WO2007069599A1 - Method for precoating film forming apparatus - Google Patents

Method for precoating film forming apparatus Download PDF

Info

Publication number
WO2007069599A1
WO2007069599A1 PCT/JP2006/324749 JP2006324749W WO2007069599A1 WO 2007069599 A1 WO2007069599 A1 WO 2007069599A1 JP 2006324749 W JP2006324749 W JP 2006324749W WO 2007069599 A1 WO2007069599 A1 WO 2007069599A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
precoat
thickness
gas
film thickness
Prior art date
Application number
PCT/JP2006/324749
Other languages
French (fr)
Japanese (ja)
Inventor
Takaya Shimizu
Shinya Okabe
Kunihiro Tada
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2007069599A1 publication Critical patent/WO2007069599A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76856After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1073Barrier, adhesion or liner layers
    • H01L2221/1078Multiple stacked thin films not being formed in openings in dielectrics

Definitions

  • the present invention relates to a method for pre-coating in a vacuum processing container of a film forming apparatus for depositing a thin film by plasma CVD on the surface of an object to be processed such as a semiconductor wafer.
  • a cleaning process is performed by flowing a tung gas (etching gas) into a processing container every predetermined period.
  • a tung gas etching gas
  • the so-called pre-coating film forming process is performed in a state in which the product wafer is not carried into the processing container immediately without processing the product wafer (Japanese Patent Laid-Open Nos. 2000-277459 and 2002). — No. 167673, JP 2004-285469).
  • the same gas as that used for film formation of the wafer is flowed into the processing container to deposit the film on the surface of the structure in the container with a certain thickness.
  • the precoat process for forming the precoat film generally requires a processing time corresponding to the time required for processing a large number of product wafers.
  • the thicker the precoat film the better the thermal stability and the better the film thickness reproducibility on the product wafer.
  • a pre-film having a certain thickness is formed as soon as possible by flowing a film-forming gas at a higher flow rate than in the film-forming process of the product wafer.
  • the pre-coating process is completed in a short time, and the product wafer film forming process is immediately started to improve productivity.
  • the precoat process can be completed in a short time.
  • the pre-coating film tends to adhere to the periphery of the surface of the shower head more thickly than other parts. .
  • the adhered film around the shower head is easily peeled off relatively quickly, and particles that cause product defects are generated.
  • FIG. 12 is a diagram showing the film thickness distribution of the precoat film 4 adhered to the shower head 2 when a bricote film is formed by flowing a large amount of film forming gas.
  • the precoat film 4 adhered to the lower surface of the shower head 2 has a film thickness distribution in which the peripheral thickness H2 is considerably thicker than the central thickness HI. .
  • FIG. 12 shows the distribution of particles on the surface of the last processed wafer W (dots in the figure) when a predetermined number of product wafers W are continuously formed. It is shown. As shown in the figure, many particles are distributed around the periphery of the wafer W. This is thought to be because the deposited film adhering to the periphery of the shower head 2 peels off quickly and turns into particles.
  • An object of the present invention is to provide a pre-coating method for a film forming apparatus that can suppress generation of particles by peeling off an unnecessary attached film attached to a shower head during film forming processing.
  • the present invention provides:
  • a method of applying a precoat in a vacuum processing container of a film forming apparatus A method of applying a precoat in a vacuum processing container of a film forming apparatus
  • the processing container is provided with a shower head for supplying a processing gas including a film forming gas.
  • the film forming apparatus is configured to supply the processing gas into the processing container containing the target object and deposit a thin film on the surface of the target object by plasma CVD. Hurry up in the way!
  • a pre-coating film having a thickness X within a range represented by the following formula is formed by plasma CVD by supplying the processing gas into the processing container and storing the object to be processed.
  • A is a maximum film thickness that is the maximum film thickness of the shower head adhesion film that adheres to the surface of the shower head by plasma CVD using the processing gas without peeling off the surface force of the shower head;
  • B is an integrated total film thickness obtained by integrating the thicknesses of films deposited on the surfaces of a plurality of objects to be processed by the film forming process during the cleaning cycle;
  • C is a radiation saturation film thickness that is a film thickness of the precoat film such that the emissivity of the precoat film is substantially saturated.
  • the present invention also provides
  • a method of applying a precoat in a vacuum processing container of a film forming apparatus A method of applying a precoat in a vacuum processing container of a film forming apparatus
  • the processing container is provided with a shower head for supplying a processing gas including a film forming gas,
  • the film forming apparatus is configured to supply the processing gas into the processing container containing the target object and deposit a thin film on the surface of the target object by plasma CVD. Hurry up in the way!
  • a pre-coating film having a thickness X within a range represented by the following formula is formed by plasma CVD by supplying the processing gas into the processing container and storing the object to be processed.
  • C is a radiation saturation film thickness that is the film thickness of the precoat film such that the emissivity of the precoat film is substantially saturated
  • D is the film thickness of the precoat film in which the phenomenon that the number of generated particles begins to increase suddenly when a predetermined number of semiconductor wafers are formed while gradually increasing the film thickness of the precoat film.
  • Critical film thickness is the film thickness of the precoat film in which the phenomenon that the number of generated particles begins to increase suddenly when a predetermined number of semiconductor wafers are formed while gradually increasing the film thickness of the precoat film.
  • the thin film is a Ti-containing film
  • the radiation saturation film thickness (C) is 500 nm
  • the critical film thickness (D) is 720 nm.
  • the thin film is formed by depositing a Ti film on the surface of the object to be processed and then nitriding at least the surface of the Ti film.
  • the film forming process is performed while ensuring the minimum film thickness of the pre-coating film without substantially changing the width emissivity even when the film forming process on the object to be processed is started. Occasionally, unnecessary adhesion film adhering to the share head is prevented from peeling off and particles can be prevented from being generated. Thereby, the uniformity of the film thickness of the thin film formed in a to-be-processed object can be made high, suppressing generation
  • the precoat film is preferably formed by sequentially laminating a plurality of precoat layers.
  • each precoat layer has the same flow rate as the flow rate of the film forming gas supplied when depositing a thin film on the surface of the object to be processed.
  • the film forming gas is supplied to form the film.
  • the present invention also provides a storage medium storing a program for controlling the film forming apparatus so as to execute the above-described precoat method.
  • FIG. 1 is a schematic diagram showing an example of a film forming apparatus to which the precoat method of the present invention is applied;
  • FIG. 2 is a film including a precoat film on the surface of the shower head and the mounting table in the apparatus of FIG. The figure which shows the state which accumulated
  • FIG. 3 is a graph showing the relationship between the precoat film thickness and the reproducibility of the film thickness formed on the wafer surface
  • FIG. 4A is a graph showing the relationship between the thickness of TiN film and transmittance
  • FIG. 4B is a graph showing the relationship between TiN film thickness and reflectance
  • FIG. 5 is a graph showing the relationship between the precoat film thickness and the number of particles generated during the film formation process
  • FIG. 7A is a schematic diagram for explaining generation of particles in a conventional pre-coating method
  • FIG. 7B is a schematic diagram for explaining suppression of particle generation in the precoat method of the present invention.
  • FIG. 7C is a table showing the process conditions and the precoat film thickness data obtained for the conventional method and the method of the present invention.
  • FIG. 8 is a graph showing a comparison of changes in the number of particles generated between the conventional pre-coating method and the pre-coating method of the present invention.
  • FIG. 9 is a graph comparing the thickness of the precoat film formed on the surface between the mounting table and the shower head;
  • FIG. 10 is a graph showing the film thickness distribution of the precoat film deposited on the wafer surface by the conventional precoat method
  • FIG. 11 is a graph showing the film thickness distribution of the precoat film adhered to the wafer surface by the precoat method of the present invention.
  • FIG. 12 is a diagram showing the film thickness distribution of the precoat film adhering to the showerhead surface and the particle distribution on the surface of the semiconductor wafer.
  • TiN (titanium nitride) film the film forming apparatus shown in FIG. (Tan) film and TiN (titanium nitride) film will be described as an example.
  • a film forming apparatus 12 shown in FIG. 1 has a processing container 14 formed in a cylindrical shape, and the processing container 14 is grounded.
  • An exhaust port 18 is provided at the bottom 16 of the processing vessel 14 for discharging the atmosphere in the vessel.
  • the exhaust port 18 is provided with an exhaust system having a pressure adjusting valve 20 and a vacuum pump 22 interposed therebetween. 24 is connected so that the inside of the processing vessel 14 can be uniformly evacuated from the bottom peripheral portion.
  • the processing vessel 14 is welded to a hollow support 26 made of aluminum nitride (A1N), and is provided with a disk-like mounting table 28 made of A1N. Ueno and W can be placed.
  • the mounting table 28 is embedded with a lower electrode 29 having a mesh-like metal material force and a resistance heater 30 as a heating means.
  • the lower electrode 29 is grounded, and the mounting table 28 is heated to a predetermined temperature by supplying power to the resistance heater 30 from a power supply (not shown).
  • a ceiling plate 34 provided with a shower head 32 as a gas supply means also serving as an upper electrode is provided on the ceiling of the processing vessel 14 through an insulating material 36 with respect to the side wall of the vessel. Closely attached.
  • the shower head 32 is provided so as to face almost the entire upper surface of the mounting table 28, and a processing space S is formed between the shower head 32 and the mounting table 28.
  • This shower head 32 introduces various gases into the processing space S in a shower form, and a plurality of injection holes 39 for injecting gas are formed on the injection surface 37 on the lower surface of the shower head 32.
  • a diffusion plate 40 having a large number of diffusion holes 38 is provided inside the shower head 32 so that gas can be diffused.
  • a gas introduction port 42 for introducing gas into the head is provided above the shower head 32, and a plurality of, for example, two supply gas flows through the gas introduction port 42. Passages 44 and 46 are connected.
  • a plurality of branch pipes 48 are connected to one supply passage 44, and each branch pipe 48 is supplied with a film forming gas, for example, a TiCl gas source 50 for storing TiCl gas, and H gas as a reducing gas.
  • Ar gas source 54 for storing, for example, Ar gas as plasma excitation gas
  • C1F-based gas for example C1F gas
  • the cleaning gas used for cleaning is stored as the cleaning gas used for cleaning
  • the other supply passage 46 has NH An NH gas source 58 for storing gas is connected. Although not shown, if necessary, N2
  • a gas supply system for supplying gas is also connected.
  • the distribution and flow rate of each gas are controlled by an on-off valve 60 and a flow rate controller such as a mass flow controller 62 provided in each branch pipe 48 and supply passage 44, respectively.
  • a matching circuit 66 and a high frequency for plasma of 13.56 MHz, for example, are formed on the ceiling plate 34 via a lead wire 64.
  • Power supply 68 is connected.
  • a resistance heater 70 is inserted into the side wall of the processing vessel 14 as necessary, and the resistance heater 70 is connected to a temperature controller (not shown).
  • a gate valve 74 On the side wall of the container, there is provided a gate valve 74 that can be opened and closed airtightly when the wafer is loaded into and unloaded from the load lock chamber 72.
  • the shower head 32 is also provided with a resistance heater 76 for temperature adjustment, and the resistance heater 76 is connected to a temperature controller (not shown).
  • the operation of the entire apparatus is controlled by a control unit 78 including, for example, a microcomputer.
  • the control unit 78 includes a storage medium 80 that stores a program for performing a series of operations such as a pre-coating process and a film forming process described later.
  • a storage medium 80 for example, a flexible disk, a CD-ROM, a DVD, a hard disk, or the like can be used.
  • FIG. 2 is a view schematically showing a state in which a thin film (precoat film) is deposited on the ejection surface 37 and the mounting table 28 which are the lower surfaces of the shower head 32.
  • a precoat film is formed by forming a film on the surface of the in-container structure such as the surface of the shower head 32 and the surface of the mounting table 28 using the same kind of gas as that used when forming the wafer. .
  • it is intended to form a Ti film and a TiN film on the wafer as a thin film. Therefore, a thin film containing Ti metal, such as a Ti film or a TiN film, is formed as the precoat film.
  • the TiN film is formed by nitriding the surface or the whole of the Ti film will be described as an example. The operation described below is performed based on the program stored in the storage medium 80.
  • the load is kept in the load lock chamber 72. In this state, no film is formed on the ejection surface 37 of the shower head 32 or the surface of the mounting table 28 immediately after cleaning.
  • a processing gas for example, TiCl gas as a film forming gas
  • Ar gas as a gas for plasma excitation, for example, H gas or the like is used.
  • the liquid is introduced into the processing container 14 from the shower head 32 at a predetermined flow rate.
  • the inside of the processing container 14 is evacuated by the vacuum pump 22 and maintained at a predetermined pressure.
  • a 450 kHz high frequency is applied from the high frequency power supply 68 to the shower head 32 as the upper electrode, and a high frequency electric field is applied between the shower head 32 and the lower electrode 29.
  • Ar gas is turned into plasma, and the reduction reaction between TiCl gas and H gas is promoted.
  • a Ti film is formed so as to cover the entire surface including the ejection surface 37 of the keyer head 32 and the upper surface of the mounting table 28.
  • This Ti film is set to have a thickness of about 20 nm (deposition time is about 60 sec), for example.
  • the temperature of the mounting table 28 is heated by the resistance heater 30 embedded in the mounting table 28 to the same temperature as the film forming process on the Weno and W.
  • the shower head 32 is heated to a predetermined temperature by a resistance heating heater 76. Normally, the temperature of the shower head 32 is set to a temperature of 400 ° C. or higher at which the Ti film or TiN film formed on the surface of the shower head is stabilized.
  • the mounting table temperature is, for example, about 600 ° C.
  • the process pressure is about 666.7 Pa
  • the high-frequency power is about 800 to 1000 W.
  • the gas flow rate is, for example, about 12 sccm for TiCl gas, H gas power OOOscc
  • Ar gas is about 1600sccm.
  • the processing vessel 14 is evacuated to eliminate residual gas. Then, the next nitriding process is started.
  • the flow rates of the nitriding gases NH, H and Ar are each controlled.
  • the Ti film is nitrided by forming a TiN film by supplying it under control and generating plasma by high frequency to activate each gas. At this time, only the surface of the Ti film is nitrided to form a TiN film, and the entire Ti film is nitrided to form a TiN film.
  • the process conditions at this time are, for example, a mounting table temperature of about 600 ° C., a process pressure of about 666.7 Pa, and a high-frequency power of about 800 W.
  • the gas flow rate is 1500scc for NH gas.
  • H gas is about 2000 sccm
  • Ar gas is about 1600 sccm
  • the nitriding time is 6
  • one precoat layer is formed.
  • the process conditions of the Ti film formation process and Ti film nitridation process that is, various gas flow rates, film thicknesses, and the like are substantially the same as those of the Ti film formation process and nitridation process performed on one product wafer. Set the same. Thereby, as will be described later, the film thickness of the precoat layer can be made more uniform in the plane.
  • the Ti film formation process and the Ti film nitridation process are repeated a predetermined number of times, for example, 33 to 40 times (cycles) in succession. Are laminated in multiple layers.
  • a precoat film 82 having a total thickness X is formed on the ejection surface 37 of the shower head 32, the upper surface of the mounting table 28, and the like.
  • a precoat film is also formed on the upper surface side of the mounting table 28 facing each other across the processing space S in a state substantially similar to the above.
  • the force is described so that the thickness X of the precoat film 82 is uniform.
  • the thickness X has a distribution that varies in-plane due to process conditions and the like. Become.
  • the thickness of the precoat film in this portion is smaller than “X”.
  • the process then proceeds to the actual film forming operation on the surface of the product wafer.
  • the load lock chamber 72 force is applied through the gate valve 74 (see Fig. 1) with the wafer W opened. Then, it is loaded into the processing container 14 and placed on the mounting table 28. Then, the film forming process for the wafer W is started in a state where the inside of the processing container 14 is airtight.
  • a Ti film is formed on the wafer surface.
  • the Ti film is formed with the same film formation gas and gas flow rate as those used in the previous precoat film 82 formation. That is, TiCl gas as the film forming gas, H gas as the reducing gas, and Ar as the plasma excitation gas.
  • a gas is introduced into the processing container 14 at a predetermined flow rate, and the processing container 4 is maintained at a predetermined pressure by evacuation. Then, a Ti film with a predetermined thickness is formed on the wafer surface by a plasma-assisted reduction reaction.
  • the gas flow rate is the same as that during the film formation of the precoat film.
  • the temperature of the mounting table is about 600 ° C
  • the process pressure is about 666.7 Pa
  • the high-frequency power is about 500 W.
  • the gas flow rate is about 12 sccm for TiCl gas, H gas power OOOsccm, for example.
  • the Ar gas is about 1600sccm.
  • the film formation time is, for example, about 30 seconds, thereby forming a Ti film having a thickness of about lOnm.
  • the inside of the processing container 14 is evacuated to remove the residual gas, and the next nitriding process is started.
  • the gas flow rate is the same as that of the previous precoat film formation.
  • the film formation temperature is, for example, about 600 ° C
  • the process pressure is about 666.7 Pa
  • the high frequency power is about 800 W.
  • the gas flow rate is about 1500sccm for NH gas and H gas.
  • a film deposited cumulatively is shown as an unnecessary adhesion film 84.
  • the cumulative total film thickness of the unnecessary adhesion film 84 immediately before the cleaning is indicated by “ ⁇ ′”.
  • a C1F gas such as C1F gas is used as the cleaning gas.
  • the thickness X of the precoat film 82 to be formed is set within the range represented by the following equation.
  • A is a film (precoat film 32 and unnecessary adhesion film 8) that adheres to the surface (jetting surface 37) of the discharge head 32 by plasma CVD using the above-described processing gas including a film forming gas.
  • ⁇ 4 is a maximum film thickness that is the maximum film thickness that does not peel from the surface (jetting surface 37) of the shower head 32.
  • B indicates the thickness of the film deposited on the surfaces of a plurality of semiconductor wafers W by the film forming process during the cleaning cycle (within a period of time until the next cleaning is executed).
  • This accumulated total film thickness B is usually substantially the same as the accumulated total film thickness of the unnecessary adhesion film 84 described above.
  • “C” is a radiation saturation film thickness that is the film thickness of the precoat film 82 such that the emissivity of the precoat film 82 is substantially saturated.
  • the radiation saturation film thickness C is shown so that the precoat film 82 on the surface of the shower head 32 and the precoat film on the mounting table 28 have substantially the same film thickness. This is because, as described above, the precoat film 82 is deposited on the lower surface of the shower head 32 and the upper surface of the mounting table 28 with substantially the same thickness. This point will be described in detail later. [0043] The reason why the precoat film 82 is formed to such a thickness that the radiation from the mounting table 28 and the shower head 32 is stabilized as described above is as follows.
  • the film forming process is started on a product wafer while the emissivity in the processing container 14 is not stable, an unnecessary adhesion film is deposited and the emissivity fluctuates every time one wafer is formed. .
  • the wafer temperature fluctuates slightly each time the product wafer is deposited, and this change in temperature causes a change in the film thickness on the wafer surface, thereby degrading the reproducibility of the film thickness. Therefore, by forming the precoat film 82 with a thickness equal to or greater than the radiation saturation film thickness C, the radiation from the mounting table 28 and the shower head 32 does not fluctuate even if the film formation process on the wafer is continued. can do.
  • the maximum film thickness A which is the maximum film thickness of the shutter head adhesion film including the precoat film 32 adhering to the ejection surface 37 and the unnecessary adhesion film 84, is peeled off from the ejection surface 37 . . Therefore, if the shower head adhering films 32 and 84 are thicker than the maximum film thickness A, the particles increase rapidly.
  • the total accumulated film thickness B is a value obtained by integrating and totaling the film thicknesses of each product wafer W. When this value reaches a predetermined value, tallying is performed.
  • the precoat film 8 2 deposited on the ejection surface 37 of the shower head 32 (the upper surface of the mounting table 28 is the same) generally has a film thickness distribution that varies depending on the location in the surface. (In the case of the conventional pre-coating method shown in FIG. 12, the film thickness distribution varies particularly greatly). In that case, the precoat film 82 may be formed so that the film thickness X of the precoat film 82 is in the range of the above-described formula (C ⁇ X ⁇ AB) at any part of the ejection surface 37.
  • the maximum film thickness A of the showerhead adhesion film will be described more specifically. This maximum film thickness A depends on the adhesion between the showerhead surface and the precoat film, and this adhesion depends on the material of the showerhead 32, the temperature, the film type of the precoat film 82, and the process conditions.
  • thermal CVD does not form a film at low temperatures.
  • the temperature of the shower head 32 needs to be set to a predetermined temperature or higher to strengthen the film attached to the shower head 32.
  • This temperature depends on the deposition gas. For example, Ti deposition using TiCl gas as the deposition gas as in this embodiment.
  • Adhesion with the recoat film 82 is enhanced.
  • the material of the shower head 32 of this embodiment is Ni, which is highly corrosion resistant and metal.
  • the upper limit of the temperature of the shower head 32 is 500 °. Set to C.
  • the adhesion of the precoat film is affected by the stress of the precoat film, and the higher the film stress, the easier it is to peel off. For this reason, it is necessary to reduce the film stress particularly near the boundary between the showerhead surface and the precoat film. Since the general film stress is greater in the TiN film than in the Ti film, it is preferable that the first layer of the precoat film is formed under the process conditions in which only the surface of the Ti film is nitrided after the Ti film is formed.
  • the Ti film is an extremely active metal and is immediately oxidized or etched into TiCl gas, which is the film forming gas. For this reason, the surface of the Ti film is nitrided
  • the film thickness X of the precoat film 82 is set within the range represented by the following equation.
  • “” is the radiation saturation film thickness at which the emissivity of the precoat film 82 is substantially saturated, as described above.
  • “D” indicates that the precoat film 82 has a phenomenon in which the number of generated particles begins to increase suddenly when a predetermined number of semiconductor wafers are formed while the film thickness of the precoat film 82 is gradually increased. It is a critical film thickness. here In the following, a case where 25 product wafers are formed is described.
  • the relationship with thickness reproducibility (thickness variation rate) was examined.
  • the precoat film thickness is changed within the range of 400 to 1400 nm.
  • the reproducibility of the wafer thickness is about 4.2% when the film thickness is 400 nm, and the reproducibility of the film thickness is improved to about 1.8% when the film thickness is 1400 nm. is doing. Therefore, the reproducibility of the film thickness tends to improve as the precoat film thickness increases. Therefore, it was confirmed that the lower limit of the precoat film thickness was necessary to ensure the reproducibility of the film thickness above a certain value.
  • the relationship between the thickness of the precoat film made of TiN, the transmittance, and the reflectance was measured.
  • the precoat film thickness is varied from Onm to a maximum of about 6 OOnm. Even if the TiN film is formed directly or formed by nitriding the Ti film, the optical characteristics such as transmittance and reflectance will not change.
  • the transmittance of the precoat film gradually decreases as the film thickness increases, and the transmittance becomes substantially zero at a film thickness of 200 nm.
  • the reflectance gradually increases as the precoat film thickness increases, and is substantially saturated at about 40%.
  • the emissivity is a force that changes from zero to 500 nm in bricote thickness. Above this, the force S can be kept constant.
  • the number of particles generated when 25 wafers were processed and the brico The relationship with the film thickness was examined.
  • the precoat film thickness is changed in the range of about 200 to 750 nm.
  • the number of particles was almost zero until the precoat film thickness was around 600 nm.
  • the number of particles gradually increased when the precoat film thickness exceeded 600 nm. It was confirmed that the number of particles rapidly increased when the precoat film thickness exceeded the range of about 700 to 720 nm, and that the number of particles exceeded 100 when the film thickness was larger than 720 nm.
  • the precoat film thickness is set so as to be within such an optimal range, the minimum film thickness of the precoat film 82 in which the emissivity does not substantially vary even when the film formation process on the wafer W is started. While ensuring, it is possible to suppress the generation of particles by peeling off an unnecessary attached film attached to the shower head 32 during the film forming process. As a result, the reproducibility of the film thickness of the thin film formed on Ueno and W can be improved while suppressing the generation of particles in the processing container 14.
  • the flow rate of the deposition gas (TiCl gas) at the time of forming the precoat film 82 is reduced.
  • the flow rate is set to be the same as the flow rate at the time of film formation of the product wafer.
  • the in-plane uniformity of the film thickness of the formed precoat film 82 can be improved. Further, if the in-plane uniformity of the film thickness of the precoat film 82 itself is increased, that is, if the film thickness distribution is suppressed, the integrated total film thickness B until it deviates from the above equation (C ⁇ X ⁇ A—B) is obtained. Can be enlarged. Therefore, the cleaning cycle can be lengthened and more product wafers can be formed during that period.
  • FIG. 7A and FIG. 7B are schematic diagrams for explaining the presence or absence of particles in the conventional precoat method and the precoat method of the present invention.
  • a precoat film 82 composed of a multi-layer precoat layer is formed on the spray surface of the lower surface of the shower head 32, and an unnecessary attachment attached during the film forming process of the product wafer.
  • the deposited film 84 is deposited.
  • a large amount of TiCl gas, which is a film forming gas, is supplied, so that the film thickness of the pre-coating film 82 around the shower head 32 is reduced.
  • the flow rate of TiCl gas when forming the precoat film 82 is set lower than that in the conventional method, and is the same as when forming a product wafer.
  • the precoat film 82 is formed with high in-plane uniformity of film thickness.
  • an unnecessary adhesion film 84 is deposited with a uniform thickness during the film forming process of the product wafer, and the film thickness of the showerhead adhesion film does not exceed the maximum film thickness A as a whole. As a result, the generation of particles can be suppressed.
  • FIG. 7C shows an example of the process conditions at this time and the thickness of the obtained precoat film.
  • the difference between the maximum value and the minimum value of the precoat film thickness was 105 nm in the case of the conventional method.
  • the difference is only 25 nm, indicating that the in-plane uniformity of the precoat film thickness is improved.
  • a precoat film having the same thickness as the surface of the mounting table is deposited on the surface of the shower head. Verification of power was conducted.
  • FIG. 9 is a graph comparing the thicknesses of precoat films formed on the surfaces of the mounting table and the shower head.
  • a wafer is placed on the mounting table, and the precoat film deposited on the wafer surface is used as the thickness of the precoat film deposited on the surface of the mounting table.
  • the precoat film deposited on the wafer surface is used as the thickness of the precoat film deposited on the surface of the mounting table.
  • three samples of the precoat film 82 deposited on the lower surface of the shower head 32 are sampled and measured. As is apparent from FIG.
  • the film thickness of the precoat film adhering to the mounting table (Ueno) and the film thickness of the precoat film adhering to the surface of the shower head substantially correspond to each other. Therefore, the film thickness of the precoat film adhering to the surface of the showerhead can be analogized by measuring the film thickness of the precoat film deposited on the surface of the mounting table or the surface of the wafer mounted on the mounting table. Is half IJ.
  • FIG. 10 shows a film thickness distribution of a precoat film formed on a wafer having a diameter of 300 mm by a conventional precoat method.
  • Fig. 10 it can be seen that the inner side of the periphery of the wafer is almost uniformly stable, whereas the film thickness of the periphery of the wafer is significantly thicker. Specifically, when a precoat film having a thickness of about 650 nm is formed, a film thickness difference of about 2 OOnm at maximum occurs.
  • a precoat film is also formed on the surface of the showerhead with a similar film thickness distribution.
  • FIG. 11 shows the result of examining the film thickness distribution of the precoat film by the method of the present invention in the same manner. As is apparent from FIG. 11, the film thickness is uniformly adhered to the entire surface of the wafer. Therefore, according to the method of the present invention, it can be presumed that the precoat film is deposited on the surface of the shower head in a uniform state, and it can be seen that generation of particles due to film peeling can be suppressed. This point is as described with reference to FIG. 7B.
  • the other metal-containing film may be a thin film containing tantalum, tantalum nitride, tungsten, tungsten nitride, or the like.
  • the present invention is not limited to this, and the present invention can be applied to the case of film forming by thermal CVD. Any method is acceptable.
  • the present invention is not limited to this, and the present invention can be applied to a glass substrate, an LCD substrate, a ceramic substrate, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

This invention provides a method for precoating the inside of a vacuum treatment vessel for receiving therein an object to be treated in a plasma CVD film forming apparatus. This method is characterized by supplying a treatment gas into a treatment vessel in which any object to be treated has not been received, to form a precoating film (82) having a thickness X falling within a thickness range represented by the following formula: C ≤ X ≤ A - B wherein A represents the maximum film thickness which is the unseparable maximum thickness of films (82, 84) deposited on a surface (34) of a shower head within the treatment vessel by plasma CVD using the treatment gas; B represents the cumulated total film thickness obtained by cumulating the thickness of films deposited on the surface of a plurality of objects by film formation treatment in a cleaning period; and C represents the radiation saturated film thickness which is the thickness of the precoating film which causes substantial saturation of emissivity of the precoating film (82).

Description

明 細 書  Specification
成膜装置のプリコート方法  Pre-coating method for film forming apparatus
技術分野  Technical field
[0001] 本発明は、半導体ウェハ等の被処理体の表面にプラズマ CVDにより薄膜を堆積さ せる成膜装置の真空処理容器内にプリコートを施す方法に関する。  [0001] The present invention relates to a method for pre-coating in a vacuum processing container of a film forming apparatus for depositing a thin film by plasma CVD on the surface of an object to be processed such as a semiconductor wafer.
背景技術  Background art
[0002] 一般に、半導体集積回路を製造するためには、半導体ウェハ等の基板に対して、 成膜処理、エッチング処理、酸化拡散処理、ァニール処理、改質処理等の各種の処 理を繰り返し行って多数の所望する素子を形成することになる。成膜処理を例にとれ ば、形成される膜厚は、ウェハ面内において均一であることが必要であるば力りでな ぐウェハ同士の間でも均一性がよぐいわゆる膜厚の再現性が良好であることが求 められる。  [0002] Generally, in order to manufacture a semiconductor integrated circuit, various processes such as a film formation process, an etching process, an oxidation diffusion process, an annealing process, and a modification process are repeatedly performed on a substrate such as a semiconductor wafer. Thus, a large number of desired elements are formed. Taking film formation as an example, the film thickness to be formed must be uniform within the wafer surface. Is required to be good.
[0003] ところで、例えば枚葉式の成膜装置にあっては、所定の期間毎に処理容器内へタリ 一ユングガス(エッチングガス)を流してクリーニング処理を行うようにして 、る。これに より、処理容器内にガスを供給するシャワーヘッドの表面、ウェハを載置する載置台 の表面、処理容器の内壁面、或いはその他の容器内構造物の表面に付着した不要 な付着膜を除去する。  [0003] By the way, for example, in a single-wafer type film forming apparatus, a cleaning process is performed by flowing a tung gas (etching gas) into a processing container every predetermined period. As a result, an unnecessary adhesion film adhering to the surface of the shower head that supplies gas into the processing container, the surface of the mounting table on which the wafer is placed, the inner wall surface of the processing container, or the surface of other internal structure of the container is removed. Remove.
[0004] このようなクリーニング処理を行った直後は、処理容器内の各構造物の輻射率等の 熱的影響が安定していない。そこで、直ちに製品ウェハに対して処理を施すのでは なぐウェハを処理容器内へ搬入しない状態で、いわゆるプリコート膜の成膜処理を 行うようにしている(特開 2000— 277459号公報、特開 2002— 167673号公報、特 開 2004— 285469号公報)。このプリコート膜の成膜処理は、処理容器内へウェハ 成膜時と同じガスを流して、容器内構造物の表面に或る程度の厚さで膜を付着させ るものである。  [0004] Immediately after such a cleaning process is performed, thermal effects such as the emissivity of each structure in the processing container are not stable. In view of this, the so-called pre-coating film forming process is performed in a state in which the product wafer is not carried into the processing container immediately without processing the product wafer (Japanese Patent Laid-Open Nos. 2000-277459 and 2002). — No. 167673, JP 2004-285469). In this film formation process of the precoat film, the same gas as that used for film formation of the wafer is flowed into the processing container to deposit the film on the surface of the structure in the container with a certain thickness.
[0005] このプリコート膜を形成するプリコート処理は、一般的には多数の製品ウェハの処 理に要する時間に相当する処理時間を要する。このプリコート膜は、膜厚が厚ければ 厚い程、熱的安定性が向上して製品ウェハに対する膜厚の再現性が向上する。そこ で、製品ウェハの成膜処理の場合よりも多くの流量の成膜ガスを流して、可能な限り 早ぐ或る程度の厚さのプリコート膜を形成するようにしている。これにより、プリコート 処理を短時間で終了させて、直ちに製品ウェハの成膜処理に着手して生産性を向 上させるようにしている。 [0005] The precoat process for forming the precoat film generally requires a processing time corresponding to the time required for processing a large number of product wafers. The thicker the precoat film, the better the thermal stability and the better the film thickness reproducibility on the product wafer. There Therefore, a pre-film having a certain thickness is formed as soon as possible by flowing a film-forming gas at a higher flow rate than in the film-forming process of the product wafer. As a result, the pre-coating process is completed in a short time, and the product wafer film forming process is immediately started to improve productivity.
発明の開示  Disclosure of the invention
[0006] ところで、上述したような従来のプリコート方法にあっては、プリコート処理を短時間 で終了させることはできる。し力しながら、プリコート処理時において製品ウェハの成 膜処理時よりも多量の成膜ガスを流す結果、特にシャワーヘッドの表面の周辺部に プリコート膜が他の部分よりも厚く付着する傾向となる。その結果、製品ウェハの成膜 処理へ移行した時に、シャワーヘッドの周辺部における付着膜が比較的早目に剥が れ落ち易くなり、製品の欠陥の原因となるパーティクルが発生する、といった問題があ つた o  By the way, in the conventional precoat method as described above, the precoat process can be completed in a short time. However, as a result of flowing a larger amount of film deposition gas during pre-coating than during film deposition of the product wafer, the pre-coating film tends to adhere to the periphery of the surface of the shower head more thickly than other parts. . As a result, there is a problem that when the process moves to the film forming process of the product wafer, the adhered film around the shower head is easily peeled off relatively quickly, and particles that cause product defects are generated. I
[0007] この点に関して図 12を参照して説明する。図 12は、多量の成膜ガスを流してブリコ 一ト膜を形成した場合の、シャワーヘッド 2に付着したプリコート膜 4の膜厚分布を示 す図である。図示するように、シャワーヘッド 2の下面に付着したプリコート膜 4は、そ の中心部の厚さ HIよりも周辺部の厚さ H2の方がかなり厚くなるような膜厚分布を有 している。また、図 12には、所定の枚数の製品ウェハ Wに対して連続的に成膜処理 を施した場合における、最後に処理されたウェハ Wの表面におけるパーティクルの 分布状況(図中のドット部分)が示されている。図示するように、パーティクルはウェハ Wの周辺部に多く分布している。これは、シャワーヘッド 2の周辺部に付着した堆積 膜が早目に剥がれ落ちてパーティクルとなって ヽることが原因と考えられる。  [0007] This point will be described with reference to FIG. FIG. 12 is a diagram showing the film thickness distribution of the precoat film 4 adhered to the shower head 2 when a bricote film is formed by flowing a large amount of film forming gas. As shown in the figure, the precoat film 4 adhered to the lower surface of the shower head 2 has a film thickness distribution in which the peripheral thickness H2 is considerably thicker than the central thickness HI. . FIG. 12 shows the distribution of particles on the surface of the last processed wafer W (dots in the figure) when a predetermined number of product wafers W are continuously formed. It is shown. As shown in the figure, many particles are distributed around the periphery of the wafer W. This is thought to be because the deposited film adhering to the periphery of the shower head 2 peels off quickly and turns into particles.
[0008] 本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたもの である。本発明の目的は、成膜処理時にシャワーヘッドに付着した不要な付着膜が 剥がれ落ちてパーティクルが発生することを抑制できるような、成膜装置のプリコート 方法を提供することにある。  [0008] The present invention has been devised to pay attention to the above problems and to effectively solve them. An object of the present invention is to provide a pre-coating method for a film forming apparatus that can suppress generation of particles by peeling off an unnecessary attached film attached to a shower head during film forming processing.
[0009] この目的を達成するために、本発明は、  [0009] To achieve this object, the present invention provides:
成膜装置の真空処理容器内にプリコートを施す方法であって、  A method of applying a precoat in a vacuum processing container of a film forming apparatus,
前記処理容器は、成膜ガスを含む処理ガスを供給するシャワーヘッドが内部に設 けられ、 The processing container is provided with a shower head for supplying a processing gas including a film forming gas. And
前記成膜装置は、被処理体を収容した前記処理容器内に前記処理ガスを供給し て被処理体の表面にプラズマ CVDにより薄膜を堆積させるように構成されて ヽる、成 膜装置のプリコート方法にお!ヽて、  The film forming apparatus is configured to supply the processing gas into the processing container containing the target object and deposit a thin film on the surface of the target object by plasma CVD. Hurry up in the way!
被処理体を収容して ヽな ヽ前記処理容器内へ前記処理ガスを供給して、プラズマ CVDにより、以下の式で表される範囲内の厚さ Xを有するプリコート膜を形成すること を特徴とするプリコート方法を提供する:  A pre-coating film having a thickness X within a range represented by the following formula is formed by plasma CVD by supplying the processing gas into the processing container and storing the object to be processed. Provide a pre-coating method with:
C≤X≤A— B  C≤X≤A— B
Aは、前記処理ガスを用いたプラズマ CVDによって前記シャワーヘッドの表面に付 着するシャワーヘッド付着膜の、前記シャワーヘッドの表面力 剥離しな 、最大限の 膜厚である最大膜厚;  A is a maximum film thickness that is the maximum film thickness of the shower head adhesion film that adheres to the surface of the shower head by plasma CVD using the processing gas without peeling off the surface force of the shower head;
Bは、クリーニング周期間の成膜処理によって複数の被処理体の表面に堆積される 膜の厚さを積算した積算総膜厚;  B is an integrated total film thickness obtained by integrating the thicknesses of films deposited on the surfaces of a plurality of objects to be processed by the film forming process during the cleaning cycle;
Cは、前記プリコート膜の輻射率が実質的に飽和するような当該プリコート膜の膜厚 である輻射飽和膜厚。  C is a radiation saturation film thickness that is a film thickness of the precoat film such that the emissivity of the precoat film is substantially saturated.
また本発明は、  The present invention also provides
成膜装置の真空処理容器内にプリコートを施す方法であって、  A method of applying a precoat in a vacuum processing container of a film forming apparatus,
前記処理容器は、成膜ガスを含む処理ガスを供給するシャワーヘッドが内部に設 けられ、  The processing container is provided with a shower head for supplying a processing gas including a film forming gas,
前記成膜装置は、被処理体を収容した前記処理容器内に前記処理ガスを供給し て被処理体の表面にプラズマ CVDにより薄膜を堆積させるように構成されて ヽる、成 膜装置のプリコート方法にお!ヽて、  The film forming apparatus is configured to supply the processing gas into the processing container containing the target object and deposit a thin film on the surface of the target object by plasma CVD. Hurry up in the way!
被処理体を収容して ヽな ヽ前記処理容器内へ前記処理ガスを供給して、プラズマ CVDにより、以下の式で表される範囲内の厚さ Xを有するプリコート膜を形成すること を特徴とするプリコート方法を提供する:  A pre-coating film having a thickness X within a range represented by the following formula is formed by plasma CVD by supplying the processing gas into the processing container and storing the object to be processed. Provide a pre-coating method with:
C≤X≤D  C≤X≤D
Cは、前記プリコート膜の輻射率が実質的に飽和するような当該プリコート膜の膜厚 である輻射飽和膜厚; Dは、前記プリコート膜の膜厚を次第に増やしながら、それぞれ一定枚数の半導体 ウェハを成膜処理した場合に、パーティクル発生数が急激に増加し始める現象の現 れるようなプリコート膜の膜厚である臨界膜厚。 C is a radiation saturation film thickness that is the film thickness of the precoat film such that the emissivity of the precoat film is substantially saturated; D is the film thickness of the precoat film in which the phenomenon that the number of generated particles begins to increase suddenly when a predetermined number of semiconductor wafers are formed while gradually increasing the film thickness of the precoat film. Critical film thickness.
[0011] 後者の方法において、例えば、前記薄膜は Ti含有膜であり、前記輻射飽和膜厚( C)は 500nmであり、前記臨界膜厚 (D)は 720nmである。また、例えば前記薄膜は 、被処理体の表面に Ti膜を堆積させた後に、当該 Ti膜の少なくとも表面を窒化する こと〖こより形成される。 [0011] In the latter method, for example, the thin film is a Ti-containing film, the radiation saturation film thickness (C) is 500 nm, and the critical film thickness (D) is 720 nm. For example, the thin film is formed by depositing a Ti film on the surface of the object to be processed and then nitriding at least the surface of the Ti film.
[0012] これらのプリコート方法によれば、被処理体に対する成膜処理を開始しても実質的 に幅射率が変動しな 、プリコート膜の最小限の膜厚を確保しつつ、成膜処理時にシ ャヮーヘッドに付着した不要な付着膜が剥がれ落ちてパーティクルが発生することを 抑制することができる。これにより、処理容器内でのパーティクル発生を抑制しつつ、 被処理体に形成される薄膜の膜厚の均一性を高くすることができる。従って、膜厚の 再現性を向上させることができる。  [0012] According to these pre-coating methods, the film forming process is performed while ensuring the minimum film thickness of the pre-coating film without substantially changing the width emissivity even when the film forming process on the object to be processed is started. Occasionally, unnecessary adhesion film adhering to the share head is prevented from peeling off and particles can be prevented from being generated. Thereby, the uniformity of the film thickness of the thin film formed in a to-be-processed object can be made high, suppressing generation | occurrence | production of the particle in a processing container. Therefore, the reproducibility of the film thickness can be improved.
[0013] 前記プリコート膜は、複数のプリコート層を順次積層することによって形成されること が好ましい。 [0013] The precoat film is preferably formed by sequentially laminating a plurality of precoat layers.
[0014] これにより、特にシャワーヘッドの表面におけるプリコート膜の膜厚を均一化すること ができる。この結果、シャワーヘッドに付着した不要な付着膜が剥がれ落ちてパーテ イタルが発生するまでに、より多くの被処理体の成膜処理を行うことができ、すなわち クリーニング周期を長くでき、その分、生産性を向上させることができる。  [0014] Thereby, it is possible to make the film thickness of the precoat film particularly uniform on the surface of the shower head. As a result, it is possible to carry out a film forming process for a larger number of objects to be processed before an unnecessary adhering film adhering to the shower head is peeled off and a partition is generated, that is, the cleaning cycle can be lengthened. Productivity can be improved.
[0015] 複数のプリコート層を順次積層してプリコート膜を形成する場合、各プリコート層は、 それぞれ前記被処理体の表面に薄膜を堆積させるときに供給する前記成膜ガスの 流量と同じ流量で前記成膜ガスを供給して形成されることが好ましい。これにより、プ リコート膜の膜厚の面内均一性をより一層向上させることができる。  [0015] When forming a precoat film by sequentially laminating a plurality of precoat layers, each precoat layer has the same flow rate as the flow rate of the film forming gas supplied when depositing a thin film on the surface of the object to be processed. Preferably, the film forming gas is supplied to form the film. Thereby, the in-plane uniformity of the precoat film thickness can be further improved.
[0016] 本発明はまた、上述したプリコート方法を実行するように前記成膜装置を制御する プログラムを記憶した記憶媒体を提供する。 図面の簡単な説明  The present invention also provides a storage medium storing a program for controlling the film forming apparatus so as to execute the above-described precoat method. Brief Description of Drawings
[0017] [図 1]は、本発明のプリコート方法が適用される成膜装置の一例を示す模式図; [0017] FIG. 1 is a schematic diagram showing an example of a film forming apparatus to which the precoat method of the present invention is applied;
[図 2]は、図 1の装置におけるシャワーヘッドと載置台の表面にプリコート膜を含む膜 が堆積した状態を模式的に示す図; [FIG. 2] is a film including a precoat film on the surface of the shower head and the mounting table in the apparatus of FIG. The figure which shows the state which accumulated
[図 3]は、プリコート膜厚と、ウェハ表面に形成される膜厚の再現性との関係を示すグ ラフ;  [Figure 3] is a graph showing the relationship between the precoat film thickness and the reproducibility of the film thickness formed on the wafer surface;
[図 4A]は、 TiN膜の膜厚と透過率との関係を示すグラフ;  [Fig. 4A] is a graph showing the relationship between the thickness of TiN film and transmittance;
[図 4B]は、 TiN膜の膜厚と反射率との関係を示すグラフ;  [Figure 4B] is a graph showing the relationship between TiN film thickness and reflectance;
[図 5]は、プリコート膜厚と成膜処理時に発生したパーティクル数との関係を示すダラ フ;  [Figure 5] is a graph showing the relationship between the precoat film thickness and the number of particles generated during the film formation process;
[図 6]は、プリコート膜厚の最適範囲を説明するためのグラフ;  [Figure 6] is a graph to explain the optimum range of precoat film thickness;
[図 7A]は、従来のプリコート方法におけるパーティクルの発生を説明するための模式 図;  [FIG. 7A] is a schematic diagram for explaining generation of particles in a conventional pre-coating method;
[図 7B]は、本発明のプリコート方法におけるパーティクル発生の抑制を説明するため の模式図;  FIG. 7B is a schematic diagram for explaining suppression of particle generation in the precoat method of the present invention;
[図 7C]は、従来方法および本発明方法についての、プロセス条件および得られたプ リコート膜厚のデータを示す表;  [FIG. 7C] is a table showing the process conditions and the precoat film thickness data obtained for the conventional method and the method of the present invention;
[図 8]は、従来のプリコート方法と本発明のプリコート方法とでパーティクル発生数の 変化を比較して示すグラフ;  [Fig. 8] is a graph showing a comparison of changes in the number of particles generated between the conventional pre-coating method and the pre-coating method of the present invention;
[図 9]は、載置台とシャワーヘッドとで、それぞれの表面に形成されるプリコート膜の厚 さを比較したグラフ;  [Fig. 9] is a graph comparing the thickness of the precoat film formed on the surface between the mounting table and the shower head;
[図 10]は、従来のプリコート方法によりウェハ表面に付着したプリコート膜の膜厚分布 を示すグラフ;  [Fig. 10] is a graph showing the film thickness distribution of the precoat film deposited on the wafer surface by the conventional precoat method;
[図 11]は、本発明のプリコート方法によりウェハ表面に付着したプリコート膜の膜厚分 布を示すグラフ;  FIG. 11 is a graph showing the film thickness distribution of the precoat film adhered to the wafer surface by the precoat method of the present invention;
[図 12]は、シャワーヘッド表面に付着したプリコート膜の膜厚分布と、半導体ウェハ表 面のパーティクルの分布とを示す図である。  FIG. 12 is a diagram showing the film thickness distribution of the precoat film adhering to the showerhead surface and the particle distribution on the surface of the semiconductor wafer.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下に、本発明による成膜装置のプリコート方法の一実施形態を添付図面に基づ いて詳述する。 Hereinafter, an embodiment of a pre-coating method for a film forming apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
[0019] 本実施形態では、図 1に示す成膜装置により、薄膜として金属含有膜である Ti (チ タン)膜および TiN (チタンナイトライド)膜を形成する場合を例にとつて説明する。 In the present embodiment, the film forming apparatus shown in FIG. (Tan) film and TiN (titanium nitride) film will be described as an example.
[0020] 図 1に示す成膜装置 12は、円筒体状に成形された処理容器 14を有しており、この 処理容器 14は接地されている。この処理容器 14の底部 16には、容器内の雰囲気を 排出するための排気口 18が設けられており、この排気口 18には圧力調整弁 20や真 空引きポンプ 22を介設した排気系 24が接続されて、処理容器 14内を底部周辺部か ら均一に真空引きできるようになつている。 A film forming apparatus 12 shown in FIG. 1 has a processing container 14 formed in a cylindrical shape, and the processing container 14 is grounded. An exhaust port 18 is provided at the bottom 16 of the processing vessel 14 for discharging the atmosphere in the vessel. The exhaust port 18 is provided with an exhaust system having a pressure adjusting valve 20 and a vacuum pump 22 interposed therebetween. 24 is connected so that the inside of the processing vessel 14 can be uniformly evacuated from the bottom peripheral portion.
[0021] この処理容器 14には窒化アルミニウム (A1N)よりなる中空の支柱 26に溶着されて 、 A1Nよりなる円板状の載置台 28が設けられており、この上に被処理体として例えば 半導体ウエノ、 Wを載置し得るようになつている。この載置台 28にはメッシュ状の金属 材料力もなる下部電極 29と加熱手段として抵抗加熱ヒータ 30が埋設されて 、る。下 部電極 29は接地されており、抵抗加熱ヒータ 30には図示しない電源カゝら給電される ことにより、載置台 28が所定の温度に加熱される。  [0021] The processing vessel 14 is welded to a hollow support 26 made of aluminum nitride (A1N), and is provided with a disk-like mounting table 28 made of A1N. Ueno and W can be placed. The mounting table 28 is embedded with a lower electrode 29 having a mesh-like metal material force and a resistance heater 30 as a heating means. The lower electrode 29 is grounded, and the mounting table 28 is heated to a predetermined temperature by supplying power to the resistance heater 30 from a power supply (not shown).
[0022] 処理容器 14の天井部には、上部電極と兼用されるガス供給手段としてのシャワー ヘッド 32がー体的に設けられた天井板 34が容器側壁に対して絶縁材 36を介して気 密に取り付けられている。このシャワーヘッド 32は、上記載置台 28の上面の略全面 を覆うように対向させて設けられており、載置台 28との間に処理空間 Sを形成してい る。このシャワーヘッド 32は、処理空間 Sに各種のガスをシャワー状に導入するもの であり、シャワーヘッド 32の下面の噴射面 37にはガスを噴射するための多数の噴射 孔 39が形成される。また、このシャワーヘッド 32の内部には、多数の拡散孔 38を有 する拡散板 40が設けられてガスを拡散できるようになって 、る。  [0022] A ceiling plate 34 provided with a shower head 32 as a gas supply means also serving as an upper electrode is provided on the ceiling of the processing vessel 14 through an insulating material 36 with respect to the side wall of the vessel. Closely attached. The shower head 32 is provided so as to face almost the entire upper surface of the mounting table 28, and a processing space S is formed between the shower head 32 and the mounting table 28. This shower head 32 introduces various gases into the processing space S in a shower form, and a plurality of injection holes 39 for injecting gas are formed on the injection surface 37 on the lower surface of the shower head 32. In addition, a diffusion plate 40 having a large number of diffusion holes 38 is provided inside the shower head 32 so that gas can be diffused.
[0023] そして、このシャワーヘッド 32の上部には、ヘッド内にガスを導入するガス導入ポー ト 42が設けられており、このガス導入ポート 42にはガスを流す複数、例えば 2本の供 給通路 44、 46が接続されている。  [0023] A gas introduction port 42 for introducing gas into the head is provided above the shower head 32, and a plurality of, for example, two supply gas flows through the gas introduction port 42. Passages 44 and 46 are connected.
[0024] 一方の供給通路 44には、複数の分岐管 48が接続され、各分岐管 48には、成膜ガ スとして、例えば TiClガスを貯留する TiClガス源 50、還元ガスとして Hガスを貯留  [0024] A plurality of branch pipes 48 are connected to one supply passage 44, and each branch pipe 48 is supplied with a film forming gas, for example, a TiCl gas source 50 for storing TiCl gas, and H gas as a reducing gas. Storage
4 4 2 する Hガス源 52、プラズマ励起用ガスとして例えば Arガスを貯留する Arガス源 54、 4 4 2 H gas source 52, Ar gas source 54 for storing, for example, Ar gas as plasma excitation gas,
2 2
クリーニング時に使用するクリーニングガスとして C1F系ガス、例えば C1Fガスを貯留  C1F-based gas, for example C1F gas, is stored as the cleaning gas used for cleaning
3 する C1Fガス源 56がそれぞれ接続されている。また、他方の供給通路 46には、 NH ガスを貯留する NHガス源 58が接続される。尚、図示されてないが必要に応じて N2 3 C1F gas sources 56 are connected. The other supply passage 46 has NH An NH gas source 58 for storing gas is connected. Although not shown, if necessary, N2
3  Three
ガスを供給するガス供給系も接続される。そして、各ガスの給配および流量の制御は 、それぞれの分岐管 48および供給通路 44に介設した開閉弁 60および流量制御器 、例えばマスフローコントローラ 62によりそれぞれ制御される。  A gas supply system for supplying gas is also connected. The distribution and flow rate of each gas are controlled by an on-off valve 60 and a flow rate controller such as a mass flow controller 62 provided in each branch pipe 48 and supply passage 44, respectively.
[0025] また、天井板 34には、 Ti成膜時および Ti膜を窒化する時のプラズマを形成するた めに、リード線 64を介してマッチング回路 66および例えば 13. 56MHzのプラズマ用 の高周波電源 68が接続されている。また、処理容器 14の側壁にはこの壁面の温度 調節を行うために、必要に応じて抵抗加熱ヒータ 70が挿入され、この抵抗加熱ヒータ 70は図示しない温調器に接続される。この容器側壁には、ロードロック室 72との間で ウェハの搬入'搬出時に気密に開閉可能になされたゲートバルブ 74が設けられる。 更に、上記シャワーヘッド 32にも温度調節を行うために、抵抗加熱ヒータ 76が設けら れ、この抵抗加熱ヒータ 76は図示しな 、温調器に接続される。  [0025] Further, in order to form plasma when Ti film is formed and when the Ti film is nitrided, a matching circuit 66 and a high frequency for plasma of 13.56 MHz, for example, are formed on the ceiling plate 34 via a lead wire 64. Power supply 68 is connected. Further, in order to adjust the temperature of the wall surface, a resistance heater 70 is inserted into the side wall of the processing vessel 14 as necessary, and the resistance heater 70 is connected to a temperature controller (not shown). On the side wall of the container, there is provided a gate valve 74 that can be opened and closed airtightly when the wafer is loaded into and unloaded from the load lock chamber 72. Further, the shower head 32 is also provided with a resistance heater 76 for temperature adjustment, and the resistance heater 76 is connected to a temperature controller (not shown).
[0026] そして、この装置全体の動作は、例えばマイクロコンピュータ等よりなる制御部 78に よって制御される。この制御部 78は、後述するプリコート処理や成膜処理等の一連の 動作を行うプログラムを記憶する記憶媒体 80を有して 、る。この記憶媒体 80としては 、例えばフレキシブルディスク、 CD-ROM, DVD,ハードディスク等を用いることが できる。  [0026] The operation of the entire apparatus is controlled by a control unit 78 including, for example, a microcomputer. The control unit 78 includes a storage medium 80 that stores a program for performing a series of operations such as a pre-coating process and a film forming process described later. As the storage medium 80, for example, a flexible disk, a CD-ROM, a DVD, a hard disk, or the like can be used.
[0027] 次に、以上のように構成された装置に基づいて行なわれる成膜方法ついて図 2も参 照して説明する。図 2はシャワーヘッド 32の下面である噴射面 37と載置台 28に薄膜 (プリコート膜)が堆積した状態を模式的に示す図である。  Next, a film forming method performed based on the apparatus configured as described above will be described with reference to FIG. FIG. 2 is a view schematically showing a state in which a thin film (precoat film) is deposited on the ejection surface 37 and the mounting table 28 which are the lower surfaces of the shower head 32.
[0028] 前述したように、所定の枚数のウェハ処理を行う毎、或いはウェハに対する積算総 膜厚が所定の量になる毎等の一定の周期毎に、容器内構造物の表面に付着した不 要な付着膜を除去するクリーニング処理を行う。このクリーニング処理を行った後は、 半導体ウェハに実際に成膜する前に膜厚変動の原因となる処理容器内の輻射率、 特にシャワーヘッドや載置台からの輻射を安定ィ匕させるためにプリコート処理を行う。  [0028] As described above, every time a predetermined number of wafers are processed, or every predetermined period such as every time the total total film thickness on the wafer reaches a predetermined amount, the non-adhering material adhered to the surface of the internal structure of the container. A cleaning process for removing the necessary adhered film is performed. After this cleaning process is performed, pre-coating is performed to stabilize the radiation rate in the processing vessel that causes film thickness fluctuations, especially radiation from the shower head and mounting table, before actually depositing the film on the semiconductor wafer. Process.
[0029] 本発明方法においては、ウェハ成膜時と同種のガスを用いてシャワーヘッド 32の 表面や載置台 28の表面などの容器内構造物の表面に成膜を施してプリコート膜を 形成する。この場合、ウェハには、薄膜として Ti膜および TiN膜を形成することを目 的としていることから、このプリコート膜として Ti金属を含有させた薄膜、例えば Ti膜 や TiN膜を形成することになる。ここでは、上記 Ti膜の表面、或いは全体を窒化させ て TiN膜を形成する場合を例にとって説明する。また以下に説明する動作は、上記 記憶媒体 80に記憶されたプログラムに基づいて行われる。 In the method of the present invention, a precoat film is formed by forming a film on the surface of the in-container structure such as the surface of the shower head 32 and the surface of the mounting table 28 using the same kind of gas as that used when forming the wafer. . In this case, it is intended to form a Ti film and a TiN film on the wafer as a thin film. Therefore, a thin film containing Ti metal, such as a Ti film or a TiN film, is formed as the precoat film. Here, the case where the TiN film is formed by nitriding the surface or the whole of the Ti film will be described as an example. The operation described below is performed based on the program stored in the storage medium 80.
[0030] <プリコート処理 > [0030] <Precoat treatment>
まず、半導体ウェハ Wを処理容器 14内に導入することなぐこれを例えばロードロッ ク室 72に待機させておく。この状態では、クリーニング直後のシャワーヘッド 32の噴 射面 37や載置台 28の表面には何ら膜が形成されて 、な 、。  First, without introducing the semiconductor wafer W into the processing container 14, for example, the load is kept in the load lock chamber 72. In this state, no film is formed on the ejection surface 37 of the shower head 32 or the surface of the mounting table 28 immediately after cleaning.
このように、載置台 28上に何も載置していない状態において、処理ガスとして、成 膜ガスである TiClガスの他、例えば Hガスやプラズマ励起用ガスとしての Arガスを  Thus, in a state where nothing is placed on the placing table 28, as a processing gas, for example, TiCl gas as a film forming gas, Ar gas as a gas for plasma excitation, for example, H gas or the like is used.
4 2  4 2
、シャワーヘッド 32からそれぞれ所定の流量で処理容器 14内に導入する。一方、真 空引きポンプ 22により処理容器 14内を真空引きし、所定の圧力に維持する。  Then, the liquid is introduced into the processing container 14 from the shower head 32 at a predetermined flow rate. On the other hand, the inside of the processing container 14 is evacuated by the vacuum pump 22 and maintained at a predetermined pressure.
[0031] これと同時に、高周波電源 68より、 450kHzの高周波を上部電極であるシャワーへ ッド 32に印加して、シャワーヘッド 32と下部電極 29との間に高周波電界を加える。こ れにより、 Arガスがプラズマ化されて、 TiClガスと Hガスとの還元反応を推進し、シ At the same time, a 450 kHz high frequency is applied from the high frequency power supply 68 to the shower head 32 as the upper electrode, and a high frequency electric field is applied between the shower head 32 and the lower electrode 29. As a result, Ar gas is turned into plasma, and the reduction reaction between TiCl gas and H gas is promoted.
4 2  4 2
ャヮーヘッド 32の噴射面 37や載置台 28の上面を含む表面全体にこれを覆うように T i膜が形成されることになる。この Ti膜は、例えば 20nm程度 (成膜時間は 60sec程度 )の厚みとなるように設定する。  A Ti film is formed so as to cover the entire surface including the ejection surface 37 of the keyer head 32 and the upper surface of the mounting table 28. This Ti film is set to have a thickness of about 20 nm (deposition time is about 60 sec), for example.
[0032] この時、載置台 28の温度はこの載置台 28に埋設した抵抗加熱ヒータ 30により、ゥ エノ、 Wへの成膜処理と同じ温度に加熱される。また、シャワーヘッド 32は抵抗加熱ヒ ータ 76により所定の温度に加熱される。通常このシャワーヘッド 32の温度はシャワー ヘッド表面に形成される Ti膜または TiN膜が安定する 400°C以上の温度に設定され る。 At this time, the temperature of the mounting table 28 is heated by the resistance heater 30 embedded in the mounting table 28 to the same temperature as the film forming process on the Weno and W. The shower head 32 is heated to a predetermined temperature by a resistance heating heater 76. Normally, the temperature of the shower head 32 is set to a temperature of 400 ° C. or higher at which the Ti film or TiN film formed on the surface of the shower head is stabilized.
この時のプロセス条件は、 300mmウェハ処理装置の場合には、載置台温度が、例 えば 600°C程度、プロセス圧力は 666. 7Pa程度、高周波電力が 800〜1000W程 度である。また、ガス流量は、例えば TiClガスが 12sccm程度、 Hガス力 OOOscc  As for the process conditions at this time, in the case of a 300 mm wafer processing apparatus, the mounting table temperature is, for example, about 600 ° C., the process pressure is about 666.7 Pa, and the high-frequency power is about 800 to 1000 W. The gas flow rate is, for example, about 12 sccm for TiCl gas, H gas power OOOscc
4 2  4 2
m程度、 Arガスが 1600sccm程度である。  m, Ar gas is about 1600sccm.
[0033] このように、 Ti膜を形成したならば、処理容器 14内を真空引きして残留ガスを排除 し、次の窒化処理に着手する。 [0033] Once the Ti film is formed in this way, the processing vessel 14 is evacuated to eliminate residual gas. Then, the next nitriding process is started.
この窒化処理では、窒化ガスである NHと、 Hガスと、 Arガスとをそれぞれ流量制  In this nitriding treatment, the flow rates of the nitriding gases NH, H and Ar are each controlled.
3 2  3 2
御しつつ供給し、高周波によってプラズマを立てて上記各ガスを活性ィヒさせることに よって Ti膜を窒化処理し、 TiN膜を形成する。この際、 Ti膜の表面のみを窒化して Ti N膜としてもょ ヽし、 Ti膜の全体を窒化して TiN膜としてもょ ヽ。  The Ti film is nitrided by forming a TiN film by supplying it under control and generating plasma by high frequency to activate each gas. At this time, only the surface of the Ti film is nitrided to form a TiN film, and the entire Ti film is nitrided to form a TiN film.
この時のプロセス条件は、載置台温度が例えば 600°C程度、プロセス圧力は 666. 7Pa程度、高周波電力が 800W程度である。またガス流量は、 NHガスが 1500scc  The process conditions at this time are, for example, a mounting table temperature of about 600 ° C., a process pressure of about 666.7 Pa, and a high-frequency power of about 800 W. The gas flow rate is 1500scc for NH gas.
3  Three
m程度、 Hガスが 2000sccm程度、 Arガスが 1600sccm程度であり、窒化時間は 6  m, H gas is about 2000 sccm, Ar gas is about 1600 sccm, and the nitriding time is 6
2  2
Osec程度である。  About Osec.
[0034] これにより、一層のプリコート層が形成されることになる。ここで上記 Ti膜の形成処 理および Ti膜の窒化処理の各プロセス条件、すなわち各種のガス流量、膜厚等は 1 枚の製品ウェハに対して行う Ti膜形成処理および窒化処理の場合と略同じに設定 する。これにより、後述するようにこのプリコート層の膜厚を面内においてより均一化さ せることができる。このように、一層のプリコート層を形成したならば、上記 Ti膜の形成 処理および Ti膜の窒化処理を所定の回数、例えば 33回〜 40回(サイクル)程度連 続して繰り返し行ってプリコート層を多層に積層する。これによつて、図 2に示すように 、シャワーヘッド 32の噴射面 37や載置台 28の上面等に全体で厚さ Xのプリコート膜 82を形成する。  [0034] Thereby, one precoat layer is formed. Here, the process conditions of the Ti film formation process and Ti film nitridation process, that is, various gas flow rates, film thicknesses, and the like are substantially the same as those of the Ti film formation process and nitridation process performed on one product wafer. Set the same. Thereby, as will be described later, the film thickness of the precoat layer can be made more uniform in the plane. When a single precoat layer is thus formed, the Ti film formation process and the Ti film nitridation process are repeated a predetermined number of times, for example, 33 to 40 times (cycles) in succession. Are laminated in multiple layers. As a result, as shown in FIG. 2, a precoat film 82 having a total thickness X is formed on the ejection surface 37 of the shower head 32, the upper surface of the mounting table 28, and the like.
[0035] この場合、図示されないが、処理空間 Sを挟んで対向配置されている載置台 28の 上面側も、上記したと略同様な状態でプリコート膜が形成されている。図 2において は、プリコート膜 82の厚さ Xは一様となるように記載されている力 実際には、プロセ ス条件等によって厚さ Xには面内で変化するような分布が生じることになる。  In this case, although not shown, a precoat film is also formed on the upper surface side of the mounting table 28 facing each other across the processing space S in a state substantially similar to the above. In FIG. 2, the force is described so that the thickness X of the precoat film 82 is uniform. Actually, the thickness X has a distribution that varies in-plane due to process conditions and the like. Become.
尚、載置台 28の裏面側(下面側)へはガスの回り込みが少ないので、この部分のプ リコート膜の厚さは" X"よりも少なくなる。  In addition, since there is little gas wraparound to the back surface side (lower surface side) of the mounting table 28, the thickness of the precoat film in this portion is smaller than “X”.
[0036] <ウェハに対する成膜処理 > [0036] <Film Forming Process on Wafer>
上述のようにしてプリコート 82の形成が完了したならば、次に、製品ウェハ表面へ の実際の成膜操作に移行する。  If the formation of the precoat 82 is completed as described above, the process then proceeds to the actual film forming operation on the surface of the product wafer.
まず、ウェハ Wを開かれたゲートバルブ 74 (図 1参照)を介してロードロック室 72力 ら処理容器 14内に搬入し、これを載置台 28上に載置する。そして、処理容器 14内 を気密にした状態でウェハ Wに対する成膜処理を開始する。 First, the load lock chamber 72 force is applied through the gate valve 74 (see Fig. 1) with the wafer W opened. Then, it is loaded into the processing container 14 and placed on the mounting table 28. Then, the film forming process for the wafer W is started in a state where the inside of the processing container 14 is airtight.
まず、ここではウェハ表面に Ti膜を成膜する。この Ti膜の成膜は、前述したように例 えば先のプリコート膜 82の成膜時と同じ成膜ガスおよびガス流量で行なう。すなわち 、成膜ガスである TiClガス、還元ガスである Hガスと、プラズマ励起用ガスとして Ar  First, here, a Ti film is formed on the wafer surface. For example, as described above, the Ti film is formed with the same film formation gas and gas flow rate as those used in the previous precoat film 82 formation. That is, TiCl gas as the film forming gas, H gas as the reducing gas, and Ar as the plasma excitation gas.
4 2  4 2
ガスとを、それぞれ所定の流量で処理容器 14内に導入し、真空引きにより処理容器 4内を所定の圧力に維持する。そして、プラズマにアシストされた還元反応によりゥェ ハ表面に Ti膜を所定の厚みだけ成膜する。  A gas is introduced into the processing container 14 at a predetermined flow rate, and the processing container 4 is maintained at a predetermined pressure by evacuation. Then, a Ti film with a predetermined thickness is formed on the wafer surface by a plasma-assisted reduction reaction.
[0037] この時のプロセス条件に関しては、先に説明したように、 300mmウェハへの成膜の 場合には、ガス流量はプリコート膜の成膜時と同じである。具体的には、載置台温度 力 例えば 600°C程度、プロセス圧力は 666. 7Pa程度、高周波電力が 500W程度 である。また、ガス流量は、例えば TiClガスが 12sccm程度、 Hガス力 OOOsccm With respect to the process conditions at this time, as described above, in the case of film formation on a 300 mm wafer, the gas flow rate is the same as that during the film formation of the precoat film. Specifically, the temperature of the mounting table is about 600 ° C, the process pressure is about 666.7 Pa, and the high-frequency power is about 500 W. The gas flow rate is about 12 sccm for TiCl gas, H gas power OOOsccm, for example.
4 2  4 2
程度、 Arガスが 1600sccm程度である。また成膜時間は例えば 30sec程度であり、 これにより lOnm程度の厚みの Ti膜を形成する。  The Ar gas is about 1600sccm. The film formation time is, for example, about 30 seconds, thereby forming a Ti film having a thickness of about lOnm.
[0038] このように、 Ti膜を形成したならば、処理容器 14内を真空引きして残留ガスを排除 し、次の窒化処理に着手する。この窒化処理では、窒化ガスである NHと、 Hガスと [0038] Once the Ti film is formed in this way, the inside of the processing container 14 is evacuated to remove the residual gas, and the next nitriding process is started. In this nitriding treatment, the nitriding gas NH and H gas
3 2 3 2
、 Arガスとをそれぞれ流量制御しつつ供給し、高周波によってプラズマを立てて上記 各ガスを活性化させることによって Ti膜を窒化処理し、表面に TiN膜を形成する。 この時のプロセス条件に関しては、ガス流量は先のプリコート膜の成膜時と同じであ る。具体的には、成膜温度が例えば 600°C程度、プロセス圧力は 666. 7Pa程度、高 周波電力が 800W程度である。またガス流量は、 NHガスが 1500sccm程度、 Hガ Then, Ar gas is supplied while controlling the flow rate, and plasma is generated by high frequency to activate each gas, thereby nitriding the Ti film and forming a TiN film on the surface. Regarding the process conditions at this time, the gas flow rate is the same as that of the previous precoat film formation. Specifically, the film formation temperature is, for example, about 600 ° C, the process pressure is about 666.7 Pa, and the high frequency power is about 800 W. The gas flow rate is about 1500sccm for NH gas and H gas.
3 2 スが 2000sccm程度、 Arガスが 1600sccm程度であり、窒化時間は 60sec程度であ る。このようにして製品ウェハの成膜処理が完了する。  3 2 is about 2000 sccm, Ar gas is about 1600 sccm, and the nitriding time is about 60 sec. In this way, the product wafer deposition process is completed.
[0039] このように、一枚の製品ウェハに対する成膜処理が完了したならば、成膜処理が完 了した製品ウェハと新たな未処理の製品ウェハとを入れ替えて、上記した一連の成 膜処理を連続的に行うことになる。そして、一定枚数 (一枚のウェハに成膜する膜厚 によって異なるが、例えば 25〜500枚程度)のウェハの成膜処理を連続的に行なう。 その間、処理容器 14内や内部構造物に不要な膜が付着形成されるので、一定枚数 のウェハの成膜処理が完了した時に、先に説明したように容器内のクリーニング処理 を行なう。図 2においては、複数の製品ウェハに対して連続的に成膜処理を行った結 果、累積的に堆積した膜が不要な付着膜 84として示されている。また、クリーニング 直前の不要な付着膜 84の累積総膜厚が「Β' 」で示されて ヽる。 [0039] In this way, when the film formation process for one product wafer is completed, the product wafer for which the film formation process has been completed and a new unprocessed product wafer are replaced, and the series of film formation described above is performed. Processing is performed continuously. Then, film formation processing of a certain number of wafers (for example, about 25 to 500 wafers depending on the film thickness to be formed on one wafer) is continuously performed. During that time, an unnecessary film adheres to the inside of the processing vessel 14 and internal structures, so a certain number of sheets When the wafer film forming process is completed, the container is cleaned as described above. In FIG. 2, as a result of continuously performing the film forming process on a plurality of product wafers, a film deposited cumulatively is shown as an unnecessary adhesion film 84. In addition, the cumulative total film thickness of the unnecessary adhesion film 84 immediately before the cleaning is indicated by “Β ′”.
[0040] 尚、このクリーニング処理は、クリーニングガスとして C1F系ガス、例えば C1Fガスを [0040] In this cleaning process, a C1F gas such as C1F gas is used as the cleaning gas.
3 処理容器 14内に流しつつ載置台 28、シャワーヘッド 32、容器側壁等を一定の温度 に維持し、内部に付着している不要な膜を気化させて除去することにより行なわれる 。また、上記したプリコート膜 82の一層のプリコート層の形成に際しては、 Ti膜を形成 し、この Ti膜の表面、或いは全体を窒化して TiN膜を形成するようにした力 これに 限定されず、下層の Ti膜の上に、プラズマ CVDや熱 CVDにより TiN膜を堆積させて 積層するようにしてもよぐこの製法は特に問わな 、。  3 This is performed by maintaining the mounting table 28, the shower head 32, the side wall of the container, etc. at a certain temperature while flowing into the processing container 14, and evaporating and removing unnecessary films adhering to the inside. Further, when forming one precoat layer of the above-mentioned precoat film 82, the force of forming a Ti film and nitriding the surface or the whole of this Ti film to form a TiN film is not limited to this. This manufacturing method is not particularly important, even if a TiN film is deposited on the underlying Ti film by plasma CVD or thermal CVD.
[0041] <プリコート膜の厚さ > [0041] <Precoat film thickness>
次に、形成すべき上記プリコート膜 82の厚さ Xについて説明する。図 2中のプリコー ト膜 82の成膜すべき厚さ Xは、以下の式で表される範囲内に設定される。  Next, the thickness X of the precoat film 82 to be formed will be described. The thickness X of the precoat film 82 in FIG. 2 to be formed is set within the range represented by the following equation.
C≤X≤A— B  C≤X≤A— B
ここで「A」は、成膜ガスを含む上記処理ガスを用いたプラズマ CVDによってシャヮ 一ヘッド 32の表面 (噴射面 37)に付着する膜 (プリコート膜 32および不要な付着膜 8 Here, “A” is a film (precoat film 32 and unnecessary adhesion film 8) that adheres to the surface (jetting surface 37) of the discharge head 32 by plasma CVD using the above-described processing gas including a film forming gas.
4を含む「シャワーヘッド付着膜」)の、シャワーヘッド 32の表面(噴射面 37)から剥離 しない最大限の膜厚である最大膜厚である。また「B」は、クリーニング周期間(あるク リー-ング実行時力 次のクリーニング実行時までの期間内)の成膜処理によって複 数の半導体ウェハ Wの表面に堆積される膜の厚さを積算した積算総膜厚である。こ の積算総膜厚 Bは通常、上述した不要な付着膜 84の累積総膜厚 と実質的に同 一である。そして「C」は、プリコート膜 82の輻射率が実質的に飽和するような当該プリ コート膜 82の膜厚である輻射飽和膜厚である。 4 is a maximum film thickness that is the maximum film thickness that does not peel from the surface (jetting surface 37) of the shower head 32. “B” indicates the thickness of the film deposited on the surfaces of a plurality of semiconductor wafers W by the film forming process during the cleaning cycle (within a period of time until the next cleaning is executed). The integrated total film thickness. This accumulated total film thickness B is usually substantially the same as the accumulated total film thickness of the unnecessary adhesion film 84 described above. “C” is a radiation saturation film thickness that is the film thickness of the precoat film 82 such that the emissivity of the precoat film 82 is substantially saturated.
[0042] 図 2では、この輻射飽和膜厚 Cを、シャワーヘッド 32の表面のプリコート膜 82および 載置台 28上のプリコート膜とで互いに略同じ膜厚であるように示している。これは、前 述したように、シャワーヘッド 32の下面と載置台 28の上面は、共に略同じような厚さ でプリコート膜 82が堆積するからである。この点については、後で詳しく説明する。 [0043] さて、このように載置台 28およびシャワーヘッド 32からの輻射が安定する厚さまで プリコート膜 82を形成する理由は、次の通りである。まず、処理容器 14内の輻射率が 安定しない状態で製品ウェハに対する成膜処理を開始すると、ウェハを 1枚成膜処 理する毎に不要な付着膜が堆積して輻射率が変動してしまう。その結果、製品ゥェ ハを成膜処理する毎にウェハの温度が僅かずつ変動し、この温度の変化がウェハ表 面の膜厚の変動を引き起こして膜厚の再現性を劣化させてしまう。そこで、輻射飽和 膜厚 C以上の厚さでプリコート膜 82を形成しておくことで、ウェハへの成膜処理を続 けても、載置台 28およびシャワーヘッド 32からの輻射が変動しないようにすることが できる。 In FIG. 2, the radiation saturation film thickness C is shown so that the precoat film 82 on the surface of the shower head 32 and the precoat film on the mounting table 28 have substantially the same film thickness. This is because, as described above, the precoat film 82 is deposited on the lower surface of the shower head 32 and the upper surface of the mounting table 28 with substantially the same thickness. This point will be described in detail later. [0043] The reason why the precoat film 82 is formed to such a thickness that the radiation from the mounting table 28 and the shower head 32 is stabilized as described above is as follows. First, if the film forming process is started on a product wafer while the emissivity in the processing container 14 is not stable, an unnecessary adhesion film is deposited and the emissivity fluctuates every time one wafer is formed. . As a result, the wafer temperature fluctuates slightly each time the product wafer is deposited, and this change in temperature causes a change in the film thickness on the wafer surface, thereby degrading the reproducibility of the film thickness. Therefore, by forming the precoat film 82 with a thickness equal to or greater than the radiation saturation film thickness C, the radiation from the mounting table 28 and the shower head 32 does not fluctuate even if the film formation process on the wafer is continued. can do.
[0044] またパーティクルが発生する多くの原因は、最も多量に膜が堆積する傾向にあるシ ャヮーヘッド 32の噴射面 37から付着して 、る膜が成膜中に剥がれ落ちることにある。 そこで、この噴射面 37に付着するプリコート膜 32および不要な付着膜 84を含むシャ ヮーヘッド付着膜の、噴射面 37から剥離しな 、最大限の膜厚である最大膜厚 Aを基 準としている。従って、この最大膜厚 Aよりも厚くシャワーヘッド付着膜 32, 84が付着 すると、急激にパーティクルが増加することになる。また積算総膜厚 Bは、製品ウェハ Wの一枚毎の膜厚を積算して合計した値であり、この値が所定値に達するとタリー- ングが行われる。 [0044] Further, many causes of the generation of particles are that the film adhering from the ejection surface 37 of the shower head 32, which tends to deposit the largest amount of film, is peeled off during film formation. Therefore, the maximum film thickness A, which is the maximum film thickness of the shutter head adhesion film including the precoat film 32 adhering to the ejection surface 37 and the unnecessary adhesion film 84, is peeled off from the ejection surface 37 . . Therefore, if the shower head adhering films 32 and 84 are thicker than the maximum film thickness A, the particles increase rapidly. The total accumulated film thickness B is a value obtained by integrating and totaling the film thicknesses of each product wafer W. When this value reaches a predetermined value, tallying is performed.
[0045] シャワーヘッド 32の噴射面 37 (載置台 28の上面も同じ)に堆積されるプリコート膜 8 2は、一般的には面内の場所によって異なる膜厚となるような膜厚分布を有する(図 1 2に示す従来のプリコート方法の場合には、特に大きく変化する膜厚分布を有する) 。その場合、噴射面 37のいずれの部分でも、プリコート膜 82の膜厚 Xが上記した式( C≤X≤A—B)の範囲内にあるようにプリコート膜 82を形成すればよい。  [0045] The precoat film 8 2 deposited on the ejection surface 37 of the shower head 32 (the upper surface of the mounting table 28 is the same) generally has a film thickness distribution that varies depending on the location in the surface. (In the case of the conventional pre-coating method shown in FIG. 12, the film thickness distribution varies particularly greatly). In that case, the precoat film 82 may be formed so that the film thickness X of the precoat film 82 is in the range of the above-described formula (C≤X≤AB) at any part of the ejection surface 37.
[0046] ここで、上記シャワーヘッド付着膜の最大膜厚 Aについてより具体的に説明する。こ の最大膜厚 Aはシャワーヘッド表面とプリコート膜の密着性に依存し、この密着性は シャワーヘッド 32の材質、温度およびプリコート膜 82の膜種、プロセス条件に依存す る。  [0046] Here, the maximum film thickness A of the showerhead adhesion film will be described more specifically. This maximum film thickness A depends on the adhesion between the showerhead surface and the precoat film, and this adhesion depends on the material of the showerhead 32, the temperature, the film type of the precoat film 82, and the process conditions.
[0047] 一般に熱 CVDでは低温になると成膜しな 、。また、プラズマ CVDの場合、あまり低 温であると膜が非常に脆弱になり、直ぐ剥離してパーティクルとなってしまう。そこで、 プリコート膜形成およびウェハへの成膜の際は、シャワーヘッド 32の温度をある所定 温度以上にして、シャワーヘッド 32に付着する膜を強固にする必要がある。この温度 は成膜ガスに依存し、例えば本実施形態のように TiClガスを成膜ガスとする Ti成膜 [0047] Generally, thermal CVD does not form a film at low temperatures. In the case of plasma CVD, if the temperature is too low, the film becomes very fragile and immediately peels off to become particles. Therefore, When the precoat film is formed and the film is formed on the wafer, the temperature of the shower head 32 needs to be set to a predetermined temperature or higher to strengthen the film attached to the shower head 32. This temperature depends on the deposition gas. For example, Ti deposition using TiCl gas as the deposition gas as in this embodiment.
4  Four
の場合は、シャワーヘッド 32の温度を 400°C以上に保つ必要がある。  In this case, it is necessary to keep the temperature of the shower head 32 at 400 ° C or higher.
[0048] 更に、 TiClガスなどのハロゲン系ガスでは、シャワーヘッド 32の温度が高い方がプ [0048] Further, in the case of a halogen-based gas such as TiCl gas, the higher the temperature of the shower head 32, the more
4  Four
リコート膜 82との密着性は高くなる。しかし、シャワーヘッド 32の温度が高くなると、ハ ロゲンによるシャワーヘッド表面の腐食 Zエッチングが加速的に進むため、あまり高 温にはできな 、。本実施形態のシャワーヘッド 32の材質は耐蝕性の高 、金属である Niであるが、 500°C以上の温度ではハロゲン系ガスにエッチングされるので、シャヮ 一ヘッド 32の温度の上限は 500°Cに設定する。  Adhesion with the recoat film 82 is enhanced. However, when the temperature of the shower head 32 increases, corrosion of the shower head surface by halogen accelerates Z etching, so the temperature cannot be increased too much. The material of the shower head 32 of this embodiment is Ni, which is highly corrosion resistant and metal. However, since it is etched into a halogen-based gas at a temperature of 500 ° C. or higher, the upper limit of the temperature of the shower head 32 is 500 °. Set to C.
[0049] プリコート膜の密着性は、プリコート膜の持つストレスにも影響され、膜ストレスが高 い程、剥離し易くなる。このため、特にシャワーヘッド表面とプリコート膜の境界付近 の膜ストレスを低減する必要がある。一般的な膜ストレスは Ti膜よりも TiN膜の方が大 きくなるので、まずプリコート膜形成の最初の一層目は Ti膜形成後に、この Ti膜の表 面のみ窒化するプロセス条件が好ましい。 Ti膜は極めて活性な金属で、直ぐ酸化し たり成膜ガスである TiClガスにエッチングされる。このため、 Ti膜の表面を窒化して [0049] The adhesion of the precoat film is affected by the stress of the precoat film, and the higher the film stress, the easier it is to peel off. For this reason, it is necessary to reduce the film stress particularly near the boundary between the showerhead surface and the precoat film. Since the general film stress is greater in the TiN film than in the Ti film, it is preferable that the first layer of the precoat film is formed under the process conditions in which only the surface of the Ti film is nitrided after the Ti film is formed. The Ti film is an extremely active metal and is immediately oxidized or etched into TiCl gas, which is the film forming gas. For this reason, the surface of the Ti film is nitrided
4  Four
保護膜として TiN膜を形成する必要がある。  It is necessary to form a TiN film as a protective film.
[0050] <変形例> [0050] <Modification>
次に、上述したプリコート方法の変形例について図 3乃至図 6を参照して説明する。 ここでは、プリコート膜の膜厚の範囲を決める基準以外、すなわちプリコート膜の成 膜処理や製品ウェハに対する成膜処理は全て説明した場合と同じである。  Next, a modification of the above-described precoat method will be described with reference to FIGS. Here, except for the standard for determining the film thickness range of the precoat film, that is, the film formation process for the precoat film and the film formation process for the product wafer are all the same as described.
[0051] 具体的には、プリコート膜 82の膜厚 Xは、以下の式で表される範囲内に設定される [0051] Specifically, the film thickness X of the precoat film 82 is set within the range represented by the following equation.
C≤X≤D C≤X≤D
ここで 」は、上述したようにプリコート膜 82の輻射率が実質的に飽和する輻射飽 和膜厚である。また「D」は、プリコート膜 82の膜厚を次第に増やしながら、それぞれ 一定枚数の半導体ウェハを成膜処理した場合に、パーティクル発生数が急激に増 カロし始める現象の現れるようなプリコート膜 82の膜厚である臨界膜厚である。ここで は、それぞれ 25枚の製品ウェハを成膜処理する場合を例にとって説明する。 Here, “” is the radiation saturation film thickness at which the emissivity of the precoat film 82 is substantially saturated, as described above. In addition, “D” indicates that the precoat film 82 has a phenomenon in which the number of generated particles begins to increase suddenly when a predetermined number of semiconductor wafers are formed while the film thickness of the precoat film 82 is gradually increased. It is a critical film thickness. here In the following, a case where 25 product wafers are formed is described.
[0052] まず、図 3に示すように、シャワーヘッド 32 (載置台 28も含む)に形成したプリコート 膜 82の膜厚と、ウェハを 25枚成膜処理した時のウェハ表面に形成される膜厚の再 現性 (膜厚の変動率)との関係を検討した。プリコート膜厚は、 400〜1400nmの範 囲内で変化させている。図 3から明らかなように、膜厚が 400nmの時にウェハの膜厚 の再現性は 4. 2%程度であり、膜厚が 1400nmの時は膜厚の再現性は 1. 8%程度 まで改善している。従って、プリコート膜厚を厚くすればする程、膜厚の再現性が向 上する傾向を示している。従って、ある値以上の膜厚の再現性を確保するためには、 プリコート膜厚の下限値が必要であることが確認できた。 First, as shown in FIG. 3, the film thickness of the precoat film 82 formed on the shower head 32 (including the mounting table 28) and the film formed on the wafer surface when 25 wafers are formed. The relationship with thickness reproducibility (thickness variation rate) was examined. The precoat film thickness is changed within the range of 400 to 1400 nm. As is clear from FIG. 3, the reproducibility of the wafer thickness is about 4.2% when the film thickness is 400 nm, and the reproducibility of the film thickness is improved to about 1.8% when the film thickness is 1400 nm. is doing. Therefore, the reproducibility of the film thickness tends to improve as the precoat film thickness increases. Therefore, it was confirmed that the lower limit of the precoat film thickness was necessary to ensure the reproducibility of the film thickness above a certain value.
[0053] 所定の温度でウェハ上に成膜する場合は、載置台 28の設定温度のみでなぐ処理 容器 14内のあらゆる部分力もの輻射がウェハの温度に影響する。特に載置台 28の ウェハ載置範囲の周辺部分の表面および載置されたウェハ直上に位置するシャヮ 一ヘッド 32の表面からの輻射の影響が大き 、。加熱された表面力もの輻射はその表 面に堆積した膜の輻射率に依存し、この輻射率は膜厚により変化する。このため、ゥ エノ、 Wの温度を安定させ、成膜を開始するためには、プリコート処理により処理容器 14内に成膜するプリコート膜厚を所定の下限値以上にしておく必要があるのである。 When the film is formed on the wafer at a predetermined temperature, radiation of any partial force in the processing container 14 that affects only the set temperature of the mounting table 28 affects the temperature of the wafer. In particular, the influence of radiation from the surface of the peripheral portion of the wafer mounting range of the mounting table 28 and the surface of the single head 32 positioned immediately above the mounted wafer is large. The radiation of the heated surface force depends on the emissivity of the film deposited on the surface, and this emissivity changes with the film thickness. For this reason, in order to stabilize the temperature of the UE and W and start film formation, it is necessary to set the precoat film thickness to be formed in the processing container 14 by the precoat process to a predetermined lower limit value or more. .
[0054] そこで、図 4Aおよび図 4Bに示すように、 TiNよりなるプリコート膜の膜厚と、透過率 および反射率との関係をそれぞれ測定した。ここで、プリコート膜厚は Onmから最大 6 OOnm程度まで変化させている。なお、 TiN膜は直接成膜しても、 Ti膜を窒化して形 成しても、透過率や反射率のような光学特性は変わらな ヽ。  Therefore, as shown in FIGS. 4A and 4B, the relationship between the thickness of the precoat film made of TiN, the transmittance, and the reflectance was measured. Here, the precoat film thickness is varied from Onm to a maximum of about 6 OOnm. Even if the TiN film is formed directly or formed by nitriding the Ti film, the optical characteristics such as transmittance and reflectance will not change.
[0055] まず図 4Aに示すように、プリコート膜の透過率は膜厚が厚くなるほど次第に低下し 、 200nmの膜厚で透過率は略ゼロになっている。  First, as shown in FIG. 4A, the transmittance of the precoat film gradually decreases as the film thickness increases, and the transmittance becomes substantially zero at a film thickness of 200 nm.
これに対して図 4Bに示すように、反射率はプリコート膜厚が厚くなるほど次第に上 昇し、 40%程度で実質的に飽和している。これらの図 4Aおよび図 4Bの測定結果と 、 "透過率 +反射率 +輻射率 = 1"の関係から輻射率を算出すると、輻射率はブリコ 一ト膜厚ゼロから 500nmまでは変化する力 500nm以上になると一定の値を保つこ と力 S解る。  On the other hand, as shown in FIG. 4B, the reflectance gradually increases as the precoat film thickness increases, and is substantially saturated at about 40%. When the emissivity is calculated from the measurement results of Fig. 4A and Fig. 4B and the relationship of "transmittance + reflectivity + emissivity = 1", the emissivity is a force that changes from zero to 500 nm in bricote thickness. Above this, the force S can be kept constant.
[0056] 次に図 5に示すように、ウェハを 25枚処理した時に発生したパーティクル数とブリコ ート膜厚との関係を調べた。ここではプリコート膜厚を 200〜750nm程度の範囲で 変化させている。図 5に示すように、プリコート膜厚が 600nm程度までは、パーテイク ル数が略ゼロであった力 プリコート膜厚が 600nmを超えるとパーティクル数が次第 に増加している。そして、プリコート膜厚が 700〜720nm程度の領域を超えるとパー ティクル数が急激に上昇し、 720nmより膜厚が大きくなると、パーティクル数は 100個 を越えるため好ましくな 、ことが確認できた。 Next, as shown in FIG. 5, the number of particles generated when 25 wafers were processed and the brico The relationship with the film thickness was examined. Here, the precoat film thickness is changed in the range of about 200 to 750 nm. As shown in Fig. 5, the number of particles was almost zero until the precoat film thickness was around 600 nm. The number of particles gradually increased when the precoat film thickness exceeded 600 nm. It was confirmed that the number of particles rapidly increased when the precoat film thickness exceeded the range of about 700 to 720 nm, and that the number of particles exceeded 100 when the film thickness was larger than 720 nm.
[0057] 以上の図 4に示す結果と図 5に示す結果を組み合わせると、図 6に示すように、 TiN 膜よりなるプリコート膜厚は 500〜720nmの範囲内に設定するのがよぐ好ましくは 膜厚の再現性が 3%以下となる 560ηπ!〜 700nmの範囲内に設定することが最適で あることが半 U明する。 [0057] When the results shown in FIG. 4 and the results shown in FIG. 5 are combined, as shown in FIG. 6, it is preferable to set the precoat thickness of the TiN film within the range of 500 to 720 nm. Reproducibility of film thickness is 3% or less 560ηπ! It is clear that it is optimal to set within the range of ~ 700nm.
[0058] このような最適範囲内になるようにプリコート膜厚を設定すれば、ウェハ Wに対する 成膜処理を開始しても実質的に輻射率が変動しないプリコート膜 82の最小限の膜厚 を確保しつつ、成膜処理時にシャワーヘッド 32に付着した不要な付着膜が剥がれ落 ちてパーティクルが発生することを抑制することができる。これにより、処理容器 14内 でのパーティクル発生を抑制しつつ、ウエノ、 Wに形成される薄膜の膜厚の再現性を 向上させることができる。  [0058] If the precoat film thickness is set so as to be within such an optimal range, the minimum film thickness of the precoat film 82 in which the emissivity does not substantially vary even when the film formation process on the wafer W is started. While ensuring, it is possible to suppress the generation of particles by peeling off an unnecessary attached film attached to the shower head 32 during the film forming process. As a result, the reproducibility of the film thickness of the thin film formed on Ueno and W can be improved while suppressing the generation of particles in the processing container 14.
[0059] 更に、本発明方法では、プリコート膜 82の成膜時の成膜ガス (TiClガス)の流量を  [0059] Further, in the method of the present invention, the flow rate of the deposition gas (TiCl gas) at the time of forming the precoat film 82 is reduced.
4  Four
、製品ウェハの成膜時の流量と同じになるように設定している。これにより、プリコート 膜の成膜速度を上げるために TiClガスを多量に供給した従来のプリコート方法と比  The flow rate is set to be the same as the flow rate at the time of film formation of the product wafer. As a result, compared with the conventional pre-coating method in which a large amount of TiCl gas was supplied to increase the deposition rate of the pre-coating film.
4  Four
較して、形成されたプリコート膜 82の膜厚の面内均一性を向上させることができる。 また、プリコート膜 82自体の膜厚の面内均一性を高くすれば、すなわち膜厚分布を 抑制すれば、前記式 (C≤X≤A— B)を逸脱するまでの積算総膜厚 Bを大きくするこ とができる。従って、クリーニング周期を長くしてその間により多くの製品ウェハを成膜 処理することができる。  In comparison, the in-plane uniformity of the film thickness of the formed precoat film 82 can be improved. Further, if the in-plane uniformity of the film thickness of the precoat film 82 itself is increased, that is, if the film thickness distribution is suppressed, the integrated total film thickness B until it deviates from the above equation (C≤X≤A—B) is obtained. Can be enlarged. Therefore, the cleaning cycle can be lengthened and more product wafers can be formed during that period.
[0060] 図 7Aおよび図 7Bは、従来のプリコート方法と本発明のプリコート方法におけるパー ティクルの発生の有無を説明するための模式図である。  FIG. 7A and FIG. 7B are schematic diagrams for explaining the presence or absence of particles in the conventional precoat method and the precoat method of the present invention.
ここでは、共にシャワーヘッド 32の下面の噴射面に多層のプリコート層よりなるプリ コート膜 82が形成されており、更に、製品ウェハの成膜処理時に付着した不要な付 着膜 84が堆積して 、る。図 7Aに示す従来のプリコート方法では成膜ガスである TiCl ガスを多量に供給するので、シャワーヘッド 32の周辺部のプリコート膜 82の膜厚がHere, a precoat film 82 composed of a multi-layer precoat layer is formed on the spray surface of the lower surface of the shower head 32, and an unnecessary attachment attached during the film forming process of the product wafer. The deposited film 84 is deposited. In the conventional pre-coating method shown in FIG. 7A, a large amount of TiCl gas, which is a film forming gas, is supplied, so that the film thickness of the pre-coating film 82 around the shower head 32 is reduced.
4 Four
中央部側と比較して厚くなつている(図 12参照)。その結果、製品ウェハの成膜処理 時に不要な付着膜 84が均一な厚さで付着したとしても、シャワーヘッド付着膜が早 期に最大膜厚 Aを超えて剥がれ落ち、この結果、パーティクル Pが発生している。  It is thicker than the center side (see Figure 12). As a result, even if the unnecessary adhesion film 84 is deposited with a uniform thickness during the film forming process of the product wafer, the shower head adhesion film is peeled off over the maximum film thickness A at an early stage. It has occurred.
[0061] これに対して、図 7Bに示す本発明のプリコート方法によれば、プリコート膜 82の成 膜時の TiClガスの流量は従来方法よりも少なく設定して製品ウェハの成膜時と同じ [0061] On the other hand, according to the precoat method of the present invention shown in FIG. 7B, the flow rate of TiCl gas when forming the precoat film 82 is set lower than that in the conventional method, and is the same as when forming a product wafer.
4  Four
流量としているの。このため、プリコート膜 82の膜厚の面内均一性が高い状態で形成 されている。このプリコート膜 82に、製品ウェハの成膜処理時に不要な付着膜 84が 均一な厚さで付着し、全体としてシャワーヘッド付着膜の膜厚が最大膜厚 Aを超える ことがなくなる。この結果、パーティクルの発生を抑制できる。  The flow rate. For this reason, the precoat film 82 is formed with high in-plane uniformity of film thickness. To this precoat film 82, an unnecessary adhesion film 84 is deposited with a uniform thickness during the film forming process of the product wafer, and the film thickness of the showerhead adhesion film does not exceed the maximum film thickness A as a whole. As a result, the generation of particles can be suppressed.
また、 TiClガス流量を少なくすると、プリコート膜の成膜速度は低下するが、処理  In addition, if the TiCl gas flow rate is reduced, the deposition rate of the precoat film decreases,
4  Four
容器に投入する高周波電力を増加し、この低下分を補償することで、生産性の低下 を抑制することができる。  By increasing the high-frequency power input to the container and compensating for this decrease, the decrease in productivity can be suppressed.
[0062] この時のプロセス条件および得られたプリコート膜の膜厚の一例を図 7Cに示す。図 7C力も明らかなように、従来方法の場合は、プリコート膜厚の最大値と最小値の差が 105nmあった。これに対して、本発明方法の場合は、その差は僅か 25nmであり、プ リコート膜の膜厚の面内均一性が向上していることが判る。 FIG. 7C shows an example of the process conditions at this time and the thickness of the obtained precoat film. As is clear from FIG. 7C force, the difference between the maximum value and the minimum value of the precoat film thickness was 105 nm in the case of the conventional method. On the other hand, in the case of the method of the present invention, the difference is only 25 nm, indicating that the in-plane uniformity of the precoat film thickness is improved.
[0063] ここで実際に従来のプリコート方法と本発明のプリコート方法を行った時のパーティ クル発生数の変化を調べたので、その結果を図 8に示す。ここでは両方法ともそれぞ れ 2回行っており、ウェハ処理枚数は最大 100枚に設定している。  [0063] Changes in the number of particles generated when the conventional precoating method and the precoating method of the present invention were actually performed were examined. The results are shown in FIG. Here, both methods are performed twice, and the maximum number of wafers processed is set to 100.
[0064] このグラフから明らかなように、従来方法の場合は、 2回とも途中で基準パーテイク ル数 30個よりも多くのパーティクルが発生して好ましくない。これに対して、本発明方 法の場合には、ウェハを 100枚処理しても 2回ともパーティクル数は基準パーテイク ル数 30個以下であり、良好な結果を示すことが確認できた。  As is apparent from this graph, in the case of the conventional method, more particles than the reference number of 30 are generated in the middle of both times, which is not preferable. On the other hand, in the case of the method of the present invention, even if 100 wafers were processed, the number of particles was not more than 30 reference particles in both cases, and it was confirmed that good results were shown.
[0065] 尚、以上の各実施形態の説明では、シャワーヘッド 32の下面と載置台 28の上面は 、共に略同じような厚さでプリコート膜 82が付着することを前提として話を進めてきた 。ここでシャワーヘッド 32の下面と載置台 28の上面に、共に略同じ厚さのプリコート 膜 32が堆積する力否かの検討を行ったので、その検討結果にっ 、て説明する。 ここでは、実際に処理容器内をプリコート処理してシャワーヘッドの表面や載置台 の表面等にプリコート処理を行った時に、シャワーヘッド表面に載置台の表面と同等 の厚さのプリコート膜が堆積する力否かの検証を行った。 In the description of each of the above embodiments, the discussion has been made on the premise that the precoat film 82 is attached to the lower surface of the shower head 32 and the upper surface of the mounting table 28 with substantially the same thickness. . Here, a pre-coat having substantially the same thickness on the lower surface of the shower head 32 and the upper surface of the mounting table 28. Since the investigation was made on whether or not the film 32 is deposited, the result of the examination will be described. Here, when the inside of the processing container is actually precoated and the surface of the shower head or the surface of the mounting table is precoated, a precoat film having the same thickness as the surface of the mounting table is deposited on the surface of the shower head. Verification of power was conducted.
[0066] 図 9は、載置台とシャワーヘッドとで、それぞれの表面に形成されるプリコート膜の 厚さを比較したグラフである。但し、成膜装置の構成上、載置台上のプリコート膜の厚 さを実際に測定するのは力なり困難である。そこで、載置台上にウェハを載置し、こ のウェハ表面に堆積したプリコート膜を載置台の表面に堆積したプリコート膜の膜厚 として代用している。また、同様にシャワーヘッドの表面に付着するプリコート膜の膜 厚を測定するには装置内自体を大気解放する必要があって、測定作業が大変であ る。そこで、シャワーヘッド 32の下面に堆積したプリコート膜 82を 3点だけサンプリン グして実測している。この図 9から明らかなように、載置台(ウエノ、)上に付着したプリ コート膜の膜厚と、シャワーヘッドの表面に付着したプリコート膜の膜厚とは略対応し ている。従って、シャワーヘッドの表面に付着しているプリコート膜の膜厚は、載置台 の表面、或いは載置台に載置したウェハの表面に堆積したプリコート膜の膜厚を測 定すること〖こより類推できることが半 IJる。  FIG. 9 is a graph comparing the thicknesses of precoat films formed on the surfaces of the mounting table and the shower head. However, due to the configuration of the film forming apparatus, it is difficult to actually measure the thickness of the precoat film on the mounting table. Therefore, a wafer is placed on the mounting table, and the precoat film deposited on the wafer surface is used as the thickness of the precoat film deposited on the surface of the mounting table. Similarly, in order to measure the film thickness of the precoat film adhering to the surface of the shower head, it is necessary to release the inside of the apparatus itself to the atmosphere, and the measurement work is difficult. Therefore, three samples of the precoat film 82 deposited on the lower surface of the shower head 32 are sampled and measured. As is apparent from FIG. 9, the film thickness of the precoat film adhering to the mounting table (Ueno) and the film thickness of the precoat film adhering to the surface of the shower head substantially correspond to each other. Therefore, the film thickness of the precoat film adhering to the surface of the showerhead can be analogized by measuring the film thickness of the precoat film deposited on the surface of the mounting table or the surface of the wafer mounted on the mounting table. Is half IJ.
[0067] そこで、上記図 9で得られた結果を基にして、従来のプリコート方法および本発明の プリコート方法によりシャワーヘッドの表面に付着したプリコート膜の膜厚分布につい て検討した。  Therefore, based on the results obtained in FIG. 9, the film thickness distribution of the precoat film adhered to the surface of the shower head by the conventional precoat method and the precoat method of the present invention was examined.
[0068] 図 10は、従来のプリコート方法により、直径 300mmサイズのウェハ上に形成され たプリコート膜の膜厚分布を示している。図 10に示すように、ウェハの周辺部より内 側は略均一に安定しているのに対して、ウェハの周辺部の膜厚は大幅に厚くなつて いるのが判る。具体的には、厚さ 650nm程度のプリコート膜を形成した場合、最大 2 OOnm程度の膜厚差が生じている。図 9において説明したように、シャワーヘッドの表 面にも、同様な膜厚分布でプリコート膜が形成されるものと類推できる。  FIG. 10 shows a film thickness distribution of a precoat film formed on a wafer having a diameter of 300 mm by a conventional precoat method. As shown in Fig. 10, it can be seen that the inner side of the periphery of the wafer is almost uniformly stable, whereas the film thickness of the periphery of the wafer is significantly thicker. Specifically, when a precoat film having a thickness of about 650 nm is formed, a film thickness difference of about 2 OOnm at maximum occurs. As explained in FIG. 9, it can be analogized that a precoat film is also formed on the surface of the showerhead with a similar film thickness distribution.
[0069] 従って、ウェハに対する実際の成膜処理が行われると、シャワーヘッドの周辺部の 膜厚が速く最大膜厚 Aに達して、この部分の膜が剥がれ落ちて、これよりパーテイク ルが発生してしまう。この点に関しては、図 7Aを参照して説明した通りである。 [0070] 次に、同様にして本発明方法によるプリコート膜の膜厚分布を調べた結果を、図 11 に示す。この図 11から明らかなように、ウェハの表面には略全面に亘つて膜厚が均 一な状態で付着している。従って、本発明方法によれば、シャワーヘッドの表面にも プリコート膜の膜厚が均一な状態で堆積しているものと類推され、膜剥がれによるパ 一ティクルの発生を抑制できることが判る。この点は、図 7Bを参照して説明した通りで ある。 [0069] Therefore, when the actual film forming process is performed on the wafer, the film thickness in the peripheral part of the shower head quickly reaches the maximum film thickness A, and the film in this part peels off, resulting in a partition. Resulting in. This point is as described with reference to FIG. 7A. Next, FIG. 11 shows the result of examining the film thickness distribution of the precoat film by the method of the present invention in the same manner. As is apparent from FIG. 11, the film thickness is uniformly adhered to the entire surface of the wafer. Therefore, according to the method of the present invention, it can be presumed that the precoat film is deposited on the surface of the shower head in a uniform state, and it can be seen that generation of particles due to film peeling can be suppressed. This point is as described with reference to FIG. 7B.
[0071] 尚、以上説明した実施形態においては、プリコート膜 82の成膜時のサイクル数を 3 3〜40回程度行った場合を例にとって説明した力 これは単に一例を示したに過ぎ ない。すなわち、他の金属含有膜を形成する場合には、膜種によって輻射率が大き く異なることから、その輻射率や剥がれ難さ等に応じてサイクル数は変動するのは勿 論である。この場合、他の金属含有膜としては、タンタル、窒化タンタル、タングステン 、窒化タングステン等を含む薄膜が考えられる。  In the embodiment described above, the force described by taking as an example the case where the number of cycles at the time of forming the precoat film 82 is about 33 to 40 times. This is merely an example. That is, when other metal-containing films are formed, the emissivity varies greatly depending on the film type, so it is a matter of course that the number of cycles varies depending on the emissivity and difficulty of peeling. In this case, the other metal-containing film may be a thin film containing tantalum, tantalum nitride, tungsten, tungsten nitride, or the like.
また、ここではプラズマ CVDにより成膜処理を行った場合を例にとって説明したが、 これに限定されず、熱 CVDによる成膜の場合にも、本発明を適用できるのは勿論で あり、成膜の方法は問わない。  Although the case where the film forming process is performed by plasma CVD is described here as an example, the present invention is not limited to this, and the present invention can be applied to the case of film forming by thermal CVD. Any method is acceptable.
また、ここでは被処理体として半導体ウェハを例にとって説明したが、これに限定さ れず、ガラス基板、 LCD基板、セラミック基板等にも本発明を適用することができる。  Although the semiconductor wafer is described as an example of the object to be processed here, the present invention is not limited to this, and the present invention can be applied to a glass substrate, an LCD substrate, a ceramic substrate, and the like.

Claims

請求の範囲 The scope of the claims
[1] 成膜装置の真空処理容器内にプリコートを施す方法であって、  [1] A method of applying a precoat in a vacuum processing container of a film forming apparatus,
前記処理容器は、成膜ガスを含む処理ガスを供給するシャワーヘッドが内部に設 けられ、  The processing container is provided with a shower head for supplying a processing gas including a film forming gas,
前記成膜装置は、被処理体を収容した前記処理容器内に前記処理ガスを供給し て被処理体の表面にプラズマ CVDにより薄膜を堆積させるように構成されて ヽる、成 膜装置のプリコート方法にお!ヽて、  The film forming apparatus is configured to supply the processing gas into the processing container containing the target object and deposit a thin film on the surface of the target object by plasma CVD. Hurry up in the way!
被処理体を収容して ヽな ヽ前記処理容器内へ前記処理ガスを供給して、プラズマ CVDにより、以下の式で表される範囲内の厚さ Xを有するプリコート膜を形成すること を特徴とするプリコート方法:  A pre-coating film having a thickness X within a range represented by the following formula is formed by plasma CVD by supplying the processing gas into the processing container and storing the object to be processed. Pre-coating method:
C≤X≤A— B  C≤X≤A— B
Aは、前記処理ガスを用いたプラズマ CVDによって前記シャワーヘッドの表面に付 着するシャワーヘッド付着膜の、前記シャワーヘッドの表面力 剥離しな 、最大限の 膜厚である最大膜厚;  A is a maximum film thickness that is the maximum film thickness of the shower head adhesion film that adheres to the surface of the shower head by plasma CVD using the processing gas without peeling off the surface force of the shower head;
Bは、クリーニング周期間の成膜処理によって複数の被処理体の表面に堆積される 膜の厚さを積算した積算総膜厚;  B is an integrated total film thickness obtained by integrating the thicknesses of films deposited on the surfaces of a plurality of objects to be processed by the film forming process during the cleaning cycle;
Cは、前記プリコート膜の輻射率が実質的に飽和するような当該プリコート膜の膜厚 である輻射飽和膜厚。  C is a radiation saturation film thickness that is a film thickness of the precoat film such that the emissivity of the precoat film is substantially saturated.
[2] 前記プリコート膜は、複数のプリコート層を順次積層することによって形成される、こ とを特徴とする請求項 1記載のプリコート方法。  [2] The precoat method according to [1], wherein the precoat film is formed by sequentially laminating a plurality of precoat layers.
[3] 各プリコート層は、それぞれ前記被処理体の表面に薄膜を堆積させるときに供給す る前記成膜ガスの流量と同じ流量で前記成膜ガスを供給して形成される、ことを特徴 とする請求項 2記載のプリコート方法。 [3] Each precoat layer is formed by supplying the deposition gas at the same flow rate as the deposition gas supplied when depositing a thin film on the surface of the object to be processed. The precoat method according to claim 2.
[4] 成膜装置の真空処理容器内にプリコートを施す方法であって、 [4] A method of applying a precoat in a vacuum processing container of a film forming apparatus,
前記処理容器は、成膜ガスを含む処理ガスを供給するシャワーヘッドが内部に設 けられ、  The processing container is provided with a shower head for supplying a processing gas including a film forming gas,
前記成膜装置は、被処理体を収容した前記処理容器内に前記処理ガスを供給し て被処理体の表面にプラズマ CVDにより薄膜を堆積させるように構成されて ヽる、成 膜装置のプリコート方法にお!ヽて、 The film forming apparatus is configured to supply the processing gas into the processing container containing the target object and deposit a thin film on the surface of the target object by plasma CVD. For the pre-coating method of the membrane device!
被処理体を収容して ヽな ヽ前記処理容器内へ前記処理ガスを供給して、プラズマ CVDにより、以下の式で表される範囲内の厚さ Xを有するプリコート膜を形成すること を特徴とするプリコート方法:  A pre-coating film having a thickness X within a range represented by the following formula is formed by plasma CVD by supplying the processing gas into the processing container and storing the object to be processed. Pre-coating method:
C≤X≤D  C≤X≤D
Cは、前記プリコート膜の輻射率が実質的に飽和するような当該プリコート膜の膜厚 である輻射飽和膜厚;  C is a radiation saturation film thickness that is the film thickness of the precoat film such that the emissivity of the precoat film is substantially saturated;
Dは、前記プリコート膜の膜厚を次第に増やしながら、それぞれ一定枚数の半導体 ウェハを成膜処理した場合に、パーティクル発生数が急激に増加し始める現象の現 れるようなプリコート膜の膜厚である臨界膜厚。  D is the film thickness of the precoat film in which the phenomenon that the number of generated particles begins to increase suddenly when a predetermined number of semiconductor wafers are formed while gradually increasing the film thickness of the precoat film. Critical film thickness.
[5] 前記プリコート膜は、複数のプリコート層を順次積層することによって形成される、こ とを特徴とする請求項 4記載のプリコート方法。 5. The precoat method according to claim 4, wherein the precoat film is formed by sequentially laminating a plurality of precoat layers.
[6] 各プリコート層は、それぞれ前記被処理体の表面に薄膜を堆積させるときに供給す る前記成膜ガスの流量と同じ流量で前記成膜ガスを供給して形成される、ことを特徴 とする請求項 5記載のプリコート方法。 [6] Each precoat layer is formed by supplying the film formation gas at the same flow rate as the flow rate of the film formation gas supplied when depositing a thin film on the surface of the object to be processed. The precoat method according to claim 5.
[7] 前記薄膜は Ti含有膜であり、前記輻射飽和膜厚 (C)は 500nmであり、前記臨界 膜厚 (D)は 720nmである、ことを特徴とする請求項 4記載のプリコート方法。 7. The precoat method according to claim 4, wherein the thin film is a Ti-containing film, the radiation saturated film thickness (C) is 500 nm, and the critical film thickness (D) is 720 nm.
[8] 前記薄膜は、被処理体の表面に Ti膜を堆積させた後に、当該 Ti膜の少なくとも表 面を窒化することにより形成される、ことを特徴とする請求項 7記載のプリコート方法。 8. The precoat method according to claim 7, wherein the thin film is formed by depositing a Ti film on the surface of the object to be processed and then nitriding at least the surface of the Ti film.
[9] 成膜装置の真空処理容器内にプリコートを施す方法を実行するように、前記成膜 装置を制御するプログラムを記憶した記憶媒体であって、 [9] A storage medium storing a program for controlling the film forming apparatus so as to execute a method of pre-coating in a vacuum processing container of the film forming apparatus,
前記処理容器は、成膜ガスを含む処理ガスを供給するシャワーヘッドが内部に設 けられ、  The processing container is provided with a shower head for supplying a processing gas including a film forming gas,
前記成膜装置は、被処理体を収容した前記処理容器内に前記処理ガスを供給し て被処理体の表面にプラズマ CVDにより薄膜を堆積させるように構成されており、 前記方法は、被処理体を収容して!/ヽな ヽ前記処理容器内へ前記処理ガスを供給 して、プラズマ CVDにより、以下の式で表される範囲内の厚さ Xを有するプリコート膜 を形成することを特徴とする、記憶媒体: C≤X≤A— B The film forming apparatus is configured to supply the processing gas into the processing container containing the target object and deposit a thin film on the surface of the target object by plasma CVD, and the method includes: Contain the body! A storage medium characterized in that the processing gas is supplied into the processing container and a precoat film having a thickness X within a range represented by the following formula is formed by plasma CVD: C≤X≤A— B
Aは、前記処理ガスを用いたプラズマ CVDによって前記シャワーヘッドの表面に付 着するシャワーヘッド付着膜の、前記シャワーヘッドの表面力 剥離しな 、最大限の 膜厚である最大膜厚;  A is a maximum film thickness that is the maximum film thickness of the shower head adhesion film that adheres to the surface of the shower head by plasma CVD using the processing gas without peeling off the surface force of the shower head;
Bは、クリーニング周期間の成膜処理によって複数の被処理体の表面に堆積される 膜の厚さを積算した積算総膜厚;  B is an integrated total film thickness obtained by integrating the thicknesses of films deposited on the surfaces of a plurality of objects to be processed by the film forming process during the cleaning cycle;
Cは、前記プリコート膜の輻射率が実質的に飽和するような当該プリコート膜の膜厚 である輻射飽和膜厚。  C is a radiation saturation film thickness that is a film thickness of the precoat film such that the emissivity of the precoat film is substantially saturated.
成膜装置の真空処理容器内にプリコートを施す方法を実行するように、前記成膜 装置を制御するプログラムを記憶した記憶媒体であって、  A storage medium storing a program for controlling the film forming apparatus so as to execute a method of applying a precoat in a vacuum processing container of the film forming apparatus,
前記処理容器は、成膜ガスを含む処理ガスを供給するシャワーヘッドが内部に設 けられ、  The processing container is provided with a shower head for supplying a processing gas including a film forming gas,
前記成膜装置は、被処理体を収容した前記処理容器内に前記処理ガスを供給し て被処理体の表面にプラズマ CVDにより薄膜を堆積させるように構成されており、 前記方法は、被処理体を収容して!/ヽな ヽ前記処理容器内へ前記処理ガスを供給 して、プラズマ CVDにより、以下の式で表される範囲内の厚さ Xを有するプリコート膜 を形成することを特徴とする、記憶媒体:  The film forming apparatus is configured to supply the processing gas into the processing container containing the target object and deposit a thin film on the surface of the target object by plasma CVD, and the method includes: Contain the body! A storage medium characterized in that the processing gas is supplied into the processing container and a precoat film having a thickness X within a range represented by the following formula is formed by plasma CVD:
C≤X≤D  C≤X≤D
Cは、前記プリコート膜の輻射率が実質的に飽和するような当該プリコート膜の膜厚 である輻射飽和膜厚;  C is a radiation saturation film thickness that is the film thickness of the precoat film such that the emissivity of the precoat film is substantially saturated;
Dは、前記プリコート膜の膜厚を次第に増やしながら、それぞれ一定枚数の半導体 ウェハを成膜処理した場合に、パーティクル発生数が急激に増加し始める現象の現 れるようなプリコート膜の膜厚である臨界膜厚。  D is the film thickness of the precoat film in which the phenomenon that the number of generated particles begins to increase suddenly when a predetermined number of semiconductor wafers are formed while gradually increasing the film thickness of the precoat film. Critical film thickness.
PCT/JP2006/324749 2005-12-12 2006-12-12 Method for precoating film forming apparatus WO2007069599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-358067 2005-12-12
JP2005358067A JP2007165479A (en) 2005-12-12 2005-12-12 Film forming device, precoating method therefor, and storage medium

Publications (1)

Publication Number Publication Date
WO2007069599A1 true WO2007069599A1 (en) 2007-06-21

Family

ID=38162907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324749 WO2007069599A1 (en) 2005-12-12 2006-12-12 Method for precoating film forming apparatus

Country Status (3)

Country Link
JP (1) JP2007165479A (en)
TW (1) TW200738902A (en)
WO (1) WO2007069599A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119627A1 (en) * 2008-03-28 2009-10-01 東京エレクトロン株式会社 Method of depositing metallic film and memory medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6280721B2 (en) * 2013-01-22 2018-02-14 東京エレクトロン株式会社 Method of forming TiN film and storage medium
JP6456601B2 (en) * 2014-05-07 2019-01-23 東京エレクトロン株式会社 Plasma deposition system
JP6462477B2 (en) 2015-04-27 2019-01-30 東京エレクトロン株式会社 Method for processing an object
JP2020084253A (en) * 2018-11-21 2020-06-04 東京エレクトロン株式会社 Processing method and processing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277459A (en) * 1999-03-29 2000-10-06 Nec Corp Titanium film nitriding method and semiconductor device
JP2002167673A (en) * 2000-09-21 2002-06-11 Tokyo Electron Ltd Cvd film deposition method and method for removing deposition
JP2004285469A (en) * 2003-01-31 2004-10-14 Tokyo Electron Ltd Installation table, treatment apparatus, and treatment method
WO2005069358A1 (en) * 2004-01-15 2005-07-28 Tokyo Electron Limited Film-forming method
JP2005310966A (en) * 2004-04-20 2005-11-04 Fujitsu Ltd Substrate processing method and program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3434947B2 (en) * 1995-11-02 2003-08-11 株式会社アルバック Shower plate
JP4429695B2 (en) * 2002-12-05 2010-03-10 東京エレクトロン株式会社 Film forming method and film forming system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277459A (en) * 1999-03-29 2000-10-06 Nec Corp Titanium film nitriding method and semiconductor device
JP2002167673A (en) * 2000-09-21 2002-06-11 Tokyo Electron Ltd Cvd film deposition method and method for removing deposition
JP2004285469A (en) * 2003-01-31 2004-10-14 Tokyo Electron Ltd Installation table, treatment apparatus, and treatment method
WO2005069358A1 (en) * 2004-01-15 2005-07-28 Tokyo Electron Limited Film-forming method
JP2005310966A (en) * 2004-04-20 2005-11-04 Fujitsu Ltd Substrate processing method and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119627A1 (en) * 2008-03-28 2009-10-01 東京エレクトロン株式会社 Method of depositing metallic film and memory medium
JP5551583B2 (en) * 2008-03-28 2014-07-16 東京エレクトロン株式会社 Metal-based film forming method and storage medium
US8906471B2 (en) 2008-03-28 2014-12-09 Tokyo Electron Limited Method of depositing metallic film by plasma CVD and storage medium

Also Published As

Publication number Publication date
JP2007165479A (en) 2007-06-28
TW200738902A (en) 2007-10-16

Similar Documents

Publication Publication Date Title
US8021717B2 (en) Film formation method, cleaning method and film formation apparatus
KR102690416B1 (en) Film formation method and film formation equipment
JP4476232B2 (en) Seasoning method for film forming apparatus
JP4325301B2 (en) Mounting table, processing apparatus, and processing method
JP4245012B2 (en) Processing apparatus and cleaning method thereof
JP2021526585A (en) Chamber Insitu CVD and ALD Coating to Control Metal Contamination
TWI731130B (en) Film forming device and its gas discharge member
US20090117270A1 (en) Method for treating substrate and recording medium
JP5208756B2 (en) Ti-based film forming method and storage medium
TW201604312A (en) Vertical heat treatment apparatus, method of operating vertical heat treatment apparatus, and storage medium
KR100934511B1 (en) Ti-based film deposition method and storage medium
JPH07153704A (en) Thin film forming method and device
WO2009119627A1 (en) Method of depositing metallic film and memory medium
JP5872904B2 (en) Method of forming TiN film and storage medium
WO2007069599A1 (en) Method for precoating film forming apparatus
JP5083173B2 (en) Processing method and processing apparatus
JP6280721B2 (en) Method of forming TiN film and storage medium
JPH0456770A (en) Method for cleaning plasma cvd device
JP7016920B2 (en) Substrate processing equipment, substrate support, semiconductor device manufacturing method and substrate processing method
JP2002167673A (en) Cvd film deposition method and method for removing deposition
WO2023026412A1 (en) Substrate supporting tool, substrate processing apparatus, and method for producing semiconductor device
JP4570186B2 (en) Plasma cleaning method
JP4543611B2 (en) Precoat layer forming method and film forming method
TW202314030A (en) Semiconductor device manufacturing method, substrate processing apparatus, program, and coating method
KR20200062455A (en) Method for Treatment of Chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834504

Country of ref document: EP

Kind code of ref document: A1