WO2007074201A2 - Mini cámara gamma autónoma y con sistema de localización, para uso intraquirúrgico - Google Patents

Mini cámara gamma autónoma y con sistema de localización, para uso intraquirúrgico Download PDF

Info

Publication number
WO2007074201A2
WO2007074201A2 PCT/ES2006/070200 ES2006070200W WO2007074201A2 WO 2007074201 A2 WO2007074201 A2 WO 2007074201A2 ES 2006070200 W ES2006070200 W ES 2006070200W WO 2007074201 A2 WO2007074201 A2 WO 2007074201A2
Authority
WO
WIPO (PCT)
Prior art keywords
gamma
camera
mini
pointer
image
Prior art date
Application number
PCT/ES2006/070200
Other languages
English (en)
French (fr)
Other versions
WO2007074201A3 (es
Inventor
José Maria BENLLOCH BAVIERA
Filomeno SÁNCHEZ MARTÍNEZ
Christoph Lerche
Noriel PAVÓN HERNÁNDEZ
Jesús MODIA LEIVA
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad De Valencia
General Equipment For Medical Imaging, Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad De Valencia, General Equipment For Medical Imaging, Sl filed Critical Consejo Superior De Investigaciones Científicas
Priority to EP06841806.0A priority Critical patent/EP1967868B1/en
Priority to US12/159,307 priority patent/US8450694B2/en
Priority to CA002635421A priority patent/CA2635421A1/en
Priority to JP2008547994A priority patent/JP5554498B2/ja
Priority to AU2006329802A priority patent/AU2006329802B2/en
Priority to PCT/ES2006/070200 priority patent/WO2007074201A2/es
Publication of WO2007074201A2 publication Critical patent/WO2007074201A2/es
Publication of WO2007074201A3 publication Critical patent/WO2007074201A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4258Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1642Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using a scintillation crystal and position sensing photodetector arrays, e.g. ANGER cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1644Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using an array of optically separate scintillation elements permitting direct location of scintillations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1647Processing of scintigraphic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/363Use of fiducial points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/366Correlation of different images or relation of image positions in respect to the body using projection of images directly onto the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/392Radioactive markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • the present invention belongs to the field of Nuclear Medical Physics and that of radio-guided surgery. It is a device that allows the in vivo imaging of small human and animal organs through radioisotopes that are traditionally used in nuclear medicine, with a high resolution and in real time.
  • the device is intended for functional studies and detection and / or precise location of cancer in organs such as the thyroid gland, the kidney, the prostate, breasts and lymph nodes of the lymphatic system. It has application in previous, intra-operative and postoperative diagnosis.
  • a radiopharmaceutical is a chemical compound that contains radiation emitting isotopes, usually gamma rays. Once said compound has spread naturally through the patient's body, it is examined by means of a gamma ray detection chamber, providing information on the region where the radiopharmaceutical has accumulated in the body.
  • the detection technology used by these cameras is mainly based on scintillating crystals and photomultiplier tubes (PMT) not sensitive to the position.
  • PMT photomultiplier tubes
  • mini gamma cameras Imaging, and Gamma Medica Imaging, also called mini gamma cameras.
  • the objective of the mini cameras is to cover a diagnostic area where they can offer a very high image quality, compared to large cameras, adding to it the advantage of being less expensive and sometimes portable equipment.
  • new fields of application for mini cameras are glimpsed, which are almost forbidden for large equipment, such as intra-operative use.
  • CdZnTe Cadmium Telmium doped with Zinc
  • PCI BUS has dozens of data and power lines shared with the motherboard of the computer and is also inside the computer; What involves opening the CPU and inserting the PCI card with the computer turned off so that it is then available to offer high voltage power to the camera, which is not the only power you need.
  • Patent ES 2202846 by A. Soluri and R. Pa ⁇ i, refers to a flat scintillation gamma camera with very high spatial resolution, with modular structure.
  • the photomultipliers mentioned in the patent are of the position sensitive type with reading by means of crossed anodic multithreads.
  • the patent, ES 2206924, by A. Soluri refers to a mini camera of reduced dimensions 30mmX30mm, with pixelated glass and individual amplification and acquisition systems for each channel, which are external to the detector head. However, in claim 13 it refers to any type of position sensitive photomultiplier.
  • patent WO 00/19238 S. Majewski, A. Weisenberger, and R.
  • Wojcik claims all kinds of small-scale scintigraphy equipment constituted by arrays of position sensitive detectors. Likewise, it refers to a device with small dimensions in its detector head, but which requires standard modular electronic systems for its operation (for example CAMAC or NIM).
  • the scintillating mini gamma cameras generally use one or a few position sensitive photomultipliers, to achieve a small equipment. However, what they reduce is the head where the detector is located (the scintillating glass together with the photomultiplier), so that they can become more manageable than large commercial cameras. Both the large cameras and the mini cameras mentioned, require for their operation a set of electronic systems mounted on bulky standard racks, such as CAMAC or NIM, or the usual cards that are inserted into the computer. Even the most advanced cameras or current mini-gamma cameras require for commissioning, that next to the equipment the computer or computer system is offered with the electronics included, either a card in a standard computer or a computer system specifically designed for the camera.
  • mini gamma cameras based on autonomous scintillating crystals that is, whose detection system, electronics and power supply are integrated in a single sensor head of reduced dimensions, without any active part outside the camera, such as PCI cards in the computer.
  • mini gamma cameras that can be plugged in and unplugged without turning off the computer and that all the voltages necessary for its operation, including high voltage, are generated inside the camera and not on any card or other device connected to the computer .
  • IFIC Corpuscular
  • An object of the present invention is a mini gamma camera that can operate with the USB 1.1, USB 2.0 port and reach a bandwidth of up to 480Mbps, which means that it can communicate up to 400 times faster, which which enables it to acquisition at the high rates necessary to obtain high sensitivity.
  • Another of the problems presented by the mini gamma cameras is that of the location of the objects that appear in the images captured by them in the patient's body, that is, the correspondence between image and organism.
  • doctors sometimes use a radiant object that can be freely placed in the observation area of the camera while its image is directly visualized by it next to that of the radiant area of interest.
  • This tool “bright pointer”.
  • the most common is a Cobalt 57 pencil, although sometimes a syringe with Technetium 99m is used.
  • the location method that uses a bright pointer has the disadvantage that it leaves a static trace of the pointer as it passes through the area of the image. So same the affectation of the image is high since there are traces of the pointer for all the points where it has passed.
  • radioactive pointers whether they emit or inhibit radiation, to the location and / or navigation systems which directly involve radiation in its mode of operation.
  • the cobalt pointer 57 described above as "bright pointer” belongs to this class of radioactive pointers, but it is not the only one. In the present invention we will show two new types and an improvement in the use of the already known bright pointer.
  • opaque pointer that which, as it passes through the observation zone, inhibits the formation of the image that would normally form in its absence, creating a shadow in the image.
  • transparent pointer the one that does not affect the normal formation of the image by the fact of being or not being present, but that allows the detector system to know the instantaneous position that the pointer has in relation to the scintigraphy image that It is forming.
  • Tsukerman, Y. Hefetz refers more than to a gamma camera to its location system by means of radio transmitters. Also the US patent
  • a mini gamma camera for intra-surgical use must be lightweight, portable and autonomous with one or no cables and must be able to form the images in real time.
  • LASER-based pointer systems The existence of multiple LASER-based pointer systems is widely known. You can find point, line generators, as well as the most diverse geometric shapes.
  • said luminous form has the characteristic of depending on its position and its form, on the distance to the emitter or the LASER emitters, to which the surface intercepted by the light is located; as well as the angular position of the surface; or in the opposite case, the LASER emitter or emitters must be symmetrically arranged with respect to the axial axis in which the displacement of approach or distance between LASER emitters and the surface where its light is intercepted is made.
  • An example of the latter can be a LASER point emitter that approaches or moves away from a surface where it generates a point, following as its axis of motion the line that follows its light. This is a case in which the generated figure maintains its position on the surface and its point shape, but is symmetrically located with respect to the axis of the movement, and also above said axis, figures 1a and 1b.
  • a LASER emitter of a point equal to the one mentioned above, but that approaches or moves away from a surface where it generates a point, following as the axis of movement a line that forms a certain non-zero angle with the line that follows its light. This is a case in which the generated figure remains a point, but its position on the surface changes with the distance between emitter and surface, figures 2a and 2b.
  • a LASER emitter of a single transducer which generates any different figure of a point, generates a figure whose dimension varies with the distance between emitter and surface and generally also varies with the angle at which that surface is located with respect to the emitter.
  • the object of the present invention is a novel portable mini gamma camera for intra-surgical use and a system for locating gamma emitting objects.
  • the mini gamma camera is based on scintillation crystals and is essentially characterized by being autonomous, that is, in which all the necessary systems have been integrated next to the sensor head, forming a compact and autonomous equipment, without the need of any other system electronic, and that can be connected to any standard computer or compatible device through any universal serial interface of full speed or high speed, WirelessUSB, BlueTooth or Firewire, figure 3.
  • this equipment complies with electrical safety and compatibility features Medical grade electromagnetic.
  • mini gamma camera object of our invention ability to "self-feed” from the computer port, "energy saving” modes, ability to update software and firmware from the Internet, without the need for manipulation on the camera and Real-time Gamma Video Imaging (RTGV) capability, even for low-dose administered doses, thanks to a new "probabilistic reconstruction” algorithm.
  • RTGV Real-time Gamma Video Imaging
  • One of the problems that gamma cameras present is that of the location of the objects that appear in the images captured by them in the patient's body, that is, the correspondence between image and organism. This problem is solved, in the present invention, by developing a method of location by using one or more radioactive pointers, in which the same gamma camera is used both to capture the image of interest, and to establish the spatial location of each pointer.
  • the new invention that we present has another added value that consists in the possibility of obtaining information on physical variables referring to the source of interest in the physical position marked by the transparent pointer.
  • a new laser pointer system based on LASER is introduced, which allows indicating a specific point of the scintigraphy image on the observation area.
  • the set of the mini gamma camera and the developed location systems constitute a new surgical navigation system through images obtained in real time.
  • the structural elements of the mini gamma camera are the following, figure 4: 1. Interchangeable system of collimation of gamma rays based on tungsten, lead or other material of equal characteristics against radiation.
  • Photodetector or photodetectors sensitive to the position.
  • Collimator 1 one ("pin-hole” type) or several holes (multi-type "pin-hole” or parallel, convergent or divergent holes) or coded mask structure, allows the passage of gamma rays, only through the holes established for the correct formation of the image.
  • the scintillating crystal 2 transduces the energy deposited by a gamma ray incident in the generation of a high number of photons of visible light, which can be detected by the photodetector 3.
  • the photodetector 3 receives the light from the scintillating crystal and transduces it into pulses of electrical charge that pass to the electronic processing section.
  • the photodetector uses high voltage power up to 1200
  • the radiation shield 4 covers the lateral, rear and front surface of the chamber, except in the collimator zone 1. In this way the gamma rays cannot reach the sensitive area of the chamber, except for the hole expressly provided for that purpose in collimator 1, for that matter of the "pin-hole” collimator, or the multiple holes in the case of multi "pin-hole” collimators, of parallel, divergent, convergent holes or of coded masks.
  • the processing electronics 5 receives the output signals from the photodetector 3. It consists of the following parts:
  • Interanodic network that reduces to a minimum amount the number of electronic signals from the anodes of the photodetector for the location of the centroid of the light distribution, from all the individual anodic signals.
  • Analog signal processing system to amplify, filter and obtain an adequate amplitude depending on the load on each signal.
  • Digital processing system to digitize analog signals, perform digital filtering and send the results to the computer through the established communication interface. Additionally performs control of all device functions.
  • Source system for the generation of the different voltages needed in the equipment from a single source of 5 volts.
  • Connector 6 is the only essential communication channel of the equipment.
  • the housing 7 ensures that no light enters the interior of the device and can reach the scintillating glass 2, thus preventing noise from entering the scintigraphy image to be obtained.
  • the housing fulfills an electromagnetic screen function against all types of external noise and internal emissions, for adequate electromagnetic compatibility of medical grade. Because all the necessary electronic systems, analog, digital, firmware and voltage sources, have been integrated next to the sensor head, a compact mini gamma camera is obtained, with an unequaled level of autonomy and portability. The digital information, which the device transmits to the computer, it allows to directly obtain the scintigraphy image.
  • the possibility of wireless operation between the camera and the computer requires, for continuous operation, the use of external power from a 5-volt source connected to the power line. The operation with batteries has also been prepared, linked to the use of wireless interfaces, which releases all types of cable connection.
  • a particular object of the present invention is a mini gamma camera of the characteristics described above, and that meets the characteristics of electrical safety and electromagnetic compatibility of medical grade.
  • a particular object of the present invention is a mini gamma camera of the characteristics described above, and also with the characteristic that the hot interface can be at least one of the following: a) Universal serial interface of total speed (12Mb / s ) or high speed (480Mb / s); b) WirelessUSB; c) BlueTooth; d) Firewire.
  • USB communications interface has been developed up to 400 times faster than the one present in the academic prototypes mentioned in the state of the art.
  • Said interface can communicate in USB 1.1 (12Mb / s) and USB 2.0 (480Mb / s) modes, which allows the acquisition speed limitations to remain on the physical side for a long time. It also prepares this system to operate with new collimator systems of very high sensitivity that are under development.
  • the communication interfaces have also been developed through the remaining modern WirelessUSB, BlueTooth and FireWire communications ports, which have not been reported in any other scintigraphic equipment and allow high interconnection versatility with standard computing systems and portability. and ease of use added. These advances have also resulted in a system that can be connected and disconnected to the computer without having to shut it down, or take any extra measures.
  • a particular object of the present invention is a mini gamma camera as described above, with the characteristic known as "self-powered”, since it can use the own standard and external data interface of the computer as a source of energy, or alternatively a battery, and does not require the use of the power grid or other external power.
  • the mini gamma camera object of the present invention consumes an electrical power lower than the capacities offered by the ports used. Additionally, the equipment can be powered externally (without it being essential) from a direct source of 5 volts and 500 milliamps.
  • a particular object of the present invention is a mini gamma camera as described above, with the characteristic of "switching to energy saving modes" (Power Down), since the software can define various levels of consumption according to the functional needs of each moment.
  • the Mini Camera can enter the "sleeping" mode in which the consumption is only 2 micro-amps, without losing the ability to "wake up” and change to another state before an automatic command of the software.
  • the following energy state consumes 23mA and allows bi-directional data communication between the camera and the computer, with functions such as identification and presetting of acquisition conditions.
  • the device can generate the acquisition of the level of ambient noise, make checks of functionality and adjust its systems to counteract the noise.
  • the system can maintain the optimum temperature status of the sensor system, for the rapid start of an acquisition.
  • the equipment can perform any operation according to its purpose.
  • a particular object of the present invention is a mini gamma camera as described above, in which the software can be updated from the internet and the firmware (hardware controller) can be recharged from the software, without opening the camera; Which implies that through firmware updates, the hardware can be mutated and / or other behaviors added.
  • This exclusive feature allows the manufacturer to include new advances and improvements to mini cameras sold anywhere in the world, through an internet update support, which registered customers would access.
  • the operation of the digital system of the mini gamma camera object of the present invention is based on a microcontroller and has a hardware design with a set of additional capacities with respect to those necessary for the realization of a scintigraphy.
  • the use of these extra capabilities has not yet been developed in the current scintigraphy software; nor are they included in the program that works in the microcontroller (firmware). What we claim is that our team can use those capabilities when they are developed. For this, it is enough to send by computer means, the corresponding update and the system currently created, you can update both the computer software, as well as the microcontroller signature of the mini gamma camera.
  • a particular object of the present invention is a mini gamma camera of the characteristics described above, and together with the characteristic that the scintillating crystal is of the continuous type, to which a special treatment of its external surfaces has been performed, and has been used a specific algorithm called "compensated related transformation" that allows to obtain a homogeneity in the detection area of less than 5% up to an environment of 80% of said area, overcoming old limitations known as edge effects that limit the useful area to 50% of the sensitive area
  • the use of continuous crystals with a suitable surface treatment allows a greater amount of light to be obtained in the photosensitive device than the matrix-shaped crystals with pixels, which implies an improvement in the energy resolution of the ray detector gamma
  • the surface treatment that is performed to minimize edge effects The surface through which the gamma rays penetrate the glass has been roughly polished, painted with a dry white reflective paint and also a white reflective epoxy layer has been deposited on it. Alternatively, fine polishing can be performed on this surface to which a self-reflective layer adheres.
  • the self-reflective layer has the property that the particles of light emitted by the crystal and that affect said layer are reflected in the same direction of incidence of the light emitted in the crystal but changing the direction.
  • retroreflective sheeting is used to improve intrinsic spatial resolution characteristics of a continuous crystal in gamma cameras.
  • the use of a retroreflective layer has never been implemented in mini gamma cameras.
  • the algorithm first decomposes the surface of the detected (compressed) image into polygons (for example, triangles) of small area and performs a related transformation so that each polygon expands keeping its shape.
  • the expansion factor depends, among other factors, on the particular characteristics of the glass and photodetector used and on the location of the polygon with respect to the center of the detection surface, being generally greater for polygons located in the limits of the same as in the center.
  • a LUT (Look Up Table) table is used to make corrections in position and energy locally and quickly and efficiently.
  • the gamma rays that have been detected in a given polygon are redistributed in the polygons expanded by a Monte Cario method that takes into account the probability that the detected gamma ray had actually affected another surrounding polygon. In this way, uniformity is optimized in the largest possible detection area.
  • This method presents the fundamental problem that it cannot be used in real time due to its slowness due to the large number of algebraic operations it requires. On the other hand, it lacks the possibility of optimally adapting to the local characteristics of the detection surface that can vary substantially, for example, depending on the illuminated anodic "pads" (in the case that the detector is a photo - FLAT PANEL position sensitive multiplier).
  • a further object of the present invention is a gamma ray detector based on continuous scintillation crystals improved by means of a focusing system of the scintillation light emitted by the gamma ray of shape that reduces the width of the light distribution that reaches the photo detector, figures 5a and 5b.
  • the spatial resolution of a gamma ray detector based on continuous scintillation crystals depends on the width of the distribution of light emitted by the gamma ray in the crystal and that reaches the surface of the photodetector: the larger the width of the more difficult distribution is to separate two points from each other and therefore lower is the resolution.
  • the greater the width of the light distribution the greater the edge effects that appear when using continuous scintillation crystals, increasing the compression factor of the image.
  • said improvement introduced in the present invention is especially important in the case of gamma ray detectors with scintillation crystals of great thickness, in the direction perpendicular to the surface of the photo-detector, with respect to said surface.
  • Said detectors have the difficulty that most of the interactions occur near the input surface of the gamma rays in the glass and, therefore, generate very wide distributions of light on the surface of the photo-detector.
  • the aforementioned focusing system of the scintillation light emitted by the gamma ray can be implemented by adding to it one or more layers of optical material that act as focusing lenses.
  • the use of convergent lens or micro-lens layers of focal length similar to the size of the glass in the direction perpendicular to the surface of the photo-detector decreases the width of the light distribution that reaches it.
  • the continuous crystal can be segmented into two or more layers along the direction perpendicular to the photo-detection surface, adding between each of these layers a layer of converging micro-lenses
  • a particular object of the present invention which is a consequence of what has been explained above, is a gamma ray detector consisting of several layers (in the direction of gamma rays) of continuous scintillation crystals, and finally photo-detectors, and to which they have been added between each of these layers a layer of converging lenses or micro-lenses.
  • Said invention is useful in any gamma ray detection system based on scintillation crystals, for example in positron emission tomography cameras (P.E.T.), SPECT and gamma cameras in general.
  • P.E.T. positron emission tomography cameras
  • SPECT positron emission tomography cameras
  • gamma cameras in general.
  • a particular object of the present invention is the use of a gamma ray detector according to claims 8 or 9 in a mini gamma camera such as that of claim 1, or a PET camera, or a SPECT camera, or a gamma camera based in scintillation crystals in general.
  • a particular object of the present invention is a mini gamma camera as described above, with the characteristic that the main component of the scintillating crystal is a chemical element belonging to the rare earth class, such as LnBr3 or LnCI3.
  • the crystals of the type in which the main component is a chemical element belonging to the rare earth class provide the mini chamber with a substantial improvement in functionality. This is due to the fact that said scintillating crystals allow obtaining a resolution in the energy of the detected gamma rays comparable to that of the detectors based on the semiconductor technology. This characteristic is critical to distinguish between different radioactive isotopes to be able to separate the corresponding energies.
  • a particular object of the present invention is a mini gamma camera as described above, with the characteristic that the photo-detector is of the FLAT PANEL position-sensitive photo-multiplier type.
  • Said type of photo-multiplier has the essential property that its design is substantially improved to avoid dead areas at the edges of the device, facilitating the modular union of several FLAT PANEL photomultipliers. In addition, it has hardly any edge effects which makes it especially suitable for use in mini gamma cameras and even more so when, as in the present invention, continuous crystals are used.
  • ES 2202846 of A. Soluri and R. Pa ⁇ i
  • ES 2206924 of A. Soluri
  • WO 00/19238 of S. Majewski, A. Weisenberger, and R. Wojcik
  • FLAT PANEL photomultipliers do not have multi-wire anodes but of the multi-pad type.
  • the possibility of using any type of position sensitive photomultiplier is discussed, however, FLAT PANEL type photomultipliers did not appear until 2002, so they could not be subject to patent (which is from the year 1998).
  • a further object of the present invention is an algorithm for the creation of the scintigraphic image called "probabilistic reconstruction", based on the allocation for each gamma ray detected of a distribution of the probability that the emission point has occurred at each point of the possible region of emission of the radiation, taking into account the point of impact detected by the detection system, the intrinsic resolution of the detector system, the uniformity of the detector, its geometry and the geometry of the optical system used.
  • the assignment consists mainly of attributing a probability to the linear impact direction according to the value of the uniformity at said point and in Attribute a probability to your neighborhood, taking into account this and the other variables mentioned.
  • a particular object of the present invention is the use of the "probabilistic reconstruction" algorithm described above, and a gamma camera, as described above, but not limited thereto, for the formation of a real-time image of quality comparable to that obtained by conventional methods, but using a substantially lower number of gamma rays detected.
  • the "probabilistic reconstruction” represents an advance that allows not only to obtain static images of gamma ray emission, of comparable quality to that obtained by conventional methods, but using a substantially lower number of detected gamma rays, but also to form video images of rays Real Time Gamma (RTGV), from radiant objects, even of low activity, while the camera moves over the observation area.
  • RTGV Real Time Gamma
  • This capacity does not require the increase of the usual dose to be injected to the patient, since the mini gamma camera uses the same information that any conventional camera would receive. The difference It is in the way of processing the information and the ease of movement of our portable camera.
  • a particular object of the present invention is the use of the "probabilistic reconstruction" algorithm described above, and a gamma camera, such as the mini gamma camera described above, but not limited thereto, for obtaining Video images Real-time Gamma rays (RTGV), from radiant objects, even of low activity, while the camera moves over the observation area.
  • RTGV Real-time Gamma rays
  • a further object of the present invention is a device based on at least two mini gamma cameras of the above characteristics, mechanically correlated and operated simultaneously by the same control system, to achieve stereoscopic vision; obtaining the ability to visualize objects emitting gamma rays in three dimensions. It is not a question of tomography techniques by simple or dual emission of photons, nor of stereoscopic vision by triangulation (as mentioned in the PCT / ESO3 / 00497 patent "Functional Navigator", whose main authors are also of the present invention), but of a true stereoscopic vision, based on images taken by two sensors with only slightly different visual perspectives and processed by a system capable of recognizing and comparing image patterns. The usefulness of this device would be mainly for intra-operative use, in the three-dimensional location of deep malignant regions.
  • a possibility of location different from that described in the state of the art is that which we call location with "transparent pointer", in which the image of the radiating object of interest is not affected by the presence of the pointer or location system.
  • a further object of the present invention is a "new method of locating and measuring" physical variables of radiation emitting objects based on the use of two elements listed below:
  • At least one "transparent pointer” that is, it emits radiation that is distinguishable from the one to be observed.
  • a gamma ray detection system capable of simultaneously detecting the pointer and said sources of interest, figures 7a and 7b. The method consists of the automatic spatial location
  • the apparent physical variables can be determined, such as for example the apparent activity. From these values of the physical variables and the data obtained from the pointer, the absolute values thereof can be determined in the indicated neighborhood of the region of interest.
  • the pointer can be a source of known activity in which case its position is determined in three-dimensional space. This is due to the fact that not only the point of impact is detected in the detection plane of the mini gamma camera, but also the distance with respect to said point is estimated from the apparent activity thereof, since its absolute activity is known.
  • the distance of the pointer with respect to the camera can also be determined from the known dimensions of the pointer and the collimator and of
  • a further object of the present invention is an "improved location method" of radiation emitting objects based on the use of three elements listed below:
  • At least one "bright pointer” (radiation not distinguishable from the one that you want to observe).
  • a gamma ray detection system (including the camera object of the present invention, but not limited thereto), capable of simultaneously detect the pointer and said sources of interest, although it cannot distinguish between them.
  • a sufficiently fast mechanism for generating limited persistence images consist in the use of an acquisition mode with limited persistence so that the pointer can move through the observation area of the camera, without leaving a (bright) trace of its passage, except in the instantaneous position it has, reducing thus the affectation that the traditional method produces in the acquired image.
  • it is essential to have a camera of high sensitivity or, failing that, a camera that, as described in the present invention, allows images to be obtained quickly enough.
  • RTGV Real Time Gamma Ray
  • Another variant that can be applied using this type of pointer is to acquire a static image for the time necessary for its correct formation; after which the system goes into a special acquisition mode in which only the bright pointer is expected to appear as an extra object in the image data.
  • the team can subtract internally and at any time the new image data from the originals, so that only those corresponding to the pointer remain.
  • a further object of the present invention is a "new location method" of radiation emitting objects based on the use of the elements listed below:
  • At least one "opaque pointer” (does not radiate, nor does it allow the radiation to be observed through it);
  • a gamma ray detection system (including that of the object of the present invention but not limited thereto), capable of detecting the radiating sources of interest;
  • a sufficiently fast mechanism for generating limited persistence images such as that of Video Gamma generation in
  • the method consists in the use of an acquisition mode with limited persistence, figures 8a, 8b and 8c, so that the pointer can move through the observation area of the camera without leaving a trace (shadow) of its passage, except in The instantaneous position that it has, thus limiting the shadow of affectation in the image acquired at the moment of observation.
  • RTGV Real Time
  • the opaque pointer can be used in a special way to establish its position by the difference of images before and after its entry into action. The principle is the same, except that in this case the sign of the image resulting from the subtraction is negative, however in both cases the modular value of the acquired accounts (which is positive) allows us to obtain the instantaneous position of the opaque pointer.
  • the opaque, bright and / or transparent pointers can be used with various gamma-based systems, such as gamma cameras, mini gamma cameras, SPECT gamma cameras and PET cameras for the location of nodes, tumors and organs in humans and animals, and measurement of physical variables associated with them.
  • gamma-based systems such as gamma cameras, mini gamma cameras, SPECT gamma cameras and PET cameras for the location of nodes, tumors and organs in humans and animals, and measurement of physical variables associated with them.
  • a further object of the present invention is a device that, through the use of light emitters, allows generating a unique luminous shape of fixed position on a surface, although the distance of the emitters to the surface may vary along a axis that goes from the device to the surface, with the particularity of said axis does not intersect with the spatial position of the light emitters, but which can be aligned or made to coincide with the characteristic emission planes of the light sources.
  • a particular case of our invention consists of a system that uses asymmetrically LASER emitters with respect to the axis of movement between the surface and the emitting system, which is capable of creating a unique luminous shape when intercepting the surface; with the characteristic of that the geometric shape of the generated light and its position do not depend on the distance between the emitting system and the illuminated surface, from a certain minimum distance.
  • An immediate utility of this invention is the possibility of marking a singular point that indicates the axial axis of observation of a device such as a gamma camera (without being limited to it), without the need to place light emitters on and in front of said axis; Which would affect the functionality of the equipment itself by obstructing the entry of the rays to be detected. These can be placed in positions surrounding said axis and at an appreciable distance if necessary.
  • LASER light emitters are ideal for a device like this, but they are not the only ones capable of functioning.
  • the luminous pointer system just described has a wide range of applications beyond gamma cameras and includes other structural and functional imaging devices. If, in addition to that described above, the line emitters are placed in a transverse position that coincides with the focus of a divergent or pin-hole collimator chamber, and the light emission angle of each light emitter, is adjusted according to of the viewing angle of the device; then the outer limits of the crossed light rays can provide information about the field of vision of the device.
  • Figure 1 A LASER point pointer (pen) is held with one hand while illuminating a specific point on a screen to the left of the photograph. Subparagraphs 1a) and 1b) differ in the distance to which the emitter and the screen are located since the emitter was displaced along the same emission line. As a result, the light spot does not move from its position on the left screen.
  • Figure 2 The same point LASER pointer of figure 1, is held with one hand while illuminating a specific point on a screen located at
  • Figure 9 Photograph of a LASER pointer based on what is described in the present invention and coupled to a gamma camera as also described in this invention. It can be seen that the crossing of LASER emissions points to the center of the camera's field of vision. This characteristic is valid regardless of the distance at which the system is from the surface "observed" by the camera.
  • EMBODIMENT Example 1 Realization of an autonomous and compact Mini Gamma Camera with location system for intra-surgical use.
  • the Mini Gamma Camera that we show (figures 3 and 4), consists only of the sensor head, a USB cable and a standard computer. It has an irregular ergonomic shape with dimensions framed in an orthohedron 70 mm high, 90 mm wide and 140 mm long. Its weight is somewhat less than 1 kg, including the collimator. Its small dimensions, ergonomics and low weight, ensure the mobility of the system and the possibility of manipulation with one hand.
  • This Mini Gamma Camera is used to visualize small organs such as the sentinel node in intra-operative with a position resolution of less than 2mm.
  • This portable Mini Gamma Camera can "see” a range of energies from 15 keV to 250 keV, although its design has been optimized for the area of 50keV to 200 keV, a region where the most widely used radioactive sources are found in medical examinations, (like the 99m-Tc that emits gamma rays of 140 KeV).
  • This chamber has a single position sensitive multi-anode photomultiplier tube coupled to a scintillating crystal of CsI (Na), different collimators can be easily coupled and includes a complete electronic system with the high voltage source of the photomultiplier and analog and digital signal processing, so that no card inserted in the computer or any additional electronic circuit is required.
  • the equipment can be plugged in hot, that is, with the computer turned on and does not require additional power cable; only the USB cable.
  • FIG. 9 shows the union of the Mini Camera object of this invention with a LASER location system as also described in this invention. It generates an "X" shape in the central position of the field of view of the mini camera. This allows the surgeon to locate "hot spots” as sentinel nodes, which will be marked with said "X" when their image appears in the center of the scan performed.
  • Example 2 Use of an autonomous and compact Mini Gamma Camera with gamma navigation system for intra-surgical use.
  • Figures 7 and 8 show the use of the mini gamma camera object of the present invention used with radioactive navigation systems.
  • figures 7a and 7b we show two image captures of the mini gamma camera, with the moments when a pointer of 125 I was above and below one, between two sources of cobalt that were used as phantoms of sentinel nodes .
  • FIGS 8a, 8b and 8c we show three photos of the mini gamma camera and the computer associated with it, with the three moments when an opaque pointer

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Nuclear Medicine (AREA)
  • Measurement Of Radiation (AREA)

Abstract

La presente invención consiste en una mini cámara gamma portátil para uso intra-quirúrgico. Está basada en cristales de centelleo y es autónoma: todos los sistemas necesarios han sido integrados junto a la cabeza sensora, sin necesidad de ningún otro sistema. Se puede conectar en caliente a cualquier ordenador mediante varios tipos de interfaz, cumpliendo con las características de grado médico, Posee capacidad de: 'autoalimentación', 'ahorro energético', actualización del software y firmware desde internet y formación de imágenes en Tiempo Real. Se introduce un sistema de focalización de la luz de centelleo emitida por el rayo gamma para mejorar la resolución espacial, en cualquier detector de rayos gamma basado en cristales de centelleo continuos. Se presentan nuevos métodos de localización de objetos emisores de radiación y medición de sus variables físicas, basados en punteros de emisión láser y radiactivos.

Description

TITULO
MINI CÁMARA GAMMA AUTÓNOMA Y CON SISTEMA DE LOCALIZACIÓN,
PARA USO INTRAQUIRÚRGICO
SECTOR DE LA TÉCNICA
La presente invención pertenece al campo de Ia Física Médica Nuclear y al de Ia cirugía radio-guiada. Es un dispositivo que permite Ia obtención de imágenes in vivo de pequeños órganos humanos y animales mediante los radioisótopos que tradicionalmente se utilizan en medicina nuclear, con una resolución elevada y en tiempo real. El dispositivo está destinado para estudios funcionales y detección y/o localización precisa de cáncer en órganos como Ia glándula tiroides, el riñon, Ia próstata, mamas y de ganglios del sistema linfático. Tiene aplicación en diagnóstico previo, intra-operatorio y postoperatorio.
ESTADO DE LA TÉCNICA
En las técnicas de diagnóstico que utiliza Ia medicina nuclear primero se introduce un radiofármaco en el paciente. Un radiofármaco es un compuesto químico que contiene isótopos emisores de radiación, habitualmente rayos gamma. Una vez dicho compuesto se ha extendido de forma natural por el cuerpo del paciente se examina éste mediante una cámara de detección de rayos gamma, aportando información sobre Ia región donde se ha acumulado el radiofármaco en el organismo.
Las cámaras gamma se han venido mejorando desde su creación en el año 1958 (H.O. Anger, Rev. Sci. Instrum. 29 (1958) 27); pero tradicionalmente han consistido en equipos de grandes dimensiones, con un peso de cientos de kilogramos y han estado asociados a complejos y voluminosos sistemas electrónicos. Grandes compañías transnacionales (GENERAL ELECTRIC, Siemens, etc.) se encargan de Ia producción, distribución e instalación de estos equipos, en locales exclusivos de los hospitales.
La tecnología de detección utilizada por estas cámaras está basada fundamentalmente en cristales centelleantes y tubos fotomultiplicadores (PMT) no sensibles a Ia posición. Hace relativamente poco tiempo han aparecido en el mercado las primeras cámaras gamma de reducidas dimensiones, como las producidas por las compañías Anzai Medical, TeraRecon, Intra Medical Imaging, EuroMedical
Imaging, y Gamma Medica Imaging, también llamadas mini cámaras gamma. El objetivo de las mini cámaras es cubrir una zona del diagnóstico donde pueden ofrecer una muy elevada calidad de imagen, respecto a las cámaras grandes, adicionando a ello Ia ventaja de ser equipos menos costosos y, en ocasiones, portátiles. A Ia vez, se vislumbran nuevos campos de aplicación para las mini cámaras, que están casi vedados para los grandes equipos, como puede ser Ia utilización en intra-operatorio.
En algunas mini cámaras gamma se ha utilizado una nueva tecnología de detección basada en semiconductor de Teluro de Cadmio dopado con Zinc (CdZnTe) como por ejemplo, Anzai Medical o TeraRecon).
En los párrafos siguientes realizamos una breve descripción de las patentes de mini cámaras gamma relacionadas con Ia presente invención.
La patente US 2004/0262528, cuyos autores son R. Zaikin y M. Suzuki, trata de una cámara gamma con un campo de visión reducido que incluye varios módulos. Utiliza una matriz de cristales y fotodiodos acoplados a los cristales. En Ia reivindicación 22, se hace referencia al uso de cristales pixelados de CsI(TI). La reivindicación 10 se refiere a que Ia fuente de alimentación de alta tensión de Ia cámara se proporciona a través de una tarjeta electrónica situada en el interfaz del ordenador (una tarjeta PCI en su caso). Observemos que el BUS PCI cuenta con decenas de líneas de datos y alimentación compartidas con Ia placa base del ordenador y está además en el interior del ordenador; Io que implica abrir Ia CPU e insertar Ia tarjeta PCI con el ordenador apagado para que luego esté disponible para ofrecer alimentación de alto voltaje a Ia cámara, que no es además Ia única alimentación que necesita.
La patente US2003/0081716 A1 , cuyo autor es T. Tumer, hace referencia a Ia invención de una sonda portátil, manejable con una mano, y compacta con visualizador de imágenes LCD (conectado por cable o radio). La tecnología del detector está basada en semiconductores, más concretamente basada en CdZnTe. Sin embargo, en Ia reivindicación 19 hace referencia a que el material detector también pueda ser seleccionado del siguiente grupo: HPGe, BGO, CdWO4, CsF, NaI(TI), CsI(Na), CsI(TI), CdTe, CdZnTe, Hgl2, GaAs, Pbl2. Sin embargo, no hace ninguna alusión a si se trata de cristales continuos o pixelados.
La patente ES 2202846, de A. Soluri y R. Pañi, se refiere a una cámara gamma de centelleo plana con resolución espacial muy elevada, con estructura modular. Los fotomultiplicadores mencionados en Ia patente son del tipo sensible a posición con lectura mediante multihilos anódicos cruzados. La patente, ES 2206924, de A. Soluri, se refiere a una mini cámara de reducidas dimensiones 30mmX30mm, con cristal pixelado y sistemas de amplificación y adquisición individuales para cada canal, los cuales son externos a Ia cabeza detectora. Sin embargo, en Ia reivindicación 13 hace referencia a cualquier tipo de fotomultiplicador sensible a posición. Por otro lado, Ia patente WO 00/19238 ( S. Majewski, A. Weisenberger, y R. Wojcik ) reivindica todo tipo de equipos de gammagrafía de pequeñas dimensiones constituidos por arreglos de detectores sensibles a Ia posición. Así mismo hace referencia a un equipo con reducidas dimensiones en su cabeza detectora, pero que requiere sistemas electrónicos modulares estándares para su operación (por ejemplo CAMAC o NIM).
Como vemos, las mini cámaras gamma centelleantes utilizan generalmente uno o unos pocos fotomultiplicadores sensibles a Ia posición, para lograr un equipo pequeño. Sin embargo, Io que reducen es Ia cabeza donde se ubica el detector (el cristal centelleante junto con el fotomultiplicador), de manera que pueden llegar a ser más manejables que las cámaras grandes comerciales. Tanto las grandes cámaras como las mini cámaras mencionadas, requieren para su operación de un conjunto de sistemas electrónicos montados en voluminosos "racks" estándares, como CAMAC o NIM, o de las usuales tarjetas que se insertan en el ordenador. Incluso las más avanzadas cámaras o mini cámaras gamma actuales requieren para su puesta en funcionamiento, que junto al equipo se ofrezca el sistema de cómputo u ordenador con Ia electrónica incluida, ya sea una tarjeta en un ordenador estándar o un sistema de cómputo específicamente diseñado para Ia cámara.
Por Io tanto, no existen mini cámaras gamma basadas en cristales centelleantes autónomas, es decir, cuyo sistema de detección, electrónica y alimentación estén integrados en una única cabeza sensora de dimensiones reducidas, sin ninguna parte activa exterior a Ia cámara, como tarjetas PCI en el ordenador. Tampoco existen mini cámaras gamma que puedan enchufarse y desenchufarse sin necesidad de apagar el ordenador y que todos los voltajes necesarios para su operación, incluido el alto voltaje, sean generados en el interior de Ia cámara y no en alguna tarjeta u otro dispositivo conectado al ordenador.
La mayoría de dichas patentes se refieren a cristales pixelados. Alguna menciona marginalmente Ia posibilidad de utilizar cristales continuos de determinada composición química. Sin embargo, ninguna de dichas patentes explica como se resuelven los graves problemas de borde y compresión de Ia imagen que aparecen cuando Ia superficie de detección es pequeña con respecto a Ia anchura del cristal, en Ia dirección de entrada de los rayos gamma, como sucede por definición en el caso de las mini cámaras gamma.
Algunas de dichas patentes utilizan fotodiodos pero Ia mayoría utilizan fotomultiplicadores sensibles a Ia posición basados en multihilos. Por Io tanto no existen mini cámaras gamma basadas en fotomultiplicadores sensibles a Ia posición basados en ánodos del tipo pads y en particular en el del tipo FLAT panel, el cual no había sido inventado aún cuando se registraron dichas patentes. Por otro lado, el grupo de investigación del Instituto de Física
Corpuscular (IFIC) formado por los autores de Ia presente invención, ha desarrollado varios prototipos de mini cámaras gamma. La descripción del diseño y las características de funcionamiento de tales prototipos se publicaron en varios artículos de revistas científicas. Uno de dichos prototipos utilizaba fotomultiplicadores multihilos (tecnología diferente a Ia utilizada aquí) (Nucí. Instr. & Meth. A486(2002)186-190, Med. Phys. 31 ,6(2004) 1384-1397). Una primera versión del prototipo operaba con tarjetas insertadas en el ordenador y Ia otra podía comunicar los datos a través del puerto USB 1.0 de que disponía. Posteriormente, se desarrollaron dos prototipos basados en fotomultiplicadores Fiat Pannel ( M. Giménez, et al., Nucí. Instr. & Meth. A525 (2004) 298-302; Nucí. Instr. & Meth. A527(2004)92-96). Uno de ellos poseía un campo de visión de tamaño medio, y estaba formado por un arreglo de 4 PMTs; el otro estaba constituido por un único PMT del tipo Fiat Panel. Ambos tenían una carcasa metálica en forma de ortoedro y podían comunicar datos a través del puerto USB 1.0 y disponían de cristales continuos con tratamiento de pintura en las caras del cristal.
En todos los prototipos y publicaciones del IFIC mencionados existe el problema de que en Ia práctica el ancho de banda limitado (1 ,2Mbps) del puerto USB utilizado (1.0) permite tan sólo alcanzar una tasa baja (máximo de 1100 cuentas por segundo) de adquisición de sucesos respecto a Ia normal de uso en medicina nuclear aunque el detector físico era capaz de adquirir datos a mayor velocidad. Un objeto de Ia presente invención es una mini cámara gamma que puede operar con el puerto USB 1.1 , USB 2.0 y alcanzar un ancho de banda de hasta 480Mbps, Io que significa que puede comunicarse hasta 400 veces más rápido, Io cual Ie habilita para Ia adquisición a las tasas elevadas necesarias para obtener una alta sensibilidad.
Por otro lado, todos estos prototipos del IFIC presentaban el problema de que no eran aptos para uso médico, por Io que su aplicación práctica en humanos tanto para diagnóstico como en intra-operatorio resulta inviable. Esto se debe a las estrictas condiciones de bio-compatibilidad, seguridad eléctrica y compatibilidad electromagnética, que las normativas, tanto Europeas como Americanas, imponen para el equipamiento médico. Por último, Ia técnica de pintura empleada para el tratamiento de las superficies de los cristales utilizada, en tales prototipos y publicaciones del IFIC, era prácticamente inoperante, por cuanto se introducían múltiples defectos en los bordes e in-homogeneidades en todo el área sensible, que daban una muy corta vida útil a los sistemas sensores así creados y generaban perdidas de uniformidad inaceptables por las normas médicas.
No se conoce ninguna mini cámara gamma de ninguna de las tecnologías actuales, que teniendo como sistema de cómputo un ordenador estándar, tenga Ia capacidad de ser enchufada y desenchufada del ordenador sin interrupción de su funcionamiento ni estado de encendido y que pueda comenzar a utilizarse inmediatamente sin Ia adición de otros sistemas electrónicos intermediarios.
Tampoco existen cámaras o mini cámaras gamma que produzcan imágenes de vídeo gamma en tiempo real, o imágenes estáticas en unos pocos segundos, con las bajas dosis de radiación permitidas en medicina nuclear.
Entre las dificultades que encuentra el uso intra-quirúrgico de las mini cámaras gamma se encuentra Ia visualización de regiones de baja actividad (como los ganglios) cercanas a puntos de elevada actividad (como los puntos de inyección peri-tumorales). Una solución usualmente aplicada por los médicos nucleares consiste en fijar una pantalla anti-radiación ("material opaco" a los rayos gamma) entre el tumor y Ia cámara (corrientemente un trozo de plomo). Esto permite que el efecto deslumbrador del tumor se elimine y se puedan apreciar los puntos de baja actividad al redistribuirse Ia intensidad de Ia imagen sólo entre los valores de baja actividad, entre los que aparecen ganglios que antes eran invisibles. Luego veremos como esta idea puede ampliarse para un fin diferente, con Ia adición de herramientas informáticas, que permiten crear un nuevo método de localización espacial de regiones observables de Ia imagen de gammagrafía; Io cual constituye precisamente otra de las dificultades a resolver.
Como acabamos de esbozar en el párrafo anterior; otro de los problemas que presentan las mini cámaras gamma es el de Ia localización de los objetos que aparecen en las imágenes captadas por las mismas en el cuerpo del paciente, es decir, Ia correspondencia entre imagen y organismo. Para solucionar parcialmente este problema, los médicos utilizan a veces un objeto radiante que puede situarse libremente en Ia zona de observación de Ia cámara mientras su imagen es directamente visualizada por Ia misma junto a Ia de Ia zona radiante de interés. A esta herramienta nosotros Ia denominaremos "puntero brillante". El más usual es un lápiz de Cobalto 57, aunque en ocasiones se utiliza una jeringa con Tecnecio 99m. El método de localización que utiliza un puntero brillante presenta el inconveniente de que deja un rastro estático del puntero a su paso por Ia zona de Ia imagen. Así mismo la afectación de Ia imagen es elevada ya que quedan trazas del puntero por todos los puntos por donde haya pasado.
En este trabajo denominaremos "punteros radiactivos", ya sea que emitan o inhiban las radiaciones, a los sistemas de localización y/o navegación los cuales involucran directamente a Ia radiación en su modo de operación.
Estos permitirán crear un punto singular en Ia imagen gammagráfica que se corresponda con el señalado por una herramienta usada como puntero.
El puntero de cobalto 57 antes descrito como "puntero brillante", pertenece a esta clase de punteros radiactivos, pero no es el único. En Ia presente invención mostraremos dos nuevos tipos y una mejora en Ia utilización del ya conocido puntero brillante.
Definiremos como "puntero opaco" aquel que a su paso por Ia zona de observación inhiba Ia formación de Ia imagen que se formaría normalmente en su ausencia, creando una sombra en Ia imagen. Así mismo definiremos como "puntero transparente" aquel que no afecte Ia formación normal de Ia imagen por el hecho de estar o no estar presente, pero que permita al sistema detector conocer Ia posición instantánea que posee el puntero en relación con Ia imagen de gammagrafía que se está formando.
El método recogido en una patente de invención previa del grupo de investigación del IFIC (J. M. Benlloch, F. Sánchez, et al. "Navegador
Funcional", P200202220 y PCT ES 03 -00497) basado en un localizador de infrarrojos o de radiofrecuencias, es del tipo transparente, aunque difiere completamente ya que requiere (y esto es un inconveniente) dos sistemas de detección basados además en tecnologías diferentes. En nuestro caso presentaremos un método de localización con puntero transparente, en el cual se utiliza Ia misma tecnología de detección (radiación gamma) y el mismo detector, tanto para captar Ia imagen de interés, como para establecer Ia ubicación espacial del puntero. La nueva invención que presentamos tiene otro valor añadido que consiste en Ia posibilidad de obtener información de variables físicas referentes a Ia fuente de interés en Ia posición física marcada por el puntero transparente. De Ia misma forma, Ia patente US 2004/0075058, de I. Blevis, L.
Tsukerman, Y. Hefetz, se refiere más que a una cámara gamma al sistema de localización de Ia misma mediante emisores de radio. También Ia patente US
6,723,988, de N. Wainer y Zichron-Yaakov, se refieren a Ia utilización de Mini cámaras gamma para un equipo de navegación.
Una mini cámara gamma para uso intra-quirúrgico debe ser ligera, portátil y autónoma con uno o ningún cable y debe ser capaz de formar las imágenes en tiempo real.
Es de amplio conocimiento Ia existencia de múltiples sistemas de punteros basados en LÁSER. Pueden encontrarse generadores de punto, línea, así como las más diversas formas geométricas.
En todos los casos conocidos en los que se genera una forma luminosa singular sobre una superficie determinada, a causa de Ia intersección con esa superficie, de Ia luz LÁSER emitida; dicha forma luminosa tiene Ia característica de depender en su posición y en su forma, de Ia distancia hasta el emisor o los emisores LÁSER, a Ia que se encuentra Ia superficie interceptada por Ia luz; así como de Ia posición angular de Ia superficie; o en caso contrario el emisor o emisores LÁSER, deben estar simétricamente dispuestos respecto al eje axial en el que se realice el desplazamiento de acercamiento o alejamiento entre emisores LÁSER y Ia superficie donde se intercepta su luz.
Ejemplo de esta último puede ser un emisor LÁSER de punto que se acerca o aleja de una superficie donde genera un punto, siguiendo como eje de movimiento Ia propia línea que sigue su luz. Este es un caso en que Ia figura generada mantiene su posición en Ia superficie y su forma de punto, pero que está simétricamente situada respecto al eje del movimiento, y además encima de dicho eje, figuras 1a y 1 b.
Como ejemplos de cambio de posición o forma al mover Ia posición entre superficie y emisor hay muchos casos:
1. Un emisor LÁSER de punto igual al mencionado arriba, pero que se acerca o aleja de una superficie donde genera un punto, siguiendo como eje de movimiento una línea que forme cierto ángulo diferente de cero con Ia propia línea que sigue su luz. Este es un caso en que Ia figura generada sigue siendo un punto, pero su posición en Ia superficie cambia con Ia distancia entre emisor y superficie, figuras 2a y 2b. 2. Un emisor LÁSER de un único transductor, que genere cualquier figura diferente de un punto, genera una figura cuya dimensión varía con Ia distancia entre emisor y superficie y generalmente también varía con el ángulo en que se sitúe esa superficie respecto del emisor.
DESCRIPCIÓN DE LA INVENCIÓN Descripción breve
El objeto de Ia presente invención es una novedosa mini cámara gamma portátil para uso intra-quirúrgico y un sistema de localización de objetos emisores de rayos gamma.
La mini cámara gamma se basa en cristales de centelleo y está caracterizada esencialmente por ser autónoma, es decir, en Ia que todos los sistemas necesarios han sido integrados junto a Ia cabeza sensora, formando un equipo compacto y autónomo, sin necesidad de ningún otro sistema electrónico, y que se puede conectar a cualquier ordenador estándar o dispositivo compatible mediante cualquier interfaz serie universal de velocidad total o alta velocidad, WirelessUSB, BlueTooth o Firewire, figura 3. Al mismo tiempo, este equipo cumple con las características de seguridad eléctrica y compatibilidad electromagnética de grado médico. En esta invención se presenta además un tratamiento especial de las superficies del cristal, en el caso de que el cristal de centelleo de Ia mini cámara gamma sea del tipo continuo, y un método que permite utilizar casi toda el área del mismo sin el grave inconveniente de Ia compresión de imagen y efectos de borde que presenta Ia utilización de cristales continuos. Se introduce además Ia innovación de utilizar cristales de centelleo basados en tierras raras.
Se introduce además, un sistema de focalización de Ia luz de centelleo emitida por el rayo gamma para mejorar Ia resolución espacial, en cualquier detector de rayos gamma basado en cristales de centelleo continuos, al disminuir Ia anchura de Ia distribución de luz que llega al foto-detector.
Otras características innovadoras de Ia mini cámara gamma objeto de nuestra invención son: capacidad de "autoalimentación" desde el puerto del ordenador, modos de "ahorro energético", capacidad de actualización del software y firmware desde internet, sin necesidad de manipulación sobre Ia cámara y capacidad de formación de imágenes de Vídeo de rayos Gamma en Tiempo Real (RTGV), incluso para dosis administradas de baja actividad, gracias a un nuevo algoritmo de "reconstrucción probabilística". Uno de los problemas que presentan las cámaras gamma es el de Ia localización de los objetos que aparecen en las imágenes captadas por las mismas en el cuerpo del paciente, es decir, Ia correspondencia entre imagen y organismo. Este problema se resuelve, en Ia presente invención, desarrollando un método de localización mediante el uso de uno o más punteros radiactivos, en el cual se utiliza Ia misma cámara gamma tanto para captar Ia imagen de interés, como para establecer Ia ubicación espacial de cada puntero. La nueva invención que presentamos tiene otro valor añadido que consiste en Ia posibilidad de obtener información de variables físicas referentes a Ia fuente de interés en Ia posición física marcada por el puntero transparente. Así mismo se introduce un nuevo sistema de puntero luminoso basado en LÁSER, que permite indicar sobre el área de observación un punto específico de Ia imagen de gammagrafía.
El conjunto de Ia mini cámara gamma y los sistemas de localización desarrollados constituyen un nuevo sistema de navegación quirúrgica mediante imágenes obtenidas en tiempo real.
Descripción detallada
Una mini cámara gamma basada en tecnología de cristales de centelleo y caracterizada esencialmente por ser autónoma, es decir, en Ia que todos los sistemas físicos y electrónicos necesarios han sido integrados junto a Ia cabeza sensora, formando un equipo compacto y autónomo, sin necesidad de ningún otro sistema electrónico adicional, y que se puede conectar a cualquier ordenador estándar o dispositivo compatible mediante interfaz conectable en caliente.
Los elementos estructurales de Ia mini cámara gamma son los siguientes, figura 4: 1. Sistema intercambiable de colimación de rayos gamma basado en tungsteno, plomo u otro material de iguales características frente a Ia radiación.
2. Cristal centelleante.
3. Fotodetector (o fotodetectores) sensibles a Ia posición. 4. Pantalla anti-radiación de plomo, tungsteno u otro material de iguales características frente a Ia radiación..
5. Electrónica de bajo consumo con procesamiento analógico, digital y fuentes de voltaje e interfaz estándar de conexión a ordenadores.
6. Conector salida a Ia interfaz. 7. Carcasa con pantalla electromagnética.
El colimador 1 , de uno (tipo "pin-hole") o varios agujeros (tipo multi "pin- hole" o de agujeros paralelos, convergentes o divergentes) o de estructura de máscara codificada, permite el paso de los rayos gamma, solamente por los agujeros establecidos para Ia correcta formación de Ia imagen.
El cristal centelleante 2, transduce Ia energía depositada por un rayo gamma incidente en Ia generación de un elevado número de fotones de luz visible, que pueden ser detectados por el fotodetector 3.
El fotodetector 3, recibe Ia luz del cristal centelleante y Ia transduce en impulsos de carga eléctrica que pasan a Ia sección de procesamiento electrónico. El fotodetector utiliza alimentación de alto voltaje de hasta 1200
Volts que Ie es generado en una placa de fuentes que forma parte de Ia sección electrónica interna de Ia cabeza detectora.
La pantalla antirradiación 4, de plomo u otro material de similares características frente a las radiaciones, cubre Ia superficie lateral, trasera y frontal de Ia cámara, excepto en Ia zona del colimador 1. De esta forma los rayos gamma no pueden alcanzar Ia zona sensible de Ia cámara, a no ser por el agujero previsto expresamente para ese fin en el colimador 1 , para el caso del colimador "pin-hole", o los múltiples agujeros en caso de colimadores multi "pin-hole", de agujeros paralelos, divergentes, convergentes o de máscaras codificadas.
La electrónica de procesamiento 5, recibe las señales de salida del fotodetector 3. La misma consta de las siguientes partes:
1. Red interanódica que reduce a una cantidad mínima el número de señales electrónicas procedentes de los ánodos del fotodetector para Ia localización del centroide de Ia distribución de luz, a partir de todas las señales anódicas individuales. 2. Sistema de procesamiento analógico de las señales para amplificar, filtrar y obtener una amplitud adecuada en función de Ia carga en cada señal.
3. Sistema de procesamiento digital para digitalizar las señales analógicas, realizar un filtrado digital y enviar los resultados al ordenador por Ia interfaz de comunicación establecido. Adicionalmente realiza el control de todas las funciones del dispositivo.
4. Sistema de fuentes para Ia generación de los diferentes voltajes necesarios en el equipo, a partir de una fuente única de 5 volts.
El conector 6, es Ia única vía de comunicación imprescindible del equipo.
A través de dicho conector viajan siempre los datos en ambos sentidos y en el caso de las interfaces conectadas por cable, fluye Ia energía de alimentación del ordenador a La Mini Cámara.
La carcasa 7, garantiza que no entre luz al interior del dispositivo y pueda llegar hasta el cristal centelleante 2, evitando así que se introduzcan ruidos en Ia imagen de gammagrafía a obtener. Así mismo Ia carcasa cumple una función de pantalla electromagnética frente a todo tipo de ruidos externos y emisiones internas, para una adecuada compatibilidad electromagnética de grado médico. Debido a que todos los sistemas electrónicos necesarios, analógicos, digitales, firmware y fuentes de voltaje, han sido integrados junto a Ia cabeza sensora se obtiene una mini cámara gamma compacta, con un inigualado nivel de autonomía y portabilidad. La información digital, que el dispositivo transmite al ordenador, permite obtener directamente Ia imagen de gammagrafía. La posibilidad de operación sin cables entre Ia cámara y el ordenador requiere, para una operación continuada, de Ia utilización de alimentación externa desde una fuente de 5Volts conectada a Ia línea eléctrica. También se ha preparado Ia operación con baterías, ligado al uso de interfaces inalámbricas, que libera de todo tipo de conexión por cable.
No se conoce Ia existencia de ninguna cámara gamma con Ia propiedad de ser autónoma. Sin embargo, dicha propiedad es muy importante para el uso intra-quirúrgico ya que reduce el número de cables al mínimo (uno o ninguno según el interfaz utilizado) y cualquier cable dentro del quirófano resulta un obstáculo importante para el cirujano.
Un objeto particular de Ia presente invención es una mini cámara gamma de las características descritas anteriormente, y que cumple con las características de seguridad eléctrica y compatibilidad electromagnética de grado médico.
En Ia invención que presentamos, y a diferencia de las publicaciones anteriores del grupo de investigación formado por los autores de Ia misma (ver por ejemplo, Nucí. Instr. & Meth. A486(2002)186-190, Med. Phys. 31 ,6(2004) 1384-1397, Nucí. Instr. & Meth. A525(2004)298-302, Nucí. Instr. & Meth. A527(2004)92-96), se utiliza una carcasa que ha sido diseñada especialmente para cumplir las normativas de seguridad eléctrica de grado médico en un entorno quirúrgico; a Ia vez que los circuitos electrónicos han sido creados para operar en un entorno sin Ia protección que puede brindar una gruesa capa de aluminio como Ia descrita en esas publicaciones.
Un objeto particular de Ia presente invención es una mini cámara gamma de las características descritas anteriormente, y además con Ia característica de que Ia interfaz en caliente puede ser al menos uno de los siguientes: a) Interfaz serie universal de velocidad total (12Mb/s) o alta velocidad (480Mb/s); b) WirelessUSB; c) BlueTooth; d) Firewire.
En Ia presente invención se ha desarrollado un interfaz de comunicaciones USB hasta 400 veces más rápido que el presente en los prototipos académicos citados en el estado de Ia técnica. Dicho interfaz puede comunicarse en modos USB 1.1 (12Mb/s) y USB 2.0 (480Mb/s), Io cual permite que las limitaciones de velocidad de adquisición queden del lado de Ia física, por mucho tiempo. Así mismo prepara a este sistema para operar con nuevos sistemas de colimadores de muy alta sensibilidad que están en desarrollo. También se han desarrollado las interfaces de comunicación por medio de los restantes modernos puertos de comunicaciones WirelessUSB, BlueTooth y FireWire, las cuales no han sido reportadas en ningún otro equipo de gammagrafía y permiten una elevada versatilidad de interconexión con sistemas estándares de cómputo y una portabilidad y facilidad de uso añadidas. De estos avances ha resultado así mismo un sistema que puede conectarse y desconectarse al ordenador sin necesidad de apagarlo, ni tomar ninguna medida extra.
Un objeto particular de Ia presente invención es una mini cámara gamma como Ia descrita anteriormente, con Ia característica conocida como "autoalimentación" (selfpowered), ya que puede utilizar Ia propia interfaz de datos estándar y externa del ordenador como fuente de energía, o alternativamente una batería, y no requiere Ia utilización de Ia red eléctrica u otra alimentación externa.
Esto es posible porque Ia mini cámara gamma objeto de Ia presente invención consume una potencia eléctrica inferior a las capacidades que ofrecen los puertos utilizados. Adicionalmente el equipo puede alimentarse externamente (sin que sea imprescindible) a partir de una fuente directa de 5 volts y 500 miliamperes.
Un objeto particular de Ia presente invención es una mini cámara gamma como Ia descrita anteriormente, con Ia característica de "paso a modos de ahorro energético" (Power Down), ya que el software puede definir varios niveles de consumo según las necesidades funcionales de cada momento.
Como parte del control de alimentación de energía, Ia Mini Cámara puede pasar al modo "dormida" en el cual el consumo es de apenas 2 micro- amperes, sin perder Ia capacidad de "despertar" y cambiar a otro estado ante una orden automática del software. El siguiente estado energético consume 23mA y permite Ia comunicación bi-direccional de datos entre Ia cámara y el ordenador, con funciones como Ia identificación y preestablecimiento de condiciones de adquisición. En otro nivel de consumo de 32OmA, el dispositivo puede generar Ia adquisición del nivel de ruido ambiental, hacer chequeos de funcionalidad y ajustar sus sistemas para contrarrestar el ruido. En otro nivel de 15OmA el sistema puede mantener el estado óptimo de temperatura del sistema sensor, para el inicio rápido de una adquisición.
Finalmente con un consumo de 47OmA y todos los sistemas encendidos el equipo puede realizar cualquier operación según su finalidad.
El uso adecuado de estas habilidades permite que el equipo no tenga que ser desenchufado del ordenador, a Ia vez que se ahorra energía y alarga Ia vida útil del mismo. No hacen falta botones mecánicos para apagar el equipo.
Un objeto particular de Ia presente invención es una mini cámara gamma como Ia descrita anteriormente, en Ia que el software puede actualizarse desde internet y el firmware (controlador del hardware), se puede recargar desde el software, sin abrir Ia cámara; Io que implica que mediante actualizaciones del firmware, se puede mutar el hardware y/o añadirle otros comportamientos.
Esta exclusiva característica permite que el fabricante pueda incluir nuevos avances y mejoras a las mini cámaras comercializadas en cualquier parte del mundo, mediante un soporte de actualización en internet, al cual accederían los clientes registrados.
Es usual que algunos dispositivos modernos de electrónica de consumo, los cuales utilizan algún software en su funcionamiento, puedan actualizarse por estos medios. Menos usual es que pueda actualizarse el firmware controlador del hardware, sin abrir el equipo contenedor de ese hardware. No se conoce de ninguna cámara gamma donde esta característica esté implementada.
La operación del sistema digital de Ia mini cámara gamma objeto de Ia presente invención está basada en un microcontrolador y presenta un diseño hardware con un conjunto de capacidades adicionales con respecto a las necesarias para Ia realización de una gammagrafía. La utilización de esas capacidades extras, aún no ha sido desarrollada en el software de gammagrafía actual; ni están incluidas en el programa que funciona en el microcontrolador (fírmware). Lo que reivindicamos es que nuestro equipo podrá utilizar esas capacidades cuando sean desarrolladas. Para ello basta con remitir por medios informáticos, Ia actualización correspondiente y el sistema actualmente creado, podrá actualizar tanto el software del ordenador, como el fírmware del microcontrolador de Ia mini cámara gamma.
Estas actualizaciones del hardware están, por supuesto, limitadas a las capacidades creadas y no utilizadas en el diseño hardware original. Si embargo, el propio fírmware de realización de gammagrafía que actualmente se utiliza, puede ser mejorado cuantas veces se considere y prácticamente de forma ilimitada, basado en los mismos datos de partida y tal vez alguna característica de las no utilizadas.
Ponemos como ejemplo que mediante actualizaciones informáticas, se puede añadir al sistema Ia capacidad de convertirse en cualquiera de los siguientes equipos, diferentes de una cámara gamma: 1. Detector de nivel de radiaciones.
2. Espectrómetro multicanal.
3. Espectrómetro monocanal de ventana desplazable.
4. Sistema de captación de cuentas en tiroides.
Un objeto particular de Ia presente invención es una mini cámara gamma de las características descritas anteriormente, y junto con Ia característica de que el cristal centelleante es del tipo continuo, al que se ha realizado un tratamiento especial de sus superficies externas, y se ha utilizado un algoritmo específico denominado "transformación afín compensada" que permiten obtener una homogeneidad en el área de detección inferior al 5% hasta un entorno del 80% de dicha área, superando antiguas limitaciones conocidas como efectos de borde que limitan el área útil al 50% del área sensible.
Aunque en algunas patentes (ver ES 2202846, de A. Soluri y R. Pañi; ES 2206924, de A. Soluri) se comenta marginalmente Ia posibilidad de utilizar cristales continuos en mini cámaras gamma, dichas patentes están basadas, y así Io demuestran todos los ejemplos de realización, en cristales con píxeles. Sin embargo, ninguna de dichas patentes explica como resuelven los graves problemas de borde y compresión de Ia imagen que aparecen cuando Ia superficie de detección es pequeña con respecto a Ia anchura del cristal en Ia dirección de entrada de los rayos gamma, como sucede por definición en el caso de las mini cámaras gamma. Dichos problemas tienen un efecto despreciable en el caso de las cámaras gamma de grandes dimensiones, que son las que tradicionalmente se han venido utilizando, y por ello los autores de dichas patentes obvian dichos problemas. Sin embargo, como demuestran las publicaciones del grupo de investigación formado por los autores de Ia presente invención (Nucí. Instr. and Meth. A486(2002)186-190, Med. Phys. 31 ,6(2004) 1384-1397, Nucí. Instr. and Meth. A525(2004)298-302, Nucí. Instr. and Meth. A527(2004)92-96) dichos problemas son importantes y reducen sustancialmente el campo de detección útil de las mismas si se precisa, como así Io exigen las normativas (Performance Measurements of Scintillation Cameras, NEMA Standards Publication no. NU 1 , National Electrical Manufacturers Association, Washington D. C. 1994), que Ia superficie de detección sea uniforme. Es por ello que, aunque el uso de cristales continuos se cita en alguna patente, no se ha inventado un método que permita utilizarlos en Ia práctica para cámaras de pequeño campo de visión sin que generen efectos de borde y desuniformidades más allá de las permitidas por las normativas, como por ejemplo Ia NEMA arriba citadas. Por esta razón no se utiliza en Ia práctica.
En Ia presente invención se introduce un tratamiento especial de las superficies del cristal y un algoritmo que permiten alcanzar grandes campos de visión útil relativos (se utiliza casi toda el área del cristal), inalcanzables por los actuales sistemas de cristal continuo, Io que constituye Ia principal razón por Ia cual esta técnica no se utiliza actualmente en mini cámaras gamma fuera del entorno académico.
Por otro lado, el uso de cristales continuos con un tratamiento de superficie adecuado permite obtener una mayor cantidad de luz en el dispositivo fotosensible que los cristales en forma de matriz con píxeles, Io que implica una mejora en Ia resolución en energía del detector de rayos gamma. A continuación describimos el tratamiento de superficie que se realiza para minimizar los efectos de borde. La superficie por Ia cual penetran los rayos gamma en el cristal se ha pulido de forma burda, se ha pintado con una pintura blanca reflectante seca y además se ha depositado una capa epoxy blanca reflectante sobre ésta. Alternativamente, en esta superficie se puede realizar un pulido fino al que se adhiere una capa auto-reflectante. La capa auto-reflectante tiene Ia propiedad de que las partículas de luz emitidas por el cristal y que inciden en dicha capa son reflejadas en Ia misma dirección de incidencia de Ia luz emitida en el cristal pero cambiando el sentido. En Ia superficie del cristal en contacto con el fotodetector se realiza un pulido también de forma burda. Finalmente, en las pequeñas superficies laterales se realiza un pulido de forma burda, se pinta con pintura negra absorbente seca y además se deposita una capa epoxy negra absorbente. La diferencia entre éste tratamiento y el descrito en las publicaciones anteriores del grupo de investigación al que pertenecen los autores de Ia invención ( ver por ejemplo, "PORTABLE MINI GAMMA-CAMERA FOR MEDICAL APPLICATIONS", E. Porras, B. Escat, J. M. Benlloch, D. Kadi-Hanifi, S. López, N. Pavón, J. A. Ruiz, F. Sánchez, A. Sebastiá, Nuclear Instruments & Methods in Physics Research A 486, 2002, 186-190; "DESIGN AND TESTS OF A PORTABLE MINI GAMMA CAMERA", de F. Sánchez, J. M. Benlloch , B. Escat, N. Pavón, E. Porras, D. Kadi-Hanifi, J.A. Ruiz, FJ. Mora, A. Sebastiá, Medical Physics 31 , 6, Junio 2004, 1384-1397) resulta sustancial para Ia reducción de los efectos de borde y mejora de Ia uniformidad.
En el artículo de D. P. Mc Elroy, S.C. Huang and EJ. Hoffman, "The Use of Retro-Reflective Tape for Improving Spatial Resolution of Scintillation Detectors" (IEEE Trans. Nucí. Sci. VoI 49 (1 ) (2002) 165-171) se utilizan láminas retroreflectoras para mejorar las características de resolución espacial intrínseca de un cristal continuo en cámaras gamma. Sin embargo, el uso de una capa retrorreflectora no se ha implementado nunca en mini cámaras gamma.
A pesar de dicho tratamiento óptimo de Ia superficie del cristal es necesario aplicar un algoritmo específico, que denominamos "transformación afín compensada", para minimizar los efectos de borde y de compresión de Ia imagen y obtener una superficie de detección uniforme de tamaño máximo.
El algoritmo descompone en primer lugar Ia superficie de Ia imagen detectada (comprimida) en polígonos (por ejemplo, triángulos) de área pequeña y realiza una transformación afín de forma que cada polígono se expande conservando su forma. El factor de expansión depende, entre otros factores, de las características particulares del cristal y fotodetector utilizados y de Ia situación del polígono respecto del centro de Ia superficie de detección, siendo mayor en general para polígonos situados en los límites de Ia misma que en el centro. Se utiliza una tabla LUT (Look Up Table) para realizar localmente y de forma rápida y eficiente las correcciones en posición y energía. Por otro lado, los rayos gamma que han sido detectados en un polígono dado se redistribuyen en los polígonos expandidos por un método de Monte Cario que tiene en cuenta Ia probabilidad de que el rayo gamma detectado hubiera incidido en realidad en otro polígono circundante. De esta forma se optimiza Ia uniformidad en Ia mayor área posible de detección.
En las publicaciones anteriores del grupo de investigación formado por los autores de Ia presente invención (ver por ejemplo, "A FLAT-PANEL-BASED MINI GAMMA CAMERA FOR LYMPH NODES STUDIES", de M. M. Fernández, J. M. Benlloch, J. Cerda, B. Escat, E.N. Giménez, M. Giménez, Ch.W. Lerche, J. Martínez, N. Pavón, F. Sánchez, A. Sebastiá, Nuclear Instruments & Methods in Physics Research A 527, 2004, 92-96) se utiliza un método de descompresión de Ia imagen detectada basado en funciones de dos variables con múltiples monomios. Dicho método presenta el problema fundamental de que no puede utilizarse en tiempo real debido a su lentitud por el gran número de operaciones algebraicas que precisa. Por otro lado, carece de Ia posibilidad de adaptarse de forma óptima a las características locales de Ia superficie de detección que pueden variar sustancialmente, por ejemplo, en función de los "pads" anódicos iluminados (en el caso de que el detector sea un foto- multiplicador FLAT PANEL sensible a posición).
Un objeto adicional de Ia presente invención es un detector de rayos gamma basado en cristales de centelleo continuos mejorado mediante un sistema de focalización de Ia luz de centelleo emitida por el rayo gamma de forma que se disminuye Ia anchura de Ia distribución de luz que llega al foto- detector, figuras 5a y 5b.
La resolución espacial de un detector de rayos gamma basado en cristales de centelleo continuos depende de Ia anchura de Ia distribución de luz emitida por el rayo gamma en el cristal y que llega a Ia superficie del foto- detector: cuanto mayor es Ia anchura de Ia distribución más difícil es separar dos puntos entre sí y por tanto menor es Ia resolución. Por otro lado, cuanto mayor es Ia anchura de Ia distribución de luz, mayores son los efectos de borde que aparecen al utilizar cristales de centelleo continuos, aumentando el factor de compresión de Ia imagen.
Por ello, dicha mejora introducida en Ia presente invención, resulta especialmente importante en el caso de detectores de rayos gamma con cristales de centelleo de gran grosor, en Ia dirección perpendicular a Ia superficie del foto-detector, respecto a Ia dicha superficie. Dichos detectores presentan Ia dificultad de que Ia mayor parte de las interacciones se producen cerca de Ia superficie de entrada de los rayos gamma en el cristal y, por tanto, generan distribuciones muy anchas de luz en Ia superficie del foto-detector.
El mencionado sistema de focalización de Ia luz de centelleo emitida por el rayo gamma puede implementarse mediante Ia adición al mismo de una o más capas material óptico que actúan como lentes de focalización. En particular, el uso de capas de lentes o micro-lentes convergentes de distancia focal similar a Ia dimensión del cristal en Ia dirección perpendicular a Ia superficie del foto-detector, disminuye Ia anchura de Ia distribución de luz que llega a Ia misma. Para lograr una mayor reducción en Ia anchura de Ia distribución de Ia luz, el cristal continuo puede segmentarse en dos o más capas a Io largo de Ia dirección perpendicular a Ia superficie de foto-detección, adicionando entre cada dos de dichas capas una capa de micro-lentes convergentes.
Un objeto particular de Ia presente invención, que es consecuencia de Io explicado anteriormente, es un detector de rayos gamma que consiste en varias capas (en Ia dirección de entrada de los rayos gamma) de cristales de centelleo continuos, y finalmente foto-detectores, y al que se han adicionado entre cada dos de dichas capas una capa de lentes o micro-lentes convergentes.
Dicha invención resulta útil en cualquier sistema de detección de rayos gamma basado en cristales de centelleo, por ejemplo en cámaras de tomografía por emisión de positrones (P.E.T.), SPECT y cámaras gamma en general.
Un objeto particular de Ia presente invención es Ia utilización de un detector de rayos gamma según las reivindicaciones 8 o 9 en una mini cámara gamma como Ia de Ia reivindicación 1 , o una cámara PET, o una cámara SPECT, o en una cámara gamma basada en cristales de centelleo en general.
Un objeto particular de Ia presente invención es una mini cámara gamma como Ia descrita anteriormente, con Ia característica de que el componente principal del cristal centelleante es un elemento químico perteneciente a Ia clase de las tierras raras, como el LnBr3 o el LnCI3. Los cristales del tipo en el que el componente principal es un elemento químico perteneciente a Ia clase de tierras raras proporcionan a Ia mini cámara una mejora sustancial en Ia funcionalidad. Ello se debe a que dichos cristales centelleantes permiten obtener una resolución en Ia energía de los rayos gamma detectados comparable a Ia de los detectores basados en Ia tecnología de semiconductores. Esta característica es crítica para poder distinguir entre diferentes isótopos radiactivos al poder separar las energías correspondientes. Este poder de separación permite no sólo reducir el ruido de fondo, al reducirse el tamaño de Ia ventana de energías, sino también aplicar más eficientemente el método de localización que describimos más tarde en esta patente. Además, cristales del tipo en el que el componente principal es un elemento químico perteneciente a Ia clase de tierras raras producen una mayor cantidad de luz de centelleo, con el consiguiente aumento en Ia estadística de detección de fotones, Io que implica una mejora de Ia resolución espacial de Ia cámara gamma. Por otro lado, estos cristales actualmente no pueden crecerse con un tamaño muy grande por Io que sólo se pueden utilizar en cámaras gamma de tamaño reducido. Además, hasta el momento tampoco se ha desarrollado el método de fabricación para obtener matrices de píxeles a partir de dichos cristales. Por ello, su utilización en Ia mini cámara gamma mediante cristales continuos en Ia que se han resuelto los problemas de borde representa una aplicación óptima de los mismos. Un objeto particular de Ia presente invención es una mini cámara gamma como Ia descrita anteriormente, con Ia característica de que el foto-detector es del tipo foto-multiplicador FLAT PANEL sensible a posición.
Dicho tipo de foto-multiplicador tiene Ia propiedad esencial de que su diseño está sustancialmente mejorado para evitar áreas muertas en los bordes del dispositivo, facilitando Ia unión modular de varios fotomultiplicadores FLAT PANEL. Además, no presenta apenas efectos de borde Io que Io hace especialmente adecuado para el uso en mini cámaras gamma y aún más cuando, como en Ia invención presente, se utilizan cristales continuos. En algunas patentes (ES 2202846, de A. Soluri y R. Pañi; ES 2206924, de A. Soluri; WO 00/19238, de S. Majewski, A. Weisenberger, y R. Wojcik) se describe Ia utilización fotomultiplicadores sensibles a Ia posición, éstos son del tipo en el que los ánodos son multi -hilos cruzados. Los fotomultiplicadores FLAT PANEL no poseen ánodos multi-hilos sino del tipo multi-pads. En Ia patente ES 2206924, de A. Soluri, se comenta Ia posibilidad de utilizar cualquier tipo de fotomultiplicador sensible a Ia posición, sin embargo, los fotomultiplicadores tipo FLAT PANEL no aparecieron hasta el año 2002, por Io que no podían ser objeto de su patente (que es del año 1998).
Un objeto adicional de Ia presente invención es un algoritmo de creación de Ia imagen gammagráfica denominado "reconstrucción probabilística", basado en Ia asignación para cada rayo gamma detectado de una distribución de Ia probabilidad de que el punto de emisión haya sucedido en cada punto de Ia región posible de emisión de Ia radiación, teniendo en cuenta el punto de impacto detectado por el sistema de detección, Ia resolución intrínseca del sistema detector, Ia uniformidad del detector, Ia geometría del mismo y Ia geometría del sistema óptico utilizado.
La asignación consiste principalmente en atribuir una probabilidad a Ia dirección de impacto lineal según el valor de Ia uniformidad en dicho punto y en atribuir una probabilidad a su vecindad, teniendo en cuenta ésta y las otras variables mencionadas.
Actualmente se utilizan diversos filtros en Ia imagen que proporcionan un suavizado de Ia misma que tienen por objetivo minimizar el efecto de una falta de estadística suficiente en determinadas regiones. Dichos filtros se aplican tan sólo cuando Ia imagen final ya ha sido obtenida. Mediante el algoritmo de "reconstrucción probabilística" que reivindicamos, se realiza dicho suavizado en tiempo real, suceso a suceso, y de forma automática, acelerando Ia formación de Ia imagen definitiva, figuras 6a, 6b, 6c y 6d. La "reconstrucción probabilística" representa un avance que permite obtener imágenes estáticas de emisión de rayos gamma de calidad comparable a Ia obtenida mediante métodos convencionales, pero utilizando un número sustancialmente inferior de rayos gamma detectados. Por Io tanto, este avance permite Ia obtención de imágenes en un tiempo muy inferior. Ello en Ia práctica representa, con las dosis de radio-fármacos administradas actualmente, Ia obtención de imágenes en tiempo real. Alternativamente, podría representar una reducción de Ia dosis administrada para Ia obtención de una imagen de igual calidad.
Por Io tanto, un objeto particular de Ia presente invención es Ia utilización del algoritmo de "reconstrucción probabilística" descrito anteriormente, y una cámara gamma, como Ia descrita anteriormente, pero no limitada a ésta, para Ia formación de una imagen en tiempo real de calidad comparable a Ia obtenida mediante métodos convencionales, pero utilizando un número sustancialmente inferior de rayos gamma detectados. La "reconstrucción probabilística" representa un avance que permite no solo obtener imágenes estáticas de emisión de rayos gamma, de calidad comparable a Ia obtenida mediante métodos convencionales, pero utilizando un número sustancialmente inferior de rayos gamma detectados, sino también formar imágenes de Vídeo de rayos Gamma en Tiempo Real (RTGV), a partir de objetos radiantes, incluso de baja actividad, mientras Ia cámara se desplaza sobre Ia zona de observación. Esta capacidad no requiere el incremento de Ia dosis habitual a inyectar al paciente, por cuanto Ia mini cámara gamma utiliza Ia misma información que recibiría cualquier cámara convencional. La diferencia está en Ia forma de procesar Ia información y Ia facilidad de movimiento de nuestra cámara portátil.
Por Io tanto, un objeto particular de Ia presente invención es Ia utilización del algoritmo de "reconstrucción probabilística" descrito anteriormente, y una cámara gamma, como Ia mini cámara gamma descrita anteriormente, pero no limitada a ésta, para Ia obtención de imágenes de Vídeo de rayos Gamma en Tiempo Real (RTGV), a partir de objetos radiantes, incluso de baja actividad, mientras Ia cámara se desplaza sobre Ia zona de observación.
Un objeto adicional de Ia presente invención es un dispositivo basado en al menos dos mini cámaras gamma de las características anteriores, mecánicamente correlacionadas y operadas simultáneamente por un mismo sistema de control, para Ia lograr visión estereoscópica; obteniendo Ia capacidad de visualizar objetos emisores de rayos gamma en tres dimensiones. No se trata de técnicas de tomografía por emisión simple o dual de fotones, ni de visión estereoscópica por triangulación (como se menciona en Ia patente PCT/ESO3/00497 "Navegador Funcional", cuyos autores principales Io son también de Ia presente invención), sino de una auténtica visión estereoscópica, basada en imágenes tomadas por dos sensores con perspectivas visuales sólo ligeramente diferentes y procesadas por un sistema capaz de reconocer y comparar patrones de imagen. La utilidad de este dispositivo sería principalmente para uso intra-operatorio, en Ia localización tridimensional de regiones malignas profundas.
Una posibilidad de localización diferente a Ia descrita en el estado de Ia técnica es Ia que denominamos localización con "puntero transparente", en Ia cual Ia imagen del objeto radiante de interés no se ve afectada por Ia presencia del puntero o sistema de localización.
Un objeto adicional de Ia presente invención es un "método nuevo de localización y medición" de variables físicas de objetos emisores de radiación basado en Ia utilización de dos elementos que enumeramos a continuación:
1. Al menos un "puntero transparente" (es decir, que emite radiación distinguible de Ia que se desea observar). 2. Un sistema de detección de rayos gamma (incluido el del objeto de Ia presente invención pero no limitado a éste), capaz de detectar simultáneamente el puntero y dichas fuentes de interés, figuras 7a y 7b. El método consiste en Ia localización espacial automática
(tridimensional) del puntero por Ia cámara gamma (sin presentar necesariamente Ia imagen gammagráfica del puntero) y en Ia adquisición y presentación de Ia imagen proveniente de Ia fuente de interés. En Ia porción de Ia región de interés señalada por el puntero se pueden determinar las variables físicas aparentes, como por ejemplo Ia actividad aparente. A partir de dichos valores de las variables físicas y de los datos obtenidos del puntero, pueden determinarse los valores absolutos de las mismas en Ia vecindad señalada de Ia región de interés.
El puntero puede ser una fuente de actividad conocida en cuyo caso Ia posición del mismo se determina en el espacio tridimensional. Esto se debe a que no sólo se detecta el punto de impacto en el plano de detección de Ia mini cámara gamma, sino que también se estima Ia distancia respecto a dicho punto a partir de Ia actividad aparente del mismo, puesto que su actividad absoluta es conocida. También se puede determinar Ia distancia del puntero respecto a Ia cámara a partir de las dimensiones conocidas del puntero y del colimador y de
Ia medida del tamaño aparente de Ia imagen formada por el puntero.
Una manera de distinguir el puntero del resto del área radiactiva es mediante el filtrado de energía, siempre que el puntero tenga una energía de emisión suficientemente alejada de Ia energía del radiofármaco utilizado. Un objeto adicional de Ia presente invención es un "método de localización mejorado" de objetos emisores de radiación basado en Ia utilización de tres elementos que enumeramos a continuación:
1. Al menos un "puntero brillante" (radiación no distinguible de Ia que se desea observar). 2. Un sistema de detección de rayos gamma (incluida Ia cámara objeto de Ia presente invención, pero no limitado a ésta), capaz de detectar simultáneamente al puntero y a dichas fuentes de interés, aunque no pueda distinguir entre éstos.
3. Un mecanismo suficientemente rápido de generación de imágenes de persistencia limitada. El método consiste en Ia utilización de un modo de adquisición con persistencia limitada de manera que el puntero pueda desplazarse por Ia zona de observación de Ia cámara, sin dejar un rastro (brillante) de su paso, excepto en Ia posición instantánea que posee, reduciendo así Ia afectación que el método tradicional produce en Ia imagen adquirida. Para una adecuada validez práctica, es imprescindible contar con una cámara de elevada sensibilidad o en su defecto con una cámara que, como Ia descrita en Ia presente invención, permita Ia obtención de imágenes con suficiente rapidez. La formación de imágenes de Vídeo de rayos Gamma en Tiempo Real (RTGV), según el "algoritmo de reconstrucción probabilística", hace posible el uso de estos punteros brillantes para localizar diversos puntos emisores situando el puntero brillante cerca de Ia fuente a localizar.
Otra variante que se puede aplicar utilizando este tipo de puntero es Ia de adquirir una imagen estática durante el tiempo necesario para su correcta formación; tras Io cual el sistema pasa a un modo especial de adquisición en el cual se espera que sólo aparezca el puntero brillante como objeto extra en los datos de imagen. El equipo puede restar internamente y en cada momento los datos de imagen nuevos de los originales, de manera que sólo queden los correspondientes al puntero. Estos datos permiten establecer y mostrar Ia posición exacta del puntero respecto a Ia imagen original de gammagrafía que se seguiría mostrado en todo momento sin sufrir alteración a causa del puntero.
Después de Ia explicación del uso de pantallas anti-radiación para virtualmente borrar de Ia imagen gammagráfica a un objeto brillante, tal como hemos descrito en el estado de Ia técnica, y de comprender el uso de un puntero de cobalto 57 (puntero brillante) en función de localizador, como se describió anteriormente; recordemos el concepto de "puntero opaco" como objeto capaz de inhibir el paso de Ia radiación, y que puede situarse libremente en Ia zona de observación de Ia cámara, mientras se visualiza Ia imagen del objeto radiante de interés. La imagen prevista en ausencia del puntero opaco difiere de Ia obtenida al estar presente el puntero, como consecuencia del no paso de los rayos a través del mismo. Con una herramienta como ésta, se puede, no sólo apantanar una región de elevada actividad con fines de mejorar Ia visualización del resto de Ia imagen, según vimos antes; sino también y de forma independiente, conocer Ia situación espacial de regiones observables de Ia imagen gammagráfica, por medio de Ia "sombra" creada en Ia imagen por el "puntero opaco". No se conoce que un "material opaco a los rayos gamma" fuera utilizado expresamente como localizador de puntos o regiones de emisión en una imagen gammagráfica.
Un objeto adicional de Ia presente invención es un "método de localización nuevo" de objetos emisores de radiación basado en Ia utilización de los elementos que enumeramos a continuación:
1. Al menos un "puntero opaco" (no radia, ni permite el paso a través de éste de Ia radiación que se desea observar);
2. Un sistema de detección de rayos gamma (incluido el del objeto de Ia presente invención pero no limitado a éste), capaz de detectar las fuentes radiantes de interés;
3. Un mecanismo suficientemente rápido de generación de imágenes de persistencia limitada como el de generación de Video Gamma en
Tiempo Real, pero sin limitarse a este.
El método consiste en Ia utilización de un modo de adquisición con persistencia limitada, figuras 8a, 8b y 8c, de manera que el puntero pueda desplazarse por Ia zona de observación de Ia cámara sin dejar un rastro (sombra) de su paso, excepto en Ia posición instantánea que posee, limitando así Ia sombra de afectación en Ia imagen adquirida al momento mismo de observación.
Para una adecuada validez práctica, es imprescindible contar con una cámara de elevada sensibilidad o en su defecto con una cámara que, como Ia descrita en Ia presente invención, permita Ia obtención de imágenes con suficiente rapidez. La formación de imágenes de Vídeo de rayos Gamma en Tiempo Real (RTGV), según el "algoritmo de reconstrucción probabilística", hace posible el uso de estos punteros opacos para localizar diversos puntos emisores por su desaparición en Ia imagen, cuando se sitúa el puntero opaco entre Ia fuente a localizar y Ia cámara. De igual forma que el puntero brillante, el puntero opaco puede usarse en un modo especial para establecer su posición por Ia diferencia de imágenes antes y después de su entrada en acción. El principio es el mismo, excepto que en este caso el signo de Ia imagen resultante de Ia resta es negativo, no obstante en ambos casos el valor modular de las cuentas adquiridas (que es positivo) nos permite obtener Ia posición instantánea del puntero opaco.
Los punteros opacos, brillantes y/o transparentes pueden ser utilizados con diversos sistemas basados en rayos gamma, como cámaras gamma, mini cámaras gamma, cámaras gamma SPECT y cámaras PET para Ia localización de ganglios, tumores y órganos en seres humanos y animales, y medida de variables físicas asociadas a los mismos.
De una manera inversa a como funcionan los punteros radiactivos, se puede crear un punto singular en el cuerpo observado, que se corresponda con una posición establecida en Ia imagen gammagráfica observada (Como puede ser el centro de Ia imagen). En este caso hemos inventado un nuevo sistema basado en punteros LÁSER que cumple esta función de una manera diferente a cualquier sistema de puntero LÁSER conocido.
Un objeto adicional de Ia presente invención es un dispositivo que a través de Ia utilización de emisores de luz, permite generar una forma luminosa singular de posición fija sobre una superficie, aunque Ia distancia de los emisores a Ia superficie pueda variar a Io largo de un eje que va del dispositivo a Ia superficie, con Ia particularidad de dicho eje no se cruza con Ia posición espacial de los emisores de luz, pero que se puede alinear o hacer coincidir con los planos característicos de emisión de las fuentes de luz.
Un caso particular de nuestra invención consiste en un sistema que utiliza emisores LÁSER situados asimétricamente respecto al eje de movimiento entre Ia superficie y el sistema emisor, el cual es capaz de crear una forma luminosa singular al interceptar Ia superficie; con Ia característica de que Ia forma geométrica de Ia luz generada y su posición no dependen de Ia distancia entre el sistema emisor y Ia superficie iluminada, a partir de cierta distancia mínima.
Una utilidad inmediata que tiene esta invención es Ia posibilidad de marcar un punto singular que indique el eje axial de observación de un dispositivo como una cámara gamma (sin limitarse a este), sin necesidad de situar emisores de luz encima y frente al citado eje; Io cual afectaría Ia funcionalidad misma del equipo al entorpecer Ia entrada de los rayos que van a ser detectados. Estos pueden situarse en posiciones que rodean dicho eje y a una distancia apreciable si fuese necesario. Figura 9.
La base de Ia invención es una construcción geométrica que describimos a continuación:
Si se toman dos emisores LÁSER de los comúnmente llamados emisores de línea, esto es, que generan líneas rectas sobre una superficie plana. Estos realmente generan porciones de planos en el espacio tridimensional. Las intersecciones de planos diferentes en el espacio crean líneas rectas en el espacio. Así mismo las intersecciones de porciones de planos en el espacio, generan segmentos de rectas o semi -rectas en el espacio. Los emisores de luz LÁSER son ideales para un dispositivo como este, pero no son los únicos capaces de funcionar.
Si los emisores de línea que hemos mencionado se sitúan de manera que sus planos de emisión sean diferentes, pero que ambos intercepten al eje axial de movimiento por el que se desplazan relativamente el sistema de emisores y Ia superficie que intercepta Ia luz de ambos emisores; entonces Ia intersección de las porciones de planos de luz emitida generan una semi -recta de luz situada exactamente sobre Ia línea recta que sigue al eje de movimiento mencionado y por ello Ia luz de ambas emisiones, se cruzará siempre en un mismo punto (en Ia misma posición) sobre Ia superficie que intercepta a las emisiones luminosas, aunque Ia superficie se desplace sobre ese eje respecto al sistema de emisores.
Si definimos que nuestra forma singular es Ia generación de un cruce de líneas luminosas, entonces en el sistema descrito arriba tenemos un ejemplo de generación de una forma singular que mantiene su posición sobre una superficie, aunque ésta se desplace respecto al sistema emisor siguiendo un eje recto, el cual no coincida con Ia posición en que están situados los emisores de luz, ni tampoco están situados simétricamente respecto al eje de movimiento. La forma singular más simple de generar es una equis (X), pero no es tampoco Ia única que puede utilizarse.
El sistema de puntero luminoso que acabamos de describir tiene un extenso campo de aplicaciones más allá de las cámaras gamma y que incluye otros dispositivos de imagen estructurales y funcionales. Si adicionalmente a Io descrito antes, los emisores de línea se sitúan en una posición transversal que coincida con el foco de una cámara de colimadores divergentes o pin-hole, y el ángulo de emisión de luz de cada emisor de luz, se ajusta en función del ángulo de visión del dispositivo; entonces los límites externos de los rayos de luz cruzados pueden proporcionar información sobre el campo de visión del dispositivo.
DESCRIPCIÓN DE LAS FIGURAS
• Figura 1 : Un puntero LÁSER de punto (bolígrafo) se sostiene con una mano mientras ilumina un punto específico sobre una pantalla situada a Ia izquierda de Ia fotografía. Los incisos 1a) y 1 b) difieren en Ia distancia a que se encuentran el emisor y Ia pantalla ya que el emisor fue desplazado siguiendo Ia misma línea de emisión. Como resultado el punto luminoso no se mueve de su posición en Ia pantalla izquierda.
• Figura 2: El mismo puntero LÁSER de punto de Ia figura 1 , se sostiene con una mano mientras ilumina un punto específico sobre una pantalla situada a
Ia izquierda de Ia fotografía, con Ia particularidad de que Ia dirección de emisión del LÁSER forma un ángulo apreciable con respecto al eje horizontal que une al emisor y Ia pantalla. Los incisos 2a) y 2b) difieren en Ia distancia a que se encuentran el emisor y Ia pantalla ya que el emisor fue desplazado siguiendo el eje horizontal. Como resultado el punto luminoso sobre Ia pantalla izquierda del inciso 2a se encuentra verticalmente más arriba que el punto luminoso del inciso 2b. • Figura 3: Mini Cámara Gamma autónoma, ligera y compacta, que puede conectarse a cualquier ordenador por puerto de comunicaciones estándar. El dispositivo mostrado es suficiente para realizar gammagrafías sin requerir ningún sistema adicional. • Figura 4: Esquema isométrico de La Mini Cámara Gamma.
• Figuras 5 a) Distribución de Luz en cristal continuo sin focalización.
• Figuras 5 b) Distribución de Luz en cristal continuo con sistema de focalización.
• Figura 6a) Imagen planar generada según el método estándar con 600 sucesos en una gammagrafía de tiroides.
• Figura 6b) Imagen generada por reconstrucción automática usando los mismos 600 sucesos de Ia figura 6a).
• Figura 6c) Imagen planar generada según el método estándar con 3000 sucesos en una gammagrafía de tiroides. • Figura 6d) Imagen generada por reconstrucción automática usando los mismos 3000 sucesos de Ia figura 6c).
• Figura 7a) Imagen de dos fuentes radiactivas, más Ia indicación automática de Ia posición del puntero transparente encima de Ia fuente situada a Ia derecha. • Figura 7b) Imagen de dos fuentes radiactivas, más Ia indicación automática de Ia posición del puntero transparente debajo de Ia fuente situada a Ia derecha.
• Figura 8a) La cámara es sostenida con Ia mano derecha. El sistema se ajusta para obtener imágenes de video en tiempo real (persistencia limitada) de las dos fuentes emisoras. El "puntero opaco" se sostiene con Ia mano izquierda sin ser utilizado aún. El ordenador presenta Ia imagen adquirida en Ia ventana de adquisición del software situada a Ia izquierda de su pantalla.
• Figura 8b) Con el mismo ajuste al sistema que el de Ia figura 8a), ahora el "puntero opaco" se coloca en el trayecto de Ia fuente derecha a Ia cámara, inhibiendo la formación de su imagen, Io cual se puede apreciar en Ia ventana de adquisición del ordenador.
• Figura 8c) Con el mismo ajuste al sistema que el de Ia figura 8a), ahora el "puntero opaco" se coloca en el trayecto de Ia fuente izquierda a Ia cámara, inhibiendo Ia formación de su imagen, Io cual se puede apreciar en Ia ventana de adquisición del ordenador.
• Figura 9: Fotografía de un puntero LÁSER fundamentado en Io descrito en Ia presente invención y acoplado a una cámara gamma como Ia descrita también en esta invención. Puede apreciarse que el cruce de las emisiones LÁSER apunta al centro del campo de visión de Ia Cámara. Esta característica es válida con independencia de Ia distancia a Ia que esté el sistema de Ia superficie "observada" por Ia cámara.
EJEMPLOS DE REALIZACIÓN Ejemplo 1 : Realización de una Mini Cámara Gamma autónoma y compacta con sistema de localización para uso intra-quirúrgico.
La Mini Cámara Gamma que mostramos (figuras 3 y 4), consta solamente de Ia cabeza sensora, un cable USB y un ordenador estándar. Tiene forma ergonómica irregular con dimensiones enmarcadas en un ortoedro de 70 mm de altura, 90mm de ancho y 140 mm de longitud. Su peso es algo menor de 1 kg, incluyendo el colimador. Sus pequeñas dimensiones, ergonomía y bajo peso, aseguran Ia movilidad del sistema y Ia posibilidad de manipulación con una mano. Esta Mini Cámara Gamma se utiliza para visualizar órganos pequeños como el ganglio centinela en intra-operatorio con una resolución de posición inferior a los 2mm.
Esta Mini Cámara Gamma portátil puede "ver" un rango de energías desde 15 keV hasta 250 keV, aunque su diseño se ha optimizado para Ia zona de 50keV a 200 keV, región donde se encuentran las fuentes radiactivas más ampliamente utilizadas en las exploraciones médicas, (como el 99m-Tc que emite rayos gamma de 140 KeV). Esta cámara tiene un único tubo fotomultiplicador sensible a posición de tipo multi-ánodo acoplado a un cristal centelleador de CsI(Na), se Ie pueden acoplar fácilmente distintos colimadores e incluye un sistema electrónico completo con Ia fuente de alto voltaje del fotomultiplicador y procesamiento analógico y digital de las señales, de manera que no se requiere ninguna tarjeta insertable en el ordenador, ni ningún otro circuito electrónico adicional. El equipo puede enchufarse en caliente es decir con el ordenador encendido y no requiere cable de alimentación eléctrica adicional; solamente el cable USB.
El consumo eléctrico a plena carga es de 47OmA desde 5Volts. Consume menos de 10OmA en el arranque y cuenta con un sistema de encendido gradual y paso a modos de bajo consumo (23mA) y suspensión (10μA), para una compatibilidad total con Ia especificación USB. En Ia figura 9 se muestra Ia unión de Ia Mini Cámara objeto de esta invención con un sistema de localización LÁSER según se describe también en esta invención. El mismo genera una forma de "X" en Ia posición central del campo de visión de Ia mini cámara. Esto permite al cirujano localizar "puntos calientes" como ganglios centinela, los cuales serán marcados con dicha "X" cuando su imagen aparezca en el centro de Ia gammagrafía realizada.
Ejemplo 2: Utilización de una Mini Cámara Gamma autónoma y compacta con sistema de navegación gamma para uso intra-quirúrgico.
En las figuras 7 y 8 se muestra Ia utilización de Ia mini cámara gamma objeto de Ia presente invención utilizada con sistemas de navegación radiactivos. En las figuras 7a y 7b mostramos dos capturas de imagen de Ia mini gamma cámara, con los momentos en que un puntero de 125I se encontraba por arriba y por debajo de una, entre dos fuentes de cobalto que se utilizaban como fantomas de ganglios centinela.
En las figuras 8a, 8b y 8c mostramos tres fotos de Ia mini gamma cámara y el ordenador asociado a ésta, con los tres momentos en que un puntero opaco
(de pantalla de plomo) se encontraba a) ausente, b) sobre Ia fuente derecha y c) sobre Ia fuente izquierda, a Ia vez que el ordenador muestra el efecto de sombra que deja el citado puntero en Ia imagen gammagráfica, evidenciando Ia utilidad del método para localización de "puntos calientes", como pueden ser los ganglios centinela.

Claims

REIVINDICACIONES
1. Una mini cámara gamma basada en tecnología de cristales de centelleo y caracterizada esencialmente por ser autónoma, es decir, en Ia que todos los sistemas físicos y electrónicos necesarios han sido integrados junto a Ia cabeza sensora, formando un equipo compacto y autónomo, sin necesidad de ningún otro sistema electrónico adicional, y que se puede conectar a cualquier ordenador estándar o dispositivo compatible mediante interfaz conectable en caliente. Los elementos estructurales de Ia mini cámara gamma son los siguientes: sistema intercambiable de colimación de rayos gamma; sistema detector de rayos gamma compuesto de cristal centelleante y uno o varios fotodetectores sensibles a Ia posición; pantalla antirradiación, electrónica de bajo consumo que incluye interfaz estándar a un ordenador y pantalla electromagnética.
2. Una mini cámara gamma de acuerdo con Ia reivindicación 1 , y que cumple con las características de seguridad eléctrica y compatibilidad electromagnética de grado médico.
3. Una mini cámara gamma de acuerdo con las reivindicaciones 1 y 2, en Ia que Ia interfaz en caliente puede ser al menos uno de los siguientes: a) Interfaz serie universal de velocidad total (12Mb/s) o alta velocidad (480Mb/s); b) WirelessUSB; c) BlueTooth; d) Firewire.
4. Una mini cámara gamma de acuerdo con Ia reivindicación 1 , con Ia característica conocida como "autoalimentación" (selfpowered), ya que puede utilizar Ia propia interfaz de datos estándar y externa del ordenador como fuente de energía, o alternativamente una batería, y no requiere Ia utilización de Ia red eléctrica u otra alimentación externa.
5. Una mini cámara gamma de acuerdo con Ia reivindicación 1 , con Ia característica de "paso a modos de ahorro energético" (Power Down), ya que el software puede definir varios niveles de consumo según las necesidades funcionales de cada momento.
6. Una minicámara gamma según las reivindicaciones 1 , 2 y 3, en Ia que el software puede actualizarse desde internet y el fírmware (controlador del hardware), se puede recargar desde el software, sin abrir Ia cámara; Io que implica que mediante actualizaciones del fírmware, se puede mutar el hardware y/o añadirle otros comportamientos.
7. Una cámara gamma según las reivindicaciones 1 a Ia 6, que utilizando el mismo hardware; haga uso de un firmware y softwares modificados para ofrecer información limitada a tan solo Ia energía y actividad de Ia radiación, pudiendo considerarse un detector direccional de nivel de radiación o simplemente SONDA GAMMA. Dicha sonda tendría Ia ventaja de que, al digitalizar Ia energía de cada interacción, sería muy poco sensible a variaciones con Ia temperatura, pues el software detecta Ia posición del pico de energía después de unas pocas cuentas y ajusta el valor de Ia ventana de sucesos válidos.
8. Una mini cámara gamma según Ia reivindicación 1 , que cuenta además con Ia característica de que el cristal centelleante es del tipo continuo, al que se ha realizado un tratamiento especial de sus superficies externas, y se ha utilizado un algoritmo específico denominado "transformación afín compensada" que permiten obtener una inhomogeneidad en el área de detección inferior al 5% hasta un entorno del 80% de dicha área.
9. Una mini cámara gamma según las reivindicaciones 1 y 8 en Ia que el sistema de detección de rayos gamma basado en cristales de centelleo continuos se ha mejorado mediante Ia adición de un sistema de focalización de Ia luz de centelleo que forma una capa sobre Ia cara frontal del centelleante, de forma que se disminuye Ia anchura de Ia distribución de luz que llega al foto-detector. Los focalizadores pueden están formados por sistemas de lentes o micro-lentes convergentes.
10. Una mini cámara gamma según Ia reivindicación 1 y 9 en la que el sistema de detección mejorado consta de varias capas de focalizadores y centelleadores, dispuestas alternativamente en Ia dirección de entrada de los rayos gamma.
11. La utilización de un sistema detector de rayos gamma según las reivindicaciones 9 y 10, no solo en una mini cámara gamma como Ia de
Ia reivindicación 1 , sino también en una cámara PET, o una cámara SPECT, o en una cámara gamma basada en cristales de centelleo en general.
12. Una mini cámara gamma de acuerdo con las reivindicaciones 1 y 8, con Ia característica de que el componente principal del cristal centelleante es un elemento químico perteneciente a Ia clase de las tierras raras, como el LnBr3 o el LnCI3.
13. Una mini cámara gamma de acuerdo con las reivindicaciones 1 , 2, 8 y
12, con Ia característica de que el fotodetector es del tipo fotomultiplicador FLAT PANEL sensible a posición.
14. Una mini cámara gamma de acuerdo con Ia reivindicación 1 en Ia que se utiliza un algoritmo de creación de Ia imagen gammagráfica denominado "reconstrucción probabilística", basado en Ia asignación para cada rayo gamma detectado de una distribución de Ia probabilidad de que el punto de emisión haya sucedido en cada punto de Ia región posible de emisión de Ia radiación, teniendo en cuenta el punto de impacto detectado por el sistema de detección, Ia resolución intrínseca del sistema detector, Ia uniformidad del detector, Ia geometría del mismo y Ia geometría del sistema óptico utilizado. La asignación consiste principalmente en atribuir una probabilidad a Ia dirección de impacto lineal según el valor de Ia uniformidad en dicho punto y en atribuir una probabilidad a su vecindad, teniendo en cuenta ésta y las otras variables mencionadas.
15. La utilización del algoritmo de "reconstrucción probabilística" según Ia reivindicación 14, y una cámara gamma, incluida Ia de Ia reivindicación 1 , pero no limitada a ésta, para Ia formación de una imagen en tiempo real de calidad comparable a Ia obtenida mediante métodos convencionales, pero utilizando un número sustancialmente inferior de rayos gamma detectados.
16. La utilización del algoritmo de "reconstrucción probabilística" de Ia reivindicación 14, y una cámara gamma, incluida Ia de Ia reivindicación 1 , pero no limitada a ésta, para Ia obtención de imágenes de Vídeo de rayos Gamma en Tiempo Real (RTGV), a partir de objetos radiantes, incluso de baja actividad, mientras Ia cámara se desplaza sobre Ia zona de observación.
17. Un dispositivo basado en al menos dos mini cámaras gamma, incluida Ia de Ia reivindicación 1 , pero no limitada a ésta, mecánicamente correlacionadas y operadas simultáneamente por un mismo sistema de control, para Ia lograr visión estereoscópica; obteniendo Ia capacidad de visualizar objetos emisores de rayos gamma en tres dimensiones.
18. Un "método nuevo de localización y medición" de variables físicas de objetos emisores de radiación basado en Ia utilización de al menos un
"puntero transparente" (es decir, que emite radiación distinguible de Ia que se desea observar) y un sistema de detección de rayos gamma
(incluido el de Ia reivindicación 1 pero no limitado a éste), capaz de detectar simultáneamente el puntero y dichas fuentes de interés. El método consiste en Ia localización espacial automática (tridimensional) del puntero por Ia cámara gamma (sin presentar necesariamente Ia imagen gammagráfica del puntero) y en Ia adquisición y presentación de Ia imagen proveniente de Ia fuente de interés. En Ia porción de Ia región de interés señalada por el puntero se determinan las variables físicas aparentes como, por ejemplo, Ia actividad aparente del objeto a observar. A partir de dichos valores de las variables físicas y de los datos obtenidos del puntero (como su posición, actividad aparente y dimensión aparente, dando por conocida su actividad real o su dimensión real), pueden determinarse los valores absolutos de actividad y otros parámetros en Ia vecindad señalada de Ia región de interés.
19. Un "método de localización mejorado" de objetos emisores de radiación basado en Ia utilización de al menos un "puntero brillante" (radiación no distinguible de Ia que se desea observar), un sistema de detección de rayos gamma (incluido el de Ia reivindicación 1 pero no limitado a éste), capaz de detectar simultáneamente al puntero y a dichas fuentes de interés aunque no pueda distinguir entre éstos y un mecanismo suficientemente rápido de generación de imágenes de persistencia limitada como el de Ia reivindicación 16, pero no limitado a este. El método consiste en Ia utilización de un modo de adquisición con persistencia limitada de manera que el puntero pueda desplazarse por Ia zona de observación de Ia cámara, sin dejar un rastro (brillante) de su paso, excepto en Ia posición instantánea que posee.
20. Un "método de localizador) nuevo" de objetos emisores de radiación basado en Ia utilización de al menos un "puntero opaco" (no radia, ni permite el paso a través de éste de Ia radiación que se desea observar); un sistema de detección de rayos gamma (incluido el de Ia reivindicación 1 pero no limitado a éste), capaz de detectar las fuentes radiantes de interés y un mecanismo suficientemente rápido de generación de imágenes de persistencia limitada como el de Ia reivindicación 16, pero no limitado a este. El método consiste en Ia utilización de un modo de adquisición con persistencia limitada de manera que el puntero pueda desplazarse por Ia zona de observación de Ia cámara sin dejar un rastro
(sombra) de su paso, excepto en Ia posición instantánea que posee, limitando así Ia sombra de afectación en Ia imagen adquirida al momento mismo de observación.
21. La utilización del método según las reivindicaciones 18, 19 y/o 20, y una cámara gamma cualquiera para Ia localización de ganglios, tumores y órganos en seres humanos y animales, y medida de variables físicas asociadas a los mismos.
22. La utilización del método según las reivindicaciones 18, 19 y/o 20, y una mini cámara gamma según Ia reivindicación 1 para Ia localización de ganglios, tumores y órganos en seres humanos y animales, y medida de variables físicas asociadas a los mismos.
23. La utilización del método según las reivindicaciones 18, 19 y/o 20, y una cámara gamma SPECT y/o PET; para Ia localización de ganglios, tumores y órganos en seres humanos y animales, y medida de variables físicas asociadas a los mismos.
24. Un dispositivo accesorio para equipos de imagen estructural y funcional, incluido el de Ia reivindicación 1 , pero no limitado a este; que a través de Ia utilización de emisores de luz, permite generar una forma luminosa singular de posición fija sobre una superficie, aunque Ia distancia de los emisores a Ia superficie pueda variar a Io largo de un eje que va del dispositivo a Ia superficie, con Ia particularidad de dicho eje no se cruza con Ia posición espacial de los emisores de luz, pero que se puede alinear o hacer coincidir con los planos característicos de emisión de las fuentes de luz.
25. Un dispositivo según Ia reivindicación 24 en que los emisores de luz son emisores LÁSER.
26. Un dispositivo según las reivindicaciones 24 y 25 cuya forma singular es una equis (X) o una cruz (+) bajo cualquier ángulo de visión.
27. Un dispositivo según las reivindicaciones 24 y 25 para generar una forma luminosa singular, incluidas las de Ia reivindicación 26, pero sin limitarse a éstas y que dicha forma indica sobre un cuerpo, una posición específica de Ia imagen que está siendo "observada" por un dispositivo receptor de imagen estructural o funcional cualquiera, como pueden ser (sin limitarse a estos) equipos de imagen basados en rayos-X, rayos Gamma, ultrasónicos, infrarrojos, ultravioletas y en general con base de detección de gama electromagnética visible e invisible.
28. Un dispositivo según las reivindicaciones 24 y 25 para generar una forma luminosa singular, incluida Ia de Ia reivindicación 26, pero sin limitarse a ésta y que dicha forma indica sobre un cuerpo, una posición específica de Ia imagen que está siendo "observada" por una mini cámara gamma, incluida Ia de Ia reivindicación 1 , pero sin limitarse a esta.
29. Un dispositivo como el de las reivindicaciones 24 y 25 con Ia adición de una limitación o especificación precisa de ángulos de emisión y un posicionamiento determinado de los emisores Ie luz respecto al foco de visión de los receptores de imagen, para indicar Ia característica de campo de visión de dispositivos receptores de imágenes estructurales o funcionales como los descritos en las reivindicaciones 1 , 27 y 28.
30. Un sistema de diagnóstico, navegación, posicionamiento, localización y detección de órganos radiactivos, en cirugía radio-guiada; que consta de una combinación de los siguientes dispositivos: Minicámara gamma como Ia de Ia reivindicación 1 , sin limitarse a esta. Una sonda gamma como Ia de Ia reivindicación 7, sin limitarse a esta. Un sistema de navegación que funciona con punteros o marcadores radiactivos según las reivindicaciones 18, 19 y 20. Un sistema de posicionamiento basado en punteros luminosos según las reivindicaciones 24 a 29.
31. Un sistema según Ia reivindicación 30 en el que los órganos a detectar, localizar y reconocer son ganglios linfáticos, tiroides, paratiroides, riñon, colon, mama y otros y en los que al paciente se Ie ha suministrado una dosis radiactiva de un radiofármaco afín al órgano y Ia función que se quiere observar.
32. Un sistema según Ia reivindicación 30 y 31 en el que Ia sonda direccional y/o los punteros radioactivos se utilizan en laparoscopia, mientras que Ia cámara forma una imagen de los órganos desde el exterior.
PCT/ES2006/070200 2005-12-26 2006-12-22 Mini cámara gamma autónoma y con sistema de localización, para uso intraquirúrgico WO2007074201A2 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06841806.0A EP1967868B1 (en) 2005-12-26 2006-12-22 Stand-alone mini gamma camera including a localisation system for intrasurgical use
US12/159,307 US8450694B2 (en) 2005-12-26 2006-12-22 Stand-alone mini gamma camera including a localization system for intrasurgical use
CA002635421A CA2635421A1 (en) 2005-12-26 2006-12-22 Stand-alone mini gamma camera including a localisation system for intrasurgical use
JP2008547994A JP5554498B2 (ja) 2005-12-26 2006-12-22 手術内使用のための位置特定システムを含む独立型ミニガンマカメラ
AU2006329802A AU2006329802B2 (en) 2005-12-26 2006-12-22 Stand-alone mini gamma camera including a localisation system for intrasurgical use
PCT/ES2006/070200 WO2007074201A2 (es) 2005-12-26 2006-12-22 Mini cámara gamma autónoma y con sistema de localización, para uso intraquirúrgico

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ES200503198A ES2292327B1 (es) 2005-12-26 2005-12-26 Mini camara gamma autonoma y con sistema de localizacion, para uso intraquirurgico.
ESP200503198 2005-12-26
PCT/ES2006/070200 WO2007074201A2 (es) 2005-12-26 2006-12-22 Mini cámara gamma autónoma y con sistema de localización, para uso intraquirúrgico

Publications (2)

Publication Number Publication Date
WO2007074201A2 true WO2007074201A2 (es) 2007-07-05
WO2007074201A3 WO2007074201A3 (es) 2007-11-22

Family

ID=38218340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/070200 WO2007074201A2 (es) 2005-12-26 2006-12-22 Mini cámara gamma autónoma y con sistema de localización, para uso intraquirúrgico

Country Status (7)

Country Link
US (1) US8450694B2 (es)
EP (1) EP1967868B1 (es)
JP (1) JP5554498B2 (es)
AU (1) AU2006329802B2 (es)
CA (1) CA2635421A1 (es)
ES (1) ES2292327B1 (es)
WO (1) WO2007074201A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110130659A1 (en) * 2007-08-24 2011-06-02 Endocontrol Imaging System for Following a Surgical Tool in an Operation Field
CN113974689A (zh) * 2012-03-07 2022-01-28 齐特奥股份有限公司 空间对准设备

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US8295910B1 (en) * 2007-11-16 2012-10-23 Jefferson Science Associates, Llc Imaging method for monitoring delivery of high dose rate brachytherapy
WO2012131660A1 (en) 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system for spinal and other surgeries
JP5787698B2 (ja) 2011-09-30 2015-09-30 株式会社東芝 放射線検出装置
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US12004905B2 (en) 2012-06-21 2024-06-11 Globus Medical, Inc. Medical imaging systems using robotic actuators and related methods
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
EP2863827B1 (en) 2012-06-21 2022-11-16 Globus Medical, Inc. Surgical robot platform
US12310683B2 (en) 2012-06-21 2025-05-27 Globus Medical, Inc. Surgical tool systems and method
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US12262954B2 (en) 2012-06-21 2025-04-01 Globus Medical, Inc. Surgical robotic automation with tracking markers
US20150032164A1 (en) 2012-06-21 2015-01-29 Globus Medical, Inc. Methods for Performing Invasive Medical Procedures Using a Surgical Robot
US12329593B2 (en) 2012-06-21 2025-06-17 Globus Medical, Inc. Surgical robotic automation with tracking markers
US12220120B2 (en) 2012-06-21 2025-02-11 Globus Medical, Inc. Surgical robotic system with retractor
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11974822B2 (en) 2012-06-21 2024-05-07 Globus Medical Inc. Method for a surveillance marker in robotic-assisted surgery
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
KR101240166B1 (ko) 2012-09-05 2013-03-18 유환아이텍(주) 무선 usb 기반의 카메라 탈착형 실물화상기, 그리고 무선 usb 기반의 카메라 탈착형 실물화상기를 이용한 실시간 영상 전송 방법
ITRM20120491A1 (it) * 2012-10-16 2014-04-17 Consiglio Nazionale Ricerche Gamma camera portatile.
US20140218720A1 (en) * 2013-02-04 2014-08-07 Novadaq Technologies Inc. Combined radiationless automated three dimensional patient habitus imaging with scintigraphy
FR3003652A1 (fr) * 2013-03-25 2014-09-26 Commissariat Energie Atomique Detecteur de traces de particules ionisantes
KR101461355B1 (ko) * 2013-09-26 2014-11-13 우영찬 스마트 장치를 이용한 방사능 물질 촬영 장치
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
US9241771B2 (en) 2014-01-15 2016-01-26 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
EP3104803B1 (en) 2014-02-11 2021-09-15 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
CN106659537B (zh) 2014-04-24 2019-06-11 Kb医疗公司 结合机器人手术系统使用的手术器械固持器
WO2016008880A1 (en) 2014-07-14 2016-01-21 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
US11103316B2 (en) 2014-12-02 2021-08-31 Globus Medical Inc. Robot assisted volume removal during surgery
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
US10555782B2 (en) 2015-02-18 2020-02-11 Globus Medical, Inc. Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
CN104757987A (zh) * 2015-04-19 2015-07-08 成都维远艾珏信息技术有限公司 X射线无线数字平板探测器
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US12298454B2 (en) 2015-08-10 2025-05-13 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector
US9696439B2 (en) 2015-08-10 2017-07-04 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
JP6894431B2 (ja) 2015-08-31 2021-06-30 ケービー メディカル エスアー ロボット外科用システム及び方法
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
EP3241518B1 (en) 2016-04-11 2024-10-23 Globus Medical, Inc Surgical tool systems
WO2017205978A1 (en) * 2016-05-31 2017-12-07 Holdsworth David W Gamma probe and multimodal intraoperative imaging system
EP3360502A3 (en) 2017-01-18 2018-10-31 KB Medical SA Robotic navigation of robotic surgical systems
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
US20180289432A1 (en) 2017-04-05 2018-10-11 Kb Medical, Sa Robotic surgical systems for preparing holes in bone tissue and methods of their use
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
CN207070183U (zh) 2017-08-16 2018-03-02 中磊电子(苏州)有限公司 网络摄影机
EP3492032B1 (en) 2017-11-09 2023-01-04 Globus Medical, Inc. Surgical robotic systems for bending surgical rods
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11382666B2 (en) 2017-11-09 2022-07-12 Globus Medical Inc. Methods providing bend plans for surgical rods and related controllers and computer program products
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US12329391B2 (en) 2019-09-27 2025-06-17 Globus Medical, Inc. Systems and methods for robot-assisted knee arthroplasty surgery
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
US12220176B2 (en) 2019-12-10 2025-02-11 Globus Medical, Inc. Extended reality instrument interaction zone for navigated robotic
US11992373B2 (en) 2019-12-10 2024-05-28 Globus Medical, Inc Augmented reality headset with varied opacity for navigated robotic surgery
US12133772B2 (en) 2019-12-10 2024-11-05 Globus Medical, Inc. Augmented reality headset for navigated robotic surgery
US12064189B2 (en) 2019-12-13 2024-08-20 Globus Medical, Inc. Navigated instrument for use in robotic guided surgery
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US12070276B2 (en) 2020-06-09 2024-08-27 Globus Medical Inc. Surgical object tracking in visible light via fiducial seeding and synthetic image registration
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US12076091B2 (en) 2020-10-27 2024-09-03 Globus Medical, Inc. Robotic navigational system
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US12161433B2 (en) 2021-01-08 2024-12-10 Globus Medical, Inc. System and method for ligament balancing with robotic assistance
US12150728B2 (en) 2021-04-14 2024-11-26 Globus Medical, Inc. End effector for a surgical robot
US12178523B2 (en) 2021-04-19 2024-12-31 Globus Medical, Inc. Computer assisted surgical navigation system for spine procedures
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US12213745B2 (en) 2021-09-16 2025-02-04 Globus Medical, Inc. Extended reality systems for visualizing and controlling operating room equipment
US12238087B2 (en) 2021-10-04 2025-02-25 Globus Medical, Inc. Validating credential keys based on combinations of credential value strings and input order strings
US12184636B2 (en) 2021-10-04 2024-12-31 Globus Medical, Inc. Validating credential keys based on combinations of credential value strings and input order strings
US20230165639A1 (en) 2021-12-01 2023-06-01 Globus Medical, Inc. Extended reality systems with three-dimensional visualizations of medical image scan slices
US11918304B2 (en) 2021-12-20 2024-03-05 Globus Medical, Inc Flat panel registration fixture and method of using same
US12103480B2 (en) 2022-03-18 2024-10-01 Globus Medical Inc. Omni-wheel cable pusher
US12048493B2 (en) 2022-03-31 2024-07-30 Globus Medical, Inc. Camera tracking system identifying phantom markers during computer assisted surgery navigation
US12161427B2 (en) 2022-06-08 2024-12-10 Globus Medical, Inc. Surgical navigation system with flat panel registration fixture
US12226169B2 (en) 2022-07-15 2025-02-18 Globus Medical, Inc. Registration of 3D and 2D images for surgical navigation and robotic guidance without using radiopaque fiducials in the images
US20240020840A1 (en) 2022-07-15 2024-01-18 Globus Medical, Inc. REGISTRATION OF 3D and 2D IMAGES FOR SURGICAL NAVIGATION AND ROBOTIC GUIDANCE WITHOUT USING RADIOPAQUE FIDUCIALS IN THE IMAGES
US12318150B2 (en) 2022-10-11 2025-06-03 Globus Medical Inc. Camera tracking system for computer assisted surgery navigation
CN118067741B (zh) * 2024-04-18 2024-06-25 成都考拉悠然科技有限公司 基于光度立体法的Mini-LED胶面缺陷检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019238A1 (en) 1998-09-23 2000-04-06 Southeastern Universities Research Association, Inc. Mini gamma camera, camera system and method of use
US20030081716A1 (en) 2001-10-25 2003-05-01 Tumer Tumay O. Imaging probe
ES2202846T3 (es) 1997-05-02 2004-04-01 Consiglio Nazionale Delle Ricerche Gamma-camara de centelleo plana con resolucion espacial muy elevada, con estructura modular.
WO2004030561A1 (es) 2002-10-01 2004-04-15 Consejo Superior De Investigaciones Científicas Navegador funcional
US6723988B1 (en) 1999-06-06 2004-04-20 Elgems Ltd. Hand-held gamma camera
US20040075058A1 (en) 2002-10-22 2004-04-22 Ira Blevis Gamma camera
ES2206924T3 (es) 1997-04-23 2004-05-16 C.N.R. Consiglio Nazionale Delle Ricerche Dispositivo con gamma-camara miniaturizada con resolucion espacial muy elevada.
US20040262528A1 (en) 2003-06-26 2004-12-30 Roman Zaikin Small field view gamma camera

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011057A (en) 1958-01-02 1961-11-28 Hal O Anger Radiation image device
US4836671A (en) * 1985-04-08 1989-06-06 Charles Lescrenier Locating device
US4929835A (en) * 1985-04-12 1990-05-29 Takaji Yamashita Position-sensitive radiation detector
EP0438555A4 (en) * 1989-06-30 1993-01-27 H. Charles Kaplan Transmission/emission registered image (teri) computed tomography scanners
JPH0619439B2 (ja) * 1989-08-04 1994-03-16 株式会社東芝 Spect装置
JP3089050B2 (ja) * 1991-06-19 2000-09-18 株式会社東芝 Spect画像の再構成方法
US5429135A (en) * 1992-03-10 1995-07-04 Siemens Medical Systems, Inc. Determining the depth of an organ which is the subject of a nuclear medicine study using only planar image data
US5565864A (en) * 1993-09-02 1996-10-15 Nikon Corporation Absolute encoder
US6194726B1 (en) * 1994-12-23 2001-02-27 Digirad Corporation Semiconductor radiation detector with downconversion element
DE19501069A1 (de) * 1995-01-16 1996-07-18 Wolfgang Kloess Lichtvisier
US6389105B1 (en) * 1995-06-23 2002-05-14 Science Applications International Corporation Design and manufacturing approach to the implementation of a microlens-array based scintillation conversion screen
UA27013C2 (uk) * 1996-05-14 2000-02-28 Спільне Українсько-Американське Підприємство "Амкріс-Ейч, Лтд" Сциhтиляційhий матеріал hа осhові йодиду цезію та спосіб його одержаhhя
US5773829A (en) * 1996-11-05 1998-06-30 Iwanczyk; Jan S. Radiation imaging detector
JPH10268053A (ja) * 1997-03-25 1998-10-09 Toshiba Corp 核医学診断装置
US5841141A (en) * 1997-06-03 1998-11-24 The University Of Utah Image reconstruction from V-projections acquired by Compton camera
US5961458A (en) * 1997-11-18 1999-10-05 Carewise Medical Products Corporation Minimally invasive surgical probe for tissue identification and retrieval and method of use
US6495834B1 (en) * 1998-11-06 2002-12-17 Saint-Gobain Industrial Ceramics, Inc. Compact medical imager
US6391434B1 (en) * 1999-05-06 2002-05-21 General Electric Company Composite scintillator material and method of manufacture
US7373197B2 (en) * 2000-03-03 2008-05-13 Intramedical Imaging, Llc Methods and devices to expand applications of intraoperative radiation probes
US6781134B1 (en) * 2001-08-14 2004-08-24 The Regents Of The University Of California Handheld CZT radiation detector
US7220961B2 (en) * 2003-09-24 2007-05-22 Siemens Medical Solutions Usa, Inc. System and method for quality control in nuclear imaging systems
US7132060B2 (en) * 2003-11-04 2006-11-07 Zecotek Medical Systems Inc. Scintillation substances (variants)
US7346203B2 (en) * 2003-11-19 2008-03-18 General Electric Company Methods and apparatus for processing image data to aid in detecting disease
US7649178B2 (en) * 2004-08-13 2010-01-19 Koninklijke Philips Electronics N.V. Solid state detector packaging technique
FR2885226B1 (fr) * 2005-05-02 2008-02-15 Centre Nat Rech Scient Gamma camera pour la localisation des ganglions sentinelles
US7777191B2 (en) * 2005-10-20 2010-08-17 The Board Of Trustees Of The Leland Stanford Junior University Method and system of adaptive exposure for a camera

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2206924T3 (es) 1997-04-23 2004-05-16 C.N.R. Consiglio Nazionale Delle Ricerche Dispositivo con gamma-camara miniaturizada con resolucion espacial muy elevada.
ES2202846T3 (es) 1997-05-02 2004-04-01 Consiglio Nazionale Delle Ricerche Gamma-camara de centelleo plana con resolucion espacial muy elevada, con estructura modular.
WO2000019238A1 (en) 1998-09-23 2000-04-06 Southeastern Universities Research Association, Inc. Mini gamma camera, camera system and method of use
US6723988B1 (en) 1999-06-06 2004-04-20 Elgems Ltd. Hand-held gamma camera
US20030081716A1 (en) 2001-10-25 2003-05-01 Tumer Tumay O. Imaging probe
WO2004030561A1 (es) 2002-10-01 2004-04-15 Consejo Superior De Investigaciones Científicas Navegador funcional
ES2204322A1 (es) 2002-10-01 2004-04-16 Consejo Sup. De Invest. Cientificas Navegador funcional.
US20040075058A1 (en) 2002-10-22 2004-04-22 Ira Blevis Gamma camera
US20040262528A1 (en) 2003-06-26 2004-12-30 Roman Zaikin Small field view gamma camera

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
D. P. MC ELROY; S.C. HUANG; E.J. HOFFMAN: "The Use of Retro-Reflective Tape for Improving Spatial Resolution of Scintillation Detectors", IEEE TRANS. NUCL. SCI., vol. 49, no. 1, 2002, pages 165 - 171, XP011077454
E. PORRAS ET AL.: "PORTABLE MINI GAMMA-CAMERA FOR MEDICAL APPLICATIONS", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, vol. A 486, 2002, pages 186 - 190, XP004367471, DOI: doi:10.1016/S0168-9002(02)00700-3
F. SANCHEZ ET AL.: "DESIGN AND TESTS OF A PORTABLE MINI GAMMA CAMERA", MEDICAL PHYSICS, vol. 31, no. 6, June 2004 (2004-06-01), pages 1384 - 1397, XP012074911, DOI: doi:10.1118/1.1755570
H.O. ANGER, REV. SCI. INSTRUM., vol. 29, 1958, pages 27
M. GIMÉNEZ ET AL., NUCL. INSTR. & METH., vol. A525, 2004, pages 298 - 302
M. M. FERNANDEZ ET AL.: "A FLAT-PANEL-BASED MINI GAMMA CAMERA FOR LYMPH NODES STUDIES", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, vol. A 527, 2004, pages 92 - 96, XP004517344, DOI: doi:10.1016/j.nima.2004.03.082
MED. PHYS., vol. 31, no. 6, 2004, pages 1384 - 1397
NUCL. INSTR. & METH., vol. A486, 2002, pages 186 - 190
NUCL. INSTR. & METH., vol. A525, 2004, pages 298 - 302
NUCL. INSTR. & METH., vol. A527, 2004, pages 92 - 96
NUCL. INSTR. AND METH., vol. A486, 2002, pages 186 - 190
NUCL. INSTR. AND METH., vol. A525, 2004, pages 298 - 302
NUCL. INSTR. AND METH., vol. A527, 2004, pages 92 - 96
PERFORMANCE MEASUREMENTS OF SCINTILLATION CAMERAS, 1994
See also references of EP1967868A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110130659A1 (en) * 2007-08-24 2011-06-02 Endocontrol Imaging System for Following a Surgical Tool in an Operation Field
US8989844B2 (en) * 2007-08-24 2015-03-24 Endocontrol Imaging system for following a surgical tool in an operation field
CN113974689A (zh) * 2012-03-07 2022-01-28 齐特奥股份有限公司 空间对准设备

Also Published As

Publication number Publication date
US8450694B2 (en) 2013-05-28
JP5554498B2 (ja) 2014-07-23
AU2006329802B2 (en) 2012-03-15
ES2292327B1 (es) 2009-04-01
EP1967868B1 (en) 2020-09-02
ES2292327A1 (es) 2008-03-01
CA2635421A1 (en) 2007-07-05
AU2006329802A1 (en) 2007-07-05
EP1967868A4 (en) 2017-08-09
EP1967868A2 (en) 2008-09-10
WO2007074201A3 (es) 2007-11-22
JP2009521694A (ja) 2009-06-04
US20100025587A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
ES2292327B1 (es) Mini camara gamma autonoma y con sistema de localizacion, para uso intraquirurgico.
US6587710B1 (en) Hand-held gamma camera
Tsuchimochi et al. Intraoperative gamma cameras for radioguided surgery: technical characteristics, performance parameters, and clinical applications
Heller et al. Nuclear probes and intraoperative gamma cameras
US6346706B1 (en) High resolution photon detector
ES2202846T3 (es) Gamma-camara de centelleo plana con resolucion espacial muy elevada, con estructura modular.
ES2551276T3 (es) Dispositivo y método de obtención de imágenes
US20160209515A1 (en) Multimodal imaging apparatus
ES2531640T3 (es) Dispositivo en matriz y procedimiento de determinación de localización y tiempo de reacción de los cuantos gamma y el uso del dispositivo para determinar la localización y tiempo de reacción de los cuantos gamma en la tomografía por emisión de positrones
WO2010026785A1 (ja) 放射線撮像装置
Knoll et al. Performance evaluation of a solid-state detector based handheld gamma camera system
ITRM20100082A1 (it) Sonda scintigrafica goniometrica
ES2429033T3 (es) Dispositivos para obtención de imágenes de emisiones de radionucleidos
Liyanaarachchi et al. Development and evaluation of a prototype detector for an intraoperative laparoscopic coincidence imaging system with PET tracers
ES2942432T3 (es) Sistema de imagen dual apto para diagnósticos oncológicos y biopsias guiadas en tiempo real
ES2379456T3 (es) Cámara gamma para la localización de los ganglios centinela
Han et al. Development and evaluation of a compact gamma camera for radiation monitoring
KR102030255B1 (ko) 3d 감마 프로브 및 이의 방사선 세기 측정 방법
US9784852B1 (en) Surgical guidance system using hand-held probe with accompanying positron coincidence detector
KR102721623B1 (ko) 단일 픽셀형 섬광체 기반 검출부 및 이를 포함한 컴프턴 카메라
KR101726829B1 (ko) 감마선 영상화 장치
Mendes et al. Evaluation of monolithic detector blocks for high-sensitivity PET imaging of the human brain
Bates et al. Benchmark evaluation of a hand-held beta camera
JP2005249412A (ja) 放射能画像化装置
Park et al. Feasibility of a wireless gamma probe in radioguided surgery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008547994

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2635421

Country of ref document: CA

Ref document number: 2006329802

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006841806

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006329802

Country of ref document: AU

Date of ref document: 20061222

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006329802

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006841806

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12159307

Country of ref document: US