JP2000277459A - Titanium film nitriding method and semiconductor device - Google Patents

Titanium film nitriding method and semiconductor device

Info

Publication number
JP2000277459A
JP2000277459A JP11085407A JP8540799A JP2000277459A JP 2000277459 A JP2000277459 A JP 2000277459A JP 11085407 A JP11085407 A JP 11085407A JP 8540799 A JP8540799 A JP 8540799A JP 2000277459 A JP2000277459 A JP 2000277459A
Authority
JP
Japan
Prior art keywords
film
gas
chamber
nitriding
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11085407A
Other languages
Japanese (ja)
Other versions
JP3292171B2 (en
Inventor
Koji Urabe
耕児 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP08540799A priority Critical patent/JP3292171B2/en
Priority to KR1020000015759A priority patent/KR20000076981A/en
Publication of JP2000277459A publication Critical patent/JP2000277459A/en
Application granted granted Critical
Publication of JP3292171B2 publication Critical patent/JP3292171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely reduce particles easy to occur in a process for nitriding a titanium film, by depositing a Ti film on a semiconductor substrate, then introducing only, substantially, H2 gas, NH3 gas, and Ar gas into a chamber, for nitriding the Ti film by a plasma nitriding method. SOLUTION: In the same chamber 1 as where a Ti film is deposited, the Ti film deposited on a semiconductor substrate 3 is nitrided,a gas line A8 is supplied with Ar gas while a gas line B9 supplied with a mixed gas of H2 gas and NH3, and the mixed gas of them is introduced into the chamber 1. With the content of the mixed gas in the gas line B9 being H2, no Ti film is excessively nitrided in the process where it is nitrided while the chlorine contained in the Ti film is discharged from a nitride Ti film in a Ti film deposition process. Thus, on and after the process for nitriding the Ti film, the nitride Ti film is difficult to peel off the inside wall of the chamber and shower head, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,半導体装置の製造
方法に関し,特に半導体基板上にチタン膜を堆積し,そ
のチタン膜を窒化するチタン膜窒化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of nitriding a titanium film by depositing a titanium film on a semiconductor substrate and nitriding the titanium film.

【0002】[0002]

【従来の技術】従来から,半導体基板上のコンタクト・
ホールやビア・ホールにTi膜を形成し,更にそのTi
膜を窒化する半導体装置の製造方法がある。半導体基板
上のパターンレイアウトの変化,電源電圧の低下化や駆
動力の向上により,コンタクト面は,オーミックでかつ
低抵抗な界面接触であることが要求される。これらの要
求に応えるため,浅いpn接合に対して低抵抗コンタク
トが得られる熱的に安定な材料を得る技術であるバリア
メタル技術が開発された。バリアメタル技術は,シリコ
ン基板とAlとの合金反応を防止し,低抵抗のオーミッ
クコンタクトを得ることを目的としたものである。バリ
アメタルとして必要な性質は,熱的に安定で合金化反応
が進行しにくいこと,ショットキー障壁の高さが低いこ
と,低い抵抗率を持つこと,自然酸化膜に対する還元力
が大きいこと等が挙げられる。これらの要件を満たし,
成膜技術が容易にでき,製造コストを抑えることができ
る材料としてTiがある。Tiは,そのままではWと容
易に反応して金属間化合物であるWSiを形成するこ
とが知られており,Tiの窒化膜を形成してTiと積層
構造で用いることが一般的である。この窒化Ti膜を形
成する際にパーティクルと呼ばれる不要粒子が発生す
る。パーティクルがエッチング前に半導体基板に付着す
ると,このパーティクルがマスクとなり,エッチング残
りが発生する。このため配線の加工は,ショートの原因
となり,ビア・ホールでは接続不良を引き起こしてしま
う。これでは,歩留まりが低下し,製品の信頼性も低下
してしまう。
2. Description of the Related Art Conventionally, contacts on a semiconductor substrate
A Ti film is formed in a hole or via hole,
There is a method for manufacturing a semiconductor device in which a film is nitrided. Due to a change in pattern layout on a semiconductor substrate, a reduction in power supply voltage, and an improvement in driving force, the contact surface is required to have an ohmic and low-resistance interface contact. In order to meet these demands, a barrier metal technology has been developed which is a technology for obtaining a thermally stable material capable of obtaining a low resistance contact with a shallow pn junction. The barrier metal technology aims to prevent an alloy reaction between a silicon substrate and Al and obtain a low-resistance ohmic contact. The properties required as a barrier metal are that it is thermally stable and the alloying reaction does not easily proceed, the height of the Schottky barrier is low, the resistivity is low, and the reducing power for the native oxide film is large. No. Meet these requirements,
There is Ti as a material that can easily form a film and reduce the production cost. It is known that Ti easily reacts with W to form WSi 2 which is an intermetallic compound as it is, and it is common to form a Ti nitride film and use it in a laminated structure with Ti. When this TiN film is formed, unnecessary particles called particles are generated. If the particles adhere to the semiconductor substrate before the etching, the particles serve as a mask, and an etching residue occurs. For this reason, the wiring processing causes a short circuit, and causes a connection failure in a via hole. This reduces the yield and product reliability.

【0003】従来は,半導体基板上のコンタクト・ホー
ルやビア・ホールにTi膜を堆積し,H気体とN
体とAr気体とを半導体基板が設置してあるチャンバー
内に導入することにより,Ti膜を窒化していた。しか
し,このH気体とN気体とAr気体とをチャンバー
内に導入する窒化方法では,窒化作用が弱く,Ti膜を
十分に窒化することができないという問題があった。
Conventionally, a Ti film is deposited on a contact hole or via hole on a semiconductor substrate, and H 2 gas, N 2 gas and Ar gas are introduced into a chamber in which the semiconductor substrate is installed. , Ti film was nitrided. However, the nitriding method in which the H 2 gas, the N 2 gas, and the Ar gas are introduced into the chamber has a problem that the nitriding action is weak and the Ti film cannot be sufficiently nitrided.

【0004】この問題を解決することを目的として,最
近では,N気体とNH気体とAr気体とを半導体基
板が設置してあるチャンバー内に導入し,プラズマ窒化
法を用いて,Ti膜を窒化する方法がある。
In order to solve this problem, recently, N 2 gas, NH 3 gas and Ar gas are introduced into a chamber in which a semiconductor substrate is installed, and a Ti film is formed by plasma nitridation. There is a method of nitriding.

【0005】このN気体とNH気体とAr気体とを
チャンバー内に導入する窒化方法によれば,窒化作用が
強く,Ti膜を十分に窒化することはできる。
According to the nitriding method in which the N 2 gas, the NH 3 gas and the Ar gas are introduced into the chamber, the nitriding action is strong and the Ti film can be sufficiently nitrided.

【0006】しかし,係るN気体とNH気体とAr
気体とをチャンバー内に導入する窒化方法では,チャン
バー内壁やシャワーヘッド等から剥離した窒化Ti膜が
パーティクルとして半導体基板上に落下し半導体の動作
に支障をきたしてしまう新たな問題が生じていた。
However, the N 2 gas, NH 3 gas and Ar
In the nitridation method in which gas is introduced into the chamber, a new problem arises in that the Ti nitride film peeled off from the inner wall of the chamber, the shower head, or the like falls as particles on the semiconductor substrate and hinders the operation of the semiconductor.

【0007】そこで,このような半導体基板上に落下し
半導体の動作に支障を生ぜしめるパーティクルの低減等
を意図したチタン膜窒化方法として,特開平10−10
6974には,チタン膜の表面を水素ガスと窒素ガスの
雰囲気下でプラズマ処理することにより窒化させるチタ
ン膜窒化工程により,チタンナイトライド膜を成膜する
チタン膜及びチタンナイトライド膜の連続成膜方法が開
示されている。この特開平10−106974に開示さ
れている方法では,確かにある程度窒化作用が強く,T
i膜を十分に窒化し,かつパーティクルをある程度低減
することができる可能性はある。
Therefore, a method of nitriding a titanium film intended to reduce particles which fall on a semiconductor substrate and hinder the operation of the semiconductor is disclosed in Japanese Patent Application Laid-Open No. 10-10 / 1998.
In 6974, a titanium film is formed by performing a plasma treatment on the surface of the titanium film in an atmosphere of hydrogen gas and nitrogen gas to form a titanium nitride film. A method is disclosed. According to the method disclosed in Japanese Patent Application Laid-Open No. H10-106974, the nitridation effect is strong to some extent.
There is a possibility that the i-film can be sufficiently nitrided and particles can be reduced to some extent.

【0008】[0008]

【発明が解決しようとする課題】しかし,係る特開平1
0−106974に記載されたチタン膜及びチタンナイ
トライド膜の連続成膜方法でも,チタン膜を窒化する過
程における,半導体基板上にチャンバー等から落下する
パーティクル数を低減するという問題は,依然として解
決されておらず,チャンバー内壁やシャワーヘッドから
半導体基板にパーティクルが落下し,半導体の動作に支
障をきたしてしまう事実が依然認められた。
However, Japanese Patent Laid-Open Publication No.
In the method of continuously forming a titanium film and a titanium nitride film described in JP-A-106974, the problem of reducing the number of particles falling from a chamber or the like onto a semiconductor substrate in the process of nitriding the titanium film is still solved. However, the fact that particles fell from the inner wall of the chamber or the shower head onto the semiconductor substrate and hindered the operation of the semiconductor was still recognized.

【0009】以上の従来技術における問題に鑑み,本発
明は,半導体基板にチタン膜を堆積し,そのチタン膜を
窒化する工程で発生するパーティクルを確実に低減さ
せ,半導体装置が正常に動作するチタン膜窒化方法及び
半導体装置を提供することを目的とする。
In view of the above-mentioned problems in the prior art, the present invention is directed to a method of depositing a titanium film on a semiconductor substrate, and reliably reducing particles generated in a step of nitriding the titanium film, so that the semiconductor device can operate normally. It is an object to provide a film nitriding method and a semiconductor device.

【0010】[0010]

【課題を解決するための手段】前記課題を解決する本出
願第1の発明のチタン膜窒化方法は,チャンバー内に半
導体基板を設置し,その半導体基板上にTi膜を堆積
し,次いでチャンバー内に実質的にH気体とNH
体とAr気体のみを導入しプラズマ窒化法により,Ti
膜を窒化することを特徴とする。
According to a first aspect of the present invention, there is provided a method for nitriding a titanium film, comprising the steps of: placing a semiconductor substrate in a chamber, depositing a Ti film on the semiconductor substrate; And only H 2 gas, NH 3 gas, and Ar gas are introduced into the furnace.
It is characterized in that the film is nitrided.

【0011】したがって,本出願第1の発明のチタン膜
窒化方法によれば,Ti膜を堆積する際にTi膜に混入
する塩素を水素が排出して,NH気体がプラズマ状態
になることによりTi膜を窒化することができ,Ti膜
を窒化する工程以後シャワーヘッド及びチャンバーの内
壁等から窒化Ti膜が剥離しにくくなり,これによっ
て,半導体基板上に付着するパーティクル数を低減させ
ることが可能になる。
Therefore, according to the method for nitriding a titanium film of the first invention of the present application, when the Ti film is deposited, the chlorine mixed into the Ti film is discharged, and the NH 3 gas is brought into a plasma state. The Ti film can be nitrided, and after the step of nitriding the Ti film, it becomes difficult for the Ti nitride film to be peeled off from the shower head and the inner wall of the chamber, thereby reducing the number of particles adhering to the semiconductor substrate. become.

【0012】本出願第2の発明の半導体素子のキャパシ
タは,本出願第1の発明の半導体素子のキャパシタにお
いて,前記H気体と前記NH気体とが,混合気体と
してチャンバー内に導入されることを特徴とする。
The capacitor for a semiconductor device according to the second aspect of the present invention is the capacitor for a semiconductor device according to the first aspect of the present invention, wherein the H 2 gas and the NH 3 gas are introduced into the chamber as a mixed gas. It is characterized by the following.

【0013】したがって,本出願第2の発明のチタン膜
窒化方法によれば,Ti膜を窒化するNH気体とチャ
ンバー内壁やシャワーヘッドに形成される窒化Ti膜の
窒化度合いを適正化するH気体を混合気体することに
より,NH気体とH気体をプラズマ化する際に,N
とHとをより均一なプラズマ状態にすることが可
能になり,Ti膜を窒化する工程以後シャワーヘッド及
びチャンバーの内壁等から窒化Ti膜が剥離しにくくな
り,これによって,半導体基板上に付着するパーティク
ル数を低減させることが可能になる。
Therefore, according to the titanium film nitriding method of the second invention of the present application, NH 3 gas for nitriding the Ti film and H 2 for optimizing the degree of nitriding of the Ti nitride film formed on the inner wall of the chamber and the showerhead. When the NH 3 gas and the H 2 gas are turned into plasma by mixing the gases,
H 3 and H 2 can be brought into a more uniform plasma state, and after the step of nitriding the Ti film, it becomes difficult for the Ti nitride film to peel off from the shower head and the inner wall of the chamber. It is possible to reduce the number of particles adhering to the substrate.

【0014】本出願第3の発明は,本出願第1又は本出
願第2の発明のチタン膜窒化方法において,前記H
前記NHとの混合気体をチャンバー内のシャワーヘッ
ドの所定の穴から導入し,この所定の穴とは異なる穴か
らAr気体を前記チャンバー内に導入することを特徴と
する。
According to a third aspect of the present invention, there is provided a method for nitriding a titanium film according to the first or second aspect of the present invention, wherein the mixed gas of H 2 and NH 3 is supplied to a predetermined hole of a shower head in a chamber. And an Ar gas is introduced into the chamber from a hole different from the predetermined hole.

【0015】したがって,本出願第3の発明のチタン膜
窒化方法によれば,チャンバー内のプラズマ濃度を希釈
するAr気体とHとNHとの混合気体を異なる穴に
することにより,チャンバー内のプラズマ濃度を所望の
濃度にすることが容易にできるようになり,これによっ
て,Ti膜を窒化する工程以後シャワーヘッド及びチャ
ンバーの内壁等から窒化Ti膜が剥離しにくくなり,半
導体基板上に付着するパーティクル数を低減させること
が可能になる。
Therefore, according to the method for nitriding a titanium film of the third invention of the present application, the hole in the chamber is made different from the mixed gas of Ar gas, H 2 and NH 3 for diluting the plasma concentration in the chamber. This makes it easier to set the plasma concentration of the Ti film to a desired concentration, which makes it difficult for the Ti nitride film to be peeled off from the showerhead and the inner wall of the chamber after the step of nitriding the Ti film. It is possible to reduce the number of particles to be generated.

【0016】本出願第4の発明は,本出願第1〜本出願
第3の発明のチタン膜窒化方法において,前記プラズマ
窒化法が,高周波電力を用いるプラズマ窒化法によりT
i膜を窒化することを特徴とする。また,本出願第5の
発明は,本出願第1〜本出願第4の発明のチタン膜窒化
方法において,前記プラズマ窒化法が,平行平板CVD
装置で行われることを特徴とする。
According to a fourth aspect of the present invention, in the method for nitriding a titanium film according to the first to third aspects of the present invention, the plasma nitriding is performed by a plasma nitriding method using high frequency power.
It is characterized by nitriding the i film. According to a fifth aspect of the present invention, there is provided a method of nitriding a titanium film according to the first to fourth aspects of the present invention, wherein the plasma nitridation method comprises the step of:
It is characterized in that it is performed in an apparatus.

【0017】したがって,本出願第4の発明又は本出願
第5の発明のチタン膜窒化方法によれば,高周波電力に
より,十分にプラズマ化したプラズマ気体をチャンバー
内に発生させることができる。
Therefore, according to the method for nitriding a titanium film according to the fourth invention or the fifth invention of the present application, it is possible to generate a sufficiently converted plasma gas in the chamber by using high-frequency power.

【0018】本出願第6の発明の半導体装置は,チャン
バー内に半導体基板を設置し,TiCl気体を導入し
プラズマCVD法によりその半導体基板上にTi膜を堆
積し,次いでチャンバー内に実質的にH気体とNH
気体とAr気体のみを導入しプラズマ窒化法により,T
i膜を窒化する工程を有して得られる半導体装置であっ
て,窒化Ti膜が含有する塩素量が1021atoms
/cm以下であることを特徴とする。
In the semiconductor device according to the sixth aspect of the present invention, a semiconductor substrate is set in a chamber, a TiCl 4 gas is introduced, a Ti film is deposited on the semiconductor substrate by a plasma CVD method, and then substantially in the chamber. H 2 gas and NH 3
Gas and Ar gas alone are introduced and T
What is claimed is: 1. A semiconductor device obtained by a step of nitriding an i film, wherein the amount of chlorine contained in the Ti nitride film is 10 21 atoms.
/ Cm 3 or less.

【0019】したがって,本出願第6の発明の半導体装
置は,Ti膜を窒化している時に,プラズマ状態のH
が窒化されつつあるTi膜に作用することにより,窒化
Ti膜をチャンバーの内壁やシャワーヘッド等から剥離
させやすくする塩素を窒化Ti膜から排出し,窒化Ti
膜が含有する塩素量を1021atoms/cm以下
の状態として得られる。これによって,Ti膜を窒化す
る工程以後シャワーヘッド及びチャンバーの内壁等から
窒化Ti膜が剥離しにくくなり,半導体基板上に付着す
るパーティクル数を低減させることが可能になる。ま
た,パーティクルによるエッチング残りが減少し,配線
の加工によるショートの発生を低減することができ,配
線の接続不良もほとんど発生しないようにすることが可
能になる。したがって,半導体装置製品の歩留まり,製
品の信頼性が向上する半導体装置を提供することが可能
になる。
Therefore, in the semiconductor device according to the sixth aspect of the present invention, when the Ti film is nitrided, the H 2 in the plasma state is formed.
Acts on the Ti film that is being nitrided, thereby discharging chlorine from the Ti nitride film, which facilitates the peeling of the Ti nitride film from the inner wall of the chamber, the showerhead, and the like.
The film is obtained in a state where the amount of chlorine contained in the film is 10 21 atoms / cm 3 or less. As a result, after the step of nitriding the Ti film, the Ti nitride film is less likely to be peeled off from the showerhead and the inner wall of the chamber, and the number of particles adhering to the semiconductor substrate can be reduced. In addition, the etching residue due to particles is reduced, the occurrence of short circuit due to wiring processing can be reduced, and it is possible to hardly cause poor connection of wiring. Therefore, it is possible to provide a semiconductor device in which the yield of semiconductor device products and the reliability of the products are improved.

【0020】[0020]

【発明の実施の形態】本発明における実施の形態のチタ
ン膜窒化方法及び半導体装置を図1〜図4を参照して説
明する。本実施の形態に係るチタン膜窒化方法で用いる
プラズマCVD装置は,チャンバー内1上面に上部電極
兼ガス供給部2を設け,上部電極兼ガス供給部2に高周
波電力7を供給する電送線が接続される。上部電極兼ガ
ス供給部2には,ガスラインA(8)とガスラインB
(9)が接続され,このガスラインA(8)とガスライ
ンB(9)を介して,外部からチャンバー1内に混合気
体が供給される。チャンバー1内にガスラインA,B
(8,9)を介して気体を供給するガスラインA,B
(8,9)の端部には,シャワーヘッド10が設置され
ている。シャワーヘッド10の下には,アース6された
抵抗加熱ヒーター4が設置されており,その抵抗加熱ヒ
ーター4上にTi膜を堆積しそのTi膜を窒化される半
導体基板3が設置される。また,チャンバー1の底面又
は側面等には,チャンバー内の気体を排出する排気ライ
ン5が接続されている。(図1(A)) また,上部電極及びガス供給部2に設置されているシャ
ワーヘッド10には,ガスラインA(8)とガスライン
B(9)を介してチャンバー1内に供給される気体が混
合されやすいようにするため,ガスラインA(8)のガ
ス供給孔とガスラインB(9)のガス供給孔とのシャワ
ーヘッド10上にそれぞれ配置される位置が面上均一な
るよう交互にガスラインA(8)のガス供給孔とガスラ
インB(9)のガス供給孔とが設置されている(図1
(B))。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A titanium film nitriding method and a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS. In the plasma CVD apparatus used in the titanium film nitriding method according to the present embodiment, an upper electrode / gas supply unit 2 is provided on the upper surface of a chamber 1 and a transmission line for supplying high frequency power 7 to the upper electrode / gas supply unit 2 is connected. Is done. A gas line A (8) and a gas line B
(9) is connected, and a mixed gas is supplied into the chamber 1 from the outside via the gas line A (8) and the gas line B (9). Gas lines A and B in chamber 1
Gas lines A and B for supplying gas through (8, 9)
At the end of (8, 9), a shower head 10 is installed. Below the showerhead 10, a resistance heater 4 grounded 6 is installed, and a semiconductor substrate 3 on which a Ti film is deposited and the Ti film is nitrided is installed on the resistance heater 4. An exhaust line 5 for exhausting gas in the chamber is connected to the bottom surface or side surface of the chamber 1. (FIG. 1 (A)) In addition, the shower head 10 installed in the upper electrode and the gas supply unit 2 is supplied into the chamber 1 via a gas line A (8) and a gas line B (9). In order to facilitate mixing of the gas, the positions of the gas supply holes of the gas line A (8) and the gas supply holes of the gas line B (9) are alternately arranged on the shower head 10 so as to be uniform on the surface. A gas supply hole of the gas line A (8) and a gas supply hole of the gas line B (9) are installed in FIG.
(B)).

【0021】つぎに,半導体基板3上にTi膜を堆積
し,そのTi膜を窒化する方法を,図1と図4を参照し
て説明する。まず,半導体基板3上にTi膜を堆積す
る。この半導体基板3にTi膜を堆積する方法は,従来
の技術と同様である。すなわち,ガスラインA(8)に
TiClとArの混合気体を供給し,ガスラインB
(9)にH気体を供給し,チャンバー1内にこれらの
混合気体を導入する。さらに,上部電極及びガス供給部
2に高周波電力7を供給し,チャンバー1内に導入され
た混合気体をプラズマ状態にする。これによって,半導
体基板3には,Ti膜が堆積する(図4(A))。ま
た,シャワーヘッド10にも半導体基板3と同様にTi
膜が堆積する(図4(B))。他に,チャンバー1内壁
等にもこれら半導体基板3,シャワーヘッド10と同様
にTi膜が堆積する。
Next, a method of depositing a Ti film on the semiconductor substrate 3 and nitriding the Ti film will be described with reference to FIGS. First, a Ti film is deposited on the semiconductor substrate 3. The method of depositing a Ti film on the semiconductor substrate 3 is the same as the conventional technique. That is, a gas mixture of TiCl 4 and Ar is supplied to the gas line A (8),
The H 2 gas is supplied to (9), and the mixed gas is introduced into the chamber 1. Further, high-frequency power 7 is supplied to the upper electrode and the gas supply unit 2 to bring the mixed gas introduced into the chamber 1 into a plasma state. Thus, a Ti film is deposited on the semiconductor substrate 3 (FIG. 4A). Also, the shower head 10 is made of Ti, like the semiconductor substrate 3.
A film is deposited (FIG. 4B). In addition, a Ti film is deposited on the inner wall of the chamber 1 and the like, similarly to the semiconductor substrate 3 and the showerhead 10.

【0022】つぎにTi膜を堆積したチャンバー1と同
一チャンバー1内で,半導体基板3上に堆積したTi膜
を窒化する。ガスラインA(8)には,Ar気体を供給
し,ガスラインB(9)には,HとNHとの混合気
体を供給し,それによりチャンバー1内にこれらの混合
気体を導入する。ガスラインB(9)の混合気体の成分
をHとしたことにより,Ti膜を窒化する過程で,T
i膜を窒化し過ぎることなく,Ti膜堆積工程でTi膜
に含まれる塩素を窒化Ti膜から排出することができ
る。これによって,Ti膜を窒化する工程以後シャワー
ヘッド及びチャンバーの内壁等から窒化Ti膜が剥離し
にくくなり,半導体基板上に付着するパーティクル数を
低減させることが可能になる。つぎに,上部電極及びガ
ス供給部2にに高周波電力7を供給し,チャンバー1内
に導入された混合気体をプラズマ状態にする。これによ
って,HとNHとの混合気体に含まれる窒素原子に
より,半導体基板3上に堆積したTi膜が窒化される
(図1(A))。また,シャワーヘッド10にも半導体
基板3と同様に堆積したTi膜が窒化される(図1
(B))。他に,チャンバー1内壁等にもこれら半導体
基板3,シャワーヘッド10と同様に堆積したTi膜が
窒化される。
Next, the Ti film deposited on the semiconductor substrate 3 is nitrided in the same chamber 1 where the Ti film is deposited. Ar gas is supplied to the gas line A (8), and a mixed gas of H 2 and NH 3 is supplied to the gas line B (9), thereby introducing these mixed gases into the chamber 1. . By setting the component of the gas mixture in the gas line B (9) to H 2 , T
Chlorine contained in the Ti film can be discharged from the Ti nitride film in the Ti film deposition step without excessively nitriding the i film. As a result, after the step of nitriding the Ti film, the Ti nitride film is less likely to be peeled off from the showerhead and the inner wall of the chamber, and the number of particles adhering to the semiconductor substrate can be reduced. Next, the high-frequency power 7 is supplied to the upper electrode and the gas supply unit 2 to bring the mixed gas introduced into the chamber 1 into a plasma state. Thus, the Ti film deposited on the semiconductor substrate 3 is nitrided by nitrogen atoms contained in the gas mixture of H 2 and NH 3 (FIG. 1A). Also, a Ti film deposited on the shower head 10 in the same manner as the semiconductor substrate 3 is nitrided (FIG. 1).
(B)). In addition, a Ti film deposited on the inner wall of the chamber 1 in the same manner as the semiconductor substrate 3 and the showerhead 10 is nitrided.

【0023】[0023]

【実施例】つぎに本発明の実施例のチタン膜窒化方法
と,比較例として従来のN気体とNH気体とAr気
体とを半導体基板が設置してあるチャンバー内に導入
し,プラズマ窒化法を用いて,Ti膜を窒化する方法
と,のチャンバー1内のパーティクル数を図2を参照し
て比較する。図2に示されるように半導体基板3をチャ
ンバー1内に設置する前にチャンバー1内の雰囲気調整
をするプリコート後では,チャンバー1内に発生するパ
ーティクル数が,本実施例では20個以下になる。ここ
に,具体的なプリコート処理としては,半導体基板2が
ない状態で半導体基板36枚分を処理する相当のチタン
膜堆積とチタン膜窒化を行う。また,半導体基板2を2
5枚分チタン膜堆積とチタン膜窒化処理を行った後で
も,本実施例ではチャンバー1内に発生するパーティク
ル数が20個以下になる。更に,半導体基板2を500
枚分チタン膜堆積とチタン膜窒化処理を行った後でさ
え,本実施例ではチャンバー1内に発生するパーティク
ル数を50以下に抑えることが可能となる。これに対
し,比較例のN気体とNH気体とAr気体とを半導
体基板が設置してあるチャンバー内に導入し,プラズマ
窒化法を用いて,Ti膜を窒化する方法では,半導体基
板3をチャンバー1内に設置する前にチャンバー1内の
雰囲気調整をするプリコート後で,チャンバー1内に発
生したパーティクル数は,1000個以上である。ま
た,半導体基板2を25枚分チタン膜堆積とチタン膜窒
化処理を行った後でも,比較例では,チャンバー1内に
発生するパーティクル数は,1000個以上である。以
上の実施例及びこれに対する比較例からも明らかである
ように,本発明のチタン膜窒化方法を用いてチタン膜を
窒化すれば,従来のN気体とNH気体とAr気体と
を半導体基板が設置してあるチャンバー内に導入し,プ
ラズマ窒化法を用いて,Ti膜を窒化する方法を採用し
てチタン膜を窒化する場合に対し,チャンバー1内に発
生するパーティクル数を最大で50分の1に低減するこ
とが可能なる。このように,本発明のチタン膜窒化処理
を行うことによってチャンバー1内のパーティクル発生
数を低く抑えることができるのは,以下の理由によると
認められる。すなわち,本実施例では,窒化過程のTi
膜が,水素を吸収することにより,窒化Ti膜のストレ
スが下がり,窒化Ti膜がシャワーヘッド10やチャン
バー1内から剥離しにくくなり,また,ガスラインB
(9)に供給する混合気体をH とNHとして,水素
原子に対する窒素原子数を従来の方法より減らしたこと
により,半導体基板3に堆積させる窒化Ti膜として適
度な窒化強度を得ることができ,窒化Ti膜が剥離しに
くくなる。
Next, a method of nitriding a titanium film according to an embodiment of the present invention will be described.
And the conventional N2Gas and NH3Gas and Ar gas
The body is introduced into the chamber where the semiconductor substrate is installed
And using a plasma nitriding method to nitride the Ti film
And the number of particles in chamber 1 with reference to FIG.
To compare. As shown in FIG.
Atmosphere adjustment in chamber 1 before installing in chamber 1
After the pre-coating, the
In this embodiment, the number of articles is 20 or less. here
First, as a specific precoating process, the semiconductor substrate 2
Titanium equivalent to process 36 semiconductor substrates in the absence
Film deposition and titanium film nitridation are performed. Also, the semiconductor substrate 2 is
After performing titanium film deposition and titanium film nitriding treatment for 5 sheets
In this embodiment, the particles generated in the chamber 1
The number of files becomes 20 or less. Further, the semiconductor substrate 2 is
After performing titanium film deposition and titanium film nitridation
In this embodiment, the particles generated in the chamber 1
The number of files can be reduced to 50 or less. Against this
And N of the comparative example2Gas and NH3Gas and Ar gas are semiconductive
Plasma is introduced into the chamber where the body substrate is installed.
In the method of nitriding a Ti film using a nitriding method, a semiconductor substrate is used.
Before installing the plate 3 in the chamber 1,
After pre-coating to adjust the atmosphere,
The number of generated particles is 1000 or more. Ma
In addition, titanium film deposition and titanium film deposition for 25 semiconductor substrates 2 were performed.
In the comparative example, even after the
The number of generated particles is 1000 or more. Less than
It is clear from the above examples and comparative examples.
As described above, the titanium film is formed using the titanium film nitriding method of the present invention.
By nitriding, the conventional N2Gas and NH3Gas and Ar gas
Into the chamber where the semiconductor substrate is
A method of nitriding the Ti film using the plasma nitriding method was adopted.
In the chamber 1 when nitriding the titanium film
Reduce the number of particles generated by up to 1/50
It becomes possible. Thus, the titanium film nitriding treatment of the present invention
Generation of particles in chamber 1
The reason why the number can be kept low is as follows.
Is recognized. That is, in the present embodiment, Ti
The film absorbs the hydrogen, and the Ti nitride film
The TiN film is reduced by the shower head 10
It is difficult to separate from the inside of the bar 1 and the gas line B
The mixed gas supplied to (9) is H 2And NH3As hydrogen
Reduced the number of nitrogen atoms per atom compared to conventional methods
Is suitable as a Ti nitride film deposited on the semiconductor substrate 3.
High nitridation strength, and the nitrided Ti film
It becomes hard.

【0024】以上のように,チャンバー内に半導体基板
を設置し,TiCl気体を導入しプラズマCVD法に
よりその半導体基板上にTi膜を堆積し,次いでチャン
バー内に実質的にH気体とNH気体とAr気体のみ
を導入しプラズマ窒化法により,Ti膜を窒化する工程
を有して得られる半導体装置であって,窒化Ti膜が含
有する塩素量が1021atoms/cm以下である
ことにより,Ti膜を堆積する際に,Ti膜に混入する
塩素を水素が排出して,NH気体がプラズマ状態にな
ることによりTi膜を窒化することができ,Ti膜を窒
化する工程以後シャワーヘッド及びチャンバーの内壁等
から窒化Ti膜が剥離しにくくなり,これによって,半
導体基板上に付着するパーティクル数を低減させること
が可能になる。また,パーティクルによるエッチング残
りが減少し,配線の加工によるショートの発生を低減す
ることができ,配線の接続不良もほとんど発生しないよ
うにすることが可能になる。したがって,半導体装置製
品の歩留まり,製品の信頼性が向上する半導体装置を提
供することが可能になる。
As described above, a semiconductor substrate is set in a chamber, a TiCl 4 gas is introduced, a Ti film is deposited on the semiconductor substrate by a plasma CVD method, and then H 2 gas and NH are substantially contained in the chamber. A semiconductor device obtained by a process of nitriding a Ti film by a plasma nitriding method by introducing only three gases and an Ar gas, wherein the amount of chlorine contained in the Ti nitride film is 10 21 atoms / cm 3 or less. Accordingly, when depositing the Ti film, the chlorine mixed in the Ti film is discharged, and the NH 3 gas is turned into a plasma state, whereby the Ti film can be nitrided. After the step of nitriding the Ti film, It becomes difficult for the TiN film to be peeled off from the shower head and the inner wall of the chamber, thereby making it possible to reduce the number of particles adhering on the semiconductor substrate. . In addition, the etching residue due to particles is reduced, the occurrence of short circuit due to wiring processing can be reduced, and it is possible to hardly cause poor connection of wiring. Therefore, it is possible to provide a semiconductor device in which the yield of semiconductor device products and the reliability of the products are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明における実施の形態のチタン膜窒化方
法及び半導体装置のチタン膜窒化工程を示す模式図であ
る。 (A) CVDチャンバーの断面模式図である。 (B) 上部電極表面の拡大図である。
FIG. 1 is a schematic view showing a titanium film nitriding method and a titanium film nitriding step of a semiconductor device according to an embodiment of the present invention. (A) It is a cross-sectional schematic diagram of a CVD chamber. (B) It is an enlarged view of the upper electrode surface.

【図2】 本発明における実施例のチタン膜窒化方法及
び半導体装置のパーティクル数と比較例のパーティクル
数とを示した図である。
FIG. 2 is a diagram showing the number of particles of a titanium film nitriding method and a semiconductor device according to an example of the present invention and the number of particles of a comparative example.

【図3】 本発明における実施の形態のチタン膜堆積及
びチタン膜窒化を行う装置を示す模式図である。 (A) CVDチャンバーの断面模式図である。 (B) 上部電極表面の拡大図である。
FIG. 3 is a schematic view showing an apparatus for depositing and nitriding a titanium film according to an embodiment of the present invention. (A) It is a cross-sectional schematic diagram of a CVD chamber. (B) It is an enlarged view of the upper electrode surface.

【図4】 本発明における実施の形態のチタン膜窒化方
法及び半導体装置のチタン膜堆積工程を示す模式図であ
る。 (A) CVDチャンバーの断面模式図である。 (B) 上部電極表面の拡大図である。
FIG. 4 is a schematic view showing a titanium film nitriding method and a titanium film depositing step of a semiconductor device according to an embodiment of the present invention. (A) It is a cross-sectional schematic diagram of a CVD chamber. (B) It is an enlarged view of the upper electrode surface.

【符号の説明】[Explanation of symbols]

1 チャンバー 2 上部電極兼ガス供給部 3 半導体基板 4 抵抗加熱ヒーター 5 排気ライン 6 アース 7 高周波電力 8 ガスラインA 9 ガスラインB 10 シャワーヘッド DESCRIPTION OF SYMBOLS 1 Chamber 2 Upper electrode and gas supply part 3 Semiconductor substrate 4 Resistance heater 5 Exhaust line 6 Ground 7 High frequency power 8 Gas line A 9 Gas line B 10 Shower head

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/3205 H01L 21/88 M Fターム(参考) 4K029 AA06 AA24 BA17 BA60 CA04 CA13 DD02 4K030 AA03 AA16 BA18 CA04 CA12 EA03 FA03 KA20 4M104 BB30 DD44 DD45 DD86 5F033 HH33 PP04 PP12 QQ90 QQ98 WW04 XX00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/3205 H01L 21/88 MF Term (Reference) 4K029 AA06 AA24 BA17 BA60 CA04 CA13 DD02 4K030 AA03 AA16 BA18 CA04 CA12 EA03 FA03 KA20 4M104 BB30 DD44 DD45 DD86 5F033 HH33 PP04 PP12 QQ90 QQ98 WW04 XX00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 チャンバー内に半導体基板を設置し,そ
の半導体基板上にTi膜を堆積し,次いでチャンバー内
に実質的にH気体とNH気体とAr気体のみを導入
しプラズマ窒化法により,Ti膜を窒化することを特徴
とするチタン膜窒化方法。
1. A semiconductor substrate is placed in a chamber, a Ti film is deposited on the semiconductor substrate, and then substantially only H 2 gas, NH 3 gas and Ar gas are introduced into the chamber, and plasma nitriding is performed. And nitriding a Ti film.
【請求項2】 前記H気体と前記NH気体とが,混
合気体としてチャンバー内に導入されることを特徴とす
る請求項1に記載のチタン膜窒化方法。
2. The method according to claim 1, wherein the H 2 gas and the NH 3 gas are introduced into the chamber as a mixed gas.
【請求項3】 前記Hと前記NHとの混合気体をチ
ャンバー内のシャワーヘッドの所定の穴から導入し,こ
の所定の穴とは異なる穴からAr気体を前記チャンバー
内に導入することを特徴とする請求項1又は請求項2に
記載のチタン膜窒化方法。
3. A method of introducing a mixed gas of H 2 and NH 3 from a predetermined hole of a shower head in a chamber, and introducing an Ar gas into the chamber from a hole different from the predetermined hole. The titanium film nitriding method according to claim 1 or 2, wherein
【請求項4】 前記プラズマ窒化法が,高周波電力を用
いるプラズマ窒化法によりTi膜を窒化することを特徴
とする請求項1〜請求項3のいずれか一に記載のチタン
膜窒化方法。
4. The method according to claim 1, wherein the plasma nitriding includes nitriding the Ti film by a plasma nitriding method using high frequency power.
【請求項5】 前記プラズマ窒化法が,平行平板CVD
(ChemicalVapor Depositio
n:化学的気相成長)装置で行われることを特徴とする
請求項1〜請求項4のいずれか一に記載のチタン膜窒化
方法。
5. The method according to claim 1, wherein the plasma nitriding method is a parallel plate CVD method.
(Chemical Vapor Deposition
The method according to any one of claims 1 to 4, wherein the method is performed by an apparatus (n: chemical vapor deposition).
【請求項6】 チャンバー内に半導体基板を設置し,T
iCl気体を導入しプラズマCVD法によりその半導
体基板上にTi膜を堆積し,次いでチャンバー内に実質
的にH気体とNH気体とAr気体のみを導入しプラ
ズマ窒化法により,Ti膜を窒化する工程を有して得ら
れる半導体装置であって,窒化Ti膜が含有する塩素量
が1021atoms/cm以下であることを特徴と
する半導体装置。
6. A semiconductor substrate is set in a chamber, and T
An iCl 4 gas is introduced, a Ti film is deposited on the semiconductor substrate by a plasma CVD method, and then substantially only a H 2 gas, an NH 3 gas and an Ar gas are introduced into the chamber, and the Ti film is formed by a plasma nitriding method. A semiconductor device obtained by a nitriding step, wherein the amount of chlorine contained in the Ti nitride film is 10 21 atoms / cm 3 or less.
JP08540799A 1999-03-29 1999-03-29 Method for manufacturing semiconductor device Expired - Fee Related JP3292171B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08540799A JP3292171B2 (en) 1999-03-29 1999-03-29 Method for manufacturing semiconductor device
KR1020000015759A KR20000076981A (en) 1999-03-29 2000-03-28 Method of nitriding a titanium film to reduce generation of a particle and semiconductor device having no defect in wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08540799A JP3292171B2 (en) 1999-03-29 1999-03-29 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2000277459A true JP2000277459A (en) 2000-10-06
JP3292171B2 JP3292171B2 (en) 2002-06-17

Family

ID=13857954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08540799A Expired - Fee Related JP3292171B2 (en) 1999-03-29 1999-03-29 Method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JP3292171B2 (en)
KR (1) KR20000076981A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018868A1 (en) * 2001-08-24 2003-03-06 Tokyo Electron Limited Film forming method
WO2004067799A1 (en) * 2003-01-31 2004-08-12 Tokyo Electron Limited Susceptor device for semiconductor processing, film forming apparatus, and film forming method
WO2007069599A1 (en) * 2005-12-12 2007-06-21 Tokyo Electron Limited Method for precoating film forming apparatus
US7276444B2 (en) 2004-06-02 2007-10-02 Nec Electronics Corporation Method for processing interior of vapor phase deposition apparatus, method for depositing thin film and method for manufacturing semiconductor device
JP2009057638A (en) * 2003-01-31 2009-03-19 Tokyo Electron Ltd Processing method
US7511814B2 (en) 1999-06-15 2009-03-31 Tokyo Electron Limited Particle-measuring system and particle-measuring method
JP2009260377A (en) * 2001-12-25 2009-11-05 Tokyo Electron Ltd Method of film deposition and processing device
JP2012251212A (en) * 2011-06-03 2012-12-20 Hitachi Kokusai Electric Inc Method for producing semiconductor device and apparatus for processing substrate
WO2022066419A1 (en) * 2020-09-24 2022-03-31 Applied Materials, Inc. Nitride capping of titanium material to improve barrier properties
WO2024135366A1 (en) * 2022-12-20 2024-06-27 東京エレクトロン株式会社 Substrate treatment method and substrate treatment device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221025B2 (en) * 1991-12-19 2001-10-22 ソニー株式会社 Plasma process equipment
US5334264A (en) * 1992-06-30 1994-08-02 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Titanium plasma nitriding intensified by thermionic emission source
JPH10223563A (en) * 1997-02-07 1998-08-21 Nec Corp Manufacturing method for semiconductor device
KR100268804B1 (en) * 1997-06-30 2000-11-01 김영환 Metal wiring formation method of semiconductor device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894059B2 (en) 1999-06-15 2011-02-22 Tokyo Electron Limited Film formation processing apparatus and method for determining an end-point of a cleaning process
US8100147B2 (en) 1999-06-15 2012-01-24 Tokyo Electron Limited Particle-measuring system and particle-measuring method
US7931945B2 (en) * 1999-06-15 2011-04-26 Tokyo Electron Limited Film forming method
US7511814B2 (en) 1999-06-15 2009-03-31 Tokyo Electron Limited Particle-measuring system and particle-measuring method
US7667840B2 (en) 1999-06-15 2010-02-23 Tokyo Electron Limited Particle-measuring system and particle-measuring method
WO2003018868A1 (en) * 2001-08-24 2003-03-06 Tokyo Electron Limited Film forming method
JP2009260377A (en) * 2001-12-25 2009-11-05 Tokyo Electron Ltd Method of film deposition and processing device
WO2004067799A1 (en) * 2003-01-31 2004-08-12 Tokyo Electron Limited Susceptor device for semiconductor processing, film forming apparatus, and film forming method
JP2009057638A (en) * 2003-01-31 2009-03-19 Tokyo Electron Ltd Processing method
US7439181B2 (en) 2004-06-02 2008-10-21 Nec Electronics Corporation Method for processing interior of vapor phase deposition apparatus, method for depositing thin film and method for manufacturing semiconductor device
US7276444B2 (en) 2004-06-02 2007-10-02 Nec Electronics Corporation Method for processing interior of vapor phase deposition apparatus, method for depositing thin film and method for manufacturing semiconductor device
WO2007069599A1 (en) * 2005-12-12 2007-06-21 Tokyo Electron Limited Method for precoating film forming apparatus
JP2012251212A (en) * 2011-06-03 2012-12-20 Hitachi Kokusai Electric Inc Method for producing semiconductor device and apparatus for processing substrate
WO2022066419A1 (en) * 2020-09-24 2022-03-31 Applied Materials, Inc. Nitride capping of titanium material to improve barrier properties
US11664229B2 (en) 2020-09-24 2023-05-30 Applied Materials, Inc. Nitride capping of titanium material to improve barrier properties
WO2024135366A1 (en) * 2022-12-20 2024-06-27 東京エレクトロン株式会社 Substrate treatment method and substrate treatment device

Also Published As

Publication number Publication date
KR20000076981A (en) 2000-12-26
JP3292171B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
JP3942672B2 (en) Substrate processing method and substrate processing apparatus
US6700202B2 (en) Semiconductor device having reduced oxidation interface
US5926737A (en) Use of TiCl4 etchback process during integrated CVD-Ti/TiN wafer processing
KR0132375B1 (en) Thin film forming method
US6274496B1 (en) Method for single chamber processing of PECVD-Ti and CVD-TiN films for integrated contact/barrier applications in IC manufacturing
US7484513B2 (en) Method of forming titanium film by CVD
US8101521B1 (en) Methods for improving uniformity and resistivity of thin tungsten films
EP0493002B1 (en) Process for forming deposition film
KR20040044525A (en) Film forming method
US20090071404A1 (en) Method of forming titanium film by CVD
JP4570704B2 (en) Barrier film manufacturing method
JPH10106974A (en) Method for forming continuously titanium film and titanium nitride film
JP2000277459A (en) Titanium film nitriding method and semiconductor device
JPH1143771A (en) Cleaning method for cvd device
JP3636866B2 (en) Method for forming CVD-Ti film
JPH09186102A (en) Manufacture of semiconductor device
KR100510473B1 (en) Method for forming upper electrode of a capacitor using ALD
JP4151308B2 (en) Gas introduction method for processing equipment
KR101302819B1 (en) Ti-film formation method
US6174795B1 (en) Method for preventing tungsten contact plug loss after a backside pressure fault
WO2001024227A2 (en) IMPROVED PECVD AND CVD PROCESSES FOR WNx DEPOSITION
US6537621B1 (en) Method of forming a titanium film and a barrier film on a surface of a substrate through lamination
KR0161889B1 (en) Formation method of wiring in semiconductor device
JP2005064017A (en) Plasma processing method and deposition method
JP3938450B2 (en) Barrier film manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees