WO2007073031A1 - Procede destine a la fabrication d'une preforme de fibre optique a faible teneur en groupes oh par depot chimique modifie en phase vapeur - Google Patents

Procede destine a la fabrication d'une preforme de fibre optique a faible teneur en groupes oh par depot chimique modifie en phase vapeur Download PDF

Info

Publication number
WO2007073031A1
WO2007073031A1 PCT/KR2006/003623 KR2006003623W WO2007073031A1 WO 2007073031 A1 WO2007073031 A1 WO 2007073031A1 KR 2006003623 W KR2006003623 W KR 2006003623W WO 2007073031 A1 WO2007073031 A1 WO 2007073031A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature distribution
soot
optical fiber
distribution region
heat source
Prior art date
Application number
PCT/KR2006/003623
Other languages
English (en)
Inventor
Yune-Hyoun Kim
Soon-Il Sohn
Byung-Yoon Kang
Byung-Cheol Kang
Lae-Hyuk Park
Original Assignee
Ls Cable Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ls Cable Ltd. filed Critical Ls Cable Ltd.
Publication of WO2007073031A1 publication Critical patent/WO2007073031A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • FIG. 3 is a diagram showing an interatomic bonding structure after a soot-deposited layer is sintered in the process of fabricating an optical fiber preform using the conventional MCVD process. Referring to FIG. 3, it may be confirmed that a large amount of hydroxyl groups (OH) are coupled with Si molecules.
  • the first temperature distribution region has a temperature of 1,700 0 C or above and the second temperature distribution region has a temperature of 700 to 1,200 0 C.
  • the quartz tube rotates at a rotational speed of 20 to 100 rpm.
  • FIG. 2 is a cross-sectional view showing the optical fiber preform fabricated according to the process of FIG. 1.
  • FIG. 3 is an enlarged view showing that hydroxyl groups (OH) are bound to soot deposited according to the process of FIG. 1.
  • FIG. 10 is a graph illustrating absorption losses of core layers of optical fibers at wavelength ranges according to the conventional method and the present invention in comparison.
  • the quartz tube 10 is heated with the heat source 20 moving along a direction of the arrow while flowing a dehydrating gas such as soot- forming gas, chlorine, etc. into the quartz tube 10 whose inner wall has the clad layer 30 formed with a predetermined thickness.
  • a dehydrating gas such as soot- forming gas, chlorine, etc.
  • the dehydrating gas includes at least one selected from the group consisting of chlorine (Cl ) and fluorine (F ).
  • FIG. 6 is a diagram showing a temperature distribution profile provided by a heat source 20.
  • the first temperature distribution region 60 for generating and sintering soot in the right and left regions of a left end of the heat source 20, respectively; and the second temperature distribution region 70 for dehydrating the deposited soot are substantially successively arranged.
  • the first temperature distribution region 60 has a temperature of 1,200 0 C or above, and includes a certain region having a temperature of 1,700 0 C or above.
  • a core layer 40 having a low optical power ratio and a predetermined thickness is formed on an inner wall of the quartz tube 10 if the steps of generating and depositing soot, partially dehydrating the deposited soot layer and vitrifying the soot layer through a sintering process are carried out in succession as the heat source 20 moves from right to left, as described above.
  • the core layer-forming process is repeated until a core layer 40 having a low optical power ratio and a desired thickness is obtained.
  • the process for forming a core layer 40 having a low optical power ratio is carried out in a region having an optical power ratio of 90 % or less to the maximum optical power in a central region of the optical fiber core.
  • FIG. 7 and FIG. 8 are diagrams showing a process for forming a core layer having a high optical power ratio according to one preferred embodiment of the present invention.
  • the quartz tube 10 is heated with the heat source 20 moving along a direction of the arrow while a dehydrating gas such as soot-forming gas, chlorine, etc. is introduced into the quartz tube 10 that rotates at a constant speed when the core layer 40 having a low optical power ratio is formed on an inner wall of the quartz tube 10.
  • a dehydrating gas such as soot-forming gas, chlorine, etc.
  • the heat source 20 provides a first temperature distribution region 60 for generating soot through a thermal-oxidation reaction of soot-forming gas; a second temperature distribution region 70 for dehydrating a soot layer deposited right in front of the heat source 20; and a third temperature distribution region 70' arranged in front of the first temperature distribution region 60 and dehydrating the deposited soot layer once more.
  • the first temperature distribution region 60 has a temperature range of
  • the heat source may be selected from the group consisting of an oxygen/hydrogen burner, a plasma torch and an electric heating furnace.
  • an oxygen/hydrogen burner In the case of the oxygen/ hydrogen burner and the plasma torch, a plural number of burners or torches may be installed to provide the first temperature distribution region 60 and the second and third temperature distribution regions 70,70', and, in the case of the electric heating furnace, a plurality of resistors providing a hot zone may be arranged in a housing of the electric heating furnace.
  • a thermal-oxidation reaction of the soot- forming gas is induced in the first temperature distribution region 60 provided by the heat source 20 so as to generate soot 50a.
  • the generated soot 50a moves toward a region having a relatively low temperature in the tube 10, for example to the front of the heat source 20 due to ther- mophoresis, and then is accumulated on the core layer 40 having a low optical power ratio to form a soot-deposited layer 50b.
  • the soot layer deposited in front of the heat source 20 due to thermophoresis is dehydrated two times while passing through the second temperature distribution region 70 and the third temperature distribution region 70' along the moving heat source 20. Accordingly, the conventional absorption loss problem caused by hydroxyl groups may be solved by reducing concentration of the hydroxyl groups in the core layer having a high optical power ratio, in which an optical waveguide is mainly formed in the case of the optical fiber.
  • the optical fiber fabricated from the optical fiber preform according to the present invention has an optical loss value of 0.33 dB/Km or less at a wavelength range of 1,340 to 1,460 nm, which is lower than that at a wavelength band of 1,310 nm widely used in an optical transmission system, wherein the absorption loss caused by the hydroxyl groups (OH) is problematic at a wavelength range of 1,340 to 1,460 nm, and therefore optical communications at the entire wavelength ranges of 1,100 to 1,700 nm may be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

L'invention concerne un procédé destiné à la fabrication d'une préforme de fibre optique à faible teneur en groupes OH par dépôt chimique modifié en phase vapeur. Ce procédé consiste tout d'abord : à injecter un gaz formant de la suie et un gaz desséchant dans un tube de quartz, puis à déplacer une source de chaleur dans une direction suivant la direction aval du processus afin que la suie produite dans une région à première répartition de la température s'accumule et forme une couche de suie qui est déshydratée dans une région à seconde répartition de la température, et frittée dans une région à première répartition de la température. Le procédé consiste ensuite : à injecter un gaz formant de la suie et un gaz desséchant dans un tube de quartz, puis à déplacer une source de chaleur dans une direction suivant la direction aval du processus afin que la suie produite dans une région à première répartition de la température s'accumule et forme une couche de suie qui est déshydratée dans une région à deuxième distribution de la température, puis à nouveau déshydratée dans une région à troisième distribution de la température, et enfin à déplacer une source de chaleur dans une direction suivant la direction aval du processus afin de soumettre la couche de suie à un frittage.
PCT/KR2006/003623 2005-12-19 2006-09-12 Procede destine a la fabrication d'une preforme de fibre optique a faible teneur en groupes oh par depot chimique modifie en phase vapeur WO2007073031A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20050125032 2005-12-19
KR10-2005-0125032 2005-12-19

Publications (1)

Publication Number Publication Date
WO2007073031A1 true WO2007073031A1 (fr) 2007-06-28

Family

ID=38188772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2006/003623 WO2007073031A1 (fr) 2005-12-19 2006-09-12 Procede destine a la fabrication d'une preforme de fibre optique a faible teneur en groupes oh par depot chimique modifie en phase vapeur

Country Status (2)

Country Link
KR (1) KR100802815B1 (fr)
WO (1) WO2007073031A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802815B1 (ko) 2005-12-19 2008-02-12 엘에스전선 주식회사 Mcvd 공정을 이용한 저 수산기 농도를 갖는 광섬유모재의 제조방법
CN104944757A (zh) * 2014-03-31 2015-09-30 住友电气工业株式会社 用于制造多芯光纤的方法
CN105859112A (zh) * 2016-03-30 2016-08-17 江苏圣达石英制品有限公司 一种光敏石英管的处理工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020131736A1 (en) * 2001-03-16 2002-09-19 Won-Taek Han Method of fabricating an optical fiber preform using MCVD and nonlinear optical fiber fabricated using the method
US20030221460A1 (en) * 2002-05-31 2003-12-04 Shin-Etsu Chemical Co., Ltd. Lower-loss base material for optical fibres and manufacturing method thereof
US20040139765A1 (en) * 2003-01-16 2004-07-22 Sumitomo Electric Industries, Ltd. Method of producing optical fiber preform, and optical fiber preform and optical fiber produced with the method
US20040261461A1 (en) * 2002-06-29 2004-12-30 Chan-Joo Lee Method for fabricating optical fiber preform without hydroxyl group in core
WO2005054144A1 (fr) * 2003-12-03 2005-06-16 Lg Cable Ltd. Procede pour fabriquer une preforme en fibre optique et une fibre optique contenant peu de groupes hydroxyle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2612941B2 (ja) * 1989-09-22 1997-05-21 信越化学工業株式会社 光ファイバ多孔質母材の製造方法
JP3517848B2 (ja) * 1994-08-26 2004-04-12 住友電気工業株式会社 光ファイバ母材の製造方法
KR100450928B1 (ko) * 2001-07-23 2004-10-02 삼성전자주식회사 수정된 화학기상 증착법을 이용한 광섬유 모재의 제조장치 및 방법
KR100521958B1 (ko) * 2002-09-18 2005-10-14 엘에스전선 주식회사 수정화학기상증착법에 있어서 이중토치를 이용한 광섬유모재의 제조 방법 및 장치
WO2007073031A1 (fr) 2005-12-19 2007-06-28 Ls Cable Ltd. Procede destine a la fabrication d'une preforme de fibre optique a faible teneur en groupes oh par depot chimique modifie en phase vapeur

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020131736A1 (en) * 2001-03-16 2002-09-19 Won-Taek Han Method of fabricating an optical fiber preform using MCVD and nonlinear optical fiber fabricated using the method
US20030221460A1 (en) * 2002-05-31 2003-12-04 Shin-Etsu Chemical Co., Ltd. Lower-loss base material for optical fibres and manufacturing method thereof
US20040261461A1 (en) * 2002-06-29 2004-12-30 Chan-Joo Lee Method for fabricating optical fiber preform without hydroxyl group in core
US20040139765A1 (en) * 2003-01-16 2004-07-22 Sumitomo Electric Industries, Ltd. Method of producing optical fiber preform, and optical fiber preform and optical fiber produced with the method
WO2005054144A1 (fr) * 2003-12-03 2005-06-16 Lg Cable Ltd. Procede pour fabriquer une preforme en fibre optique et une fibre optique contenant peu de groupes hydroxyle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802815B1 (ko) 2005-12-19 2008-02-12 엘에스전선 주식회사 Mcvd 공정을 이용한 저 수산기 농도를 갖는 광섬유모재의 제조방법
CN104944757A (zh) * 2014-03-31 2015-09-30 住友电气工业株式会社 用于制造多芯光纤的方法
CN104944757B (zh) * 2014-03-31 2019-05-21 住友电气工业株式会社 用于制造多芯光纤的方法
CN105859112A (zh) * 2016-03-30 2016-08-17 江苏圣达石英制品有限公司 一种光敏石英管的处理工艺
CN105859112B (zh) * 2016-03-30 2018-10-23 江苏圣达石英制品有限公司 一种光敏石英管的处理工艺

Also Published As

Publication number Publication date
KR100802815B1 (ko) 2008-02-12
KR20070065203A (ko) 2007-06-22

Similar Documents

Publication Publication Date Title
CA1251044A (fr) Guide d'ondes optiques dope au fluor
Schultz Fabrication of optical waveguides by the outside vapor deposition process
US20140161406A1 (en) Method of manufacturing optical fiber preform and optical fiber
JP2017534551A (ja) 一工程フッ素トレンチ及びオーバークラッドを有する光ファイバプリフォームの作製方法
CN104402213A (zh) 一种纯二氧化硅松散体玻璃化掺氟方法
JP2007516929A (ja) 光ファイバ・プリフォームの製造方法
EP2551248A2 (fr) Procédés de fabrication de guides d'ondes optiques à faible pic d'absorption d'eau
KR100518058B1 (ko) 코어층 내의 수산기가 제거된 광섬유 모재의 제조방법
CN112062460B (zh) 低损耗g.652.d光纤及其制作方法
WO2007073031A1 (fr) Procede destine a la fabrication d'une preforme de fibre optique a faible teneur en groupes oh par depot chimique modifie en phase vapeur
KR100521958B1 (ko) 수정화학기상증착법에 있어서 이중토치를 이용한 광섬유모재의 제조 방법 및 장치
KR100545813B1 (ko) 탈수 및 탈염소공정을 포함하는 수정화학기상증착공법을 이용한 광섬유 프리폼 제조방법 및 이 방법에 의해 제조된 광섬유
US7391946B2 (en) Low attenuation optical fiber and its producing method in MCVD
CN102690054B (zh) 制造光纤预制件的方法和形成光纤的方法
KR100619332B1 (ko) 수정화학기상증착공법을 이용한 광섬유 모재 제조방법 및이의 제조를 위한 전기로
KR100554424B1 (ko) 광섬유 프리폼 제조공정에서 이용되는 탈수 방법, 이를 이용한 광섬유 프리폼 제조방법 및 장치
KR20060093671A (ko) 다중 모드 광섬유 및 이의 제조방법
JP2000109333A (ja) 光ファイバ用母材の製造方法
WO2004043870A1 (fr) Procede de fabrication d'une preforme de fibre optique comprenant un procede de deshydratation par reaction photochimique
JPH02304B2 (fr)
JPS63285128A (ja) 光ファイバ母材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798751

Country of ref document: EP

Kind code of ref document: A1