電圧における誤差がわ力つている。従って、これらの電圧毎に区間を設けて、例えば 基準電圧 VIから基準電圧 V2の範囲の区間、基準電圧 V2から基準電圧 V3の範囲 の区間、というように、それぞれの区間における基準誤差を決定すれば、電圧区間毎 により正確な誤差補正ができると考えられる。
[0048] ところが、任意のアナログ入力電圧 Vxは基準電圧ではないので、いくらであるのか わからない。従って、基準電圧 VIから基準電圧 V4で区間を区切って任意のアナ口 グ入力電圧 Vxに対する基準誤差を決定しても、任意のアナログ入力電圧 Vxがどの 区間に包含されるのかは不明なため、誤差補正ができない。ゆえに、特許文献 1の 補正方法ではいくらのアナログ入力電圧であろうとも一律に誤差 Δ Dを差し引いて補 正していたわけである。
[0049] そこで、本実施の形態 1ではアナログ入力電圧が区間毎に区切られるのではなぐ デジタル出力が区間毎に区切られるようにしている。具体的には、基準電圧 VI、 V2 、 V3、 V4に対応するデジタル出力 L1D、 L2D、 L3D、 L4Dを用いて、デジタル出 力区間が区切られる。また、これらのデジタル出力 L1D、 L2D、 L3D、 L4Dの値も全 て内部メモリ 100bに記憶されている。図 2の場合のデジタル出力は、 0〜L1D、 LID 〜L2D、 L2D〜L3D、 L3D〜L4D、 L4D〜LMの 5つの区間に分けられている。そ して、各区間における基準誤差は後述の方法で、あら力じめ決定される。
[0050] このようにして、任意のアナログ入力電圧 Vxに対するアナログデジタル変換部 101 力 得られるデジタル出力 LxDは、上記した 5つのどの区間に包含されるかに基づ いて、包含される区間における基準誤差を差し引くことで、補正される。
[0051] 次に、各区間の基準誤差の決定方法について、詳しく説明する。既に、基準電圧 V 1、 V2、 V3、 V4に対する誤差 A L1、 A L2、 A L3、 A L4がわかっているので、基本 的には隣り合う区間の誤差を平均することで基準誤差を求める。但し、隣り合う区間 の誤差の正負が異なる場合は基準誤差を 0とする。なお、この事例については後述
する。
[0052] また、原点および最大値 LMにおける誤差は 0とする。従って、デジタル出力区間が 0〜L1Dと L4D〜LMについては、基準誤差はそれぞれ誤差 A L1、 A L4の半分と する。
[0053] 上記の決め方に従って基準誤差を求めると、図 2の場合は全ての誤差が正である ので、隣り合う誤差の正負が全ての区間で一致する。従って、隣り合う誤差の平均を 基準誤差として求める。ここで、以下のようにデジタル出力区間毎に、このようにして 求めた基準誤差に符号を付けて、説明する。
[0054] 1)デジタル出力区間が 0〜L1Dの場合は、
基準誤差 A L01 = (0+ A L1)Z2とする。
[0055] 2)デジタル出力区間が L1D〜L2Dの場合は、
基準誤差 A L12= ( A Ll + A L2) /2とする。
[0056] 3)デジタル出力区間が L2D〜L3Dの場合は、
基準誤差 Δ L23 = ( Δ L2 + Δ L3) Z2とする。
[0057] 4)デジタル出力区間が L3D〜L4Dの場合は、
基準誤差 Δ L34 = ( Δ L3 + Δ L4) Z2とする。
[0058] 5)デジタル出力区間が L4D〜LMの場合は、
基準誤差 Δ L4M = ( Δ L4 + 0) Z2とする。
[0059] 従って、任意のアナログ入力電圧に対するデジタル出力が、上記 1)〜5)の区間の いずれに包含されるかに応じて 1つの基準誤差が適用される。この際の各デジタル 出力区間における真値と基準誤差との和を図 2に太点線で示した。
[0060] 従来は、特許文献 1のように全区間で一律に誤差 A Dを用いていた力 このようにし て本実施の形態 1ではデジタル出力区間毎に 5つに分けたことにより、より正確な誤 差補正が可能となる。なお、任意のアナログ入力電圧に対応したデジタル出力が、 複数の基準電圧に対応した複数のデジタル出力 L1D、 L2D、 L3D、 L4Dのいずれ 力と等しい時は、基準電圧におけるそれぞれの誤差 A L1、 A L2、 A L3、 A L4力 Sわ 力つているので、それらをデジタル出力力も差し引いて補正後デジタル出力として出 力する。
[0061] 以上のようにアナログデジタル変換装置が動作することで、デジタル出力区間毎の 基準誤差を求めることができる。次に、実際の補正の様子について図 3を用いて説明 する。図 3は本発明の実施の形態 1におけるアナログデジタル変換装置の第 1の補正 状態における補正例を示すアナログ入力電圧とデジタル出力の相関図である。
[0062] 今、あるアナログ入力を抵抗 108で抵抗分割して得られた任意のアナログ入力電 圧 Vxがアナログ入力電圧用マルチプレクサ 105、入力ポート 102a、選択スィッチ 10 4を介してアナログデジタル変換部 101に入力されているとする。この時のアナログデ ジタル変換部 101のデジタル出力 LxD (ひし形点)は図 3に示すようにデジタル出力 区間 L2D〜L3Dに包含されるので、この区間の基準誤差 A L23でデジタル出力 Lx Dを補正する(差し引く)ことになる。従って、演算部 100aからの補正後デジタル出力 Lxは LxD— A L23により求められる。この補正後デジタル出力 Lxを図 3中に丸点で 示して 、る。補正前のデジタル出力 LxDに比べ補正後デジタル出力 Lxは極めて真 値直線に近いところにプロットされるので、誤差補正が極めて良好になされていること がわカゝる。
[0063] 次に、アナログ入力電圧用マルチプレクサ 105を切り替えて、別の任意のアナログ 入力電圧 Vyがアナログデジタル変換部 101に入力されて 、るとする。この時のデジ タル出力 LyD (ひし形点)は図 3に示すようにデジタル出力区間 L4D〜LMに包含さ れているので、この区間の基準誤差 A L4Mでデジタル出力 LyDを補正する。従って 、補正後デジタル出力 Lyは LyD— A L4Mにより求められる。
[0064] この補正後デジタル出力 Lyは図 3中に丸点で示されている。通常、補正前のデジ タル出力 LyDは図 2の太実線、すなわちアナログデジタル変換部 101のデジタル出 力特性から大きく外れることはな 、ため、アナログ入力電圧 Vy近傍におけるデジタル 出力 LyDは真値直線に近いところにプロットされる。一方、アナログ入力電圧 Vy近傍 では図 2の太実線が真値直線に近いので、それに応じて基準誤差 A L4Mも小さくな る。これらのことから、補正後デジタル出力 Lyもデジタル出力 LyDと同等の真値直線 に近いところにプロットされる。従って、補正後デジタル出力 Lyも良好な誤差補正が なされていることがわ力る。
[0065] このように、本実施の形態 1の誤差補正方法によれば、真値直線に近!、デジタル出
力区間では基準誤差が小さくなり、真値直線力 遠いデジタル出力区間では基準誤 差が大きくなる。従って、従来の図 15におけるアナログ入力電圧 V5の補正のように 一律に誤差 A Dを差し引いて、力えって精度が悪くなるということがなくなり、どのよう なアナログ入力電圧が入力されても、良好な誤差補正を行うことが可能となる。
[0066] さて、これまでの説明では基準電圧 VIから V4における誤差 A L1から A L4の符号 が全て正の場合について述べた。これはアナログデジタル変換部 101のデジタル出 力が真値直線に対して正の側にずれる特性の場合についての例である。一方、負の 側にずれる特性の場合について、すなわち、誤差 A L1、 A L2、 A L3、 A L4の符号 が全て負の場合についても全く同様の方法で補正することにより、同様に高精度の 補正効果を得ることが可能となる。
[0067] し力しながら、単にアナログデジタル変換部 101の特性だけでなぐ周辺回路等の 影響 (例えばノイズ)が大き 、場合はデジタル出力のずれる方向が真値直線に対して 正負混在することがある。この時の補正方法について図 4から図 7を用いて説明する
[0068] 図 4は本発明の実施の形態 1におけるアナログデジタル変換装置の第 2の補正状 態を示すアナログ入力電圧とデジタル出力の相関図である。図 4において、各軸の 意味は図 2と同等である。図 4は入力される基準電圧 VI、 V2に対するデジタル出力 L1D、 L2D (ひし形点)が真値直線上の理想値 L1R、 L2R (四角点)より小さぐ基準 電圧 V3、 V4に対するデジタル出力 L3D、 L4Dが真値直線上の理想値 L3R、 L4R より大きい場合を示す。従って、基準電圧 V3、 V4に関しては図 2と同様である。
[0069] この場合の各デジタル出力区間に応じた基準誤差の決定方法に従って、基準誤差 を求めると、以下のようになる。
[0070] 1)デジタル出力区間が 0〜L1Dの場合は、
基準誤差 A L01 = (0— A L1) Z2とする。
[0071] 2)デジタル出力区間が L1D〜L2Dの場合は、
基準誤差一 A L12= (- A Ll— A L2) /2とする。
[0072] 3)デジタル出力区間が L2D〜L3Dの場合は、
基準誤差 A L23 = 0とする。
[0073] 4)デジタル出力区間が L3D〜L4Dの場合は、
基準誤差 Δ L34 = ( Δ L3 + Δ L4) Z2とする。
[0074] 5)デジタル出力区間が L4D〜LMの場合は、
基準誤差 Δ L4M = ( Δ L4 + 0) Z2とする。
[0075] 以上の基準誤差において特徴となるのは 3)の場合である。すなわち、 3)のようにデ ジタル出力が真値直線に対して下力 上に変動する時は、アナログデジタル変換部 の特性のためか、あるいはノイズ等の外的要因が影響しているためかを区別すること ができない。それにもかかわらず、隣り合う誤差 (この場合は— A L2と A L3)を平均し た値で基準誤差を求めて差し引くと、もし外的要因が影響していれば、力えって補正 後デジタル出力の精度が悪化することが懸念される。従って、隣り合う誤差の符号が 異なる時は、その要因が区別できないので補正を行わないようにする。ゆえに、デジ タル出力区間が L2D〜L3Dの場合は、基準誤差 Δ L23 = 0とする。
[0076] 以上で述べたようにして、 1)から 5)の各デジタル出力区間における真値と基準誤 差との和が図 2と同様に図 4に太点線で示されている。但し、デジタル出力区間 L2D 〜L3Dでは補正を行わず、得られたデジタル出力がそのまま補正後デジタル出力と される。従って、この区間の太点線はない。
[0077] 次に、図 4の場合における実際の任意のアナログ入力電圧に対する補正後デジタ ル出力を求める方法について、図 5を用いて説明する。図 5は本発明の実施の形態 1 におけるアナログデジタル変換装置の第 2の補正状態における補正例を示すアナ口 グ入力電圧とデジタル出力の相関図である。なお、図 5において、横軸および縦軸は 図 4と同じである。
[0078] ここで、任意のアナログ入力電圧 Vx (図 3と同じ値)がアナログデジタル変換部 101 に入力されているとする。この時のアナログデジタル変換部 101のデジタル出力 LxD (ひし形点)は図 5に示すようにデジタル出力区間 L1D〜L2Dに包含されるので、こ の区間の基準誤差— A L12で LxDを補正する (差し引く)ことになる。従って、演算 部 100aからの補正後デジタル出力 Lxは LxD+ A L12により求められる。
[0079] この補正後デジタル出力 Lxは図 5中に丸点で示されている。補正前のデジタル出 力 LxDに比べ補正後デジタル出力 Lxは極めて真値直線に近いところにプロットされ
るので、誤差補正が非常に良好になされていることがわかる。
[0080] このように、アナログデジタル変換部 101のデジタル出力が真値直線の下側にあつ ても高精度に補正できることがわかる。
[0081] 次に、補正なしの事例について図 6、図 7を用いて説明する。図 6は本発明の実施 の形態 1におけるアナログデジタル変換装置の第 3の補正状態を示すアナログ入力 電圧とデジタル出力の相関図である。なお、図 6において、横軸および縦軸は図 2と 同じである。まず、図 6は入力される基準電圧 V2に対するデジタル出力 L2D (ひし形 点)のみが真値直線上の理想値 L2R (四角点)より小さぐ基準電圧 VI、 V3、 V4に 対するデジタル出力 L1D、 L3D、 L4Dが真値直線上の理想値 L1R、 L3R、 L4Rより 大きい場合を示す。従って、基準電圧 VI、 V3、 V4に関しては図 2と同様である。
[0082] この場合の各デジタル出力区間に応じた前記基準誤差の決定方法に従って、基準 誤差を求めると、以下のようになる。
[0083] 1)デジタル出力区間が 0〜L1Dの場合は、
基準誤差 A L01 = (0+ A L1)Z2とする。
[0084] 2)デジタル出力区間が L1D〜L2Dの場合は、
基準誤差 A L12 = 0とする。
[0085] 3)デジタル出力区間が L2D〜L3Dの場合は、
基準誤差 A L23 = 0とする。
[0086] 4)デジタル出力区間が L3D〜L4Dの場合は、
基準誤差 Δ L34 = ( Δ L3 + Δ L4) Z2とする。
[0087] 5)デジタル出力区間が L4D〜LMの場合は、
基準誤差 Δ L4M = ( Δ L4 + 0) Z2とする。
[0088] 以上の基準誤差において特徴となるのは 2)、 3)の場合である。すなわち、基準電 圧 V2に対するデジタル出力 L2Dのみが他のデジタル出力と異なり真値 L2Rより小さ くなつている。これにより、隣り合う誤差の符号が A L1、— A L2、 A L3というように連 続して異なることになる。この場合も前記した図 4や図 5で述べたように、アナログデジ タル変換部の特性のため力、あるいはノイズ等の外的要因が影響しているためかを 区別することができないので、基準電圧 V1〜V3に対応するデジタル出力区間 L1D
〜L3Dでは補正を行わない。すなわち、デジタル出力区間 L1D〜L3Dでは、基準 誤差 A L12 = 0とし、基準誤差 A L23 = 0としている。但し、任意のアナログ入力電圧 が基準電圧 V2と等しい場合、すなわちデジタル出力 L2Dの場合は、この値に対す る誤差 A L2で補正を行う。
[0089] 以上で述べたようなことから、 1)から 5)の各デジタル出力区間における真値と基準 誤差との和を図 4と同様に図 6に太点線で示した。図 6に示すように、デジタル出力区 間 L1D〜L3Dの場合は補正を行わず、得られたデジタル出力をそのまま補正後デ ジタル出力とするため、この区間の太点線はない。
[0090] 次に、図 6の場合における実際の任意のアナログ入力電圧に対する補正後デジタ ル出力を求める方法について図 7を用いて説明する。図 7は本発明の実施の形態 1 におけるアナログデジタル変換装置の第 3の補正状態における補正例を示すアナ口 グ入力電圧とデジタル出力の相関図である。なお、図 7において、横軸および縦軸は 図 6と同じである。
[0091] ここで、任意のアナログ入力電圧 Vx (図 3と同じ値)がアナログデジタル変換部 101 に入力されているとする。この時のアナログデジタル変換部 101のデジタル出力 LxD (ひし形点)は図 7に示すようにデジタル出力区間 L1D〜L2Dに包含されるので、こ の区間の基準誤差 A L12 = 0でデジタル出力 LxDを補正することになる。従って、演 算部 100aからの補正後デジタル出力 Lxはデジタル出力 LxDと等しくなり、デジタル 出力 LxDをそのまま補正後デジタル出力 Lxとして出力する。
[0092] この補正後デジタル出力 Lxを図 7中に丸点で示した。デジタル出力 LxDと補正後 デジタル出力 Lxは等しいので、ひし形点と丸点は重なることになる。この場合、デジ タル出力 LxDは元々真値直線に近!、ところにプロットされて 、たので、誤差補正をし なくても十分に高精度な補正後デジタル出力が得られることがわかる。
[0093] このようにして、隣り合う誤差の符号が異なる場合のようにアナログ入力電圧が不安 定な時は、無理に補正することによりかえって精度が悪ィ匕してしまうという可能性が低 減される。
[0094] 上述したように本発明のアナログデジタル変換装置は、アナログ入力電圧をデジタ ル出力に変換するアナログデジタル変換部 101と、アナログデジタル変換部 101に
切替部を介して接続された基準電圧源と、切替部が接続されるとともに、デジタル出 力を読み込み、補正後デジタル出力を求めて出力するマイクロコンピュータ 100とを 備える。そして、マイクロコンピュータ 100は、切替部を制御して基準電圧源から得ら れる複数の基準電圧に対応した複数のデジタル出力を求めるステップと、次に、複数 のデジタル出力から、あら力じめ求めたデジタル出力の真値を差し引いた値をそれ ぞれ誤差として求めるステップを有する。そして、誤差を求めるステップは、隣り合う基 準電圧の誤差の符号が一致する場合は、隣り合う基準電圧に対応するデジタル出力 により区分されるデジタル出力区間の基準誤差を誤差の平均として決定するステップ を有し、一方、隣り合う基準電圧の誤差の符号が一致しない場合は、隣り合う基準電 圧に対応するデジタル出力により区分されるデジタル出力区間の基準誤差を 0として 決定するステップを有する。そして、マイクロコンピュータ 100は、任意のアナログ入 力電圧がアナログデジタル変換部 101に入力されると、アナログ入力電圧に対応し たデジタル出力から、デジタル出力が包含されるデジタル出力区間の基準誤差を差 し引 、て補正後デジタル出力として出力するステップを有する。
[0095] 以上のような構成と動作により、任意のアナログ入力電圧に対応したデジタル出力 が包含されるデジタル出力区間の基準誤差を差し引くことで補正後デジタル出力を 得て 、るので、従来の 1つの誤差 Δ Dのみで補正する場合に比べ複数の基準誤差 により補正でき、より正確で高精度に補正が可能となるアナログデジタル変換装置が 得られる。
[0096] さらに、隣り合う誤差の符号が異なる場合は基準誤差を 0として補正しないようにす ることにより、補正後デジタル出力の精度悪ィ匕の可能性を低減できるアナログデジタ ル変換装置が得られる。
[0097] (実施の形態 2)
図 8は本発明の実施の形態 2におけるアナログデジタル変換装置を用いた車両用 電源装置のブロック回路図である。なお、図 8において図 1と同じ構成要素について は同じ符号を用い、説明を省略する。図 8において、車両制動を司る車両用負荷 11 1にはダイオード力もなる主電源スィッチ 112を介してバッテリである主電源 113が接 続されて!、る。これにより通常時は主電源 113から車両用負荷 111に駆動電力が供
給される。なお、主電源スィッチ 112は何らかの電流が主電源 113に流入しないよう にするために設けられて 、る。
[0098] また、車両用負荷 111には電圧安定ィ匕回路(図示せず)が内蔵されているものの、 主電源 113が車両用負荷 111を駆動できない既定電圧 (例えば 9. 5V)以下になつ た時には、車両用負荷 111に対して補助的に駆動電力を供給するための電源バック アップユニット 114 (図 8中に細点線で示した)が接続されて!、る。
[0099] 次に、電源バックアップユニット 114の詳細について説明する。電源バックアップュ ニット 114は、非常用の電力源として複数のキャパシタカもなるキャパシタユニット 11 5を内蔵している。これにより、主電源 113の異常時にはキャパシタユニット 115から 車両用負荷 111に補助的に継続して駆動電力を供給することができる。
[0100] キャパシタユニット 115には、車両起動時に主電源 113の電力から充電するための 充電回路 116、および車両使用終了時にキャパシタユニット 115の電力を放電する 放電回路 117が接続されている。これらにより、車両非使用時にはキャパシタユニット 115を放電させているので、キャパシタの寿命を延ばすことが可能となる。
[0101] キャパシタユニット 115の出力は電源切替スィッチ 118に接続されている。電源切 替スィッチ 118は 2方向スィッチであり、図 8に示すようにその一方にキャパシタュ-ッ ト 115が、他方に主電源 113が接続されている。また、共通端子には車両用負荷 11 1が接続されている。従って、電源切替スィッチ 118によって車両用負荷 111に供給 する電源を選択することができる。すなわち、電源切替スィッチ 118は電力供給源を 主電源 113とキャパシタユニット 115のいずれかに切り替えることができる。なお、電 源切替スィッチ 118は外部信号によって切替制御が可能な構造のもの(例えばリレ 一)を用いている。
[0102] また、キャパシタユニット 115は複数のキャパシタの状態を監視するために電圧検 出が必要となる。そこで、各キャパシタの電圧を出力する信号線が抵抗分割回路 11 9を介して実施の形態 1で述べたアナログデジタル変換装置 120 (図 8中に太点線で 示した)に接続されている。そのため、アナログデジタル変換装置 120は、複数のキヤ パシタの電圧を読み込むことができる。なお、アナログデジタル変換装置 120の内部 構成は実施の形態 1で説明したものと同一である。
[0103] また、本実施の形態 2では電源バックアップユニット 114を制御する制御部がアナ口 グデジタル変換装置 120のマイクロコンピュータ 100に内蔵されている。従って、マイ クロコンピュータ 100には充電回路 116、放電回路 117および電源切替スィッチ 118 を制御したりデータ送受信を行ったりするための信号線がそれぞれ接続されている。 そして、制御部が充電回路 116、放電回路 117および電源切替スィッチ 118を制御 する。
[0104] 次に、上記のように構成された車両用電源装置の動作について説明する。車両が 起動されると、マイクロコンピュータ 100は電源切替スィッチ 118を主電源 113側に切 り替えて車両用負荷 111に電力を供給するとともに、充電回路 116にキャパシタュ- ット 115を充電するよう制御信号を送信する。これを受け、充電回路 116はキャパシタ ユニット 115が満充電になるまで充電を行う。
[0105] 充電が完了するまでには通常数分程度かかる。その間にマイクロコンピュータ 100 はツエナーダイオード 109および高精度抵抗 110を用い、基準電圧用マルチプレク サ 106で基準電圧を切り替えながら、実施の形態 1で説明した各デジタル出力区間 に対応する基準誤差を求めて内部メモリ 100bに記憶しておく。
[0106] なお、図 8の回路図によれば、選択ポート 107の選択信号出力はアナログ入力電 圧用マルチプレクサ 105と基準電圧用マルチプレクサ 106の両方を同時に切り替え るように配線されている。これは、アナログ入力電圧用マルチプレクサ 105の出力と基 準電圧用マルチプレクサ 106の出力に何ら相関がないためである。従って、同時に 切り替えても構わないので選択ポート 107を図 8のように共用することにより、配線の 簡略化が可能となる。
[0107] 次に、ある程度充電が進行し、基準誤差の決定も完了したら、マイクロコンピュータ 100は充電を中断させてその時に求められた電圧からキャパシタユニット 115の内部 抵抗値を求めるとともに、充電時のキャパシタユニット 115の単位時間あたりの電圧 変化率から内部容量値を求める。そして、マイクロコンピュータ 100は、キャパシタュ ニット 115の現時点の内部抵抗値と、現時点の内部容量値に対する内部抵抗値のあ らカじめ求められた限界値とを比較することによって、キャパシタユニット 115の劣化 状態 (寿命)を判定している。
[0108] この際、実施の形態 1のアナログデジタル変換装置を用いて電圧検出することによ り、キャパシタユニット 115の内部抵抗値や内部容量値を高精度に測定できる。従つ て、従来は寿命限界に対し余裕を持って寿命判定を行っていたが、本実施の形態 2 では寿命限界近くまで使用できるようになった。
[0109] 次に、マイクロコンピュータ 100はキャパシタユニット 115の各キャパシタの過充電 の状態を監視する。具体的には、まず各キャパシタの電圧が抵抗分割回路 119を介 してアナログデジタル変換装置 120に包含されるアナログ入力電圧用マルチプレク サ 105に入力される。なお、抵抗分割回路 119を使用する理由は実施の形態 1で述 ベた通り、マイクロコンピュータ 100に内蔵したアナログデジタル変換部 101が処理 できる電圧に変換するためであり、実際には電圧を 1Z8に落としている。
[0110] 次に、マイクロコンピュータ 100は各キャパシタを順次選択し、各キャパシタ電圧が 入力ポート 102aおよびマイクロコンピュータ 100に内蔵された選択スィッチ 104を介 してアナログデジタル変換部 101に入力される。
[Oi l 1] アナログデジタル変換部 101はアナログ入力電圧に対応したデジタル出力を演算 部 100aに出力する。演算部 100aは実施の形態 1で述べた補正方法により補正後デ ジタル出力を求める。この値を基に各キャパシタの過充電の状態を監視して 、る。
[0112] このようにして各キャパシタ電圧を高精度に求められるので、過充電等の可能性が 低ぐ極めて信頼性の高い充電が行われる。
[0113] 次に、電源バックアップユニット 114は主電源 113が異常となるまで待機状態となる 。その間もマイクロコンピュータ 100はキャパシタユニット 115の各キャパシタの状態を 電圧検出により監視して!/、る。
[0114] 監視の結果、もしキャパシタユニット 115の電圧が過電圧となっていれば、充電回 路 116や放電回路 117を制御して最適な電圧に調整する。この際、実施の形態 1で 述べたアナログデジタル変換装置 120を用いて電圧検出をしているので、過充電に 対し信頼性の高 、充電制御が可能となる。
[0115] 次に、主電源 113が故障したり、周辺の配線の損傷、切断等の異常が発生したりし て、主電源 113の電圧(充電回路 116にて検出している)が既定電圧(9. 5V)以下 になれば、マイクロコンピュータ 100は電源切替スィッチ 118をキャパシタュ-ット 11
5側に切り替えて車両用負荷 111に補助的に駆動電力を供給する。これにより、主電 源 113が異常となっても車両制動が可能となり、安全に車両を停止することができる
[0116] なお、基準誤差は車両起動時のみでなぐ車両走行時でアナログ入力電圧用マル チプレクサ 105を使用しない任意の時間にも求めるようにしている。これにより、例え ば車両走行中のノイズの影響等で基準誤差が全体にドリフトしたとしても、それに応 じて基準誤差を求め直すことが可能となるので、補正精度が高まる。その結果、車両 用電源装置として信頼性を向上することができる。
[0117] 以上のような構成と動作により、実施の形態 1のアナログデジタル変換装置を用い たことで、常に高精度に補助電源としてのキャパシタュ-ット 115の電圧検出ができ るので、過充電監視や寿命判断の精度が向上し、非常時の車両制動用等の電源バ ックアップユニットとして極めて高い信頼性が得られる車両用電源装置が実現できた
[0118] (実施の形態 3)
図 9は本発明の実施の形態 3におけるアナログデジタル変換装置を用いた車両用 電源装置のブロック回路図である。図 9において、車両制動を司る車両用負荷 210 にはダイオード力もなる主電源スィッチ 211を介してバッテリである主電源 213が接 続されている。また、車両用負荷 210には、主電源 213が車両用負荷 210を駆動で きない既定電圧以下になった時に、車両用負荷 210に対して補助的に駆動電力を 供給するための電源バックアップユニット 214 (図 9中に点線で示した)が接続されて いる。
[0119] 次に、電源バックアップユニット 214について詳細に説明する。電源バックアップュ ニット 214は、非常用の電力源として複数の電気二重層キャパシタを接続したキャパ シタユニット 216を内蔵している。
[0120] 車両用負荷 210とキャパシタユニット 216の間には、車両用負荷 210側力も順に第
1スィッチ 217と第 2スィッチ 218が直列に接続されている。
[0121] 第 1スィッチ 217と第 2スィッチ 218は外部信号によりオンオフが制御できる構成の ものとして、本実施の形態 3ではリレーを使用している。ダイオードを使用せず、オン
時の電圧降下がほとんどないリレーを使用しているため、ダイオードの電圧降下を見 込んでキャパシタユニット 216を多数のキャパシタで構成する必要がない。
[0122] 車両用負荷 210と第 1スィッチ 217の間の電圧 VI、第 1スィッチ 217と第 2スィッチ 218の間の電圧 V2、および第 2スィッチ 218とキャパシタユニット 216の間の電圧 V3 はそれぞれ電圧検出回路 219により測定できるように構成してある。なお、電圧 VIか ら V3は電圧検出回路 219の中で切り替えて順次測定できる構成とした。
[0123] 第 1スィッチ 217と第 2スィッチ 218のオンオフ制御はアナログデジタル変換装置 22 0により行われる。また、電圧検出回路 219の電圧出力はアナログデジタル変換装置 220に伝達される。
[0124] アナログデジタル変換装置 220は車両制御 CPU (図示せず)にも接続されており、 そのための信号の入出力端子 250が設けられて 、る。
[0125] また、第 1スィッチ 217と第 2スィッチ 218の間には数 程度の高抵抗値の抵抗か らなる放電回路 221が接続されている。放電回路 221の他端はグランドに接続されて いる。
[0126] これにより、第 1スィッチ 217と第 2スィッチ 218が両方オフの時に電圧 V2はグランド レベルになる。従って、本実施の形態 3ではショート故障の判断に必要な電圧 V2の 既定値をグランドレベルとしている。すなわち、詳細は後述する力 電圧 V2がグラン ドレベルであればショート故障して 、な 、と判断して 、る。
[0127] なお、電圧 V2の既定値はグランドレベルに限らず、ある既定値を設定し、それ以下 ならショート故障をして ヽな 、と判断するようにしてもょ 、。
[0128] キャパシタユニット 216とアナログデジタル変換装置 220の間には、実施の形態 2と 同様に抵抗分割回路 222が接続されている。従って、実施の形態 2と同様に動作す るので、常に高精度なキャパシタユニット 216の電圧検出が可能となり、高信頼性が 得られる。
[0129] 本実施の形態 3においては、上記した実施の形態 2の動作に加え、以下の動作を 行うことで、さらなる高信頼性を得ている。この特徴となる動作について図 10A、図 10 Bに示すフローチャートを参照しながら説明する。図 10A、図 10Bは本発明の実施の 形態 3におけるアナログデジタル変換装置を用いた車両用電源装置の動作を示すフ
ローチャートである。具体的には、図 10Aはアナログデジタル変換装置 220にあらか じめ記憶させた故障判断ソフトのメインルーチンのフローチャートを示し、図 10Bは一 定の時間間隔毎に割り込んで実行される割り込みルーチンのフローチャートを示して いる。
[0130] まず、メインルーチンカゝら説明する。車両を起動すると、図 9の主電源 213からキヤ パシタユニット 216への別系統の配線(図示せず)によりキャパシタユニット 216が充 電された後、図 10Aに示すメインルーチンが実行される。なお、この時点では図 9の 第 1スィッチ 217と第 2スィッチ 218は両方ともオフである。
[0131] メインルーチンの実行により、まず割り込みルーチンの動作を許可する(Sl)。これ により、メインルーチン実行中であっても、一定時間間隔毎に割り込みルーチンが実 行される。割り込みルーチンの詳細については後述する。
[0132] 次に、電圧検出回路 219により電圧 VIを読み込み、既定電圧より大きいか否かを 判断する(S2)。ここで、既定電圧とは車両用負荷 210を駆動可能とする最低電圧で ある。従って、もし電圧 VI (主電源 213の電圧に相当)が既定電圧以下であれば(S 2の No)、主電源 213が最初力も異常であるので異常信号の種類を主電源異常とし て(S3)、異常信号を車両制御 CPUに出力する(S4)。
[0133] これを受け、車両制御 CPUは運転手に警告を発する等を行 、、整備工場での修 理を促す。なお、この段階では主電源 213が異常のため車両は走行できない状態で ある。従って、電源バックアップユニット 214から補助電力を車両用負荷 210に供給 する必要はない。異常信号を出力した後は割り込みルーチンを動作させる必要がな いため、割り込みを禁止して(S5)、メインルーチンを終了する。
[0134] 一方、電圧 VIが既定電圧より大きければ(S2の Yes)、主電源 213は正常であると 判断し、以後は第 1スィッチ 217と第 2スィッチ 218の故障判断動作を行う。
[0135] まず、第 1スィッチ 217と第 2スィッチ 218を共にオフにする(S6)。次に、電圧 V2を 電圧検出回路 219で読み込む(S7)。読み込んだ電圧はアナログデジタル変換装置 220に伝達される。電圧 V2の回路部分は放電回路 221を介してグランドに接続され ている。従って、第 1スィッチ 217と第 2スィッチ 218が共にオフであれば、電圧 V2が 印加されている回路部分の電荷は放電回路 221によりグランドへ放電されるので、電
圧 V2は本実施の形態 3の既定値であるグランドレベルにならなければならない。
[0136] そこで、電圧 V2がグランドレベル (GND)である力否かを判断する(S8)。もし、電 圧 V2が GNDでなければ(S8の No)、第 1スィッチ 217および/または第 2スィッチ 2 18がショート故障 (オンしたまま)しており、その結果、 VIや V3の電圧が V2部分にか 力つていることになる。従って、異常信号の種類をショート故障として(S9)、 S4にジャ ンプし異常信号出力以降の動作を行う。
[0137] なお、 S8では第 1スィッチ 217と第 2スィッチ 218のどちら力が、あるいは両方がショ ート故障しているかを区別することができない。しかし、ショート故障自体が発生して はならないため、故障したスィッチの特定ができなくても、とにかく早くショート故障が 発生した事実を運転手に警告する必要がある。
[0138] また、修理する際も第 1スィッチ 217と第 2スィッチ 218の両方を交換することで、故 障したスィッチの区別をする必要はなくなる上、信頼性も向上する。これらの理由から 、ショート故障したスィッチの区別は特に行って ヽな 、。
[0139] もし、電圧 V2が GNDであれば(S8の Yes)、第 1スィッチ 217をオンにして第 2スィ ツチ 218をオフにする(S10)。これにより、第 1スィッチ 217はダイオードではないの で電圧降下が発生せず、主電源 213に相当する電圧 VIがほぼ電圧 V2に等しくなる 。但し、第 2スィッチ 218はオフなので、電圧 V2がキャパシタユニット 216側(V3)に 印加されることはない。
[0140] なお、電圧 V2が印加されている回路部分には放電回路 221が接続されているが、 これは高抵抗値の抵抗から構成されている。従って、放電回路 221に流れる電流は 極めて少な!/、ため、無駄な消費電流を抑制することができる。
[0141] 次に、 S10の状態で第 1スィッチ 217の両端の電圧 VI、 V2を電圧検出回路 219に より読み込む(Sl l)。読み込んだ電圧はアナログデジタル変換装置 220に伝達され る。
[0142] 次に電圧 VIと電圧 V2を比較する(S12)。その結果、それぞれの両端の電圧がほ ぼ等しければ前記第 1スィッチ 217が故障していないと判断し、そうでなければ第 1ス イッチ 217が何らかの理由でオンになっていないことになるので、オープン故障が発 生していると判断する。故障していた場合は (S12の No)、異常信号の種類を第 1ス
イッチ 217のオープン故障として(S13)、 S4にジャンプして異常信号出力以降の動 作を行う。故障していなければ(S 12の Yes)、次に第 1スィッチ 217をオフにする(S1 4)。
[0143] その後、既定時間(本実施の形態 3では 0. 1秒とした)待つ(S15)。これにより、 V2 部分の電荷を放電回路 221によりグランドに放電できる。
[0144] 次に、第 2スィッチ 218をオンにする(S16)。これにより、第 2スィッチ 218はダイォ ードではないので電圧降下が発生せず、キャパシタユニット 216に相当する電圧 V3 がほぼ電圧 V2と等しくなる。但し、第 1スィッチ 217はオフなので、電圧 V2が主電源 213側に印加されることはない。
[0145] この状態で第 2スィッチ 218の両端の電圧 V2、 V3を電圧検出回路 219により読み 込む(S17)。読み込んだ電圧はアナログデジタル変換装置 220に伝達される。
[0146] 次に、電圧 V2と電圧 V3を比較する(S18)。その結果、それぞれの両端の電圧が ほぼ等しければ前記第 2スィッチ 218が故障して 、な 、と判断し、そうでなければ第 2 スィッチ 218が何らかの理由でオンになっていないことになるので、オープン故障が 発生していると判断する。故障していた場合は (S18の No)、異常信号の種類を第 2 スィッチ 218のオープン故障として(S19)、 S4にジャンプして異常信号出力以降の 動作を行う。故障していなければ(S18の Yes)、第 2スィッチ 218をオフにする(S20 ) oこれにより、第 1スィッチ 217と第 2スィッチ 218は両方オフになる。
[0147] ここで、故障判断動作は短期間の間に何度も行う必要はなぐ既定時間 (例えば 10 分オーダー)毎に行えば十分である。従って、前記既定時間が経過するまで待つ(S 21)。
[0148] なお、 S16により電圧 V2と電圧 V3とはほぼ等しくなつている。し力し、 S20で第 2ス イッチ 218をオフにすることにより、 S21で既定時間が経過するまで待つ間に、放電 回路 221を介して放電されて電圧 V2はグランドレベルとなる。
[0149] 既定時間が経過したら、 S7に戻って、再び第 1スィッチ 217と第 2スィッチ 218の故 障判断動作を繰り返す。これにより、故障判断動作は電源バックアップユニット 214の 動作中に既定時間毎に行われるので、信頼性が高まる。
[0150] 以上がメインルーチンの動作である力 この動作中に一定時間間隔毎に実行され
る割り込みルーチンについて、図 10Bを参照しながら以下に説明する。
[0151] 割り込みルーチンの主な役割は主電源 213の異常がいつ発生しても素早くキャパ シタユニット 216に切り替えることである。これを実現するために、割り込み処理を用 いている。これにより、メインルーチンの実行とは見かけ上独立して主電源 213の異 常判定と対応が可能となる。
[0152] 割り込みルーチンの具体的動作につ!、ては、まず、アナログデジタル変換装置 22 0が常に一定時間(例えば数分の 1秒)をカウントしており、一定時間経過毎に割り込 み起動信号を発するようにしてある。従って、アナログデジタル変換装置 220はメイン ルーチンで割り込みが許可されていて、割り込み起動信号が出力されたらメインルー チンのどこを実行して ヽても割り込みルーチンにジャンプするように構成されて 、る。
[0153] 割り込みルーチンが実行されると、まず割り込みを禁止した後(S50)、主電源 213 の電圧に相当する VIが電圧検出回路 219を通してアナログデジタル変換装置 220 に読み込まれる(S51)。
[0154] 次に、 VIが主電源 213としての既定電圧より大きいか否かを判断する(S52)。もし 、 VIが既定電圧より大きければ(S52の Yes)、主電源 213は正常であるので、 S60 にジャンプし割り込みを許可した後、割り込みルーチンからリターンする。これにより、 メインルーチン実行中に割り込み処理により中断された所カゝら再びメインルーチンの 実行を継続する。一方、 VIが既定電圧以下であれば(S52の No)、主電源 213が電 圧異常であるので、直ちに第 1スィッチ 217と第 2スィッチ 218をオンにした後(S53) 、主電源 213の異常信号を出力する(S54、 S55)。
[0155] この際、第 1スィッチ 217と第 2スィッチ 218は故障判断動作により正常であることが わ力つている。なぜなら、もし異常があればメインルーチンの S5で割り込みが禁止さ れるので S53が実行されることはないためである。すなわち、 S53を実行できるという ことは第 1スィッチ 217と第 2スィッチ 218が正常であるといえる。従って、確実に両ス イッチをオンにすることができ、極めて高!、信頼性を得ることができる。
[0156] これにより、キャパシタユニット 216の電力が車両用負荷 210に供給される。なお、 主電源 213は既定電圧以下であるので、キャパシタユニット 216の電圧の方が主電 源 213の電圧より高いため、主電源スィッチ 211によりキャパシタユニット 216の電力
が主電源 213に供給されることはない。
[0157] これらのことから、車両用負荷 210は継続して駆動し続けられるため、 S55の異常 信号出力による警告に基づき、運転者は安全に車両制動を行い停車することができ る。
[0158] ここで、キャパシタユニット 216の電力が車両用負荷 210に供給されている間に、主 電源 213の電圧が回復する場合がある。
[0159] これに対応して、割り込みルーチンの S56以降の動作を行う。
[0160] まず、 S56で主電源 213の電圧 VIを読み込む。
[0161] 次に、 S52と同様に VIと既定電圧を比較する(S57)。もし、 VIが既定電圧より大き ければ(S57の Yes)、主電源 213の電圧が回復しているので、異常解除信号を車両 制御 CPUへ出力する(S58)。その後、第 1スィッチ 217および第 2スィッチ 218を両 方オフにすることで (S59)、車両用負荷 210への電源供給源をキャパシタユニット 21 6から主電源 213に切り替える。次に、主電源 213が回復したので、通常動作に戻す ため割り込みを許可した後(S60)、メインノレ一チンにリターンする。
[0162] 一方、 VIが既定電圧以下なら(S57の No)、依然として主電源 213の電圧 VIは異 常のままであるので、キャパシタユニット 216の電力を車両用負荷 210に供給し続け る。これにより、キャパシタユニット 216の電圧 V3は降下していくので、次に電圧 V3を 読み込み (S61)、電圧 V3が車両用負荷 210を駆動できる下限である既定電圧以下 になれば(S62の No)、キャパシタユニット 216の残量異常が検出できる。この場合は 、異常信号の種類を補助電源異常とし (S63)、メインルーチンの S4にジャンプして 異常を出力する。
[0163] 一方、 V3が前記既定電圧より大きければ(S62の Yes)、キャパシタユニット 216は 正常であるので、再び主電源 213が回復した力否かを判断するために、 S56以降の 動作に戻る。
[0164] 以上説明した割り込みルーチンは数分の 1秒毎に実行されるので、第 1スィッチ 21 7や第 2スィッチ 218の故障判断動作中であっても、主電源 213の出力電圧が既定 電圧以下になると、故障判断動作を直ちに中止し、極めて早期に第 1スィッチ 217お よび第 2スィッチ 218をオンにすることでキャパシタユニット 216に切り替えることがで
きる。
[0165] さらに、主電源 213の電圧が回復すると、直ちに主電源 213に切り替えることができ るので、これらの動作により車両用電源装置として極めて高い信頼性が得られる。
[0166] 以上のような構成と動作により、実施の形態 2と同様にキャパシタユニット 216の高 精度電圧検出による高信頼性が得られるとともに、キャパシタユニット 216の電力を 出力する際にダイオードではなくリレーからなる 2個のスィッチで切り替えるようにした ため電圧降下がほとんどなぐかつ 2個のスィッチの故障判断動作が可能となったこ とにより極めて高 、信頼性を有することができるため、少な 、電圧降下と高 、信頼性 を両立できる車両用電源装置を実現できた。
[0167] なお、本実施の形態 3では故障判断動作として、まず第 1スィッチ 217および第 2ス イッチ 218のショート故障を判断し、次に第 1スィッチ 217のオープン故障を判断し、 次に第 2スィッチ 218のオープン故障を判断する順番としている力 これはどのような 順番であってもよい。但し、図 10Aの S15で説明したように、第 1スィッチ 217のォー プン故障、および第 2スィッチ 218のオープン故障を判断した際に故障して 、なけれ ば、第 1スィッチ 217や第 2スィッチ 218をオフにした後、既定時間 (本実施の形態 3 では 0. 1秒)待つ必要がある。
[0168] (実施の形態 4)
図 11は本発明の実施の形態 4におけるアナログデジタル変換装置を用いた車両用 電源装置のブロック回路図である。図 11において、図 9と同じ構成要素については 同じ符号を用い、詳細な説明を省略する。すなわち、本実施の形態 4の特徴となる部 分は、図 11に示すように第 1スィッチ 217および第 2スィッチ 218を、それぞれ 2つの Pチャネル FET217a, 218aの向きを反転して接続する構成とした点である。
[0169] 従って、第 1スィッチ 217、第 2スィッチ 218はそれぞれ2個l組のFET217a、 218a を使用するので、総計 4個の FETで両スィッチが構成されることになる。また、 2個 1 組の FET217a、 218aはそれぞれ向きを反転して接続しているので、それぞれの 1 組の FET217a、 218aの寄生ダイオード 217b、 218bの向きが反転することになる。 2個 1組の FET217a, 218aのオンオフ制御はアナログデジタル変換装置 220により 組毎に同時に行われるように配線されている。このように FET217a、 218aを用いて
いるので、オン時の電圧降下がほとんどないスィッチ構成とすることができる。
[0170] さらに、前記したように寄生ダイオード 217b、 218bの向きが反転するように接続さ れているので、故障判断動作において、例えば第 1スィッチ 217をオンに、第 2スイツ チ 218をオフにした状態にあるとすると、第 1スィッチ 217が故障していなければ VI V2となるが、寄生ダイオード 218bの向きが反転するように接続されているので、 V 2から V3側に突入電流が流れることがなくなり、 V2の電圧不安定性を防止することが できる。その結果、故障判断の信頼性を高めることができる。なお、故障判断動作は 実施の形態 3の図 10A、図 10Bと全く同じであるので、詳細な説明は省略する。
[0171] 以上のような構成と動作により、実施の形態 3と同様にキャパシタユニット 216の高 精度電圧検出による高信頼性が得られるとともに、キャパシタユニット 216の電力を 出力する際にダイオードの代わりに 2個 1組の FETからなる第 1スィッチおよび第 2ス イッチで切り替えるようにしたため電圧降下がほとんどなくなり、かつ 2個のスィッチの 故障判断動作が可能となったことにより極めて高い信頼性を有することができるため 、少な!/、電圧降下と高!、信頼性を両立できる車両用電源装置を実現できた。
[0172] なお、本実施の形態 4ではスィッチに Pチャネル FETを用いた力 これは Nチャネル FETでもよい。
[0173] また、実施の形態 3で用いたリレーに比べ、 FETは機械的な接点がないため、さら なる信頼性の向上を実現できる。
[0174] さらに、実施の形態 3と同様に故障判断動作はどのような順番であってもよい。
[0175] (実施の形態 5)
図 12は本発明の実施の形態 5におけるアナログデジタル変換装置を用いた車両用 電源装置のブロック回路図である。図 12において、図 11と同じ構成要素については 同じ符号を用い、詳細な説明を省略する。すなわち、本実施の形態 5の構成におけ る特徴となる部分は、図 12に示すように第 1スィッチ 217および第 2スィッチ 218をそ れぞれ 1個の Pチャネル FET217a, 218aとした点である。
[0176] これにより、 FETの総数を実施の形態 4に比べ半減でき、低コスト化が図られる。し かし、この構成では突入電流の課題が発生してしまう。すなわち、例えば故障判断動 作で、以下のスィッチ条件の状態にあるとする。すなわち、第 1スィッチ 217をオンに
して第 2スィッチ 218をオフにした状態にあるとする。この場合、第 1スィッチ 217が故 障していなければ、電圧 VIと電圧 V2はほぼ等しく(V1 V2)なる。
[0177] しかし、第 2スィッチ 218には寄生ダイオード 218bが図 12に示す方向に存在して いるので、電圧 V2が電圧 V3より大きい(V2>V3)場合に寄生ダイオード 218bによ り第 2スィッチ 218は導通した状態となる。従って、もし電圧 V2が電圧 V3より大きい( V2>V3)場合であれば、第 2スィッチ 218に突入電流が流れ、電圧 V2が不安定と なる。ゆえに、故障判断の信頼性が低くなつてしまう。なお、この問題は第 1スィッチ 2 17がオフ、第 2スィッチ 218がオンの状態でも同様に発生し得る。
[0178] そこで、上記問題を回避するために、車両用負荷 210と第 1スィッチ 217の間の電 圧 VI、および第 2スィッチ 218とキャパシタユニット 216の間の電圧 V3において、両 電圧差の絶対値( I V1 -V3 I )が既定値 (突入電流が流れる最低電圧差)以上な ら第 1スィッチ 217および第 2スィッチ 218のオープン故障判断動作を行わないように している。
[0179] これにより、例えば上述したスィッチ条件 (第 1スィッチ 217がオンで第 2スィッチ 21 8がオフ)において、電圧 VIと電圧 V3の差の絶対値が既定値未満、すなわち、両者 がほぼ等しい時のみオープン故障判断を行うということになる。その結果、電圧 VIと 電圧 V3がほぼ等しく(VI =V3)なって 、ると 、う前提で上述したスィッチ条件にする ことで電圧 VIと電圧 V2がほぼ等しく(VI なったとすると、電圧 VIと電圧 V3が ほぼ等しい (V1 V3)ので電圧 V2と電圧 V3もほぼ等しく(V2 V3)なる。従って、 寄生ダイオード 218bの両端電圧がほぼ等しいので、突入電流が流れることはない。 ゆえに、電圧 V2が安定した状態で故障判断が可能となる。
[0180] 一方、電圧 VIと電圧 V3の差の絶対値が既定値以上の場合は、オープン故障判 断を行わず、ショート故障判断のみを行うようにして 、る。
[0181] なお、負荷である車両用負荷 210の仕様により、その駆動電圧は決まっているので 、車両用電源装置の正常時には、電圧 VIと電圧 V3がほぼ等しい (VI という 条件を満たしていなければならない。従って、実用上は本実施の形態 5の構成でもォ ープン故障判断を行わな 、場合は極めて少な 、と想定され、図 12の構成でも本発 明の目的を達成できる。
[0182] 次に、上記の条件下で故障判断を行う具体的動作について図 13のフローチャート を用いて説明する。図 13は本発明の実施の形態 5におけるアナログデジタル変換装 置を用いた車両用電源装置の動作を示すメインルーチンのフローチャートである。ま た、図 13において、図 10Aと同じ動作については同じステップ番号を用い、詳細な 説明を省略する。
[0183] まず、メインルーチンにおいてステップ S1から S8までは図 10Aと同じである。そして 、ショート故障の判断を行った後(S8)、ショート故障していなければ (S8の Yes)、電 圧検出回路 219により電圧 VI、 V3を読み込み、アナログデジタル変換装置 220に 伝達する(S 100)。
[0184] 次に、電圧 VIと電圧 V3の差の絶対値を計算し、既定値以上か否かを判断する(S 101)。もし、既定値以上であれば (S 101の Yes)、次のオープン故障判断を行うと突 入電流が流れてしまい、正しい判断ができなくなるので、オープン故障判断ルーチン (S10〜S20)をスキップして実行しないようにしている。従って、この場合はジャンプ し、既定時間待ち以降の動作を実行する(S21)。一方、 VIと V3の差の絶対値が既 定値未満であれば(S101の No)、突入電流が流れることがないので、引き続きォー プン故障判断を行う(S10以降)。
[0185] オープン故障判断の動作 (S10〜S20)は図 10Aと同じである。また、割り込みル 一チンの動作は図 10Bと全く同じである。
[0186] このような動作により、正確にオープン故障判断ができる時のみ実行するようにして いるため、信頼性の高い故障判断が可能となる。
[0187] 以上のような構成と動作により、実施の形態 4と同様にキャパシタユニット 216の高 精度電圧検出による高信頼性が得られるとともに、キャパシタユニット 216の電力を 出力する際にダイオードの代わりに FETからなる第 1スィッチおよび第 2スィッチで切 り替えるようにしたため電圧降下がほとんどなくなり、かつ動作条件に限定はあるもの の両スィッチの故障判断動作が可能となったことにより極めて高 ヽ信頼性を有し、少 な 、電圧降下と高 、信頼性を両立できる車両用電源装置を実現できた。
[0188] なお、本実施の形態 5においても、両スィッチに Nチャネル FETを用いてもよい。
[0189] また、実施の形態 3と同様に故障判断動作はどのような順番であってもよい。
産業上の利用可能性
本発明に力かるアナログデジタル変換装置は、複数の基準誤差の中から、得られ たデジタル出力の値に対応する基準誤差で補正するので、誤差補正精度を向上す ることが可能となり、アナログ入力電圧力 デジタル信号への変換部等に有用である とともに、それを用いた車両用電源装置は、高精度に電圧監視ができるので、特に高 信頼性が要求される車両用負荷に対する非常時の電源バックアップ用等に有用で ある。
Claims
[1] アナログ入力電圧をデジタル出力に変換するアナログデジタル変換部と、
前記アナログデジタル変換部に切替部を介して接続された基準電圧源と、 前記切替部が接続されるとともに、前記デジタル出力を読み込み補正後デジタル出 力を求めて出力するマイクロコンピュータとを備え、
前記マイクロコンピュータは、
前記切替部を制御して前記基準電圧源から得られる複数の基準電圧に対応した 複数の前記デジタル出力を求めるステップと、
次に、前記複数のデジタル出力から、あら力じめ求めたデジタル出力の真値を差 し引 ヽた値をそれぞれ誤差として求めるステップを有し、
前記誤差を求めるステップは、
隣り合う前記基準電圧の前記誤差の符号が一致する場合は、隣り合う前記基 準電圧に対応する前記デジタル出力により区分されるデジタル出力区間の基準誤差 を前記誤差の平均として決定するステップを有し、
一方、隣り合う前記基準電圧の前記誤差の符号が一致しない場合は、隣り合う 前記基準電圧に対応する前記デジタル出力により区分される前記デジタル出力区 間の前記基準誤差を 0として決定するステップを有し、
任意のアナログ入力電圧が前記アナログデジタル変換部に入力されると、前記ァ ナログ入力電圧に対応した前記デジタル出力から、前記デジタル出力が包含される 前記デジタル出力区間の前記基準誤差を差し引いて補正後デジタル出力として出 力するステップを有すること
を特徴とするアナログデジタル変換装置。
[2] 前記任意のアナログ入力電圧に対応した前記デジタル出力が前記複数の基準電圧 に対応した前記複数のデジタル出力のいずれかと等しい時は、前記基準電圧にお ける前記誤差を前記デジタル出力力 差し引いて前記補正後デジタル出力として出 力する請求項 1に記載のアナログデジタル変換装置。
[3] 前記複数の基準電圧は、前記アナログ入力電圧の精度を必要とする範囲に多く設 定されて!/、る請求項 1に記載のアナログデジタル変換装置。
[4] 前記アナログデジタル変換部は、前記マイクロコンピュータに内蔵されている請求項
1に記載のアナログデジタル変換装置。
[5] 車両用負荷と、
前記車両用負荷に駆動電力を供給する主電源と、
前記主電源が既定電圧以下になった時に、前記車両用負荷に対して補助的に前記 駆動電力を供給する電源バックアップユニットとを備え、
前記電源バックアップユニットは、
補助電源として複数のキャパシタカもなるキャパシタユニットと、
前記キャパシタユニットに電力を充電する充電回路と、
前記キャパシタユニットの電力を放電する放電回路と、
電力供給源を前記主電源と前記キャパシタユニットのいずれかに切り替える電源切 替スィッチと、
前記充電回路、前記放電回路および前記電源切替スィッチを制御する制御部と、 前記複数のキャパシタの電圧を読み込む請求項 1に記載のアナログデジタル変換装 置とを備える車両用電源装置。
[6] 前記制御部が、前記アナログデジタル変換装置の前記マイクロコンピュータに内蔵さ れている請求項 5に記載の車両用電源装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06834928A EP1968195A1 (en) | 2005-12-28 | 2006-12-19 | Analog-to-digital converting apparatus and vehicle power supply apparatus using the same |
US12/097,340 US20090167575A1 (en) | 2005-12-28 | 2006-12-19 | Analog-To-Digital Converting Apparatus And Vehicle Power Supply Apparatus Using The Same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-377939 | 2005-12-28 | ||
JP2005377939A JP4853021B2 (ja) | 2005-12-28 | 2005-12-28 | アナログデジタル変換装置とそれを用いた車両用電源装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007074673A1 true WO2007074673A1 (ja) | 2007-07-05 |
Family
ID=38217892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/325218 WO2007074673A1 (ja) | 2005-12-28 | 2006-12-19 | アナログデジタル変換装置とそれを用いた車両用電源装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090167575A1 (ja) |
EP (1) | EP1968195A1 (ja) |
JP (1) | JP4853021B2 (ja) |
WO (1) | WO2007074673A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009044921A1 (en) * | 2007-10-05 | 2009-04-09 | Toyota Jidosha Kabushiki Kaisha | In-vehicle power supply apparatus |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7796067B2 (en) * | 2008-04-08 | 2010-09-14 | Standard Microsystems Corporation | Curvature correction methodology |
US7859245B2 (en) * | 2009-04-27 | 2010-12-28 | Ansaldo Sts Usa, Inc. | Apparatus, system and method for outputting a vital output for a processor |
EP2246984B1 (de) * | 2009-04-28 | 2013-07-03 | VEGA Grieshaber KG | Diagnoseschaltung zur Überwachung einer Analog-Digital-Wandlungsschaltung |
JP2011044920A (ja) * | 2009-08-21 | 2011-03-03 | Denso Corp | Ad変換装置 |
US8346100B2 (en) * | 2009-10-12 | 2013-01-01 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd | Apparatus and method for monitoring received optical power in an optical receiver over a wide range of received power with high accuracy |
US8519875B2 (en) * | 2011-04-12 | 2013-08-27 | Maxim Integrated Products, Inc. | System and method for background calibration of time interleaved analog to digital converters |
EP2578876B1 (de) * | 2011-10-05 | 2014-06-04 | Siemens Aktiengesellschaft | Pitchsystem für eine Windenergieanlage und Verfahren zum Betreiben eines Pitchsystems |
KR102410938B1 (ko) * | 2017-06-20 | 2022-06-20 | 현대자동차주식회사 | 차량용 전원 관리 장치 및 그 제어방법 |
EA039450B1 (ru) | 2017-10-18 | 2022-01-28 | Джапан Тобакко Инк. | Устройство, генерирующее компонент для вдыхания, способ управления устройством, генерирующим компонент для вдыхания, система, генерирующая компонент для вдыхания, и программа |
CN111246757B (zh) | 2017-10-18 | 2024-05-07 | 日本烟草产业株式会社 | 吸引成分生成装置、控制吸引成分生成装置的方法 |
KR102402904B1 (ko) | 2017-10-18 | 2022-05-30 | 니뽄 다바코 산교 가부시키가이샤 | 흡인성분 생성 장치, 흡인성분 생성 장치를 제어하는 방법, 및 프로그램 |
RU2735592C1 (ru) | 2017-10-18 | 2020-11-05 | Джапан Тобакко Инк. | Устройство, генерирующее компонент для вдыхания, способ управления устройством, генерирующим компонент для вдыхания, и компьютерно-читаемый носитель данных |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6229318A (ja) * | 1985-07-31 | 1987-02-07 | Yamatake Honeywell Co Ltd | A/d変換方法およびa/d変換器 |
JP2004304738A (ja) | 2003-04-01 | 2004-10-28 | Seiko Epson Corp | アナログディジタル変換装置 |
-
2005
- 2005-12-28 JP JP2005377939A patent/JP4853021B2/ja not_active Expired - Fee Related
-
2006
- 2006-12-19 WO PCT/JP2006/325218 patent/WO2007074673A1/ja active Application Filing
- 2006-12-19 US US12/097,340 patent/US20090167575A1/en not_active Abandoned
- 2006-12-19 EP EP06834928A patent/EP1968195A1/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6229318A (ja) * | 1985-07-31 | 1987-02-07 | Yamatake Honeywell Co Ltd | A/d変換方法およびa/d変換器 |
JP2004304738A (ja) | 2003-04-01 | 2004-10-28 | Seiko Epson Corp | アナログディジタル変換装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009044921A1 (en) * | 2007-10-05 | 2009-04-09 | Toyota Jidosha Kabushiki Kaisha | In-vehicle power supply apparatus |
US9048690B2 (en) | 2007-10-05 | 2015-06-02 | Toyota Jidosha Kabushiki Kaisha | In-vehicle power supply apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20090167575A1 (en) | 2009-07-02 |
JP4853021B2 (ja) | 2012-01-11 |
EP1968195A1 (en) | 2008-09-10 |
JP2007180972A (ja) | 2007-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007074673A1 (ja) | アナログデジタル変換装置とそれを用いた車両用電源装置 | |
US10895603B2 (en) | Voltage monitoring module and voltage monitoring system to detect a current leakage | |
US10241154B2 (en) | Voltage monitoring module and voltage monitoring system | |
JP4707638B2 (ja) | 車両用の電源装置 | |
JP4797487B2 (ja) | 車両用電源装置 | |
JP6626704B2 (ja) | 電池パックにおける接触点を点検するための方法及びその装置 | |
US8878493B2 (en) | Apparatus for monitoring operation state of battery pack composed of plurality of cells mutually connected in series | |
JP5321392B2 (ja) | 電圧監視装置 | |
US20130119898A1 (en) | Battery system, electric vehicle, moving body, electric power storage device, power supply device and battery voltage detection device | |
US20130057293A1 (en) | Voltage monitoring circuit, test method therefor, and voltage monitoring system | |
JP2008256673A (ja) | 電池制御方法及びそのシステム | |
US11493564B2 (en) | Ground fault detection device | |
JP2011109745A (ja) | 蓄電装置 | |
US20080218176A1 (en) | Power Supply Device | |
US20220131372A1 (en) | Method for checking the behavior of at least one group of consumers in a motor vehicle | |
JP2009216447A (ja) | 組電池の監視装置および故障診断方法 | |
JP7094918B2 (ja) | 地絡検出装置 | |
JP2013102318A (ja) | 二次電池の状態検知装置、二次電池の状態検知装置のための故障診断方法 | |
JP2005328603A (ja) | 電池制御システム | |
KR20020054779A (ko) | 전기 자동차용 배터리의 오류 진단방법 | |
JP2008288824A (ja) | マイクロコンピュータの自己診断装置とそれを用いた電源装置 | |
WO2023089652A1 (ja) | 車両用制御装置 | |
EP4191822A1 (en) | Battery protection circuit having secondary protection ic function, method for measuring voltage of series-connected cells using same, and battery protection method | |
KR20230119853A (ko) | 전류센서 진단 방법, 그 방법을 제공하는 전류센서 진단 시스템 및 배터리 시스템 | |
CN117996688A (zh) | 主动短路控制方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006834928 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12097340 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |