WO2007072978A1 - 共重合体、高分子電解質及びその用途 - Google Patents

共重合体、高分子電解質及びその用途 Download PDF

Info

Publication number
WO2007072978A1
WO2007072978A1 PCT/JP2006/325700 JP2006325700W WO2007072978A1 WO 2007072978 A1 WO2007072978 A1 WO 2007072978A1 JP 2006325700 W JP2006325700 W JP 2006325700W WO 2007072978 A1 WO2007072978 A1 WO 2007072978A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
polymer electrolyte
groups
carbon atoms
Prior art date
Application number
PCT/JP2006/325700
Other languages
English (en)
French (fr)
Inventor
Kentaro Masui
Hiroyuki Kurita
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to CA002634062A priority Critical patent/CA2634062A1/en
Priority to DE112006003456T priority patent/DE112006003456T5/de
Publication of WO2007072978A1 publication Critical patent/WO2007072978A1/ja
Priority to GB0812688A priority patent/GB2448441A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/16Membrane materials having positively charged functional groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a copolymer, a polymer electrolyte, and a use thereof suitably used as a membrane material for a battery, particularly a fuel cell.
  • Polymer electrolytes with proton conductivity are used as diaphragms for electrochemical devices such as primary batteries, secondary batteries, and polymer electrolyte fuel cells.
  • polymer electrolytes containing perfluoroalkane polymers having a perfluoroalkylsulfonic acid group as a super strong acid in the side chain such as naphthion (a registered trademark of DuPont), as active ingredients.
  • naphthion a registered trademark of DuPont
  • a block copolymer which is a condensate of a sulfone and a biphenol having a sulfonic acid group has been proposed (Japanese Patent Laid-Open No. 2003-031232).
  • the block copolymer disclosed in Japanese Patent Application Laid-Open No. 2 0 3 0-3 1 2 3 2 has a segment in which a sulfonic acid group is not substantially introduced or a segment in which a sulfonic acid group is introduced. Either one of them was synthesized in advance and then copolymerized with a monomer capable of forming the other segment, or a polymer capable of forming the above-mentioned segment was synthesized separately, and then both had to be further coupled.
  • the polymer electrolytes made of random copolymers disclosed so far have a significantly large water absorption capacity for hot water of about 100 ° C.
  • the polymer electrolyte membrane When used as a membrane (polymer electrolyte membrane), the polymer electrolyte membrane itself was easily absorbed by water due to heat generated by power generation.
  • the inventors of the present invention have completed the present invention, Yuri, who has intensively studied to achieve the above-mentioned problems.
  • the present invention comprises the following nucleophilic condensation of a mixture of (A) and (C) and a mixture of (B) and (D), or a mixture of (A), (B), (C) and (D).
  • the copolymer obtained is provided.
  • (D) A monomer having two nucleophilic groups in the molecule and having substantially no acid group.
  • the nucleophilic group represents a group having nucleophilicity, and the leaving group is bonded.
  • a new covalent bond can be formed by a nucleophilic attack on a certain atom and a condensation reaction involving elimination of the leaving group.
  • the nucleophilic group in the present invention is different from the acid group described later, and has a higher nucleophilicity than the acid group.
  • the structural unit ( ⁇ ′) derived from (A) is derived from the structural unit ( ⁇ ′) derived from ( ⁇ ) or (D).
  • the structural unit ( ⁇ ') is adjacent to the structural unit ( ⁇ ') or the structural unit (C ') derived from (C), and the structural unit (D').
  • C ') is adjacent to the structural unit ( ⁇ ') or structural unit (D ')
  • the structural unit (D') is adjacent to the structural unit ( ⁇ ') or structural unit (C').
  • the present invention provides a copolymer represented by the following [2] to [8].
  • k represents 0, 1 or 2
  • Ar "and A r 2 independently represent a divalent aromatic group, and when k is 2, two A r 2 may be the same as each other,
  • These divalent aromatic groups may have a substituent, a C1-C10 alkyl group that may have a substituent, a C1-C10 alkoxy group that may have a substituent, 6 to 10 carbon atoms which may have a group: substituted with an aryl group of L.0, an aryloxy group having 6 to 10 carbon atoms which may have a substituent, a fluoro group, a nitro group or a benzoyl group It may be.
  • k is A r 1 If is 0, if k is 1 or more, one of Ar Ar 2 has at least one acid group.
  • X 1 represents any of a fluoro group, a black group, a nitro group, or a trifluoromethanesulfonyloxy group, and two X ′s may be the same as or different from each other.
  • Z 1 is a group selected from the following group. When k is 2, two Z 1 s may be the same or different from each other. )
  • Ar 4 represents a divalent aromatic group independently: represent, when j is 2, also two A r 4 the same as each other, different
  • these divalent aromatic groups are an alkyl group having 1 to 10 carbon atoms which may have a substituent, or an alkoxy group having 1 to 10 carbon atoms which may have a substituent.
  • Ar 3 is the case where j is 1 or more, any one of A r 3 and A r 4 has at least one acid group Y 1 represents a hydroxyl group, a thiol group or an amino group, Y ′ may be the same as or different from each other, Q 1 represents a direct bond, and a group selected from the following group, and when j is 2, If two Q 1's are the same as each other, they are different and fc is good.) OOSMM H 2
  • Ar 5 and Ar 6 are each independently a divalent aromatic group.
  • two A r. 6s may be the same as each other.
  • These divalent aromatic groups may have a substituent, an alkyl group having 1 to 10 carbon atoms that may have a substituent, or a carbon number that has 1 to 10 carbon atoms that may have a substituent.
  • X 2 is Furuoro group, black port group, selected from a nitro group or a Torifuruo 0 main evening down sulfonyl O alkoxy groups, also the two X 2 are the same as each other or may be different.
  • Z 2 are the following is selected from the group, when m is 2, two Z 2 is also the same as each other or may be different.
  • n 0, 1 or 2
  • a r 7 and A r 8 independently represent a divalent aromatic group, and when n is 2, two A r 8 may be the same as each other,
  • these divalent aromatic groups may have an alkyl group having 1 to 10 carbon atoms which may have a substituent, or a carbon group which may have a substituent-1 to 1 carbon atoms.
  • Y 2 represents a hydroxyl group, a thiol group, or an amino group, and the two Y 2 may be the same or different from each other.
  • Q 2 is a direct bond or a group selected from the following group: FF 2
  • the 33 Q 2 s may be the same or different.
  • a polymer electrolyte comprising the copolymer according to any one of [1] to [8] above.
  • a polymer electrolyte membrane comprising the polymer electrolyte according to [9] above.
  • a polymer electrolyte composite membrane comprising the polymer electrolyte according to [9] above and a porous substrate.
  • a polymer electrolyte composite membrane obtained by impregnating a porous base material with the polymer electrolyte according to [9] and combining the same.
  • a catalyst composition comprising the polymer electrolyte according to [9] above and a catalyst substance.
  • a manufacturing method is provided.
  • (B) A monomer having two nucleophilic groups in the molecule and at least one acid group.
  • the copolymer of the present invention comprises two specific types of monomers having an acid group as the essential monomer (the above (A) and (B)) and two specific types having substantially no acid group.
  • Monomer (the above (C) and (D)) can be obtained by mixing and condensing. You can.
  • (A) (B) (C) and (D) may each be used alone or in combination of two or more.
  • the (A) is preferably a compound represented by the formula (.1).
  • acid groups if k is 0 to A r 1, if k is 1 or more, A r ', characterized by having at least one of A r 2.
  • a r 1 A r 2 represents a divalent aromatic group.
  • the divalent aromatic group include hydrocarbon aromatic groups such as a phenylene group, a naphthylene group, a biphenylylene group, and a fluorenediyl group, Examples thereof include heterocyclic groups such as pyridine diyl, quinoxalin diyl, and thiophen diyl. Among them, divalent hydrocarbon-based aromatic groups are preferable, and phenylene groups and naphthylene groups are particularly preferable.
  • a r 1 and the two A r 2 may be the same or different.
  • the above-mentioned divalent aromatic group may have a substituent having 1 to 1 carbon atoms! :
  • a C6-C10 aryloxy group, a nitro group, or a benzoyl group may be substituted.
  • Examples of the C1-C10 alkyl group include a methyl group, an ethyl group, and an n-propyl group.
  • alkoxy group having 1 to 10 carbon atoms examples include a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, a sec-butyloxy group, a tert-butyloxy group, an isobutyloxy group, n-pentyloxy group, 2,2-dimethylpropyloxy group, cyclopentyloxy group, n-hexyloxy group, cyclohexyloxy group, 2-methylpentyloxy group, 2 —Ethylhexyloxy group, etc., and these groups are substituted with halogen atom, hydroxyl group, amino group, methoxy group, ethoxy group, isopropyloxy group, phenyl group, naphthyl group, phenoxy group and naphthyloxy group. It may have a substituent selected from the group.
  • Examples of the aryl group having 6 to 10 carbon atoms include phenyl group and naphthyl group. These groups have a halogen atom, a hydroxyl group, an amino group, a methoxy group, an ethoxy group, an isopropyl group as a substituent. It may have a substituent selected from a xy group, a phenyl group, a naphthyl group, a phenoxy group, and a naphthyloxy group. Examples of the aryloxy group having 6 to 10 carbon atoms include a phenoxy group and a naphthyloxy group.
  • These groups have a substituent as a halogen atom such as a fluorine atom, a chlorine atom, a fluorine atom or an iodine atom, a hydroxyl group, It may have a substituent selected from an amino group, a methoxy group, an ethoxy group, an isopropyloxy group, a phenyl group, a naphthyl group, a phenoxy group, and a naphthyloxy group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a fluorine atom or an iodine atom, a hydroxyl group
  • It may have a substituent selected from an amino group, a methoxy group, an ethoxy group, an isopropyloxy group, a phenyl group, a naphthyl group, a phenoxy group, and a naphthyloxy group.
  • Ar ′ and A r 2 in formula (1) represent a divalent aromatic group that may have the above-mentioned substituents.
  • Ar r 2 is an unsubstituted phenylene group.
  • a naphthylene group is preferred, and 1,3-phenylene group, 1,4_phenylene group, 1,3_naphthenylene group, 1,4-naphthylene group, 1,5-naphthalene group 1, 6—Naphne Ranger group, 1,7—Naphne Ranger group, 2, 6—Naphne Ranger group, 2, 7—Naphne Ranger group, 3, 3 ′ —Biphenylylene group, 3, 4 ′ —Biphenylylene group, 4, 4: —Biphenylylene group is preferred.
  • the k in Equation (1) represents 0, 1 or 2
  • Z 1 represents a CO (carbonyl group) or S_ ⁇ 2 (sulfonyl group), or COCO (Jikaruponiru group).
  • k represents 2
  • two Z 1 s may be the same or different from each other, but it is particularly preferable that Z 1 s are the same.
  • At least one of Ar 1 Ar 2 has an acid group out of A r A, but when k is 1 or more, A 1 It is preferable that all of the groups represented by r A r 2 have an acid group.
  • the acid group for example, carboxyl group (one COOH), phosphonic acid Groups (— P 0 3 H 2 ), phosphoric acid groups (_ 0 P0 3 H 2 ) and other weak acid groups, sulfonic acid groups (—S 0 3 H), sulfoniruimide groups (—S0 2 NHS0 2 — R, Where R represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms), a perfluoroalkylenesulfonic acid group, a perfluorophenylenesulfonic acid group, or a perfluoroalkylenesulfonylimide group.
  • Super strong acid groups such as Among them, strong acid groups and super strong acid groups having an acid dissociation constant represented by a pKa value of 2 or less are preferable.
  • sulfonic acid groups, perfluoroalkylene sulfonic acid groups, and perfluorophenylene sulfonic acid groups are preferable. is there.
  • salts may be formed with an alkaline ion, an alkaline earth metal ion, an ammonium ion, or the like.
  • the acid group can be easily returned to the free acid form by forming the copolymer of the present invention and then performing ion exchange by acid treatment.
  • 'Preferred examples of the compound represented by the formula (1) include, for example, the following (1)-1
  • M represents a hydrogen atom, a potassium atom, a sodium atom or a lithium atom, and M is a plurality. They may be the same or different.
  • the (B) preferably includes a compound represented by the formula (2).
  • the acid group is characterized in that it has Ar 3 when j is 0, and at least one of A r 3 and A r 4 when j is 1 or more.
  • Ar 3 and Ar 4 represent a divalent aromatic group, and the divalent aromatic group is a group equivalent to Ar 1 or Ar 2 described above.
  • a r 3 and two A r 4 may be the same or different from each other.
  • a phenolic hydroxyl group is a group that is converted to a phenol group by an appropriate base during the condensation reaction and acts as a nucleophilic group. It is a group that exists as an ether bond during polymerization and is not considered an acid group.
  • These divalent aromatic groups may have a substituent, a C1-C10 alkyl group, a C1-C10 alkoxy group that may have a substituent, or a substituent.
  • the alkyl group, the alkoxy group, the aryl group or the aryloxy group may be substituted with an aryl group having 6 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms which may have a substituent. Specific examples are the same as described above.
  • Ar 3 , Ar 4 , in formula (2) represents a divalent aromatic group that may have a substituent as described above.
  • Ar 3 , Ar 4 is unsubstituted phenylene.
  • Group, biphenylylene group or naphthylene S are preferred, 1,3-phenylene group, 1,4_phenylene group, 1,3-naphthalenedyl group, 1,4-naphthalenedyl group, 1,5-naphth Evening range group, 1, 6_Naphne rangel group, 1,7-Naphthalene group, 2, 6_Naphne rangel group, 2,7-Naphne rangel group, 3, 3, 1 biphenylylene group, 3, 4 '— Biphenylylene group or 4, 4' — Biphenylylene group is preferable.
  • j 0, 1 or 2
  • Q 1 represents a direct bond or a group selected from the following group.
  • j 2
  • two Q 1 may be the same or different from each other, but the two Q 1 are preferably the same.
  • Preferable examples of the compound represented by the formula (2) include the following (2) — (2) — 12. C & CII
  • substantially free of acid groups means that the kind of acid groups that exist in the monomer as nucleophilic groups, such as the above-mentioned hydroxyl groups, and disappear during the process of forming a copolymer. Since it is not regarded as the acid group of the present invention, even a monomer having such an acid group is assumed to have substantially no acid group in the present invention.
  • the compound represented by Formula (3) is preferable.
  • Ar 5 and Ar 6 in the formula (3) are divalent aromatic groups such as phenylene group, naphthylene group, biphenylylene group, fluorenediyl group and other hydrocarbon-based aromatic groups, pyridine diyl group, quinoxaline diyl group.
  • a heterocyclic group such as a thiopheneyl group
  • it is a divalent hydrocarbon-based aromatic group.
  • a r 5 and A r 6 when m is 2, A r 5 and two A r 6 may be the same or different.
  • These divalent aromatic groups include an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted alkoxy group having 1 to 10 carbon atoms, and a substituent. It may be substituted with an aryl group having 6 to 10 carbon atoms or an aryloxy group, nitro group or benzoyl group having 6 to 10 carbon atoms which may have a substituent.
  • Specific examples of the alkyl group, the aroxy group, the aryl group or the aryloxy group include the same as those described above.
  • unsubstituted phenylene group or naphthylene group is preferable as A r 5 and A r 6
  • 1,3-phenylene group, 1,4-phenylene group, 1,3-naphthyl group are preferable.
  • Evening range group, 1, 4—Naphthalene group, 1, 5—Naphthalene group, 1,6—Naphthalene group, 1, 7 —Naphthalene group, 2, 6—Naphthalene group, 2, 7 —A naphthenic diyl group, 3,3, —biphenylylene group, 3,4′-biphenylylene group or 4,4′—biphenylylene group is preferred.
  • Z 2 represents C_ ⁇ , 3 0 2 or Ji ⁇ Ji O.
  • m 2
  • the two Z 2 may be the same or different from each other, but are preferably the same.
  • Preferable examples of the compound represented by the formula (3) include the following (3) -1 to (3) -9.
  • the (D) preferably includes a compound represented by the formula (4).
  • Ar 7 and Ar 8 represent a divalent aromatic group, and examples thereof are the same as those of Ar 5 and Ar 6. These divalent aromatic groups are substituted An alkyl group having 1 to 10 carbon atoms which may have a group, an alkoxy group having 1 to 10 carbon atoms which may have a substituent, and an aryl having 6 to 10 carbon atoms which may have a substituent.
  • the alkyl group, the alkoxy group, the aryl group or the aryloxy group may be substituted with an aryl group having 6 to 10 carbon atoms which may have a group or a substituent. Can be mentioned.
  • an unsubstituted phenylene group, biphenylene group or naphthylene group is preferable, and 1,3-phenylene group, 1,4_phenylene group, 1, 3 —Naphthalene diyl group, 1, 4—Naphthalene diyl group, 1, 5 _Naphtalene diyl group, 1, 6—Naphthalene diyl group, 1, 7 _Naphtalene diyl group, 2, 6—Naphthalene diyl group, 2, A 7-naphthalene diyl group, 3, 3'-biphenylylene group, 3, 4'-biphenylylene group, or 4,4'-biphenylylene group is preferred.
  • n 0, 1 or 2
  • Q 2 represents a direct bond or a group selected from the following group. when n is 2, two Q 2 are it may be the same or different from each other, but are preferably the same.
  • Preferable examples of the compound represented by (4) include the following (4) -1 to (4) -26.
  • the copolymer of the present invention is a mixture of the above (A), (B), (C) and (D), or a mixture of monomers having a nucleophilic group such as (B) and (D).
  • a monomer having a leaving group such as (A) and (C) is mixed, and each mixture is further mixed to nucleophilic condensation reaction between the monomer having a nucleophilic group and the monomer having a leaving group.
  • a monomer having a leaving group such as (A) and (C) is mixed, and each mixture is further mixed to nucleophilic condensation reaction between the monomer having a nucleophilic group and the monomer having a leaving group.
  • 'A preferred copolymer of the present invention is obtained by using the compounds represented by the above formulas (1) to (4) as monomers and mixing and condensing them.
  • a method of nucleophilic condensation of compounds represented by the formulas (1) to (4) under the action of a base can be mentioned.
  • the compound represented by the formulas (1) to (4) and the basic compound are previously added to the reaction solvent and mixed.
  • the order of mixing is not particularly limited, but after the compound represented by the formula (2), the compound represented by the formula (4), the basic compound and the solvent are first introduced, the formula (1) And (3) are added and mixed, or the compound represented by the formulas (1) to (4) and the solvent are mixed, and then the basic compound is added and mixed, or the formula (1) (4)
  • a mixing means in which a basic compound and a solvent are added and mixed is preferable.
  • the reaction temperature is preferably 20 to 300, more preferably 50 to 250 ° C
  • the reaction time is preferably 0.5 to 500 hours, more preferably 1. Can be carried out in ⁇ 100 hours.
  • reaction solvents include alcohol solvents such as methanol, ethanol, isopropanol and butanol, jetyl ether, dibutyl ether, diphenyl ether, tetrahydrofuran, dioxane, dioxolane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether , Ether solvents such as propylene glycol monomethyl ether and propylene dalycol monoethyl ether, ketone solvents such as acetone, methyl isobutyl ketone, methyl ethyl ketone, and benzophenone, chloroform, dichloromethane, 1, 2 —Dichloroethane, 1, 1, 2, 2, 2-tetrachloroethane, halogenated solvents such as chlorobenzene, dichlorobenzene,
  • the reaction solvent is used in an amount of 1.0 to 200.0 times by weight, preferably 2.0 to 00.0 times by weight, based on the total weight of the monomers to be applied. It is preferable to remove water by-produced at the initial stage of the condensation reaction or during the condensation reaction. As means for removing this water, there are means for removing water as an azeotrope by allowing toluene and xylene to coexist in the reaction system, and means for dehydrating by making a water absorbent such as molecular sieve coexist in the reaction system. Can be used.
  • As the basic compound sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate or lithium hydrogen carbonate can be used, and a mixture of two or more basic compounds is used.
  • potassium carbonate, sodium carbonate or sodium hydroxide is preferred.
  • the basic compound is used in an amount of 0.90 to 10.00 mole equivalents, preferably 1.00 to 3 times the total number of mole equivalents of the nucleophilic group in the monomer used for the condensation reaction. It may be used at 00 molar equivalent times.
  • the compound represented by the formula (2) and the compound represented by the formula (4) are used in advance with a basic compound, There is a method in which the compound represented by (1) and the compound represented by formula (3) are added, mixed and condensed. That is, a compound represented by the formula (2), a compound represented by the formula (4) and a basic compound are mixed in a reaction solvent, and then heat-treated as necessary to obtain a compound represented by the formula (2). And a compound represented by the formula (4) is allowed to act on the compound, and then the compound represented by the formula (1) and the compound represented by the formula (3) are added to carry out a condensation reaction.
  • reaction solvent to be used and the amount to be used, the basic compound to be used and the amount to be used are the same as described above, and the reaction temperature and reaction time for the condensation reaction are also in the same range as described above.
  • the removal of by-product water can be performed in the same manner as described above, and is represented by the formula (2).
  • water is sufficiently removed as an azeotrope by coexisting toluene and xylene in the reaction system, and then the formula (1)
  • a method may be used in which the compound represented by the formula (3) is added to perform a condensation reaction.
  • the copolymer of the present invention is obtained.
  • the weight composition ratio of the structural unit in which the acid group is introduced and the structural unit in which the acid group is not substantially introduced is not particularly limited.
  • the structural unit is: 3:97 to 70:30, preferably 5:95 to 45:55, and 10:90 to 40, when expressed by [the structural unit in which an acid group is not substantially introduced]. : 60 is more preferable, and 20:80 to 35:65 is particularly preferable.
  • a copolymer having an acid group-introduced structural unit within the above range when applied to a polymer electrolyte membrane of a fuel cell membrane, becomes a polymer electrolyte membrane with high proton conductivity and water resistance. .
  • the weight composition ratio between the structural unit in which the acid group is introduced and the structural position in which the acid group is not substantially introduced can be controlled by the amount of the monomer used.
  • the formula (1) And the total molar amount of the monomer having an acid group including the compound represented by formula (2) and the acid group including the compound represented by formula (3) and the compound represented by formula (4) It can be arbitrarily controlled by changing the molar ratio of the charge (mixing) at the initial stage of the reaction with the total molar amount of monomers that are substantially absent.
  • the introduction amount of acid groups as a whole copolymer is expressed in terms of the number of equivalents of acid groups per 1 g of copolymer, that is, ion exchange capacity, 0.01 to lme qZg to 4.
  • Ome q / g is preferable.
  • 0.5 me qZg to 2.5 me QZ g is more preferable, and 1.3 me q / g to 2.3 meqg is particularly preferable.
  • the ion exchange capacity is suitable in such a range is the same as the content weight ratio of the structural unit into which the acid group is introduced in the copolymer, and the ion exchange capacity is also Similarly, it can be controlled arbitrarily by changing the initial charge (mixing) molar ratio of each monomer.
  • the average molecular weight of the copolymer of the present invention is preferably 5000 to 1000000 in terms of polystyrene-equivalent number average molecular weight, and particularly preferably 15000 to 200000.
  • the average molecular weight can be controlled by the ratio of the total number of molar equivalents of the nucleophilic group of the monomer to be applied and the total number of molar equivalents of the leaving group, the reaction time, and the like.
  • copolymer of the present invention is used as a diaphragm (polymer electrolyte membrane) of an electrochemical device such as a fuel cell will be described.
  • the copolymer of the present invention is usually used in the form of a film.
  • a method of forming a film from a solution state is preferably used.
  • the film is formed by dissolving the copolymer in an appropriate solvent, casting the solution on a glass plate, and removing the solvent.
  • the solvent used for film formation is not particularly limited as long as it can dissolve the copolymer and can be removed thereafter.
  • the thickness of the film is not particularly limited, but is preferably from 10 to 300 m, and particularly preferably from 20 to 100 m. Films thinner than 10 m may have insufficient practical strength, and films thicker than 300 m tend to have higher membrane resistance and lower electrochemical device characteristics.
  • the film thickness can be controlled by the concentration of the solution and the coating thickness on the substrate.
  • plasticizers, stabilizers, release agents and the like used for ordinary polymers can be added to the copolymer of the present invention.
  • other polymers can be mixed with the same solvent by the method of co-casting in the same solvent. It is also possible to combine and form a composite alloy.
  • the polymer electrolyte membrane is constituted by irradiating with an electron beam or radiation.
  • the polymer electrolyte can also be crosslinked.
  • a porous substrate is impregnated with the copolymer of the present invention to form a polymer electrolyte composite membrane.
  • a known method can be used as the compounding method.
  • the porous substrate is not particularly limited as long as it satisfies the above-mentioned purpose of use, and examples thereof include porous membranes, woven fabrics, non-woven fabrics, and fibrils, and they can be used regardless of their shapes and materials.
  • the porous substrate has a thickness of 1 to 100 m, preferably 3 to 30 / m. More preferred is 5 to 2 mm, pore size is 0.01 to 100 im, preferably 0.02 to 10 m, porosity is 20 to 98%, Preferably it is 40 to 95%. If the thickness of the porous substrate is too thin, the effect of reinforcing the strength after compounding or the flexibility and durability will be insufficient, and the reinforcing effect will become insufficient, and gas leaks (cross leaks) are likely to occur. .
  • the film thickness is too thick, the electrical resistance increases, and the resulting composite membrane is insufficient as a diaphragm for a polymer electrolyte fuel cell.
  • the pore diameter is too small, it is difficult to fill the copolymer of the present invention, and when it is too large, the reinforcing effect on the polymer solid electrolyte is weakened.
  • the porosity is too small, the resistance of the composite membrane increases. If it is too large, the strength of the porous substrate itself is generally weakened and the reinforcing effect is reduced.
  • the porous base material is preferably a base material made of an aliphatic polymer, an aromatic polymer, or a fluorine-containing polymer.
  • the fuel cell of the present invention will be described.
  • fuel cells that use polymer electrolyte membranes include solid polymer fuel cells that use hydrogen gas as fuel, and methanol that burns. There is a direct methanol type solid polymer fuel cell to be directly supplied as a material, and the copolymer of the present invention can be suitably used for either of them.
  • the fuel cell obtained by the present invention uses the copolymer of the present invention as a polymer electrolyte membrane and Z or a polymer electrolyte composite membrane, or uses the polymer electrolyte of the present invention as a polymer electrolyte in a catalyst layer. Can be mentioned.
  • a fuel cell using the copolymer of the present invention as a polymer electrolyte membrane or a polymer electrolyte composite membrane has a catalyst and a gas diffusion layer bonded to both surfaces of the polymer electrolyte membrane or the polymer electrolyte composite membrane.
  • a known material can be used for the gas diffusion layer, but a porous carbon woven fabric, carbon non-woven fabric or carbon paper is preferable in order to efficiently transport the source gas to the catalyst.
  • the catalyst is not particularly limited as long as it can activate the oxidation-reduction reaction with hydrogen or oxygen, and a known catalyst can be used, but platinum fine particles are preferably used.
  • the platinum fine particles are often preferably those supported on particulate or fibrous carbon such as activated carbon or graphite.
  • platinum supported on carbon is mixed with an alcohol solution of a perfluoroalkylsulfonic acid resin as a polymer electrolyte to form a paste, which is a gas diffusion layer, a polymer electrolyte membrane, or a polymer electrolyte.
  • a catalyst layer is obtained by applying and drying to the composite membrane.
  • known methods such as those described in J. Electroch em. Soc .: Electr oc h emi cal Science and T e hnology, 1988, 135 (9), 2209, etc. This method can be used.
  • the copolymer of the present invention As a fuel cell using the copolymer of the present invention as a polymer electrolyte in the catalyst layer, the copolymer of the present invention was used in place of the perfluoroalkylsulfonic acid resin constituting the catalyst layer. Things can be mentioned.
  • the polymer electrolyte membrane is not limited to the membrane using the copolymer of the present invention, and a known polymer electrolyte membrane can be used.
  • the solvent used for preparing the catalyst paste is arbitrary and is not particularly limited, but other than the solvent constituting the catalyst paste. It is desirable to dissolve these components, to disperse them uniformly at the molecular level, or to form aggregates at the nanometer to micrometer level and disperse the aggregates.
  • the solvent may be single or one, or may be a mixture of a plurality of solvents, and the same solvents as those mentioned above that can be used when forming the above-mentioned copolymer can be used.
  • a water repellent material such as PTFE is used, and for the purpose of increasing the gas diffusibility of the catalyst layer, carbonic acid is used.
  • a pore former such as calcium may contain a stabilizer such as a metal oxide or a polymer having a phosphonic acid group for the purpose of further enhancing the durability.
  • the catalyst paste is obtained by mixing the above-described polymer electrolyte, the catalyst material and the conductive material carrying the catalyst material on the surface, the solvent, and other components by a known method. is there.
  • the mixing method include an ultrasonic dispersing device, a homogenizer, a ball mill, a planetary ball mill, and a sand mill.
  • the method of directly applying the catalyst paste is not particularly limited, and existing methods such as a die coater, screen printing, spray method, and ink jet method can be used.
  • the spray method is industrially operated. It is preferable because it is simple.
  • a method for spraying the catalyst paste for example, an apparatus and a method described in JP-A No. 2000-899776 can be specifically exemplified, and these can be used. That is, a polymer electrolyte membrane is placed on the stage, and a catalyst ink is directly applied to the polymer electrolyte membrane. In the spray method, catalyst ink scatters in the form of particles from the discharge port and adheres to the polymer electrolyte membrane.
  • the stage is preferably heated in order to remove the solvent immediately after coating, and the temperature is preferably from 50 to 1550. If the temperature range is in the above range, the solvent of the catalyst ink is easily removed and the polymer electrolyte membrane is less likely to be thermally damaged, which is preferable. Thus, following the application by the spray method, the solvent is removed by heating the stage, and the catalyst layer is produced on the polymer electrolyte membrane. In order to make the removal of the solvent more reliable, the membrane on which the catalyst layer is manufactured is placed in a heated oven or the like and dried. Or may be vacuum-dried as necessary.
  • a suitable solvent constituting the catalyst paste is a solvent having a boiling point of 150 ⁇ or less, such as an alcohol solvent such as water, methanol, ethanol or di: tilether, tetrahydrofuran, etc.
  • An ether solvent or a mixed solvent thereof may be used, and the copolymer of the present invention is also excellent in that it is easily soluble in these solvents.
  • the catalyst paste may be sprayed a plurality of times, and a layer by each spray may be applied over the polymer electrolyte membrane to form a multilayer coating.
  • the number average molecular weight (Mn) in terms of polystyrene was measured by gel permeation chromatography (GPC) under the following conditions.
  • the AC method was used under the conditions of a temperature of 80 ⁇ and a relative humidity of 90%.
  • the dried polymer electrolyte membrane was weighed, immersed in 100 deionized water for 2 hours, the water absorption was calculated from the increase in membrane weight, and the ratio to the dry membrane was determined.
  • copolymer A The polymerization was carried out in a 20 OmL separable flask equipped with a De an -Stark tube, and potassium hydroquinonesulfonate 3.50 g (15. 33 mmo 1), 4, 4 '—dihydroxybiphenyl 6..29 g ( 33.76 mmo 1), potassium carbonate 7.36 g (53.24 mmo 1), dimethyl sulfoxide 121 ml, toluene 70 ml 1, under argon atmosphere, bath temperature 150 ° C (internal temperature 130 ⁇ 5 ) 1. Azeotropic dehydration was performed for 5 hours. 1. After 5 hours, toluene was removed from the system and allowed to cool to room temperature.
  • Copolymer A is a polymer having the structural units shown below. The molar ratio of each structural unit calculated from the charged amount to the total of the structural units of (A-a), (Ab), (Ac) and (Ad).
  • Copolymer B is a polymer having the structural units shown below.
  • Copolymer C is a polymer having the structural units shown below.
  • the polymerization was carried out in a 50 OmL separable flask equipped with a De anS tark tube, and 4,4'-difluorodiphenylsulfone 12.74 g (50.10 mmol), 4,4'-dihydroxybiphenyl. 18. 62 g (100. 00 mm o 1), 3, 3'-sulfonylbis (6-fluorobenzenesulfonate potassium) 25. 08 g (50.00 mm ol), potassium carbonate 15. 20 g (110.
  • Copolymer D is a polymer having the structural units shown below.
  • Copolymer E is a polymer having the structural units shown below.
  • the polymerization was carried out in a 20 OmL separable flask equipped with a De an-Stark tube, and 3.00 g (13.14 mmol) of potassium hydroquinonesulfonate, 4, 4, 1 dihydroxy_ 3, 3 '— diphenyl Rubiphenyl 5.79 g (17.11 1 mmol), 2,2 'monobis (4-hydroxyphenyl) propane 3.91 (17.11 mmol), 3,3'-sulfonylbis ( 6-Fluorobenzenesulphonate) 7.74 g (15. 77 mmo l), 4, 4 '-Difluorodiphenylsulfone 8.04 g (31.
  • copolymer F shown below was obtained. Film formation was performed in accordance with Example 1.
  • Copolymer F is a polymer having the structural units shown below.
  • a polymer electrolyte membrane comprising a block copolymer type polymer electrolyte represented by the following formula was obtained. Specifically, a first polymer compound having an ion-exchange group and a second polymer compound having substantially no ion-exchange group were respectively synthesized as shown below, and these were further cupped. Ringed block copolymer type polymer electrolyte. (Synthesis of the first polymer compound)
  • This first polymer compound had an Mn of 3.0 ⁇ 10 4 .
  • Nl and ml represent the average degree of polymerization of each block of the block copolymer type polymer electrolyte.
  • N l 36.2 calculated from the charge, and 2 ml 10.5.
  • the polymer electrolyte membrane made of the block copolymer type polymer electrolyte thus obtained is cut into a square shape and set on a heating stage, and the catalyst is sprayed onto the 5.2 cm square area at the center of the main surface of the membrane.
  • Ink A was applied.
  • the distance from the discharge port to the membrane was set to 5 cm, and the stage temperature was set to 76 t :. After coating, it was left on the stage for 3 minutes to remove the solvent and form a catalyst layer.
  • the polymer electrolyte membrane provided with the catalyst layer on one side thus obtained was turned upside down and set on a heating stage.
  • the catalyst layer from catalyst ink A was also applied to the other side.
  • the amount of platinum in the catalyst layer determined from the weight composition of the catalyst layer and the weight of the applied catalyst layer was 0.6 mgZcm 2 per side. .
  • a fuel cell was manufactured using a commercially available JAR I standard cell. Specifically, carbon cross as a gas diffusion layer and a carbon separator with a gas channel groove cut are disposed on both catalyst layers of the membrane-catalyst layer assembly obtained as described above. A fuel cell with an effective membrane area of 25 cm 2 was assembled by arranging a current collector and an end plate in order on the outside of the plate and tightening them with a bolt.
  • N 2 and m 2 represent the molar ratio of each structural unit of the random copolymer type polymer electrolyte.
  • a uniform copolymer B solution (concentration of copolymer A; 5% by weight) was prepared by mixing 9.5 g of NMP and 5 g of copolymer GO. Separately, 0.64 g of platinum-supported carbon (S A50 BK, manufactured by EN Chem. Kyat; 50% by weight of platinum) was added to 1 lmL of ethanol, and the copolymer A solution prepared earlier was added. 1. Added 05 g. The resulting mixture was sonicated for 1 hour and then stirred with a stirrer for 6 hours to obtain catalyst ink B. [Manufacture of polymer electrolyte membranes]
  • the polymer electrolyte membrane made of a block copolymer type polymer electrolyte used in Example 5 was used.
  • a carbon cloth as a gas diffusion layer was cut into a square and set on a heating stage, and catalyst ink B was applied to a 5.2 cm square area at the center of the main surface of the carbon cloth by a spray method.
  • the distance from the discharge port to the membrane was set to 5 cm, and the stage temperature was set to 76 :. After coating, it was left on the stage for 3 minutes to remove the solvent and form a catalyst layer.
  • Two force bon cloths having a catalyst layer formed by this method were produced.
  • the platinum amount of the catalyst layer determined from the weight composition of the catalyst layer and the weight of the applied catalyst layer was 0.6 mgZcm 2 , respectively.
  • a fuel cell was manufactured using a commercially available JAR I standard cell. That is, a carbon separator with a gas channel groove cut is disposed on both gas diffusion layers of the membrane-electrode assembly obtained above, and a current collector and an end plate are sequentially disposed on the outer side thereof. By fastening these with bolts, a fuel cell with an effective membrane area of 25 cm 2 was assembled.
  • the copolymer of the present invention when used as a proton conductive membrane in a fuel tank, is industrially advantageous as a polymer electrolyte because it exhibits high power generation characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polyethers (AREA)
  • Secondary Cells (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

明細書
共重合体、 高分子電解質及びその用途 技術分野
本発明は、 電池、 なかでも燃料電池の隔膜材料として好適に用いられる共重合 体、 高分子電解質及びその用途に関する。 背景技術
一次電池、 二次電池、 あるいは固体高分子型燃料電池等の電気化学デバイスの 隔膜として、 プロトン伝導性を有する高分子電解質が用いられている。 例えば、 ナフイオン (デュポン社の登録商標) をはじめとする、 側鎖に超強酸としてのパ 一フルォロアルキルスルホン酸基を有するパーフルォロアルカン系高分子を有効 成分とする高分子電解質が、 燃料電池用の隔膜材料として用いた場合に、 発電特 : 性が優れること,から、 従来主に使用されてきていた。 しかしながら、 この種の材 料は非常に高価であること、 耐熱性が低いこと、 膜強度が低く何らかの補強をし ないと実用的でないことなどの問題が指摘されていた。
こうした状況において、 上記高分子電解質に替わり得る安価で特性の優れた高 分子電解質の開発が近年活発化してきている。
例えば、 スルホン酸基が実質的に導入されていないセグメントおよびスルホン酸 基が導入されたセグメントを有するブロック共重合体であって、 前者のセグメン トがポリエーテルスルホンからなり、 後者のセグメントがジフエニルスルホンと スルホン酸基を有するビフエノールとの縮合体であるブロック共重合体が提案さ れている(特開 2003 - 03 1232号公報)。
一方、 前記ブロック共重合体に対して、 酸基が高分子鎖中にランダムに分布して いる、 いわゆるランダム共重合体も検討されており、 スルホン酸基が導入された 一種類のモノマーと、 スルホン酸基が導入されていないモノマーとのランダム共 重合体 (例えば特表 2004- 509224号公報、 特表 2006— 52325 8号公報、 米国特許 2002/009 1 225号および特開 2004— 1497 7 9公報) や、 ポリエーテルスルホン共重合体をスルホン化して得られるランダ ム共重合体 (例えば、 特開平 1 0— 0 2 1 9 4 3公報参照) が提案されている。
発明の開示
特開 2 0 0 3— 0 3 1 2 3 2号公報に開示されているブロック共重合体は、 ス ルホン酸基が実質的に導入されていないセグメントまたはスルホン酸基が導入さ れたセグメントのどちらか一方を予め合成してから、 他方のセグメントを形成し うるモノマーと共重合させるか、 前記のセグメントを形成できるポリマーを別々 に合成してから、 両者をさらにカツプリングする必要があった。
一方、 特表 2 0 0 4— 5 0 9 2 2 4号公報、 特表 2 0 0 6 _ 5 2 3 2 5 8号公 報、 米国特許 2 0 0 2 / 0 0 9 1 2 2 5号および特開 2 0 0 4— 1 4 9 7 7 9公 報や、 特開平 1 0— 0 2 1 9 4 3公報に開示されているランダム共重合体は、 前 記ブロック共重合体と比較して合成自体は、 比較的容易であるが、 電池の隔膜材 料として実用的なプロトン伝導度を得ようとすると、 該ランダム共重合体の吸水 率が高くなり、 得られる隔膜は、 燃料電池稼動時に発生する水によって大きな寸 法変化を生じて、 機械的強度が低下するといつた問題があった。 特に、 本発明者 が検討した結果、 これまで開示されているランダム共重合体からなる高分子電解 質は、 1 0 0 °C程度の熱水に対する吸水性が著しく大となるため、 燃料電池の隔 膜 (高分子電解質膜) に使用した場合、 発電にともなう発熱によって、 高分子電 解質膜自体が吸水変形しやすかつた。
本発明者等は、 前記課題を達成すべく鋭意検討を重ねた結栗、 本発明を完成す るに至った。
即ち本発明は、 下記 (A) と (C ) の混合物と (B ) と (D) の混合物、 また は(A)、 (B ) 、 ( C ) 及び (D) の混合物を求核縮合して得られる共重合体を 提供する。
(A) 分子内に 2つの脱離基を有し、 さらに少なくとも 1つの酸基を有するモ ノマー
( B ) 分子内に 2つの求核基を有し、 さらに少なくとも 1つの酸基を有するモ ノマー
(C) 分子内に 2つの脱離基を有し、 実質的に酸基を有さないモノマー
(D) 分子内に 2つの求核基を有し、 実質的に酸基を有さないモノマー ここで、 求核基とは、 求核性を有する基を表し、 脱離基が結合している原子に 求核攻撃し、 脱離基の脱離を伴う縮合反応により、 新たに共有結合を形成しうる ものである。 本発明での求核基は後述する酸基とは異なるものであり、 該酸基よ り求核性の高いものである。
求核基と脱離基と有するモノマーが異なるため、 求核基を有するモノマーは脱離 基を有するモノマーとのみ縮合反応を起こして共有結合を形成する。 本発明の共 重合体は、 例えば、 前記 (A) から誘導される構造単位 (Α' ) は、 前記 (Β) から誘導される構造単位(Β ' )または、前記(D)から誘導される構造単位(D' ) と隣接し、 同様に構造単位 (Β' ) が構造単位 (Α' ) または前記 (C) から誘 導される構造単位 (C' ) と隣接し、 また、 構造単位 (C' ) は構造単位 (Β' ) または構造単位 (D' ) と隣接し、 構造単位 (D' ) は構造単位 (Α' ) または 構造単位 (C' ) と隣接する。
さらに、 本発明は、 下記の [2] 〜 [8] で示される共重合体を提供するもの である。
[2] 前記 (Α) が、 下記式 (1) である前記 [1] 記載の共重合体。
X1— Ar1-f-Z1— Ar2 x1 (1)
ノ k
(式中、 kは 0、 1又は 2を表し、 Ar"、 A r 2は互いに独立に 2価の芳香族基 を表し、 kが 2の場合は、 2つの A r2は互いに同じでも、 異なっていてもよく、 これらの 2価の芳香族基は、 置換基を有することもある炭素数 1〜10のアルキ ル基、 置換基を有することもある炭素数 1〜10のアルコキシ基、 置換基を有す ることもある炭素数 6〜: L.0のァリール基、 置換基を有することもある炭素数 6 〜 10のァリールォキシ基、 フルォロ基、 ニトロ基又はベンゾィル基で置換され ていてもよい。 kが 0である場合は A r1が、 kが 1以上である場合は、 Ar Ar2のいずれかが、 少なくとも一つの酸基を有する。 X1はフルォロ基、 クロ口 基、 ニトロ基又はトリフルォロメタンスルホニルォキシ基のいずれかを表し、 2 つの X'は互いに同じでも、 異なっていてもよい。 Z1は下記の群から選ばれる基 であり、 kが 2の場合、 2つの Z1は互いに同じでも、 異なっていてもよい。 )
Figure imgf000005_0001
[3]前記 (B) が、 下記式 (2.) である上記 [1]からに [2]に記載の共重合体。
Figure imgf000005_0002
(式中、 jは 0、 1又は 2を表し、 Ar3、 Ar4は互いに独立に 2価の芳香族基 : を表し、 jが 2の場合、 2つの A r4は互いに同じでも、 異なっていてもよく、 こ こで、 これらの 2価の芳香族基は、 置換基を有することもある炭素数 1〜 10の アルキル基、 置換基を有することもある炭素数 1〜 10のアルコキシ基、 置換基 を有することもある炭素数 6〜10のァリール基、 または置換基を有することも ある炭素数 6〜 10のァリールォキシ基で置換されていてもよい。 jが 0である 場合は A r 3が、 jが 1以上である場合は、 A r 3、 A r 4のいずれかが、 少なくと も一つの酸基を有する。 Y1は、 水酸基、 チオール基又はアミノ基を表し、 2つの Y'は、 互いに同じでも、 異なっていてもよい。 Q1は直接結合、 及び下記の群か ら選ばれる基を表し、 jが 2の場合、 2つの Q1は互いに同じでも、 異なっていて fcよい。 ) OOSMM H2
— 0— — C ― S
Figure imgf000006_0001
CCII
H
一 3
[4]前記 (C) が、 下記式 (3) で示さ CCる化合物である上記 [1] から [3]
F
に記載の共重合体。
Figure imgf000006_0002
(式中、 mは 0、 1又は 2を表し、 Ar5、 A r 6は互いに独立に 2価の芳香族.基 を表し、 mが 2の場合、 2つの A r.6は互いに同じでも、 異なっ OSてMいてもよく、 こ こで、 これらの 2価の芳香族基は、 置換基を有することもある炭素数 1〜 10の アルキル基、 置換基を有することもある炭素数 1〜10のアルコキシ基、 置換基 を有することもある炭素数 6〜 10のァリール基、 置換基を有することもある炭 素数 6〜 10のァリールォキシ基、 フルォロ基、 ニトロ基又はベンゾィル基で置 換されていてもよい。 X2はフルォロ基、 クロ口基、 ニトロ基又はトリフルォ 0メ 夕ンスルホニルォキシ基から選ばれ、 2つの X2は互いに同じでも、 異なっていて もよい。 Z2は下記の群から選ばれ、 mが 2の場合、 2つの Z2は互いに同じでも、 異なっていてもよい。 )
Figure imgf000006_0003
[5] 前記 (D) が、 下記式 (4) で示される上記 [1] から [4] に記載の共 重合体。 OOSMM
Figure imgf000007_0001
(式中、 nは 0、 1又は 2を表し、 A r7、 A r 8は互いに独立に 2価の芳香族基 を表し、 nが 2の場合、 2つの A r8は互いに同じでも、 異なっていてもよく、 こ こで、 これらの 2価の芳香族基は、 置換基を有することもある炭素数 1〜10の アルキル基、 置換基を有す -ることもある炭素数 1〜10のアルコキシ基、 置換基
CCCII
を有することもある炭素数 6〜 H H10のァリール基、 または置換基を有することも
一 33
ある炭素数 6〜10のァリールォキシ基で置換されていてもよい。 Y2は水酸基、 チオール基又はアミノ基を表し、 2つの Y2は互いに同じでも、 異なっていてもよ
CCCII
い。 Q2は直接結合、 または下記の群から選 F Fばれる基であり、 nが 2の場合、 2
33 つ の Q2は互いに同じでも 、 異なっていてもよい。 )
Figure imgf000007_0002
Figure imgf000007_0003
[6] 酸基が、 強酸基又は超強酸基である上記 [1] から [5] に記載の共重合 体。
[7] イオン交換容量が、 0. 1π ε (ΐ/^〜4. Ome dZgである上記 [1] から [6] に記載の共重合体。 [8] 共重合体中、 酸基が導入された構造単位と、 酸基が実質的に導入されてい 'ない構造単位の重量組成比、 [酸基が導入された構造単位] : [酸基が実質的に 導入されていない構造単位]が、 3: 97〜70: 30である上記 [1]から [7] に記載の共重合体。 また、 本発明は、
[9] 上記 [1] 〜 [8] のいずれかに記載の共重合体を含む高分子電解質。
[10] 上記 [9] 記載の高分子電解質を含む高分子電解質膜。
[1 1] 上記 [9] 記載の高分子電解質と多孔質基材からなる高分子電解質複合 膜。
[12] 上記 [9] 記載の高分子電解質を多孔質基材に含浸させ、 複合化して得 られる高分子電解質複合膜。
[13] 上記 [9] 記載の高分子電解質と、 触媒物質からなる触媒組成物。
[14] 上記 [10] 記載の高分子電解質膜を用いる燃料電池。
[15] 上記 [1 1] または [12] 記載の高分子電解質複合膜を用いる燃料電 池。
[16] 上記 [13] 記載の触媒組成物からなる触媒層を有する燃料電池。 を提供する。
さらに本発明,は。
[17] 下記(A) と (C)の混合物と、 (B) と (D)の混合物、 またば (A)、 (B) 、 (C) 及び (D) の混合物を縮合する共重合体の製造方法を提供する。
(A) 分子内に 2つの脱離基を有し、 さらに少なくとも 1つの酸基を有するモ ノマ一
(B) 分子内に 2つの求核基を有し、 さらに少なくとも 1つの酸基を有するモ ノマー
(C) 分子内に 2つの脱離基を有し、 実質的に酸基を有さないモノマ一
(D) 分子内に 2つの求核基を有し、 実質的に酸基を有さないモノマー 発明を実施するための最良の形態
以下、 本発明の好適な実施形態を説明する。
本発明の共重合体は、 必須のモノマーとして酸基を有する特定の二種類のモノマ 一 (前記の (A) 及び (B) ) と、 酸基を実質的に有さない特定の二種類のモノ マー (前記の (C) 及び (D) ) とを、 混合して縮合させることによって得るこ とができる。 なお、 (A) ( B ) ( C ) および (D) はそれぞれ、 1種または 2 種以上を用いても良い。
前記 (A) は、 前記式 (.1 ) で表される化合物が好ましい。 ここで、 酸基は、 kが 0である場合は A r 1に、 kが 1以上である場合は、 A r '、 A r 2のいずれか 少なくとも一つに有することを特徴とする。 A r 1 A r 2は 2価の芳香族基を表 し、 該 2価の芳香族基としては、 フエ二レン基、 ナフチレン基、 ビフエニリレン 基、 フルオレンジィル基などの炭化水素系芳香族基、 ピリジンジィル、 キノキサ リンジィル、 チォフェンジィルなどの複素環基が挙げられ、 中でも 2価の炭化水 素系芳香族基が好ましく、 フエ二レン基、 ナフチレン基が特に好ましい。 また、 kが 1である場合は A r 'と A r 2、 kが 2である場合は、 A r 1と 2つの A r 2は同 一でも異なっていてもよい。
ここで、 前記の 2価の芳香族基は、 置換基を有してもよい炭素数 1〜!: 0のァ ルキル基、 置換基を有してもよい炭素数 1〜1 0のアルコキシ基、 置換基を有し てもよい炭素数 6〜1 0のァリール塞、 置換基を有してもよい炭素数 6〜 1 0の ァリールォキシ基、 ニトロ基またはベンゾィル基等で置換されていても良く、 炭 素数 1〜1 0のアルキル基としては、 例えば、 メチル基、 ェチル基、 n _プロピ ル基、 ィゾプロピル基、 ァリル基、 n _ブチル基、 s e c—ブチル基、 t e r t 一ブチル基、 イソブチル基、 n _ペンチル基、 2 , 2—ジメチルプロピル基、 シ クロペンチル基、 n—へキシル基、 シクロへキシル基、 2—メチルペンチル基、 2—ェチルへキシル基などが挙げられ、 これらの基は置換基としてフッ素原子、 塩素原子、臭素原子又はヨウ素原子のハロゲン原子、 ヒドロキシル基、アミノ基、 メトキシ基、 エトキシ基、 イソプロピルォキシ基、 フエニル基、 ナフチル基、 フ エノキシ基及びナフチルォキシ基を有してもよい。
炭素数 1〜1 0のアルコキシ基としては、 例えばメトキシ基、 エトキシ基、 n 一プロピルォキシ基、 イソプロピルォキシ基、 n—ブチルォキシ基、 s e c—ブ チルォキシ基、 t e r t—ブチルォキシ基、 イソブチルォキシ基、 n—ペンチル ォキシ基、 2, 2—ジメチルプロピルォキシ基、 シクロペンチルォキシ基、 n— へキシルォキシ基、 シクロへキシルォキシ基、 2—メチルペンチルォキシ基、 2 —エヂルへキシルォキシ基などが挙げられ、 これらの基は置換基としてハロゲン 原子、 ヒドロキシル基、 アミノ基、 メトキシ基、 エト丰シ基、 イソプロピルォキ シ基、 フエニル基、 ナフチル基、 フエノキシ基及びナフチルォキシ基から選ばれ る置換基を有してもよい。
また炭素数 6〜1 0のァリール基としては、 例えばフエニル基、 ナフチル基な どが挙げられ、 これらの基は置換基としてハロゲン原子、 ヒドロキシル基、 アミ ノ基、 メトキシ基、 エトキシ基、 イソプロピルォキシ基、 フエニル基、 ナフチル 基、 フエノキシ基及びナフチルォキシ基から選ばれる置換基を有してもよい。 炭素数 6〜 10のァリールォキシ基としては、 例えばフエノキシ基、 ナフチル ォキシ基などが挙げられ、 これらの基は置換基としてフッ素原子、 塩素原子、 臭 素原子、 ヨウ素原子等のハロゲン原子、 ヒドロキシル基、 アミノ基、 メトキシ基、 エトキシ基、 イソプロピルォキシ基、 フエニル基、 ナフチル基、 フエノキシ基及 びナフチルォキシ基から選ばれる置換基を有してもよい。
式 (1) における Ar'、 A r2は、 上記のような置換基を有することもある 2 価の芳香族基を表すが、 なかでも A r A r 2としては無置換のフエ二レン基、 またはナフチレン基が好ましく、 1, 3—フエ二レン基、 1, 4_フエ二レン基、 1, 3 _ナフ夕レンジィル基、 1, 4—ナフ夕レンジィル基、 1, 5—ナフタレ ンジィル基、 1, 6—ナフ夕レンジィル基、 1, 7—ナフ夕レンジィル基、 2, 6—ナフ夕レンジィル基、 2, 7—ナフ夕レンジィル基、 3, 3 ' —ビフエニリ レン基、 3, 4' —ビフエニリレン基、 4, 4:—ビフエニリレン基が好ましい。 また、 式 (1) における kは 0、 1又は 2を表し、 Z1は、 CO (カルボニル基) または S〇2 (スルホニル基) または COCO (ジカルポニル基) を表す。 kが 2 の場合、 2つの Z1は、 互いに同一でも異なっていてもよいが、 Z1は同一である ことが特に好ましい。
本発明においては、 前記のように A r A のうち、 Ar1 A r 2のいずれか が少なくとも一つは酸基を有していることを特徴とするが、 kが 1以上の場合、 A r A r 2で示される基の全てが酸基を有していることが好ましい。
ここで、 酸基としては、 例えば、 カルボキシル基 (一 COOH) 、 ホスホン酸 基 (— P〇3H2) 、 リン酸基 (_〇P03H2) などの弱酸基、 スルホン酸基 (― S 〇3H) 、 スルホ二ルイミド基 (― S02NHS02— R、 ただし Rは炭素数 1〜6 のアルキル基又は炭素数 6〜10のァリール基を表す) などの強酸基、 パーフル ォロアルキレンスルホン酸基、 パーフルオロフェニレンスルホン酸基、 パーフル ォロアルキレンスルホニルイミド基などの超強酸基が挙げられる。 中でも pKa 値により表される酸解離定数が 2以下である強酸基、 超強酸基が好ましく、 例え ば、 スルホン酸基、 パーフルォロアルキレンスルホン酸基、 パーフルオロフェニ レンスルホン酸基が好適である。また、これらの酸基がプロトン酸である場合は、 アル力リ金属イオン、 アル力リ土類金属イオンまたはァンモニゥムイオンなどで 塩を形成してもよく、 これらの塩を形成している酸基は、 本発明の共重合体を形 成せしめた後、 酸処理でイオン交換させることにより、 容易に遊離酸の形に戻す ことができる。 ' 式 (1) で表される化合物の好ましい例としては、 例えば、 以下の (1) ― 1
(1) —4が挙げられる。 (!)"3
Figure imgf000011_0001
(式中、 r、 sはそれぞれ独立に 0又は 1を表すが、 + 5は1又は2でぁる。 Mは水素原子、 カリウム原子、 ナトリウム原子又はリチウム原子を表し、 Mが複 数ある場合、 それらは同一でも異なっていてもよい。 )
前記 (B) としては、 前記式 (2) で表される化合物を含むと好ましい。 ここで、酸基は、 jが 0である場合は A r3に、 jが 1以上である場合は、 A r3、 A r4のいずれか少なくとも一つに有することを特徴とする。 Ar3、 Ar4は 2価 の芳香族基を表し、 該 2価の芳香族基としては、 前記の Ar1, A r 2と同等の基 を挙げることができ、 jが 2である場合は、 A r 3と 2つの A r 4は互いに同一で も異なっていてもよい。また、 γ'で示される求核基の中でフエノール性水酸基は、 縮合反応過程で適当な塩基でフエノラ一ト基に変換し、 求核基として作用する基 であり、 さらには本発明の共重合中でエーテル結合となって存在する基であり、 酸基とは見なさない。
これらの 2価の芳香族基は、 置換基を有してもよい炭素数 1〜 10のアルキル 基、 置換基を有することもある炭素数 1〜10のアルコキシ基、 置換基を有して もよい炭素数 6〜10のァリール基または置換基を有してもよい炭素数 6〜 10 のァリールォキシ基で置換されていてもよく、 該アルキル基、 該アルコキシ基、 該ァリール基又は該ァリールォキシ基の具体例としては、 前記と同じものが挙げ られる。
式 (2) における Ar3、 Ar4、 は、 前記のような置換基を有すること'もある 2価の芳香族基を表すが、 中でも Ar3、 A r 4としては無置換のフエ二レン基、 ビフエニリレン基またはナフチレン Sが好ましく、 1, 3—フエ二レン基、 1, 4_フエ二レン基、 1, 3—ナフ夕レンジィル基、 1, 4—ナフタレンジィル基、 1, 5—ナフ夕レンジィル基、 1, 6_ナフ夕レンジィル基、 1, 7—ナフタレ ンジィル基、 2, 6 _ナフ夕レンジィル基、 2, 7—ナフ夕レンジィル基、 3, 3, 一ビフエニリレン基、 3, 4' —ビフエニリレン基、 又は 4, 4' —ビフエ ニリレン基が好ましい。
また、 式 (2) における jは 0、 1又は 2を、 Q1は、 直接結合又は、 下記の群 から選ばれる基を表す。 jが 2である場合は、 2つの Q1は、 互いに同一でも異な つていてもよいが、 2つの Q1は同一であることが好ましい。
Figure imgf000013_0001
式 (2) で表される化合物の好ましい例としては、 例えば、 以下の (2) — (2) — 12が挙げられる。 C&CII
F F
一 33
Figure imgf000013_0002
次に、 酸基を実質的に有さないモノマーについて説明する。 ここで、 「酸基を 実質的に有さない」 とは、 前記の水酸基の如く、 求核基としてモノマー中に存在 し、 共重合体を形成する過程で消失するような種類の酸基は本発明の酸基とは見 なさないため、 このような酸基を有しているモノマーであっても、 本発明では酸 基を実質的に有さないとする。
前記 (C) としては、 式 (3) で表される化合物が好ましい。
式 (3) における Ar5、 Ar6は、 2価の芳香族基としては、 フエ二レン基、 ナフチレン基、ビフエニリレン基、フルオレンジィル基等の炭化水素系芳香族基、 ピリジンジィル基、 キノキサリンジィル基、 チォフェンジィル基等の複素環基が 挙げられ、 好ましくは、 2価の炭化水素系芳香族基である。 また、 mが 1である 場合は A r 5と A r 6、 mが 2である場合は、 A r 5と 2つの A r 6は同一でも異なつ ていてもよい。
'これらの 2価の芳香族基は、 置換基を有してもよい炭素数 1〜1 0のアルキル 基、 置換基を有してもよい炭素数 1〜1 0のアルコキシ基、 置換基を有してもよ い炭素数 6〜1 0のァリール基又は置換基を有してもよい炭素数 6〜 1 0のァリ ールォキシ基、ニトロ基、ベンゾィル基で置換されていてもよく、該アルキル基、 該アルユキシ基、 該ァリール基又は該ァリールォキシ基の具体例としては、 前記 と同じものが挙げられる。
中でも、 A r 5、 A r 6としては無置換のフエ二レン基、 又はナフチレン基が好 ましく、 1, 3—フエ二レン基、 1, 4—フエ二レン基、 1, 3—ナフ夕レンジ ィル基、 1 , 4—ナフタレンジィル基、 1, 5—ナフタレンジィル基、 1·, 6— ナフタレンジィル基、 1, 7 —ナフタレンジィル基、 2, 6—ナフタレンジィル 基、 2 , 7 —ナフ夕レンジィル基、 3 , 3, —ビフエニリレン基、 3 , 4 ' ービ フエニリレン基又は 4 , 4 ' —ビフエニリレン基が好ましい。
また、 式 (3 ) における mは 0、 1又は 2を、 Z 2は、 C〇、 3 02又はじ〇じ Oを表す。 mが 2の場合、 2つの Z 2は、 互いに同一でも異なっていてもよいが、 同一であることが好ましい。
式 (3 ) で表される化合物の好ましい例としては、 例えば、 以下の (3 ) — 1 〜 (3 ) —9が挙げられる。
Figure imgf000015_0001
前記 (D) としては、 式 (4) で表される化合物を含むと好ましい。
式 (4) における Ar7、 A r8は 2価の芳香族基を表し、 前記 A r 5、 Ar6と同 等の例示を挙げることができ、 これらの 2価の芳香族基は、 置換基を有してもよ い炭素数 1〜 10のアルキル基、 置換基を有してもよい炭素数 1〜 10のアルコ キシ基、 置換基を有してもよい炭素数 6〜10のァリール基又は置換基を有して もよい炭素数 6〜10のァリールォキシ基で置換されていてもよく、 該アルキル 基、 該アルコキシ基、 該ァリール基又は該ァリールォキシ基の具体例としては、 上記と同様のものが挙げられる。
中でも、 Ar7、 A r 8としては無置換のフエ二レン基、 ビフエ二リレン基又はナ フチレン基が好ましく、 1, 3—フエ二レン基、 1, 4_フエ二レン基、 1, 3 —ナフタレンジィル基、 1, 4—ナフタレンジィル基、 1, 5 _ナフ夕レンジィ ル基、 1, 6—ナフタレンジィル基、 1, 7 _ナフ夕レンジィル基、 2, 6—ナ フタレンジィル基、 2, 7—ナフタレンジィル基、 3, 3' —ビフエニリレン基、 3, 4' —ビフエニリレン基、 又は 4, 4 ' —ビフエニリレン基が好ましい。 また、 式 (4) における nは 0、 1又は 2を、 Q2は、 直接結合又は、 下記の群か ら選ばれる基を表す。 nが 2の場合、 2つの Q2は、 互いに同一でも異なっていて もよいが、 同一であることが好ましい。
Figure imgf000016_0001
(4) で表される化合物の好ましい例としては、 例えば、 以下の (4) - 1~ (4) —26が挙げられる。
Figure imgf000017_0001
本発明の共重合体は前記 (A) (B) (C) および (D) の混合物を混合し、 または例えば (B) と (D) のような求核基を有するモノマー同士を混合し、 別 に例えば (A) と (C ) のような脱離基を有するモノマーを混合し、 それぞれの 混合物をさらに混合して、 求核基を有するモノマーと脱離基を有するモノマーと を求核縮合反応をさせて製造することができる。
'本発明の好ましい共重合体は、 前記の式 (1 ) 〜式 (4 ) で示される化合物を モノマーとして使用し、 これらを混合して縮合することによって得られる。 例え ば、 式 (1 ) 〜式 (4 ) で示される化合物を塩基の作用下に求核縮合させる方法 が挙げられる。
具体的には、 予め式 (1 ) 〜式 (4 ) で示される化合物と塩基性化合物を反応 溶媒に投入して混合する。混合する際の順序は特に限定されないが、 前記式(2 ) で表される化合物、 式 (4 ) で表される化合物、 塩基性化合物及び溶媒を先に投 入した後、 前記式 (1 ) と (3 ) を投入して混合するか、 または式 (1 ) 〜 (4 ) で表される化合物と溶媒とを混合した後、 塩基性化合物を投入して混合するか、 または式 (1 ) 〜 (4 ) 、 塩基性化合物と溶媒とを投入して混合する混合手段が 好ましい。 縮合における、 反応温度は好ましくは 2 0〜3 0 0 :、 さらに好まし くは 5 0〜2 5 0 °C、 反応時間は好ましくは 0 . 5〜5 0 0時間、 さらに好まし くは 1〜 1 0 0時間で実施することができる。 また、 反応時の圧力は加圧又は減 圧を行ってもよいが、 好適には常圧 (約 1気圧) が設備上簡便であるため好まし い。 反応溶媒としては、 メタノール、 エタノール、 イソプロパノール、 ブタノ一 ルなどのアルコール系溶媒、 ジェチルエーテル、 ジブチルエーテル、 ジフエ二ル エーテル、 テトラヒドロフラン、 ジォキサン、 ジォキソラン、 エチレングリコー ルモノメチルエーテル、 エチレングリコールモノェチルエーテル、 プロピレング リコールモノメチルエーテル、 プロピレンダリコールモノェチルェ一テルなどの エーテル系溶媒、 アセトン、 メチルイソブチルケトン、 メチルェチルケトン、 ベ ンゾフエノンなどのケトン系溶媒、 クロ口ホルム、 ジクロロメタン、 1, 2—ジ クロロェタン、 1 , 1 , 2, 2—テトラクロロェタン、 クロ口ベンゼン、 ジクロ 口ベンゼンなどのハロゲン系溶媒、 N, N—ジメチルァセトアミド (以下、 D M A cと略すこともある) 、 N—メチルァセトアミド、 N, N—ジメチルホルムァ ミド (以下、 D M Fと略すこともある) 、 N—メチルホルムアミド、 ホルムアミ ド、 N—メチルピロリドン (以下、 NMPと略すこともある) などのアミド系溶 媒、 ギ酸メチル、 酢酸メチル、 ァ—プチロラクトンなどのエステル類、 ァセトニ トリル、ブチロニトリルなどの二トリル類、スルホキシジメチルスルホキシド(以 下、 DMSOと略すこともある) 、 ジフエニルスルホン、 スルホランなどを使用 することができ、 該反応溶媒は単独、 2種以上を組み合わせて使用することがで きる。 なお、 反応溶媒の使用量は、 適用するモノマーの合計重量に対し、 1. 0 〜200. 0重量倍、 好ましくは 2. 0〜100. 0重量倍使用する。 なお、 縮 合反応初期又は縮合反応途中で副生する水分を除去することが好ましい。 この水 分を除去する手段としては、 トルエンゃキシレンを反応系に共存させて共沸物と して水分を除去する手段や、 モレキュラーシーブなどの吸水剤を反応系に共存さ せて脱水する手段を用いることができる。 前記塩基性化合物としては、 水酸化ナ トリウム、 水酸化カリウム、 炭酸ナトリウム、 炭酸カリウム、 炭酸水素ナトリウ ム又は炭酸水素力リゥムを使用することができ、 2種以上の塩基性化合物を混合 して使用することもできるが、 中でも炭酸カリウム、 炭酸ナトリウム又は水酸化 ナトリウムが好ましい。 なお、 該塩基性化合物の使用量としては、 縮合反応に用 いるモノマーにおいて、 求核基の総モル当量数に対して、 0. 90〜10. 00 モル当量倍、 好ましくは 1. 00〜3. 00モル当量倍用いればよい。
また、 本発明の好ましい共重合体の製造方法における他の実施形態として、 式 (2) で示される化合物と式 (4) で示される化合物を、 予め塩基性化合物と作 用させた後、 式 (1) で示される化合物と式 (3) で示される化合物を投入して 混合し、 縮合させる方法が挙げられる。 すなわち、 式 (2) で示される化合物、 式 (4) で示される化合物及び塩基性化合物を反応溶媒中で混合した後、 必要に 応じて加熱処理を行って、 式 (2) で示される化合物と式 (4) で示される化合 物に塩基性化合物を作用させてから、 式 (1) で示される化合物と式 (3) で示 される化合物を加えて縮合反応を行う。 その際、 使用する反応溶媒及びその使用 量、 使用する塩基性化合物及びその使用量は、 前記と同等であり、 縮合反応に係 る反応温度ならびに反応時間も前記と同等の範囲である。 また、 副生する水分の 除去としては、 前記と同じように実施することもできるし、 式 (2) で示される 化合物、式(4)で示される化合物及び塩基性化合物を反応溶媒中で混合する際、 反応系にトルエンゃキシレンを共存させて共沸物として水分を十分に除去した後、 式 (1) で示される化合物と式 (3) で示される化合物を加えて縮合反応を行う 方法でもよい。
かくして本発明の共重合体が得られる。 該共重合体において、 酸基が導入され た構造単位と、 酸基が実質的に導入されていない構造単位の重量組成比は特に制 限されるものではないが、 通常、 [酸基が導入された構造単位] : [酸基が実質 的に導入されていない構造単位] で表したとき、 3 : 97〜 70 : 30であり、 5 : 95〜 45 : 55が好ましく、 10 : 90〜 40 : 60がさらに好ましく、 20 : 80〜 35 : 65が特に好ましい。 酸基が導入された構造単位が前記の範 囲である共重合体は、 燃料電池用隔膜の高分子電解質膜に適用すると、 プロトン 伝導性と耐水性がともに高水準の高分子電解質膜となる。
なお、 酸基が導入された構造単位と、 酸基が実質的に導入されていない構造 位の重量組成比は、 使用するモノマーの使用量により制御することができ、 例え ば、 式 (1) で示される化合物及び式 (2) で示される化合物を含む酸基を有す るモノマーの合計モル量と、 式 (3) で示される化合物及び式 (4) で示される 化合物を含む酸基を実質的に有さないモノマーの合計モル量との、 反応初期の仕 込 (混合) モル比を変えることにより任意に制御できる。
また、 共重合体全体としての酸基の導入量を、 共重合体 1 g当たり酸基の当量 数、 すなわちイオン交換容量で表した場合、 .0. lme qZg〜4. Ome q/ gが好ましく、 0. 5me qZg〜2. 5 m e Q Z gがさらに好ましく、 1. 3 me q/g〜2. 3 m e q gが特に好ましい。 イオン交換容量がこのような範 囲で好適であるのは、 前記の共重合体中の酸基が導入された構造単位の含有重量 比と同様の理由であり、 該イオン交換容量も、 前記と同様にして各モノマーの反 応初期の仕込 (混合) モル比を変えることにより任意に制御できる。
本発明の共重合体の平均分子量としては、 ポリスチレン換算の数平均分子量で 表して 5000〜 1000000が好ましく、 中でも 1 5000〜200000 のものが特に好ましい。 かかる平均分子量は適用するモノマーの求核基の総モル当量数と、 脱離基の総 モル当量数の比率や反応時間等によって制御することができる。
次に、 本発明の共重合体を燃料電池等の電気化学デバイスの隔膜 (高分子電解 質膜) として使用する場合について説明する。
この場合は、 本発明の共重合体は、 通常、 膜の形態で使用される。 膜へ転化する 方法に特に制限はないが、 例えば溶液状態より製膜する方法 (溶液キャスト法) が好ましく使用される。
具体的には、 共重合体を適当な溶媒に溶解し、 その溶液をガラス板上に流延塗 布し、 溶媒を除去することにより製膜される。 製膜に用いる溶媒は、 共重合体を 溶解可能であり、その後に除去し得るものであるならば特に制限はなく、水、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 N _メチル— 2— ピロリ ドン、 ジメチルスルホキシド) などの非プロトン性極性溶媒、 あるいはジ クロロメタン、 クロ口ホルム、 1 , 2—ジクロロエタン、 クロ口ベンゼン、 ジク ロロベンゼンなどの含塩素溶媒、 メタノール、 エタノール、 プロパノールなどの アルコール類、 エチレングリコールモノメチルエーテル、 エチレングリコールモ ノエチルエーテル、 プロピレングリコールモノメチルエーテル、 プロピレンダリ コールモノェチルエーテルなどのアルキレングリコールモノアルキルエーテルが 好適に用いられる。 これらは単独で用いることもできるが、 必要に応じて 2種以 上の溶媒を混合して用いることもできる。 中でも、 D M S O、 D M F、 D MA :、 NM Pがポリマーの溶解性が高く好ましい。 :
膜の厚みは、 特に制限はないが 1 0〜3 0 0 z mが好ましく、 2 0〜 1 0 0 mが特に好ましい。 1 0 mより薄いフィルムでは実用的な強度が十分でない場 合があり、 3 0 0 mより厚いフィルムでは膜抵抗が大きくなり電気化学デバイ スの特性が低下する傾向にある。 膜の厚みは溶液の濃度及び基板上への塗布厚に より制御できる。
また高分子電解質膜の各種物性改良を目的として、 通常の高分子に使用される 可塑剤、安定剤、離型剤などを本発明の共重合体に添加することができる。また、 同一溶剤に混合共キャス卜するなどの方法により、 他のポリマーを本発明の共重 合体と複合ァロイ化することも可能である。
燃料電池用途では水管理を容易にするために、 無機あるいは有機の微粒子を保水 剤として添加することも知られている。 これらの公知の方法はいずれも本発明の 目的に反しない限り使用できる。 また、 本発明の共重合体を含む高分子電解質か らなる高分子電解質膜の機械的強度の向上などを目的として、 電子線,放射線な どを照射して、 該高分子電解質膜を構成する高分子電解質を架橋することもでき る。
また、 高分子電解質膜の強度や柔軟性、 耐久性のさらなる向上のために、 本発 明の共重合体を多孔質基材に含浸させ複合化することにより、 高分子電解質複合 膜とすることも可能である。 複合化方法は公知の方法を使用し得る。 多孔質基材 としては上述の使用目的を満たすものであれば特に制限は無ぐ例えば多孔質膜、 織布、 不織布、 フィブリルなどが挙げられ、 その形状や材質によらず用いること ができる。
本発明の共重合体を用いた高分子竃解質複合膜を燃料電池の隔膜として使用す る場合、 多孔質基材 、 膜厚が l〜 1 0 0 m、 好ましくは 3〜3 0 / m、 さら に好ましぐは 5〜2 Ο ΠΊであり、孔径が 0 . 0 1〜 1 0 0 i m、好ましくは 0 . 0 2〜 1 0 mであり、空隙率が 2 0〜9 8 %、好ましくは 4 0〜9 5 %である。 多孔質基材の膜厚が薄すぎると複合化後の強度補強の効果あるいは、 柔軟性ゃ耐 久性を付与するといつた補強効果が不十分となり、 ガス漏れ (クロスリーク) が 発生しやすくなる。 また膜厚が厚すぎると電気抵抗が高くなり、 得られた複合膜 が固体高分子型燃料電池の隔膜として不十分なものとなる。 孔径が小さすぎると 本発明の共重合体の充填が困難となり、 大きすぎると高分子固体電解質への補強 効果が弱くなる。 空隙率が小さすぎると複合膜の抵抗が大きくなり、 大きすぎる と一般に多孔質基材自体の強度が弱くなり補強効果が低減する。
耐熱性の観点や、 物理的強度の補強効果を鑑みれば、 前記多孔質基材は、 脂肪 族系高分子、 芳香族系高分子または、 含フッ素高分子からなる基材が好ましい。 次に本発明の燃料電池について説明する。 高分子電解質膜を用いる燃料電池と しては、 例えば水素ガスを燃料とした固体高分子型燃料電池や、 メタノールを燃 料として直接供給するダイレクトメタノール型固体高分子型燃料電池があるが、 本発明の共重合体はそのどちらにも好適に用いることができる。
本発明により得られる燃料電池は、 本発明の共重合体を高分子電解質膜及び Z 又は高分子電解質複合膜として使用したものや、 本発明の高分子電解質を触媒層 中の高分子電解質として使用したものなどを挙げることができる。
本発明の共重合体を高分子電解質膜又は高分子電解質複合膜として使用した燃 料電池は、 前記高分子電解質膜又は前記高分子電解質複合膜の両面に、 触媒とガ ス拡散層を接合することにより製造することができる。 ガス拡散層としては公知 の材料を用いることができるが、 多孔質性のカーボン織布、 カーボン不織布又は カーボンペーパーが、 原料ガスを触媒へ効率的に輸送するために好ましい。
ここで触媒としては、 水素又は酸素との酸化還元反応を活性化できるものであ れば特に制限はなく、 公知のものを用いることができるが、 白金の微粒子を用い ることが好ましい。 白金の微粒子はしばしば活性炭や黒鉛などの粒子状又は繊維 状のカーボンに担持されたものが好ましく用いられる。 また、 カーボンに担持さ れた白金を、 高分子電解質としてのパーフルォロアルキルスルホン酸樹脂のアル コール溶液と共に混合してペースト化したものを、 ガス拡散層、 高分子電解質膜 又は高分子電解質複合膜に塗布 ·乾燥することにより触媒層が得られる。 具体的 な方法としては例えば、 J. E l e c t r o c h em. So c. : E l e c t r oc h emi c a l S c i e n c e and Te c hno l ogy, 1988, 135 (9) , 2209 に記載されている方法などの公知の方 法を用いることができる。
本発明の共重合体を触媒層中の高分子電解質として使用した燃料電池としては、 前述の触媒層を構成するパーフルォロアルキルスルホン酸榭脂の代わりに本発明 の共重合体を用いたものを挙げることができる。 本発明の共重合体を用いた触媒 層を使用する場合、 高分子電解質膜は本発明の共重合体を用いた膜に限定されず に公知の高分子電解質膜を用いることができる。
本発明の共重合体を用いて触媒層を得る際、 触媒ペースト調製に使用する溶媒 は任意であり特に制限されるものではないが、 触媒ペーストを構成する溶媒以外 の成分を、 溶解させるか、 分子レベルで一様に分散させるか、 もしくはナノメー 夕一からマイクロメーターのレベルで凝集体を形成させ、 その凝集体を分散させ ることが望まれる。溶媒は単,一であっても、複数の溶媒が混合したものでもよく、 前述の共重合体を製膜する際に使用できる溶媒として挙げたものと同じものを用 いることができる。
触媒ペーストを構成するその他の成分は任意であり、 特に制限はないが、 触媒 層の撥水性を高める目的で、 P T F Eなどの撥水材が、 また触媒層のガス拡散性 を高める目的で、 炭酸カルシウムなどの造孔材が、 さらに耐久性を高める目的で 金属酸化物やホスホン酸基を有するポリマーなどの安定剤などが含まれることも ある。
触媒ペーストは、 前記の高分子電解質と、 触媒物質及びノ又は表面に触媒物質 を担持した導電性材料と、 溶媒と、 その他の成分とを、 公知の方法にょづて混合 して得られるものである。混合方法としては、超音波分散装置、ホモジナイザー、 ボールミル、 遊星ボールミル、 サンドミルが挙げられる。
該触媒ペーストを直接塗布する方法としては特に制限は無く、 ダイコ一ター、 スクリーン印刷、 スプレー法、 インクジェット法等の既存の方法を使用すること ができるが、 スプレー法は、 工業的にも操作が簡便であることから好ましい。 該触媒ペーストのスプレー方法としては、 例えば、 特開 2 0 0 4— 8 9 9 7 6 号公報に記載の装置や方法が具体的に例示でき、 これらを用いて行うことができ る。 すなわち、 高分子電解質膜をステージ上に設置し、 該高分子電解質膜に、 触 媒インクを直接塗布する。 スプレー法では、 触媒インクが吐出口から粒子状とな つて飛散し、 高分子電解質膜上に付着する。 ステージは、 塗布後速やかに溶媒を 除去するため、 加温しておくことが望ましく、 その温度は 5 0 〜 1 5 0 であ ることが好ましい。 温度範囲が上記の範囲であれば、 触媒インクの溶媒が速やか に除去されやすく、 高分子電解質膜が熱的に損傷を受ける傾向が小さいため、 好 ましい。 この'ように、 スプレー法による塗布に続いて、 ステージの加温により溶 媒が除去され、 触媒層が高分子電解質膜上に製造される。 溶媒の除去をより確実 にする目的で、 触媒層が製造された膜を、 加温したオーブンなどに入れて乾燥さ せてもよいし、 必要に応じて真空乾燥を行ってもよい。 より速やかに溶媒を除去 するために、 触媒ペーストを構成する好適な溶媒としては、 その沸点が 150^ 以下の溶媒であり、 水、 メタノール、 エタノールなどのアルコール系溶媒又はジ : チルエーテル、 テトラヒドロフランなどのエーテル系溶媒あるいはそれらの混 合溶媒を用いてもよく、 本発明の共重合体はそれらの溶媒に溶けやすいという点 でも優れている。 該触媒ペーストは複数回スプレーして、 各スプレーによる層を 高分子電解質膜上に塗り重ねて多層塗りとしてもよい。 以下に実施例を挙げて本発明を説明するが、 本発明はこれらの実施例により何 ら限定されるものではない。
分子量の測定:
ゲルパーミエ一シヨンクロマトグラフィー (GPC) により、 下記条件でポリス チレン換算の数平均分子量 (Mn) を測定した。
G PC測定装置 TOSOH社製 . HLC— 8220 GPC
カラム Sl od e x社製 TSKge l GHMHR-M
カラム温度 40T:
移動相溶媒 DMAc (L i B rを 1 Ommo 1 Z dm3になるように添加) 溶媒流量 0. 5mL/m i n
プロトン伝導度の測定:
温度 80^、 相対湿度 90%の条件で交流法で測定した。
イオン交換容量の測定:
滴定法により求めた。
吸水率の測定:
乾燥した高分子電解質膜を秤量し、 100 の脱イオン水に 2時間浸漬したのち の膜重量増加量から吸水率を算出し、 前記乾燥膜に対する比率を求めた。
実施例 1
共重合体 Aの製造 重合は、 De a n - S t a r k管をとりつけた 20 OmL のセパラブルフラスコ に、 ヒドロキノンスルホン酸カリウム 3. 50 g (15. 33 mmo 1), 4, 4' —ジヒドロキシビフエニル 6..29 g (33. 76 mmo 1 ), 炭酸カリ ゥム 7. 36 g (53. 24 mmo 1 )をとりジメチルスルホキシド 121 m l , トルエン 70 m 1中、 アルゴン雰囲気下、 バス温 150°C (内温 130 ±5 ) で 1. 5時間共沸脱水をおこなった。 1. 5時間後、 トルエンを系外に 除去し、 室温まで放冷した。 その後、 3, 3 ' ースルホニルビス (6—フルォロ ベンゼンスルホン酸カリウム) 9. 03 g (18. 40 mmo 1 ), 4, 4, —ジフルォロジフエニルスルホン 7.80 g (30.69 mmo 1)を添加し、 さらに内温 150 で1 1時間反応をおこなった。 反応は G PC測定により追跡 した。 反応終了後、 反応溶液を 80 まで放冷し、 3Lの 2M塩酸水溶液に滴下 した。 析出した白色のポリマーを濾過し、 洗浄濾液の pHが約 7になるまで水洗 し、その後 80での水で 2時間処理する工程を二回おこなった。オーブン(80で) で乾燥して下記に示す共重合体 A 20. 86 g (収率 92%)を得た。その後、 乾燥した下記ポリマーを N—メチルピロリドンに溶解した後、 濾過して、 濃度 1 8重量%の溶媒溶液とした。 次いで、 この溶液をガラス基材上に流延塗付し、 全 排気オーブン中 80 、 約 5時間かけて N—メチルピロリドンを除去した。 その 後、 2N塩酸で 1時間処理する工程を 2度繰り返し、 さらに 8時間流水 (脱ィォ ン水) にて水洗し、 高分子電解質膜を得た。 膜厚は 33 mであった。 共重合体 A
共重合体 Aは、 下記に示す構造単位を有するポリマーである。
Figure imgf000027_0001
前記の (A- a) 、 (A-b) 、 (A-c) 及び (A-d) の構造単位の合計に対する、 仕込 量から計算される各構造単位のモル比
(A-a) : (A-b) : (A-c) : (A-d)
=2. 00 : 2. 20 : 1. 20 : 1. 00 前記構造単位のモル比から計算されるイオン交換容量 2. 30 me q/g Mn 8. 10 X 104
イオン交換容量の実測値 2. 10 me q/g
製膜: NMP溶液キャスト法 膜厚 33 xm
プロトン伝導度 1. 56X 10—1 S/cm
吸水率 169 % 実施例 2
共重合体 Bの製造
重合は、 D e a n-S t a r k管をとりつけた 20 OmL のセパラブルフラスコ に、 ヒドロキノンスルホン酸カリウム 3. 50 g (15. 33 mmo 1 ), 4, 4' ージヒドロキシビフエニル 7. 87 g . (42. 25 mm 0 1 ) , 炭酸カリ ゥム 8. 65 g (62. 57 mmo 1 )をとりジメチルスルホキシド 138 m 1 , トルエン 70 m 1中、 アルゴン雰囲気下、 バス温 150で (内温 130 ±5°C) で 1. 5時間共沸脱水をおこなった。 1. 5時間後、 トルエンを系外に 除去し、 室温まで放冷した。 その後、 3, 3 ' —スルホニルビス (6—フルォロ ベンゼンスルホン酸カリウム) 9. 03 g (18. 40 mmo 1), 4, 4' 一 ジフルォロジフエニルスルホン 9. 96 g (39. 18 mmo 1)を添加し、 さらに内温 150°Cで 5時間反応をおこなった。 反応は G PC測定により追跡し た。 反応終了後、 反応溶液を 80°Cまで放冷し、 3 Lの 2 M塩酸水溶液に滴下し た。析出した白色のポリマーを濾過し、洗浄濾液の P Hが約 7になるまで水洗し、 その後 80 の水で 2時間処理する工程を二回おこなった。 オーブン (80 ) で乾燥して下記に示す共重合体 B 23. 62 g (収率 91%) を得た。 製膜は 実施例 1に準拠しておこなった。 共重合体 B
共重合体 Bは、 下記に示す構造単位を有するポリマーである。
Figure imgf000028_0001
前記の (B-a) 、 (B-b) 、 (B-c) 及び (B- d) の構造単位の合計に対する、 仕込 量から計算される各構造単位のモル比
(B-a) : (B-b) : (B-c) : (B-d)
=2. 56 : 2. 76 : 1. 20 : 1. 00 前記構造単位のモル比から計算されるイオン交換容量 2. 00 me q/g Mn 8. 20 X 104
ィォン交換容量の実測値 1. 80 me q/g 製膜: NMP溶液キャスト法 26 ^m
プロトン伝導度 8. 84X 1 CT2 S/cm
吸水率 94 % 比較例 1
共重合体 Cの製造
重合は、 De a n-S t a r k管をとりつけた 20 OmL のセパラブルフラスコ に、 ヒドロキノンスルホン酸カリウム 6. 18 g (27. 09 mmo 1 ), 4, 4 '—ジフルォロジフエニルスルホン l O. O O g (39. 33 mmo 1 )、 4, 4' —ジヒドロキシビフエニル 2· .28 g (12. 25 mmo 1), 炭酸カリ ゥム 5. 98 g (43. 26 mm o 1 )をとりジメチルスルホキシド 74 m 1, トルエン 40 m 1中、 アルゴン雰囲気下、 バス温 150°C (内温 130 ±5 ) で 3時間共沸脱水をおこなった。 3時間後、 トルエンを系外に除去し、 さらに内温 15,0 で 12時間反応をおこなった。 反応は GPC測定により追跡 した。 反応終了後、 反応溶液を 8 O :まで放冷し、 3 Lの 2M塩酸水溶液に滴下 した。 析出した白色のポリマーを濾過し、 洗浄濾液の pHが約 7になるまで水洗 し、その後 80 の水で 2時間処理する工程を二回おこなった。オーブン(8 O ) で乾燥して下記に示す共重合体 C 14. 67 g (収率 92%) を得た。 製膜は実 施例 1に準拠しておこなった。 共重合体 C
共重合体 Cは、 下記に示す構造単位を有するポリマーである。
Figure imgf000030_0001
前記の (C-a) 、 (C-b) 及び (C-c) の構造単位の合計に対する、 仕込量から計算 される各構造単位のモル比
(C-a) : (C-b) : (C-c) = 1. 45 : 0. 45 : 1. 00
前記構造単位のモル比から計算されるイオン交換容量 1. 71 me q/g Mn 4. 06X 104
ィォン交換容量の実測値 1. 56 m e q g
製膜: NMP溶液キャスト法 膜厚 5
プロトン伝導度 4..60X 10 _2 S/cm
吸水率 302 % 比較例 2
共重合体 Dの製造
重合は、 De a n-S t a r k管をとりつけた 50 OmL のセパラブルフラスコ に、 4, 4 ' —ジフルォロジフエニルスルホン 12. 74 g (50. 10 mm o l)、 4, 4' ージヒドロキシビフエニル 18. 62 g (100. 00 mm o 1 ), 3, 3 ' ースルホニルビス (6—フルォロベンゼンスルホン酸カリウム) 25. 08 g (50. 00 mm o l)、炭酸カリウム 15. 20 g (110. 00 mmo 1)をとり N—メチル一2—ピロリドン 160 ml , トルエン 8 0 m 1中、 アルゴン雰囲気下、 内温 140 で 5時間共沸脱水をおこなった。 3 時間後、 トルエンを系外に除去し、 さらに内温 170°Cで 8時間反応をおこなつ た。反応は G PC測定により追跡した。反応終了後、反応溶液を室温まで放冷し、 500 mLの 2M塩酸水溶液に滴下した。析出した白色のポリマーを水洗した後 粉状に粉砕して再度水で PH 7になるまで洗浄した。 その後 95 °Cの水で 2時間 処理する工程を二回おこなった。 オーブン (60°C) で減圧乾燥して下記ポリマ -45. 31 g (収率 93%) を得た。 製膜は実施例 1に準拠しておこなった。 共重合体 D
共重合体 Dは、 下記に示す構造単位を有するポリマーである。
Figure imgf000031_0001
前記の (D- a) 、 (D-b) 及び (D-c) の構造単位の合計に対する、 仕込量から計算 される各構造単位のモル比
(D-a) : (D-b) : (D-c) = 1. 00 : 2. 00 : 1. 02
前記構造単位のモル比から計算されるイオン交換容量 2. 08 me q/g Mn 7. 70 X 104
イオン交換容量の実測値 1. 97 me q/g
製膜: NMP溶液キャスト法 膜厚 26 m
プロトン伝導度 0. 97 X 10 1 S/cm
吸水率 460 % 実施例 3
共重合体 Eの製造
重合は、 De a n-S t a r k管をとりつけた 20 OmL のセパラブルフラスコ に、 ヒドロキノンスルホン酸カリウム 3. 00 g (13. 14mmo l), 4, 4 ' —ジヒドロキシ _ 3, 3 ' —ジフエ二ルビフエニル 8. 31 g (24. 57 mo 1 ), 炭酸カリウム 5. 42 g (39. 21 mm o 1 )をとりジメチルスル ホキシド 105. m l , トルエン .60 m 1中、 アルゴン雰囲気下、 バス温 15 0°C (内温 130±5. ) で 2時間共沸脱水をおこなった。 2時間後、 トルエン を系外に除去し、 室温まで放冷した。 その後、 4, 4' —ジフルォロベンゾフエ ノン— 3, 3 ' 一ジスルホン酸ジカリウム 7. 17 g (15. 77 mmo 1 ), 4, 4 ' —ジフルォロジフエニルスルホン 5. 57 g (21. 90 mmo 1 ) を添加し、 さらに内温 150 で 25時間反応をおこなった。 反応は GPC測定 により追跡した。 反応終了後、 反応溶液を 80 まで放冷し、 3Lの 2M塩酸水 溶液に滴下した。 析出した白色のポリマーを濾過し、 洗浄 it液の pHが約 7にな るまで水洗し、 その後 80 の水で 2時間処理する工程を二回おこなった。 ォ一 ブン (80°C) で乾燥して下記に示す共重合体 E 18. 96 g (収率 91%) を得た。 製膜は実施例 1に準拠しておこなった。 共重合体 E
共重合体 Eは、 下記に示す構造単位を有するポリマーである。
Figure imgf000032_0001
上記 (E- a) 、 (E-b) 、 (E-c) 及び (E-d) の構造単位に対する、 仕込量から計 算されるモル比 (E - a) : (E-b) : (E-c) : (E-d)
= 1. 67 : 1. 87 : 1. 20 : 1. 00 上記モル比から計算されるイオン交換容量 2. 00 me q/g
Mn 6. 2 X 104
イオン交換容量の実測値 1. 90 me q/g
製膜: NMP溶液キャスト法 33 m
プロトン伝導度 0. 95X 10— 1 SZcm
吸水率 88 % 実施例 4
共重合体 F
重合は、 De an— S t a r k管をとりつけた 20 OmL のセパラブルフラスコ に、 ヒドロキノンスルホン酸カリウム 3. 00 g (13. 14 mmo l)、 4 , 4, 一ジヒドロキシ _ 3, 3 ' —ジフエ二ルビフエニル 5. 79 g (17. 1 1 mmo l)、 2, 2 ' 一ビス ( 4—ヒドロキシフエ二ル) .プロパン 3. 91 (17. 11 mm o 1 ) 、 3, 3 ' —スルホニルビス (6—フルォロベンゼンス ルホン酸カリウム) 7. 74 g (15. 77 mmo l)、 4, 4 ' —ジフルォ ロジフエニルスルホン 8. 04 g (31. 60 mmo l)、 炭酸カリウム 6 . 87 g (49. 74 mmo 1 )をとりジメチルスルホキシド 1 14 ml, トルエン 40 ml中、 アルゴン雰囲気下、 バス温 150で (内温 130± 5°C ) で 2時間共沸脱水をおこなった。 2時間後、 トルエンを系外に除去し、 さらに 内温 150 で 3時間反応をおこなった。 反応は GPC測定により追跡した。 反 応終了後、 反応溶液を 80 まで放冷し、 1 Lの 2 M塩酸水溶液に滴下した。 析 出したポリマーを濾過し、 洗浄濾液の pHが約 7になるまで水洗し、 その後 80 °Cの水で 2時間処理する工程を二回おこなった。 オーブン (80°C) で乾燥して 下記に示す共重合体 F 23. 31 g (収率 87%) を得た。 製膜は実施例 1に 準拠しておこなった。 共重合体 F
共重合体 Fは、 下記に示す構造単位を有するポリマ
Figure imgf000034_0001
前記の (F-a) 、 (F-b) 、 (F-c) 、 (F-d) 及び (F- e) の構造単位の合計に対す る、 仕込量から計算される各構造単位のモル比
(F-a) : (F-b) : (F-c) : (F-d) : (F-e)
= 2. 40 : 1. 30 : 1. 30 1. 20 : 1. 00 前記構造単位のモル比から計算されるイオン交換容量 1 80 me Q./ g Mn 3. 3 X 104
イオン交換容量の実測値 1. 62 me q/g
製膜: NMP溶液キャスト法 60 m
プロトン伝導度 0. 62 X 10 1 S/cm
吸水率 104 % 実施例 5
[触媒ペーストの製造] 水:エタノール = 1 : 9 (重量比) の混合溶媒 95 gと実施例 1で得た共重合 体 A 5 gとを混合し均一な共重合体 A溶液 (共重合体 Aの濃度; 5重量%) を調 製した。 別に、 エタノール 1 lmLに白金担持力一ボン (SA50BK、 ェヌ ' ィ一 ·ケムキャット製; 白金担持量 50重量%) を 0. 64 g投入し、 さらに先 に調製した共重合体 A溶液を 1. 05 g加えた。 得られた混合物を 1時間超音波 処理したのち、 ス夕一ラーで 6時間攪拌し、 触媒インク Aを得た。
[高分子電解質膜の製造]
特開 2005— 139432号公報を参考として、 下記式で示されるブロック 共重合体型高分子電解質からなる高分子電解質膜を得た。 具体的には、 イオン交 換基を有する第 1の高分子化合物と、 イオン交換基を実質的に有さない第 2の高 分子化合物を下記に示すように各々合成して、 それらをさらにカップリングして ブロック共重合体型高分子電解質を合成した。 (第 1の高分子化合物の合成)
共沸蒸留装置を備えたフラスコに、 アルゴン雰囲気下、 4, 4' —ジフルォロ ジフエニルスルホン— 3, 3 ' —ジスルホン酸ジカリウム 283. 68 g、 2, 5—ジヒドロキシベンゼンスルホン酸カリウム 120. 00 g、 DMSO 177 8 g、 及び、 トルエン 279 gを加え、 これらを室温にて撹拌しながらアルゴン ガスを 1時間バブリングした。
その後、 得られた混合物に、 炭酸カリウムを 76. 29 g加え、 140 にて加 熱撹拌して共沸脱水した。 その後トルエンを留去しながら加熱を続け、 第 1の高 分子化合物の DM S〇溶液を得た。 総加熱時間は 16時間であった。 得られた溶 液は室温にて放冷した。
この第 1の高分子化合物は、 Mnが 3. 0X 104であった。
(第 2の高分子化合物の合成)
共沸蒸留装置を備えたフラスコに、 アルゴン雰囲気下、 4, 4' —ジフルォロ ジフエニルスルホン 247. 55 g、 2, 6—ジヒドロキシナフ夕レン 164. 44g、 DMSO 902 g、 NMP 902 g、 及び、 トルエン 310 gを加え、 室温にて撹拌しながらアルゴンガスを 1時間バブリングした。
その後、 得られた混合物に、 炭酸カリウムを 156. 09 g加え、 100°Cにて 加熱撹拌しながら減圧共沸脱水した。 17時間後トルエンを留去し、 その後さら に 100 で加熱を続けた。 総加熱時間は 19時間であった。 得られた溶液を室 温にて放冷し、 第 2の高分子化合物の NMPZDMSO混合溶液を得た。 この第 2の高分子化合物の Mnは 2. 7 X 104であった。 (ブロック共重合体の合成)
得られた第 2の高分子化合物の NMPZDMSO混合溶液を攪拌しながら、 こ れに、 上記第1の高分子化合物の13^/130溶液の全量と0^13〇610 、 NM P 1790 gを加え、 150 にて 39時間ブロック共重合反応を行った。 得られた反応液,を大量の 2 N塩酸に滴下し、 1時間浸漬した。 その後、 生成した 沈殿物を濾別した後、 再度 2 N塩酸に 1時間浸漬した。 得られた沈殿物を濾別、 水洗した後、 95 の大量の熱水に 1時間浸潰した。 固体を濾別したのち再度 9 5 の大量の熱水に 1時間浸潰した。 固体を濾別した後、 80でで 1晚乾燥させ て、 ブロック共重合体を得た。
製膜は実施例 1と同様にして行った。
[得られたブロック共重合体型高分子電解質]
Figure imgf000036_0001
なお、 n l及び mlは、 ブロック共重合体型高分子電解質の各ブロックの平均 重合度を表す。
Mn 7. 9 X 104
イオン交換容量の実測値 1. 94 me q/g 製膜: NMP 液キャスト法 27 m
プロトン伝導度 2. 37 X 10— 1 S/cm
吸水率 1 15 %
仕込から計算された n l = 36. 2であり, ml二 10. 5であった。
[ME A化]
このようにして得られたプロック共重合体型高分子電解質からなる高分子電解 質膜を正方形に切り出して加熱ステージにセットし、 膜主面中央部の 5. 2 cm 角の領域にスプレー法により触媒インク Aを塗布した。 吐出口から膜までの距離 は 5 cm、 ステージ温度は 76t:に設定した。 塗布した後、 ステージ上に 3分間 放置して、 溶媒を除去し、 触媒層を形成させた。 このようにして得られた片面に 触媒層を設けた高分子電解質膜を裏返して、 加熱ステージにセットし、 前記の触 媒層と同様にして、 もう一方の面にも触媒インク Aから触媒層を形成して膜—触 媒層接合体を得た。 なお、 触媒層の重量組成と塗布した触媒層重量から求めた触 媒層の白金量は、 片面あたり 0. 6mgZcm2であった。 .
[燃料電池評価セル組立て]
市販の JAR I標準セルを用いて燃料電池セルを製造した。 すなわち、 前記のよ うにして得られた膜一触媒層接合体の両触媒層に、 ガス拡散層としてカーボンク ロスと、 ガス通路用の溝を切削加工したカーボン製セパレー夕を配し、 さらにそ の外側に集電体及 ェンドプレートを順に配置し、 これらをボル卜で締め付ける ことによって、 有効膜面積 25 cm2の燃料電池セルを組み立てた。
[燃料電池評価]
得られた各燃料電池セルを 80 に保ちながら、 アノードに加湿水素、 力ソード に加湿空気をそれぞれ供給した。 この際、 セルのガス出口における背圧が 0. 1 MP a Gとなるようにした。 各原料ガスの加湿は、 バブラ一にガスを通すことで 行い、 水素用バブラ一の水温は 45°C、 空気用バブラ一の水温は 55°Cとした。 ここで、 水素のガス流量は 52 SmLZm i n、 空気のガス流量は 1665 mL Zm i nとした。 セル電位 0. 2 Vにおける電流密度は 1 · 5AZcmであった 。 また電流密度 0. 5 AZcmにおけるセル電位は 0. 59Vであった。 比較例 3 .
(共重合体 Gの合成)
特開平 10— 021943号公報の実施例 3と同じようにして、 下記式で示され る共重合体 Gからなる高分子電解質膜を得た。
なお、 n 2及び m 2は、 ランダム共重合体型高分子電解質の各構造単位のモル比 を表す。
[共重合体 G]
Figure imgf000038_0001
Mn 4. 5 X 104
イオン交換容量の実測値 1. 1 1 me qZg.
製膜: DMA c溶液キャスト法 20 m
プロトン伝導度 7. 81 X 10— 3 S/cm
吸水率 41 %
m2/ (n 2+m2) =0. 14
[ 媒ペーストの製造]
NMP 9. 5 gと共重合体 GO. 5 gとで混合し均一な共重合体 B溶液 (共重合 体 Aの濃度; 5重量%) を調製した。 別に、 エタノール 1 lmLに白金担持カー ボン (S A50 BK、 ェヌ ·ィー ·ケムキヤット製; 白金担持量 50重量%) を 0. 64 g投入し、 さらに先に調製した共重合体 A溶液を 1. 05 g加えた。 得 られた混合物を 1時間超音波処理したのち、 スターラーで 6時間攪拌し、 触媒ィ ンク Bを得た。 [高分子電解質膜の製造]
実施例 5で使用した、 プロック共重合体型高分子電解質からなる高分子電解質膜 を用いた。 [MEA化]
ガス拡散層であるカーボンクロスを正方形に切り出して加熱ステージにセットし、 カーボンクロス主面中央部の 5. 2 cm角の領域にスプレー法により触媒インク Bを塗布した。 吐出口から膜までの距離は 5 cm、 ステージ温度は 76 :に設定 した。 塗布した後、 ステージ上に 3分間放置して、 溶媒を除去し、 触媒層を形成 させた。 この方法で触媒層を形成させた力一ボンクロスを二枚作製した。 なお、 触媒層の重量組成と塗布した触媒層重量から求めた触媒層の白金量は、 それぞれ 0. 6mgZcm2であった。 その後、 力一ボンクロス中に残存している NMP を除去するため 1N塩酸に 1時間浸漬し、 続いて水洗を 1時間行った。 NMPを 除去したカーボンクロス 2枚で電解質膜を挟み、 120Τλ 10 kg f /cm2 で 15分間プレスし、 膜一電極接合体を完成させた。
[燃料電池評価セル組立て]
市販の JAR I標準セルを用いて燃料電池セルを製造した。 すなわち、 上記で得 られた膜一電極接合体の両ガス拡散層に、 ガス通路用の溝を切削加工したカーボ ン製セパレ一夕を配し、 さらにその外側に集電体及びェンドプレートを順に配置 し、 これらをボルトで締め付けることによって、 有効膜面積 25 c m2の燃料電 池セルを組み立てた。
[燃料電池評価]
得られた各燃料電池セルを 80 に保ちながら、 アノードに加湿水素、 力ソード に加湿空気をそれぞれ供給した。 この際、 セルのガス出口における背圧が 0. 1 MP a Gとなるようにした。 各原料ガスの加湿は、 バブラ一にガスを通すことで 行い、 水素用バブラ一の水温は 45°C、 空気用バブラ一の水温は 55でとした。 ここで、 水素のガス流量は 529mLZm i n、 空気のガス流量は 1665 mL /m i nとした。 セル電位は 0. 2 Vにおける電流密度は 1. lAZcmであつ た。 また電流密度 0. 5 AZ cmにおけるセル電位は 0. 44 Vであった。 本発明の共重合体は、 高分子電解質、 なかでも燃料電池のプロトン伝導膜とし て、 耐水性、 製膜性、 及びプロトン伝導度などの諸特性において優れた性能を示 す。 とりわけ耐水性に優れる。
そのうえ燃料霉池のプロトン伝導膜として用いた場合、 高い発電特性を示すの で、 本発明の共重合体は高分子電解質として工業的に有利である。

Claims

請求の範囲
1. 下記(A) と (C)の混合物と (B) と (D)の混合物、 または(A)、 (B)、 (C) 及び (D) の混合物を求核縮合して得られる共重合体。
• (A) 分子内に 2つの脱離基を有し、 さらに少なくとも 1つの酸基を有するモ ノマー
(B) 分子内に 2つの求核基を有し、 さらに少なくとも 1つの酸基を有するモ ノマー
(C) 分子内に 2つの脱離基を有し、 実質的に酸基を有さないモノマー
(D) 分子内に 2つの求核基を有し、 実質的に酸基を有さないモノマー
2. 前記 (A) が、 下記式 (1) である請求項 1記載の共重合体。
Figure imgf000041_0001
(式中、 kは 0、 1又は 2を表し、 Ar A r 2は互いに独立に 2価の芳香族基 を表し、 kが 2の場合は、 2つの A r2は互いに同じでも、 異なっていてもよく、 これらの 2価の芳香族基は、 置換基を有することもある炭素数 1〜10のアルキ ル基、 置換基を有することもある炭素数 1〜10のアルコキシ基、 置換基を有す ることもある炭素数 6〜10のァリール基、 置換基を有することもある炭素数 6 〜10のァリールォキシ基、 フルォロ基、 ニトロ基又はベンゾィル基で置換され ていてもよい。 kが 0である場合は A r1が、 kが 1以上である場合は、 Ar A r 2の少なくともいずれかが、 少なくとも一つの酸基を有する。 X1はフルォロ 基、 クロ口基、 ニトロ基又はトリフルォロメ夕ンスルホニルォキシ基のいずれか を表し、 2つの X1は互いに同じでも、 異なっていてもよい。 Z1は下記の群から 選ばれる基であり、 kが 2の場合、 2つの Z1は互いに同じでも、 異なっていても よい。 )
Figure imgf000042_0001
H
3 . 前記 (B ) 力 下記式 (2 ) である請求項 1に記載の共重合体。
oen
ccl
Figure imgf000042_0002
(式中、 jは 0、 1又は 2を表し、 A r 3、 A r 4は互いに独立に 2価の芳香族基 を表し、 jが 2の場合、 2つの A r 4は互いl に同じでも、 異なっていてもよく、 こ こで、 これらの 2価の芳香族基は、 置換基を有することもある炭素数 1〜1 0の アルキル基、 置換基を有することもある炭素数 1〜1 0のアルコキシ基、 置換基 を有することもある炭素数 6〜 1 0のァリール基、 ま oenたは置換基を有することも ある炭素数 6〜 1 0のァリールォキシ基で置換されていてもよい。 jが 0である 場合は A r 3が、. jが 1以上である場合は、 A r 3、 A r 4の少なくともいずれか一 方に、 少なくとも一つの酸基を有する。 Y1は、 水酸基、 チオール基又はアミノ基 を表し、 2つの Y'は、 互いに同じでも、 異なっていてもよい。 Q1は直接結合、 及び下記の群から選ばれる基を表し、 jが 2の場合、 2つの Q1は互いに同じでも、 異なっていてもよい。 )
Figure imgf000042_0003
4 . 前記 (C ) が、 下記式'(3 ) である請求項 1に記載の共重合体。 X2— Ar5千 Z2— Ar6 X2 0)
(式中、 mは 0、 1又は 2を表し、 A r 5、 A r 6は互いに独立に 2価の芳香族基 を表し、 mが 2の場合、 2つの A r 6は互いに同じでも、 異なっていてもよく、 こ こで、 これらの 2価の芳香族基は、 置換基を有することもある炭素数 1〜 1 0の アルキル基、 置換基を有することもある炭素数 1〜 1 0のアルコキシ基、 置換基 5 を有することもある炭素数 6〜 1 0のァリール基、 置換基を有することもある炭 素数 6〜 1 0のァリールォキシ基、 フルォロ基、 ニトロ基又はベンゾィル基で置 換されていてもよい。 X2はフルォロ基、 クロ口基、 ニトロ基又はトリフルォロメ 夕ンスルホニルォキシ基から選ばれ、 2つの X2は互いに同じでも、 異なっていて もよい。 Z 2は下記の群から選ばれ、 mが 2の場合、 2つの Z 2は互いに同じでも、 異なっていてもよい。 )
Figure imgf000043_0001
5 . 前記 (D) が、 下記式 (4 ) である請求項 1に記載の共重合体。
Y2— Ar7卄 Q2— Ar8+Y2 (4)
(式中、 nは 0、 1又は 2を表し、 A r 7、 A r 8は互いに独立に 2価の芳香族基 を表し、 nが 2の場合、 2つの A r 8は互いに同じでも、 異なっていてもよく、 こ こで、 これらの 2価の芳香族基は、 置換基を有することもある炭素数 1〜 1 0の アルキル基、 置換基を有することもある炭素数 1〜 1 0のアルコキシ基、 置換基 を有することもある炭素数 6〜 1 0のァリール基、 または置換基を有することも ある炭素数 6〜 1 0のァリールォキシ基で置換されていてもよい。 Y2は水酸基、 ' チオール基又はアミノ基を表し、 2つの Y2は互いに同じでも、 異なっていてもよ い。 Q2は直接結合、 または下記の群から選ばれる基であり、 nが 2の場合、 2つ の Q2は互いに同じでも、 異なっていてもよい。 )
Figure imgf000044_0001
6. 酸基が、 強酸基又は超強酸基である、 請求項 1に記載の共重合体。
7. イオン交換容量が、 0.
Figure imgf000044_0002
〜4. Ome qZgである請求項 1に 記載の共重合体。
8. 共童合体中、 酸基が導入された構造単位と、 酸基が実質的に導入されていな い構造単位の重量組成比、 [酸基が導入された構造単位] : [ O酸SM基が実質的に導 入されていない構造単位] が、 3 : 97〜70 : 30である請求項 1に記載の共 重合体。
9. 請求項 1〜 8のいずれかに記載の共重合体を含む高分子電解質。
10. 請求項 9記載の高分子電解質を含む高分子電解質膜。
11. 請求項 9記載の高分子電解質と多孔質基材からなる高分子電解質複合膜。
12. 請求項 9記載の高分子電解質を多孔質基材に含浸させ、 複合化して得られ る高分子電解質複合膜。
13. 請求項 9記載の高分午電解質と、 触媒物質からなる触媒組成物。
14.請求項 10記載の高分子電解質膜を用いる燃料電池。
15.請求項 1 1または 12記載の高分子電解質複合膜を用いる燃料電池。
16.請求項 13記載の触媒組成物からなる触媒層を有する燃料電池。
17. 下記 (A) と (C) の混合物と、 (B) と (D) の混合物、 または(A)、 (B) 、 (C) 及び (D) の混合物を縮合する共重合体の製造方法。
(A) 分子内に 2つの脱離基を有し、 さらに少なくとも 1つの酸基を有するモ ノマー
(B) 分子内に 2つの求核基を有し、 さらに少なくとも 1つの酸基を有するモ ノマー
(C) 分子内に 2つの脱離基を有し、 実質的に酸基を有さないモノマー
(D) 分子内に 2つの求核基を有し、 実質的に酸基を有さないモノマー
PCT/JP2006/325700 2005-12-20 2006-12-19 共重合体、高分子電解質及びその用途 WO2007072978A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002634062A CA2634062A1 (en) 2005-12-20 2006-12-19 Copolymer, polymer electrolyte and use thereof
DE112006003456T DE112006003456T5 (de) 2005-12-20 2006-12-19 Copolymer, Polymerelektrolyt und seine Verwendung
GB0812688A GB2448441A (en) 2005-12-20 2008-07-10 Copolymer,polymer electrolyte and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005366013 2005-12-20
JP2005-366013 2005-12-20

Publications (1)

Publication Number Publication Date
WO2007072978A1 true WO2007072978A1 (ja) 2007-06-28

Family

ID=38188741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325700 WO2007072978A1 (ja) 2005-12-20 2006-12-19 共重合体、高分子電解質及びその用途

Country Status (5)

Country Link
KR (1) KR20080079319A (ja)
CA (1) CA2634062A1 (ja)
DE (1) DE112006003456T5 (ja)
TW (1) TW200735955A (ja)
WO (1) WO2007072978A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066877A (ja) * 2011-09-26 2013-04-18 Toshiba Corp 減酸素素子、減酸素装置及び冷蔵庫
WO2015005495A1 (ja) * 2013-07-11 2015-01-15 住友化学株式会社 樹脂組成物及び炭酸ガス分離膜

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197955B2 (en) * 2008-09-02 2012-06-12 General Electric Company Electrolyte membrane, methods of manufacture thereof and articles comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013399A1 (ja) * 2003-07-31 2005-02-10 Toyo Boseki Kabushiki Kaisha 電解質膜・電極構造体およびそれを用いた燃料電池、電解質膜・電極構造体の製造方法
WO2005037892A1 (ja) * 2003-10-17 2005-04-28 Sumitomo Chemical Company, Limited ブロック共重合体及びその用途
WO2005063854A1 (ja) * 2003-12-25 2005-07-14 Sumitomo Chemical Company, Limited 高分子電解質およびその用途
JP2005232439A (ja) * 2004-01-16 2005-09-02 Idemitsu Kosan Co Ltd ポリアリールエーテル共重合体、その製造方法及びそれを用いた高分子電解質膜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724064B2 (ja) 1996-06-28 2005-12-07 住友化学株式会社 燃料電池用高分子電解質及び燃料電池
DE60143444D1 (de) 2000-09-20 2010-12-23 Virginia Tech Intell Prop Ionenleitende sulfonierte polymerische materialien
US7361729B2 (en) 2000-09-20 2008-04-22 Virginia Tech Intellectual Properties, Inc. Ion-conducting sulfonated polymeric materials
JP3599041B2 (ja) 2001-05-08 2004-12-08 宇部興産株式会社 固体高分子型燃料電池用高分子電解質及び燃料電池
JP4437272B2 (ja) 2002-08-30 2010-03-24 ノードソン株式会社 液体のスプレイ方法
JP3928611B2 (ja) 2002-10-08 2007-06-13 東洋紡績株式会社 ポリアリーレンエーテル系化合物、それを含有する組成物、およびそれらの製造方法
DE602004016736D1 (de) 2003-03-19 2008-11-06 Virginia Tech Intell Prop Aromatisches nitril enthaltendes ionenleitendes sulfoniertes polymermaterial
JP4424129B2 (ja) 2003-10-17 2010-03-03 住友化学株式会社 ブロック共重合体及びその用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013399A1 (ja) * 2003-07-31 2005-02-10 Toyo Boseki Kabushiki Kaisha 電解質膜・電極構造体およびそれを用いた燃料電池、電解質膜・電極構造体の製造方法
WO2005037892A1 (ja) * 2003-10-17 2005-04-28 Sumitomo Chemical Company, Limited ブロック共重合体及びその用途
WO2005063854A1 (ja) * 2003-12-25 2005-07-14 Sumitomo Chemical Company, Limited 高分子電解質およびその用途
JP2005232439A (ja) * 2004-01-16 2005-09-02 Idemitsu Kosan Co Ltd ポリアリールエーテル共重合体、その製造方法及びそれを用いた高分子電解質膜

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066877A (ja) * 2011-09-26 2013-04-18 Toshiba Corp 減酸素素子、減酸素装置及び冷蔵庫
WO2015005495A1 (ja) * 2013-07-11 2015-01-15 住友化学株式会社 樹脂組成物及び炭酸ガス分離膜
JP2015017185A (ja) * 2013-07-11 2015-01-29 住友化学株式会社 樹脂組成物、炭酸ガス分離膜、炭酸ガス分離膜モジュールおよび炭酸ガス分離装置
US20160158692A1 (en) * 2013-07-11 2016-06-09 Sumitomo Chemical Company, Limited Resin composition and carbon dioxide gas separation membrane
US9764276B2 (en) 2013-07-11 2017-09-19 Sumitomo Chemical Company, Limited Resin composition and carbon dioxide gas separation membrane

Also Published As

Publication number Publication date
CA2634062A1 (en) 2007-06-28
DE112006003456T5 (de) 2008-10-30
KR20080079319A (ko) 2008-08-29
TW200735955A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
JP4930194B2 (ja) ブロック共重合体及びその用途
WO2009136631A1 (ja) 新規スルホン酸基含有セグメント化ブロック共重合体ポリマー及びその用途、新規ブロック共重合体ポリマーの製造方法
Ahmed et al. Comparative study of sulfonated branched and linear poly (phenylene) s polymer electrolyte membranes for fuel cells
JP2004149779A (ja) ポリアリーレンエーテル系化合物、それを含有する組成物、およびそれらの製造方法
JP2005232439A (ja) ポリアリールエーテル共重合体、その製造方法及びそれを用いた高分子電解質膜
WO2013027758A1 (ja) バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
US20160260995A1 (en) Polymer electrolyte membrane, method for fabricating same, and membrane-electrode assembly comprising same
JP2007109638A (ja) 高分子電解質、並びに、これを用いた高分子電解質膜、膜−電極接合体及び燃料電池
WO2005037892A1 (ja) ブロック共重合体及びその用途
JP5315878B2 (ja) 高分子電解質材料およびそれを用いた高分子電解質型燃料電池
WO2014157389A1 (ja) 電解質膜用組成物、固体高分子電解質膜、該電解質膜の製造方法、膜-電極接合体、固体高分子型燃料電池、水電解セルおよび水電解装置
JP2005183311A (ja) 直接メタノール型燃料電池電極用高分子電解質、ワニス組成物および直接メタノール型燃料電池
WO2007072978A1 (ja) 共重合体、高分子電解質及びその用途
JP5458765B2 (ja) プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP2007106986A (ja) ブロック共重合体及びその製造方法、高分子電解質、触媒組成物、高分子電解質膜、膜−電極接合体及び燃料電池
US20100167165A1 (en) Copolymer, polymer electrolyte, and use thereof
JP2010238373A (ja) 高分子電解質膜、その製造方法、及びこれを用いた電極−膜接合体、固体高分子型燃料電池
JP5309822B2 (ja) 芳香族スルホン酸誘導体、スルホン化ポリマーならびにそれを用いた高分子電解質材料および高分子電解質型燃料電池
JP2007191694A (ja) 共重合体、高分子電解質及びその用途
JP2009104926A (ja) 膜電極接合体
EP1862489B1 (en) Block Copolymer and Use Thereof
JP2007048642A (ja) 電極触媒層の製造方法
JP5614210B2 (ja) 高分子電解質膜、およびそれを用いた膜/電極接合体,燃料電池
JP6819047B2 (ja) 高分子電解質用のジフェニルスルホン化合物、高分子電解質、高分子電解質の製造方法、膜電極接合体、及び、固体高分子形燃料電池
JP5315877B2 (ja) 高分子電解質材料、ならびにそれを用いた高分子電解質型燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2634062

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 0812688

Country of ref document: GB

Ref document number: 0812688.0

Country of ref document: GB

Ref document number: 812688

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1020087017262

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112006003456

Country of ref document: DE

Date of ref document: 20081030

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112006003456

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06835147

Country of ref document: EP

Kind code of ref document: A1