WO2007069556A1 - 高周波変復調多相整流装置 - Google Patents

高周波変復調多相整流装置 Download PDF

Info

Publication number
WO2007069556A1
WO2007069556A1 PCT/JP2006/324646 JP2006324646W WO2007069556A1 WO 2007069556 A1 WO2007069556 A1 WO 2007069556A1 JP 2006324646 W JP2006324646 W JP 2006324646W WO 2007069556 A1 WO2007069556 A1 WO 2007069556A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
multiphase
rectifier
wave
output
Prior art date
Application number
PCT/JP2006/324646
Other languages
English (en)
French (fr)
Inventor
Isao Sugawara
Yasunobu Suzuki
Ryuji Honjo
Original Assignee
Chiyoda Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Co., Ltd. filed Critical Chiyoda Co., Ltd.
Priority to CN2006800468068A priority Critical patent/CN101331671B/zh
Priority to JP2007550161A priority patent/JP4808221B2/ja
Publication of WO2007069556A1 publication Critical patent/WO2007069556A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4283Arrangements for improving power factor of AC input by adding a controlled rectifier in parallel to a first rectifier feeding a smoothing capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention of this application relates to a high-frequency modulation / demodulation multiphase rectifier that achieves reduction in size, weight, and efficiency while reducing harmonic current and high-frequency noise flowing out to the AC power supply side.
  • a rectifier that converts AC power of several kilowatts or more into DC power, and a DC-AC inverter, DC-DC converter, etc. added to it are used as a power source for rotating equipment and various industrial equipment.
  • One type of converter is a three-phase full-wave rectifier circuit.
  • Fig. 1 shows an example of the AC input current waveform when a typical three-phase full-wave rectifier circuit is loaded with resistance, and the included higher-order harmonic components and total harmonic distortion (THD). This value increases further when a certain force capacitive load is applied.
  • TDD total harmonic distortion
  • Figure 2 shows a typical example of a conventional high power factor rectifier circuit.
  • Figures 2- (1) to 2- (3) are so-called passive rectifier circuits that convert low-frequency AC voltage into multiple phases and rectify it using a transformer. These passive rectifier circuits, in principle, do not generate switching noise, and are highly reliable for power line communication, which has recently been a hot topic. Because of its volume, weight, etc., it is difficult to make it compact and lightweight.
  • the 12-phase rectifier circuit in Fig. 2- (1) has been used as a simple countermeasure against harmonics, it has a total harmonic distortion of about 14% (hereinafter also referred to as THD) under a pure resistance load. It is necessary to add a filter to adapt to the in.
  • a phase difference transformer with a power capacity equivalent to approximately 1 Z3 of DC output power is required.
  • Figure 2- (3) shows the 12-phase pulse output voltage ripple of the rectifier circuit of Figure 2- (1) and an auxiliary inverter of about 5% of the output capacity to reduce the input harmonic current.
  • the rectifier circuit uses a method that cancels the main harmonics (mainly 11th and 13th). In this rectifier circuit, the volume and weight increase because the power main transformer that improves THD to about 5% is insulated. Moreover, since it is limited to high voltage, there is a problem that a separate circuit configuration is required for low voltage.
  • FIG. 2- (4) shows the well-known 6-pulse boost type power factor correction circuit (PFC).
  • PFC 6-pulse boost type power factor correction circuit
  • the main circuit configuration is simplified, but the drive circuit is complicated, and a semiconductor switch having a current rating value several times the DC output current value is required. Even when the mode is driven, a strict noise filter is required for the power supply system, and it becomes difficult to design a filter that obtains sufficient attenuation as the power is increased.
  • the THD of power factor correction circuits that are used in factories often satisfy standards within 5%, and power factor improvement circuits that use the switching method generate large amounts of high-frequency noise.
  • Figure 2- (5) is a circuit that is often used when implementing harmonic countermeasures at the receiving end of existing factory equipment, mainly three-phase full-wave rectifier circuits. Compared with the rectifier circuit in Fig. 2- (4), this circuit has less burden on the main DC current, so the power capacity of the active filter can be reduced, and at first glance, it seems reasonable and favorable in terms of overall economy. On the actual output side of the rectifier, there are some that generate harmonics that greatly exceed the harmonics before and after 30% due to the presence of capacitive loads and motors with large torque fluctuations. An active filter with a power capacity corresponding to the load condition is required. The high-frequency noise components in this case are shown in Fig. 2- (4) Since this is relatively larger than the rectifier circuit of FIG.
  • Figure 2— (6) is a typical example of an active filter system that reduces the high-frequency noise as much as possible.
  • DC current is supplied by a three-phase full-wave rectifier circuit, and the fifth or seventh harmonic is canceled by a passive filter.
  • the remaining harmonics are removed by an active filter with a power capacity of about 6% of the DC output power. Therefore, the active power factor correction circuit has the least high frequency noise, but THD is only 4%. .
  • the invention of this application has been made in view of the actual situation of the prior art as described above, and provides a high-frequency modulation / demodulation multiphase rectifier that simultaneously achieves small size, light weight, low noise, high efficiency, and low THD. Let it be an issue.
  • the invention of this application is firstly provided in parallel with a direct-coupled three-phase full-wave rectifier that converts three-phase AC input from a three-phase AC power source into DC.
  • Harmonic correction with three sets of ring-modulated wave power generators, three-phase double-wire high-frequency multi-phase conversion transformer, and multiple ring-modulated wave demodulator and auxiliary three-phase full-wave rectifiers corresponding to the number of phases Circuit, and the DC output of the harmonic correction circuit is connected in parallel with the DC output of the direct-coupled three-phase full-wave rectifier, and equivalently 6n-phase (n is an integer from 3 to 7) when viewed from the three-phase AC power supply side.
  • a high-frequency modulation / demodulation multi-phase rectifier characterized by comprising a multi-phase full-wave rectifier circuit.
  • each phase primary winding of the three-phase multiple-wire high-frequency multi-phase conversion transformer is connected to a ring modulation wave power generator, and the secondary winding side is the main winding.
  • the ring-modulated multiphase AC output voltage can be obtained by combining the feeder with multiple auxiliary feeders.
  • One set of multiphase output terminal forces is generated, and the DC output of a multiphase full-wave rectifier having an AC input terminal connected to these multiphase output terminals and the main three-phase full-wave rectifier output in parallel
  • a high-frequency modulation / demodulation multi-phase rectifier is provided in which the multi-phase full-wave rectifier serves as both a ring modulation wave demodulator and a power supply harmonic reduction auxiliary three-phase full-wave rectifier.
  • each phase primary side of the three-phase double-wire high-frequency multi-phase converter is connected to a ring-modulated wave power generator, and the secondary side is By combining the main feeder and multiple auxiliary feeders, one of the ring-modulated multiphase AC output voltages is generated and the multiphase output terminal force is generated and connected corresponding to these multiphase output terminals.
  • the DC output of a multi-phase full-wave rectifier with an AC input terminal is supplied directly to the load, the three-phase AC power supply and the load side are insulated by a high-frequency multi-phase conversion transformer, and the multi-phase full-wave rectifier is connected to the ring modulation wave demodulator.
  • a high-frequency modulation / demodulation polyphase rectifier that also serves as a power harmonic reduction rectifier.
  • each phase primary side winding of the three-phase double-wire high-frequency multi-phase conversion transformer is connected to a ring modulation wave power generator, and the secondary side is A combination of the main winding and multiple auxiliary windings generates a set of 18-phase or 30-phase ring-modulated multiphase AC output voltages with center taps from the multiphase output terminals.
  • an 18-pulse or 30-pulse multiphase half-wave rectifier corresponding to the phase terminal and supplying the direct current output to the load, the three-phase AC power supply and the load side are insulated and the power supply harmonics are reduced.
  • a high-frequency modulation / demodulation multiphase rectifier characterized in that a DC output voltage can be continuously adjusted by duty ratio control of a ring modulation wave power generator.
  • the main rectifier circuit of the multi-phase rectifier circuit is configured by an active element, while the exact same circuit arrangement as the main rectifier circuit is configured as a photo 'moss' switch.
  • a high-frequency modulation / demodulation multi-phase rectifier that consists of an auxiliary power supply and realizes partial or full synchronous rectification of an arbitrary multi-phase full-wave Z half-wave rectifier circuit using the output of a photo-moss switch I will provide a.
  • FIG. 1 is a diagram showing current waveforms and harmonic components in a conventional three-phase full-wave rectifier circuit.
  • FIG. 2 is a diagram showing a typical example of a conventional high power factor rectifier circuit.
  • Fig. 3 is a diagram showing harmonic components, filter effect, and transformer specific capacity in a general polyphase rectifier circuit.
  • FIG. 4 is a diagram schematically showing the configuration of the high-frequency modulation / demodulation multiphase rectifier according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a circuit example of a ring modulated wave power generator, which is a main component of the high frequency modulation / demodulation multiphase rectifier of FIG.
  • FIG. 6 is a diagram showing an AC input current waveform and a ring modulation waveform during 18-pulse rectification.
  • FIG. 7 is a diagram comparing the difference in pulsation component between the method according to the invention of this application with an increased duty ratio and a normal PWM control waveform.
  • FIG. 8 is a diagram showing a relative relationship between the synthesized 18-pulse three-phase input current and each phase and amplitude shared by the main rectifier circuit and the auxiliary rectifier circuit.
  • FIG. 9 is an explanatory diagram of how to obtain the maximum value of the AC input current in FIG. 8 using 15 vector diagrams.
  • FIG. 10 is a diagram showing the relative relationship between the AC input current shown in FIG. 8 and the three-phase currents.
  • FIG. 11 is a diagram showing a current distribution of each part when the high-frequency modulation / demodulation multiphase rectifier of FIG. 4 is insulated between the AC input and the DC output.
  • FIG. 12 is a diagram showing a second embodiment high frequency modulation / demodulation multiphase rectifier according to the invention of this application constituting a 30-phase rectifier circuit.
  • FIG. 13 is a diagram showing the effect of an input filter on a 30-pulse rectified waveform.
  • FIG. 14 is a diagram showing a high-frequency modulation / demodulation multiphase rectifier according to a third embodiment of the invention of this application, which is a low-voltage, high-current-insulation type.
  • FIG. 15 is a diagram showing a drive circuit when performing synchronous rectification instead of the main rectifier diode.
  • THD total harmonic distortion
  • Figure 3 summarizes the relationship between D, multiphase conversion transformer capacity, and input / output power ratio.
  • the numerical value of THD in the item 1 in the table of Fig. 3 is an actual measured value, which is about 10% lower than the theoretical value from which the Fourier series force is calculated. This is a combination of the power supply impedance of the power distribution system and the equipment capacity. Since it changes depending on the case, the evaluation is performed by paying attention to the degree of improvement relative to the number of pulses.
  • Fig. 2- (6) reduces the capacity of the active filter switch. This is an example of using a passive filter together.
  • THD the active capacity value for fluctuations in a wide range of load current and load power factor including transient phenomena. Presumed.
  • the active type uses PWM control with large pulse width variation in principle, high power devices cannot suppress the noise spectrum power up to the 30 MHz band, which may affect communication devices and medical devices.
  • the passive type shown in Figs. 2- (1) and (2) does not perform high-frequency switching in principle, and Fig. 2- (3) does not perform partial switching.
  • control close to the fixed pulse phase is performed with about 5% of the DC output power. Therefore, there is no generation of large noise power as in the active type.
  • the transformer for multi-phase conversion shown in Fig. 2 is required, making it difficult to achieve a reduction in size and weight.
  • the high-frequency modulation / demodulation multiphase rectifier according to the invention of this application uses a high-frequency transformer instead of a low-frequency transformer as shown in Fig. 2- (1), (2) and (3).
  • a high-frequency transformer instead of a low-frequency transformer as shown in Fig. 2- (1), (2) and (3).
  • the ring modulation technology that has been used in communication technology has been introduced to the power sector.
  • the ring modulated wave power is applied to the primary winding of the three-phase or single-phase three-wire high-frequency transformer, and depending on the connection configuration of the secondary main winding and multiple auxiliary (tertiary) windings.
  • the low-frequency component included in the modulation waveform is subjected to multiphase conversion, and the diode constituting the demodulation circuit itself also serves as a multiphase full-wave rectifier.
  • switch driving is performed with almost no off period. In other words, by driving each switch at a time ratio close to 50% on one side compared to the conventional PWM control switching method, the continuity of the AC input current is almost maintained, and the high-frequency noise component is reduced by a fraction. To do.
  • the invention of this application relates to a high-frequency modulation / demodulation multiphase rectifier that can reduce the THD of 1-2% and high-frequency band noise power, which are difficult to achieve with the active type, while maintaining the same small size and light weight as the active type PFC. Specific examples thereof will be described below.
  • FIG. 4 shows the configuration of the high-frequency modulation / demodulation multiphase rectifier according to the first embodiment of the present invention.
  • the rectifier of this embodiment is an example of an 18-phase (pulse) rectifier, but this is selected for convenience in order to easily explain the circuit scale power in the multiphase conversion. Even if it becomes a 30, 36 and 42 phase rectifier, the basic principle remains the same.
  • (1) is a series rear tuttle, which works with the LC-type homogeneous filter (2) to suppress harmonics.
  • (3) is a direct-coupled three-phase full-wave rectifier that shares 1Z3 of the total DC output current.
  • (4a), (4b) and (4c) are ring modulated wave demodulator and auxiliary three-phase full-wave rectifier, (4a) shares 1Z3 of the total DC output current, and (4b) and (4c) 1Z6 of total DC output current each Share one.
  • (5) is a normal DC ripple filter
  • (6) is a high-frequency polyphase conversion transformer using a ring-modulated wave that maintains the phase of the input three-phase AC
  • (7a), (7b), and (7c) are shown in Fig. 5.
  • FIG. 5 (S1) to (S8) indicate switches.
  • (8a), (9a), and (10a) are the primary, secondary, and tertiary windings that transform the phase modulation voltage of the three-phase input R-S phase, respectively.
  • (8b), (9b), and (10b) These are the primary, secondary, and tertiary windings that transform the phase modulation voltage of the three-phase input S—T phase, respectively (8c), (9c), and (10c) respectively transform the phase modulation voltage of the three-phase input TR phase.
  • (11) is the gate drive circuit for the three sets of ring modulated wave power generators (7a), (7b) and (7c), (12a) is the DC output + terminal, (12b) is the DC output one terminal, ( 13) is a snubber capacitor.
  • a lossless snubber circuit is constructed by combining the ring-modulated wave demodulator and auxiliary three-phase full-wave rectifier (4a), (4b) and (4c) with the ring-modulated wave demodulating diode.
  • the input AC power is R, S, T interphase voltage is modulated by the ring-modulated wave power generator (7a), (7b) and (7c) at a fixed frequency above ⁇ , and high-frequency multiphase conversion Added to the primary feeder (8a), (8b) and (8c) of the transformer (6).
  • the secondary winding (9a), (9b) and (9c) and the tertiary winding (10a), (10b) and (10c) of the high-frequency multiphase conversion transformer (6) are shown in FIG. (1) Terminal (For convenience, the encircled numbers in the drawing are represented by parenthesized numbers for the sake of convenience.) A (velop) modulated ring modulation waveform is generated.
  • FIG. 6 (b), (c), and (d) show examples of waveforms of the prototype device. Due to the effect of the lossless snapper, the waveform of the input AC current causes no spikes in the high-frequency pulse. — (A) is not much different from the current waveform at the time of polyphase AC conversion by a low-frequency transformer.
  • the switches (SI) and (S2) shown in Fig. 5 (a) and (c) are the MOS-FETs that are used in the back and are used as bidirectional switches. It may be a bidirectional IGBT that has been developed recently.
  • the drive pulse width of the gate drive circuit (11) is fixed at a 50% duty ratio (dead time), and when pulse width modulation is not performed, the full-wave rectified output waveform is shown in Figure 7- (a). Voltage and power with low high-frequency noise components It can be seen that the noise component is reduced to a fraction of that of Fig. 7- (b), which is a stream waveform, and which performs normal pulse width modulation.
  • the gate drive circuit (11) uses the switches (Sl), (S2), (S7), and (S8) in Fig. 5- (a) at the same time, and switches (S3), (S4), (S5) at the opposite phase. ) And (S6) are driven simultaneously. In this operation, all the blocks of the ring modulated wave power generators (7a), (7b) and (7c) in FIG. 4 are driven in the same phase, and normal operation is ensured by aligning the pulse phases.
  • FIG. 4 shows the relationship between the voltage on the secondary side of the high-frequency multiphase transformer (6) and the phase of the modulated wave only with the low-frequency component.
  • the voltage vector of the transformer secondary winding in the pulse phases (1), (2), (3), and (4) is shown by the thick arrows in Fig. 8- (b). Indicated.
  • each phase current during phase (3) is (II +1 3) in the R phase, (10-14 13) in the S phase, and (12 +14) in the T phase.
  • Figure 11 removes the direct-coupled three-phase full-wave rectifier (3) from Figure 4 to form an 18-phase rectifier circuit.
  • the current distribution in each part is shown.
  • the rectifier (4a) doubles as two positive and negative pulses (positive and negative pulses 10 in Fig. 10) borne by the direct-coupled three-phase full-wave rectifier (3).
  • An input / output insulation type high frequency modulation / demodulation multiphase rectifier is realized.
  • the three-phase full-wave bridge of (4a) bears 2Z3 of the total output, and (4b) and (4c) share the output of each 1Z6. This is the secondary of the high-frequency transformer.
  • the rectifier of this embodiment is an example of a non-insulated 30-phase rectifier, and an example of its circuit connection is shown in FIG. In FIG. 12, elements similar to those in FIG. 4 are given the same reference numerals.
  • the difference between the rectifier of this embodiment and the 18-phase rectifier of Fig. 4 is that the transformer secondary winding is multi-phased (from 9 to 15 phases) and the auxiliary three-phase rectifiers (4d) and (4e ) Has been added, and the current value distribution of each part has changed.
  • there are 2 to 3 variations in the connection method of the transformer secondary winding including the connection shown by the dotted line in the figure (in this case, the secondary winding capacity increases by several percent). Is a generally known technique.
  • Fig. 13 shows the current waveform of the circuit shown in Fig. 12.
  • (C) shows that 1% THD is obtained when the same series rear tuttle (1) and the same order filter (2) are added. Have confirmed. This value indicates the feature of the invention of this application because it is difficult to realize any conventional high power factor rectifier circuit.
  • the capacity of the three-phase series reactor (1) is 3.7% of the DC output power
  • the rear tutor capacity of the homogeneous filter (2) is 1.2% of the DC output power per phase
  • the resonance capacitor is Delta connection 0.5 7-phase 7 DC output Per 1KW, and the specific gravity in the volume, weight and cost of the entire rectifier is small.
  • the 18-phase rectifier of Fig. 11 Similarly, the entire 30-phase rectifier is insulated from the AC input and DC output by the high-frequency multi-phase conversion transformer (6).
  • the input and output currents (2Z15) 1/2 I and (3Z15) I of the direct-coupled three-phase full-wave rectifier (3) are added to the three-phase full-wave rectifier (4a), and the three-phase full-wave rectifier (4a)
  • the input and output current share is (6Z15) 1/2 I and (6Z15) I.
  • the voltage ratio can be freely selected according to the primary, secondary, and tertiary winding ratio of the high-frequency transformer.
  • Figure 14 shows an example of 18-pulse rectification of a 12V1000A level power supply high frequency reduction type rectifier.
  • the circuit shown in Fig. 5- (d) is used for the ring modulated wave power generators (7a), (7b) and (7c), and the switches (S9) and (S10) are set at a 50%-(dead time) time ratio.
  • the switches (S11) and (S12) have the same duty ratio, but the power impedance of the ring-modulated wave power generators (7a), (7b) and (7c) is always reduced by the known phase difference PWM control. Suppressing can make stable operation. In this case, the DC output can be made 10 to 100% variable by phase difference control, but in this case, an additional noise filter on the AC power supply side is required. Even when the Schottky barrier type is used for the rectifier diode, the overall efficiency can be maintained at 90% or more.
  • 24-pulse, 36-pulse, 42-pulse, etc. are easily realized by combining the secondary and tertiary windings of the high-frequency multi-phase conversion transformer (6) and adding an output demodulator and rectifier diode. Since it is clear that this is possible, explanations of these examples are omitted.
  • FIG. 15 shows a drive circuit for performing synchronous rectification instead of the main rectifier diode in order to achieve higher efficiency.
  • the power shown for the simplest three-phase full-wave is input power from low frequency to high frequency, and multiphase AC power supply of 6, 12, 24, 30, 36, and 42 phases.
  • the auxiliary rectifier circuit of the exact same configuration as the main rectifier element is configured with a photo MOS switch, and the arrangement is the same, and the V ⁇ main switch is configured with a photo MOS switch.
  • Q to Q are main switches
  • PS to PS are photo 'moss' switches
  • E to E are drive power supplies.
  • the dummy resistor R adjusts the current flowing through the photodiode.
  • the voltage drop of about 0.6V of the Schottky NOR diode can be reduced to below 0.4V, and the efficiency of the low-voltage, high-current rectifier circuit can be improved. From the standpoint of overall economy, not all rectifier elements but only elements with a large current share may be used for synchronous rectification.
  • the apparatus configuration of the invention of this application does not use a large-capacitance electrolytic capacitor, it can be expected to have a long life, and the inrush current at the time of power-on is extremely small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

 本高周波変復調多相整流装置は、三相交流電源から入力した三相交流を直流に変換する直結三相全波整流器(3)と、これに並列して設けられる三組のリング変調波電力発生器(7a)~(7c)と三相複巻線高周波多相変換変圧器(6)と相数に対応して設けられる複数のリング変調波復調器兼補助三相全波整流器(4a)~(4c)を有する高調波補正回路を備え、前記高調波補正回路の直流出力を前記直結三相全波整流器(3)の直流出力と並列接続し、三相交流電源側から見て等価的に6n相(nは3~7の整数)の多相全波整流回路を構成することを特徴とする。これにより、小型軽量化、低雑音、高効率化および低THDを同時に達成する高周波変復調多相整流装置が提供される。

Description

高周波変復調多相整流装置
技術分野
[0001] この出願の発明は、交流電源側に流出する高調波電流と高周波雑音を低減しなが ら小型軽量化、高効率化を実現する高周波変復調多相整流装置に関するものであ る。
背景技術
[0002] 一般に、数 KW以上の交流電力を直流電力に変換する整流装置や、これに DC— ACインバータ、 DC— DCコンバータ等を付加して回転機器や各種産業機器の動力 源として用いる代表的な変換装置に三相全波整流回路がある。
近年、これらパワーエレクトロニクス機器力も発生する高調波電流が配電線を通し て他の電気機器に障害を与えるという問題が地球規模で認識され、各政府機関主導 の元に IEC (国際電気標準会議)の規制値をガイドラインとして規定している。
図 1は、代表的な三相全波整流回路の抵抗負荷時における交流入力電流波形と、 含まれる高次高調波成分および全高調波歪(THD: Total Harmonic Distortion)の 例を示したものである力 容量性負荷が加わると、この値は更に大きくなる。
このような電源の公害を除くために、この十数年の間に受動(Passive)形、能動 (Act ive)形およびその複合形など 20種類を越す各種の回路構成法が公表されて 、るが 、コスト、過負荷耐量、小型軽量化、効率、高調波歪量、高周波雑音 (輻射電磁波)、 装置寿命 (MTBF)等の観点カゝらそれぞれ特長や問題点がある。
図 2に、従来の高力率整流回路の代表例を示す。図 2—(1)から図 2—(3)までは、 いわゆる受動形の整流回路で、低周波交流電圧を変圧器により多相に変換、整流 するものである。これらの受動形の整流回路は、原理的にスイッチング雑音は発生せ ず、最近話題の多い電力線通信に対しての整合性が良ぐ過負荷耐量、装置寿命 等の信頼性が高い反面、変圧器の容積、重量等から小型、軽量ィ匕は困難である。 図 2— (1)の 12相整流回路は簡易な高調波対策として用いられてきたが、純抵抗 負荷において 14%前後の全高調波歪 (以下、 THDとも記す)があり、前述のガイドラ インに適合させるにはフィルタの追カ卩が必要である。また、直流出力電力の大よそ 1 Z3に相当する電力容量の位相差変圧器を必要とする。
最近、図 2— (2)に示した 18相整流回路が提案された (特開 2003— 88124号公 報)。この 18相整流回路では、 9%弱の THDで、し力も 9相全波(18パルス)用単卷 変圧器の電力容量が 12相用に比べ 20%減で済む。これに 12相用よりも小規模のフ ィルタを付加することにより THD3%以下が可能になる。しかし、この場合でも低周波 変圧器を使用するため、 10KW直流出力時で 25〜40Kgの重量、 10〜15リットルの 容量を要する。
図 2— (3)は、図 2—(1)の整流回路の 12相パルス出力電圧のリップルと、入力高 調波電流を低減するために、出力容量の 5%程度の補助インバータを付加して主高 調波(主として 11次、 13次)を打消す方法を用いた整流回路である。この整流回路 では、 THDが 5%程度まで改善される力 主変圧器が絶縁型のため容積、重量が大 となる。また、高電圧用に限られるため低圧用には別の回路構成が必要になるなどの 課題がある。
図 2— (4)は、良く知られた 6パルス昇圧形の力率改善回路 (PFC)である。この力 率改善回路では主回路構成が単純化されているが、駆動回路が複雑であり、直流出 力電流値に対して数倍の電流定格値を持つ半導体スィッチが必要であり、更に電流 連続モードの駆動を行ってもなお、給電系に対して厳重なノイズフィルタが必要で、 大電力になるほど十分な減衰量を得るフィルタの設計が困難になる。現在、巿場で 使用されて 、る力率改善回路の THDは 5%以内の規格を満足して 、るものが多 ヽ が、スイッチング方式を用いる力率改善回路は高周波雑音の発生が大きい。
図 2— (5)は、三相全波整流回路を主とする既存の工場設備の受電端で高調波対 策を行う場合に使われることが多い回路である。この回路は、図 2—(4)の整流回路 に比べて主直流電流分の負担がないので能動フィルタの電力容量が少なくて済み、 一見合理的で総合経済性の点力もも好ましく見える。し力 実際の整流器出力側に は容量性負荷、トルク変動の大きい電動機等の存在によって、抵抗負荷時の 30%前 後の高調波を大幅に越す高調波を発生するものもあり、既存設備の負荷状況に応じ た電力容量の能動フィルタが必要になる。この場合の高周波雑音成分は図 2—(4) の整流回路より相対的に大きいため、装置内におけるノイズフィルタの比率が大きく なる。
図 2— (6)は、前途の高周波雑音を極力低減する能動フィルタ方式の代表例で、 直流電流は三相全波整流回路により供給し、高調波の 5次または 7次を受動フィルタ で打消し、残りの高調波を直流出力電力の 6%程度の電力容量を持つ能動フィルタ によって除去するので、能動形力率改善回路の中では最も高周波雑音が少な 、が T HDは 4%どまりとなる。
以上に述べた AC— DCコンバータの他にも電流不連続モードの簡易型や DC— D Cコンバータとのスィッチ共用による経済化型など多種、多様な回路構成が発表され ているが、それぞれ一長一短があり、製造業者または使用者側で使用目的、環境に 応じて回路方式を選択しているのが実情である。従って、三相入力の高力率整流回 路に課せられる課題のうち、小型軽量化、低雑音、高効率ィ匕および低 THDを同時に 解決する整流回路の実現が望まれて 、た。
発明の開示
この出願の発明は、以上のような従来技術の実情に鑑みてなされたもので、小型軽 量化、低雑音、高効率化および低 THDを同時に達成する高周波変復調多相整流 装置を提供することを課題とする。
この出願の発明は、上記課題を解決するものとして、第 1には、三相交流電源から 入力した三相交流を直流に変換する直結三相全波整流器と、これに並列して設けら れる三組のリング変調波電力発生器と三相複卷線高周波多相変換変圧器と相数に 対応して設けられる複数のリング変調波復調器兼補助三相全波整流器を有する高 調波補正回路を備え、前記高調波補正回路の直流出力を前記直結三相全波整流 器の直流出力と並列接続し、三相交流電源側から見て等価的に 6n相(nは 3〜7の 整数)の多相全波整流回路を構成することを特徴とする高周波変復調多相整流装置 を提供する。
また、第 2には、上記第 1の発明において、三相複卷線高周波多相変換変圧器の 各相一次側卷線はリング変調波電力発生器と接続され、二次卷線側は主卷線と複 数の補助卷線との組み合わせ接続により、リング変調された多相交流出力電圧の内 の一組を多相出力端子力 発生させ、これら多相出力端子に対応して接続される交 流入力端子を有する多相全波整流器の直流出力と、主三相全波整流器出力を並列 に接続する事により、多相全波整流器がリング変調波復調器と電源高調波低減用補 助三相全波整流器とを兼ねることを特徴とする高周波変復調多相整流装置を提供 する。
また、第 3には、上記第 1又は第 2の発明において、三相複卷線高周波多相変換変 圧器の各相一次側卷線はリング変調波電力発生器と接続され、二次側は主卷線と 複数の補助卷線との組み合わせ接続により、リング変調された多相交流出力電圧の 内の一組を多相出力端子力 発生させ、これら多相出力端子に対応して接続される 交流入力端子を有する多相全波整流器の直流出力を直接負荷に供給し、三相交流 電源と負荷側が高周波多相変換変圧器により絶縁し、更に多相全波整流器がリング 変調波復調器と電源高調波低減用整流器を兼ねることを特徴とする高周波変復調 多相整流装置を提供する。
また、第 4には、上記第 1から第 3の発明において、三相複卷線高周波多相変換変 圧器の各相一次側卷線はリング変調波電力発生器と接続され、二次側は主卷線と 複数の補助卷線との組み合わせにより、センタータップを持つ 18相または 30相のリ ング変調された多相交流出力電圧の内の一組を多相出力端子から発生させ、これら 多相端子に対応する 18パルスまたは 30パルスの多相半波整流器を接続し、その直 流出力を負荷に供給することにより、三相交流電源と負荷側を絶縁すると共に電源 高調波を低減させ、リング変調波電力発生器の時比率制御により直流出力電圧を連 続調整可能としたことを特徴とする高周波変復調多相整流装置を提供する。
さらに、第 5には、上記第 1から第 4の発明において、多相整流回路の主整流回路 をアクティブ素子で構成し、一方、主整流回路と全く同一の回路配置をホト'モス'ス イッチと補助電源で構成し、ホト ·モス'スィッチの出力により任意の多相全波 Z半波 整流回路の同期整流を部分的または全面的に実現することを特徴とする高周波変 復調多相整流装置を提供する。
この出願の発明に係る高周波変復調多相整流装置によれば、交流電源側に流出 する高調波電流を 1〜2%程度に抑えながら、小型、軽量高効率をも実現できる。電 力機器は元来各種システム機器の一部を分担して 、るにすぎな!、が、今後システム で多く用いられるデジタル素子は現在の 5V、 3. 3V系から 1. 8V系を経て将来は IV に近い論理レベルでの高速動作を目標に開発が進められている。将来のパワーエレ タトロ-タス機器はこれら低圧大電流負荷における小型化のために高効率ィ匕が進行 して 、るが、これと並行して高調波雑音の極力少な 、電力機器が安定なシステム構 成のために必要であり、この出願の発明はこの課題に十分応えることができる。 図面の簡単な説明
[図 1]図 1は、従来の三相全波整流回路における電流波形と高調波成分を示す図で ある。
[図 2]図 2は、従来の高力率整流回路の代表例を示す図である。
圆 3]図 3は、一般的な多相整流回路における高調波成分とフィルタ効果及び変圧器 比容量を示す図である。
[図 4]図 4は、この出願の発明に係る第 1実施形態の高周波変復調多相整流装置の 構成を模式的に示す図である。
[図 5]図 5は、図 4の高周波変復調多相整流装置の主要構成要素であるリング変調波 電力発生器の回路例を示す図である。
[図 6]図 6は、 18パルス整流時の交流入力電流波形とリング変調波形を示す図である
[図 7]図 7は、時比率を高めたこの出願の発明による方式と通常の PWM制御波形と の脈動成分の相違を比較した図である。
[図 8]図 8は、合成された 18パルス三相入力電流と主整流回路及び補助整流回路が 分担する各位相と振幅の相対関係を示す図である。
[図 9]図 9は、図 8の交流入力電流中最大値を示す 15のベクトル図による求め方の説 明図である。
[図 10]図 10は、図 8で示された交流入力電流と三相各相電流の相対関係を示す図 である。
[図 11]図 11は、図 4の高周波変復調多相整流装置を交流入力、直流出力間で絶縁 した場合の各部電流分布を示す図である。 [図 12]図 12は、 30相整流回路を構成するこの出願の発明に係る第 2実施形態高周 波変復調多相整流装置を示す図である。
[図 13]図 13は、 30パルス整流波形における入力フィルタの効果を示す図である。
[図 14]図 14は、低電圧、大電流向絶縁型のこの出願の発明に係る第 3実施形態の 高周波変復調多相整流装置を示す図である。
[図 15]図 15は、主整流ダイオードの代わりに同期整流を行う場合の駆動回路を示す 図である。
発明を実施するための最良の形態
以下、この出願の発明を実施形態により詳細に説明する。
説明の便宜上、先ず低 THD、低雑音化のために低周波で多相整流を行った場合 の全高調波歪率 (THD)とその主成分、並直列フィルタ容量、フィルタ付カ卩時の TH D、多相変換変圧器容量、入出力電力比の関連を図 3に要約した。図 3の表中の 1 項における THDの数値は実測値で、フーリエ級数力も算出される理論値よりも 10% 前後低 、値を示すが、これは配電系の電源インピーダンスと装置容量との兼ね合 ヽ で変わるので、パルス数との相対的な改善度に着目して評価する。
現在の交流機器の多くは、測定器などの特殊機器を除けば電圧歪率、電流歪率 共に THD5%以下、各高調波単独成分含有率 3%以下が一般的な規格として流通 している。従って、入力フィルタ無しで上記規格を満足するには図 3の表の実測値か ら 30パルス以上の多相化が必要であり、 18パルス、 24パルスでは、図 4に例示した LCフィルタ(2)を付加すれば規格を満足する。
一方、 6パルス、 12パルスでは図 2—(4)、(5)に示した能動形でないと規格が満足 されない事が多ぐ図 2— (6)は能動形フィルタ用スィッチの容量を削減するために 受動形フィルタを併用した例である。
いずれにしても内、外の学術論文等に発表されている内容から見る限り、過渡現象 を含む広範囲の負荷電流、負荷力率等の変動に対して THD4%程度までが能動形 の実力値と推定される。その上、能動形では原理上パルス幅変動の大きい PWM制 御を用いるので、大電力の機器では 30MHz帯域までの雑音スペクトラム電力を抑え きれず、通信機器や医療機器等に影響を与える事もある。 これに対して図 2— (1)、 (2)に示した受動形は原理的に高周波スイッチングを行つ ておらず、また図 2— (3)では部分的にスイッチングを行ってはいる力 11次、 13次 の高調波を打消す目的のため直流出力電力の 5%程度の電力で固定パルス位相に 近い制御が行われる。従って、能動形のような大きな雑音電力の発生はない。その 反面、図 2に示した多相変換用変圧器が必要になり、小型軽量化の達成が困難にな る。
この出願の発明に係る高周波変復調多相整流装置は、入力側三相交流の多相化 を図 2—(1)、(2)および(3)のような低周波変圧器の代わりに高周波変圧器を用い て実現した処に大きい特徴がある。この目的のため、通信技術で用いられてきたリン グ変調技術を電力分野に導入した。すなわち、リング変調波電力は三相または単相 三個の複卷線高周波変圧器の一次卷線に加えられ、二次側の主卷線と複数の補助 (三次)卷線との接続構成により、変調波形に含まれる低周波成分の多相変換を行 い、更に復調回路を構成するダイオード自体が多相全波整流器を兼ねている。また 、電子化に伴って生じるスイッチング雑音を極小とするため、オフ期間をほとんど生じ ないスィッチ駆動を行っている。すなわち、従来の PWM制御スイッチング方式に比 ベ片側 50%に近い時比率で各スィッチを駆動する事により、交流入力側電流の連 続性がほぼ保たれ、高周波雑音成分を数分の一に低減する。
この出願の発明は、能動形 PFCと同等の小型、軽量ィ匕を保ちながら、能動形では 実現困難な 1〜2%の THDと高周波帯域雑音電力を低減できる高周波変復調多相 整流装置に関するもので、その具体例を以下に述べる。
図 4に、この出願の発明による第 1実施形態の高周波変復調多相整流装置の構成 を示す。この実施形態の整流装置は、 18相(パルス)整流装置の一例であるが、これ は多相変換の中では回路規模力 、さぐ説明が容易なために便宜上選んだものであ り、 24、 30、 36及び 42相整流装置となっても、基本原理に変わりはない。
図 4において、(1)は直列リアタトルで、 LC形同次フィルタ(2)と共に高調波を抑え る役割をする。(3)は直結三相全波整流器で全直流出力電流の 1Z3を分担する。 ( 4a)、(4b)及び (4c)はリング変調波復調器兼補助三相全波整流器で、(4a)は全直 流出力電流の 1Z3を分担し、(4b)、(4c)は、それぞれ全直流出力電流の 1Z6ず つを分担する。(5)は通常の直流リップル 'フィルタ、(6)は入力三相交流の位相を保 持するリング変調波による高周波多相変換変圧器、(7a)、(7b)及び (7c)は図 5—( a)、(c)及び (d)に詳しく例示したリング変調波電力発生器で、各卷線に生じる電圧 波形は卷数比に比例した図 5—(b)の形となる。なお図 5において(S1)〜(S8)はス イッチを示す。(8a)、(9a)及び(10a)はそれぞれ三相入力 R— S相の位相変調電圧 を変圧する一次、二次及び三次卷線であり、(8b)、(9b)及び(10b)はそれぞれ三 相入力 S— T相の位相変調電圧を変圧する一次、二次及び三次卷線であり、(8c)、 (9c)及び(10c)はそれぞれ三相入力 T R相の位相変調電圧を変圧する一次、二 次及び三次卷線である。(11)は前記三組のリング変調波電力発生器 (7a)、(7b)及 び (7c)のゲート駆動回路、(12a)は直流出力 +端子、(12b)は直流出力一端子、( 13)はスナバコンデンサで、リング変調波復調器兼補助三相全波整流器 (4a)、 (4b) 及び (4c)のリング変調波復調ダイオードとの組み合わせにより無損失スナバ回路を 構成する。
上述したように、入力交流電力は R, S, T各相間電圧がリング変調波電力発生器( 7a)、(7b)及び(7c)によって ΙΟΚΗζ以上の固定周波数で変調され、高周波多相変 換変圧器 (6)の一次卷線 (8a)、(8b)及び (8c)に加えられる。高周波多相変換変圧 器 (6)の二次卷線(9a)、(9b)及び(9c)と三次卷線(10a)、(10b)及び(10c)とを、 例えば図 4中に示されたように接続する事により、(1)端子 (以下、便宜上図面中の丸 囲み数字は括弧付数字で表す)カゝら (9)端子まで 9相の低周波交流位相で包絡線 (ェ ンべロープ)変調されたリング変調波形が発生する。
図 6— (b)、(c)及び (d)は試作装置の波形例を示したもので、無損失スナパの効 果により、高周波パルスにスパイク 'ノイズの発生がなぐ入力交流電流波形図 6— (a )も低周波変圧器による多相交流変換時の電流波形と大差ない。
図 5—(a)、(c)中に示したスィッチ(SI)、(S2)は通常用いられている MOS— FE Tを背面接続して双方向スィッチとして用いている力 IGBTの背面接続や最近開発 が進展している双方向 IGBTであっても良い。また、ゲート駆動回路(11)の駆動パ ルス幅は、時比率 50% (デッドタイム)の固定とし、パルス幅変調を行わない場合、 全波整流出力波形は図 7— (a)に示したように、高周波雑音成分の少ない電圧、電 流波形となり、通常のパルス幅変調を行う図 7— (b)に比べ、雑音成分が数分の一に 低下することがわかる。ゲート駆動回路(11)は図 5— (a)のスィッチ (Sl)、(S2)、 (S 7)及び(S8)を同時に、また逆位相時はスィッチ(S3)、(S4)、(S5)及び(S6)を同 時に駆動する。この動作は、図 4中のリング変調波電力発生器(7a)、(7b)及び(7c) の全ブロックについて同位相で駆動し、パルス位相を揃える事により正常動作が確 保される。
図 4の高周波変復調多相整流装置の整流動作は若干複雑であるため、図 8及び図 9を用いて説明する。図 8— (c)に高周波多相変換変圧器 (6)の二次側卷線端子間 電圧と変調波位相の関係を低周波成分のみで表現した。この 18パルス位相の内か ら代表して (1)、(2)、(3)及び (4)のパルス位相における変圧器二次卷線の電圧ベクトル を図 8—(b)の太い矢印で示した。この内 (3)の位相時の各相電流は R相では (II +1 3)、 S相では(10— 14 13)、 T相では (12 +14)の電流が流れ、変圧器各二次卷線 には矢印の点線で示した II、 12、 13及び 14が流れる。ここで 10は図 4の補助整流器 入力電流であり、その振幅値は 18パルス整流直流出力に等しぐ時比率 1Z18の正 、負各 1パルスの交流成分であり、 II、 12、 13及び 14は変圧器の各二次卷線を位相( 3)の期間に流れる電流値であり、その値は図 8—(a)の表中に示されたように、二次 卷線のコイル間電圧力も容易に算出される。図 8— (b)で矢印 (2)の電圧ベクトル時は IIと 12、 13と 14が入替わるのみであり、この場合、 R1相と T1相の電流も入替わる。 これらの様子を時間軸で示したのが図 8—(a)の入力交流電流波形であり、図中の (1)、(2)、(3)及び (4)が図 8—(b)及び図 8—(c)の位相番号に対応する。図 10は三相 入力各相電流の関係を明確ィ匕するために前記位相関係を追加したものであり、加え て (1)、(4)の位相時にはリング変調波電力発生器 (7a)、(7b)及び (7c)、高周波多相 変換変圧器 (6)及びリング変調波復調器兼補助三相全波整流器 (4a)、 (4b)及び( 4c)で構成される高周波多相整流器よりインピーダンスの低!ヽ直結三相全波整流器 (3)が負荷電流を分担する。従って (1)、(4)の区間は前記高周波多相整流器の負担 が減り、整流装置全体の効率が改善される。反面、直結三相全波整流器 (3)の存在 により、整流装置全体で見た入出力間の絶縁は確保できなくなる。
図 11は図 4から直結三相全波整流器 (3)を取り除 ヽて、 18相整流回路を構成した 場合の各部電流分布を示す。直結三相全波整流器 (3)で負担した正負各 2パルス 分(図 10の正、負パルス 10)を整流器 (4a)が兼ね、図 11の素子導通区間のように分 担する事により、入出力絶縁型高周波変復調多相整流装置が実現する。なお本例 では (4a)の三相全波ブリッジが全体の出力の 2Z3を負担し、(4b)、(4c)が各 1Z6 の出力を分担しているが、これは高周波変圧器の二次側卷線容量を低減するためで あり、リング変調波復調器兼補助三相全波整流器 (4a)、(4b)及び (4c)の各ブリッジ を均等に 1Z3ずつ負荷分担するように、高周波変圧器を設計しても一向に差し支え ない。ただし、この場合は同一直流出力に対して高周波変圧器の二次側卷線容量 が約 20%増加する。
次に、この出願の発明に係る第 2実施形態の高周波変復調多相整流装置につい て説明する。この実施形態の整流装置は、非絶縁型 30相整流装置の例であり、図 1 2にその回路接続例を示した。図 12において図 4と同様な要素には同じ符号を付し てある。この実施形態の整流装置と図 4の 18相整流装置との相違点は、変圧器二次 卷線の多相化(9相から 15相)とそれに伴い補助三相整流器 (4d)及び (4e)が追カロ され、各部電流値配分が変わった点にある。また、変圧器二次卷線の接続方法は図 中の点線で示したような接続 (この場合二次卷線容量が数%増える)をはじめ、 2〜3 の変形があるが、その取捨選択は通常公知の技術である。
図 13に図 12に示した回路の電流波形を示す。図で (A)は直列リアタトル(1)、同 次フィルタ(2) (50Hz X 30 = l. 5KHzに共振)が共にない場合で約 4%の THDを 示し、(B)は 3%電圧降下する直列リアタトル(1)のみ挿入した場合で 2. 6%の THD を示し、(C)は同じ直列リアタトル(1)と同次フィルタ(2)を加えた場合に 1%の THD が得られる事を確認している。この値は、従来の如何なる高力率整流回路も実現困 難であったので、この出願の発明の特徴を示している。またこのときの三相直列リアク トル(1)の容量は直流出力電力の 3. 7%、同次フィルタ(2)のリアタトル容量は単相 当たり直流出力電力の 1. 2%、共振用コンデンサはデルタ接続時 0. 5 7相7直 流出力 1KW当たりであり、整流装置全体の容積、重量及びコストに占める比重は少 ない。
なお、図 12の回路で直結三相全波整流器 (3)を取り除くと、図 11の 18相整流装置 と同様に、 30相整流装置全体は交流入力と直流出力とが高周波多相変換変圧器( 6)によって絶縁される。この場合、直結三相全波整流器(3)の入、出力電流(2Z15 ) 1/2I、(3Z15) Iが三相全波整流器 (4a)に加わり、三相全波整流器 (4a)の入、出力 電流分担分は (6Z15) 1/2I、(6Z15) Iとなる。また、高周波多相変換変圧器 (6)とリ ング変調波電力発生器 (7a)、 (7b)及び (7c)の容量が(5Z4) 1/2倍増加する以外は 変わりないので、具体例は省略する。なお、入出力回路が絶縁されると、当然高周波 変圧器の一次、二次及び三次卷線比によって電圧比が自由に選べる。
図 14は 12V1000Aレベルの電源高周波低減形整流装置の 18パルス整流例を示 した。リング変調波電力発生器(7a)、(7b)及び(7c)に図 5— (d)の回路を用い、ス イッチ(S9)と(S10)を 50%— (デッドタイム)の時比率で駆動し、スィッチ(S11)と(S 12)も同じ時比率ではあるが公知の位相差 PWM制御によって常にリング変調波電 力発生器(7a)、(7b)及び(7c)の電源インピーダンスを低く抑える事により、安定な 動作を行う事が出来る。この場合、位相差制御によって直流出力は 10〜100%可変 にできるが、この場合には交流電源側の雑音用フィルタの追加が必要になる。なお、 整流ダイオードにショットキ 'バリア形式を用いた場合でも全体の効率を 90%以上に 保つ事が可能になる。
24パルス、 36パルス及び 42パルス等についても原理的には高周波多相変換変圧 器 (6)の二次および三次卷線の組み合わせと、出力側復調器兼整流ダイオードの追 加により、容易に実現可能である事が明らかであるので、これら例についての説明は 省略した。
図 15は更に高効率ィ匕を図るため、主整流ダイオードの代わりに同期整流を行う場 合の駆動回路を示した。この例では最も単純な 3相全波について示した力 低周波 から高周波までの入力電源、更に 6、 12、 24、 30、 36および 42相の多相交流電源 で、半波、全波の整流回路すべてにおいて、主整流素子の構成と全く同一形態の補 助整流回路をホト'モス'スィッチ(Photo MOS Switch)で構成し、配置の対応が等し Vヽ主スィッチをホト ·モス 'スイッチで駆動する事により、単純な回路構成で同期整流 を実現できる。
図中の Q〜Qは主スィッチ、 PS〜PSはホト'モス'スィッチ、 E〜Eは駆動用電 源を示す。なおダミー抵抗 Rによってホト 'ダイオードに流れる電流を調整する。
以上の構成を採る事により、通常、ショットキーノ リヤーダイオードの 0. 6V程度の 電圧降下を 0. IV以下に低減でき、低圧、大電流用整流回路の効率を改善できる。 なお、総合経済性の見地から、全部の整流素子でなく電流分担の大きい素子のみを 同期整流としてもよい。
また、この出願の発明の装置構成では大容量電解コンデンサを用いないので長寿 命が期待でき、更に電源投入時の突入電流は極めて少な 、。

Claims

請求の範囲
[1] 三相交流電源力 入力した三相交流を直流に変換する直結三相全波整流器と、こ れに並列して設けられる三組のリング変調波電力発生器と三相複卷線高周波多相 変換変圧器と相数に対応して設けられる複数のリング変調波復調器兼補助三相全 波整流器を有する高調波補正回路を備え、前記高調波補正回路の直流出力を前記 直結三相全波整流器の直流出力と並列接続し、三相交流電源側から見て等価的に
6n相(nは 3〜7の整数)の多相全波整流回路を構成することを特徴とする高周波変 復調多相整流装置。
[2] 三相複卷線高周波多相変換変圧器の各相一次側卷線はリング変調波電力発生器 と接続され、二次卷線側は主卷線と複数の補助卷線との組み合わせ接続により、リン グ変調された多相交流出力電圧の内の一組を多相出力端子から発生させ、これら多 相出力端子に対応して接続される交流入力端子を有する多相全波整流器の直流出 力と、主三相全波整流器出力を並列に接続する事により、多相全波整流器がリング 変調波復調器と電源高調波低減用補助三相全波整流器とを兼ねることを特徴とする 請求項 1記載の高周波変復調多相整流装置。
[3] 三相複卷線高周波多相変換変圧器の各相一次側卷線はリング変調波電力発生器 と接続され、二次側は主卷線と複数の補助卷線との組み合わせ接続により、リング変 調された多相交流出力電圧の内の一組を多相出力端子から発生させ、これら多相 出力端子に対応して接続される交流入力端子を有する多相全波整流器の直流出力 を直接負荷に供給し、三相交流電源と負荷側が高周波多相変換変圧器により絶縁 し、更に多相全波整流器カ^ング変調波復調器と電源高調波低減用整流器を兼ね ることを特徴とする請求項 1又は 2記載の高周波変復調多相整流装置。
[4] 三相複卷線高周波多相変換変圧器の各相一次側卷線はリング変調波電力発生器 と接続され、二次側は主卷線と複数の補助卷線との組み合わせにより、センタータツ プを持つ 18相または 30相のリング変調された多相交流出力電圧の内の一組を多相 出力端子力も発生させ、これら多相端子に対応する 18パルスまたは 30パルスの多 相半波整流器を接続し、その直流出力を負荷に供給することにより、三相交流電源と 負荷側を絶縁すると共に電源高調波を低減させ、リング変調波電力発生器の時比率 制御により直流出力電圧を連続調整可能としたことを特徴とする請求項 1〜3のいず れかに記載の高周波変復調多相整流装置。
[5] 多相整流回路の主整流回路をアクティブ素子で構成し、主整流回路と全く同一の 回路配置をホト ·モス'スィッチと補助電源で構成し、ホト ·モス'スィッチの出力により 任意の多相全波 Z半波整流回路の同期整流を部分的または全面的に実現すること を特徴とする請求項 1〜4のいずれかに記載の高周波変復調多相整流装置。
PCT/JP2006/324646 2005-12-12 2006-12-11 高周波変復調多相整流装置 WO2007069556A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800468068A CN101331671B (zh) 2005-12-12 2006-12-11 高频调制/解调多相整流装置
JP2007550161A JP4808221B2 (ja) 2005-12-12 2006-12-11 高周波変復調多相整流装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-358191 2005-12-12
JP2005358191 2005-12-12

Publications (1)

Publication Number Publication Date
WO2007069556A1 true WO2007069556A1 (ja) 2007-06-21

Family

ID=38162864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324646 WO2007069556A1 (ja) 2005-12-12 2006-12-11 高周波変復調多相整流装置

Country Status (3)

Country Link
JP (1) JP4808221B2 (ja)
CN (1) CN101331671B (ja)
WO (1) WO2007069556A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078546A (zh) * 2013-01-21 2013-05-01 南京航空航天大学 基于双向开关管的电流源型双向多脉冲变流器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687824B2 (ja) * 2009-06-26 2011-05-25 株式会社富士通ゼネラル 3相整流器
US8315071B2 (en) * 2009-11-03 2012-11-20 Honeywell International Inc. Composite 24-pulse AC to DC power converter having a main rectifier and multiple auxiliary rectifiers
JP2013126283A (ja) * 2011-12-14 2013-06-24 Panasonic Corp 整流装置
CN102427251A (zh) * 2011-12-27 2012-04-25 东莞市凯登能源科技有限公司 一种实现同步高频调制的方法及装置
CN103065779B (zh) * 2013-01-28 2018-10-19 尤大千 三相24脉波双y形输出绕组移相整流变压器
CN104362841B (zh) * 2014-12-02 2017-07-21 中国矿业大学 一种18脉波整流系统谐波抑制系统及方法
CN105006982B (zh) * 2015-07-08 2017-06-27 南京航空航天大学 一种p型24脉冲航空自耦变压整流器
CN104993720B (zh) * 2015-07-10 2017-12-08 南京航空航天大学 不对称式p型12脉冲自耦变压整流器
CN105515405B (zh) * 2015-11-02 2019-03-15 南京航空航天大学 宽范围降压式18脉冲自耦变压整流器
US9680344B2 (en) * 2015-11-13 2017-06-13 General Electric Company Multiphase electrical machine and method of use
RU187850U1 (ru) * 2018-12-19 2019-03-20 Евгений Николаевич Коптяев Многофазный выпрямитель

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145776A (en) * 1980-03-24 1981-11-12 Hisao Matsumoto 3-phase frequency converter improved in ac current waveform
JP2000050634A (ja) * 1998-07-29 2000-02-18 Mitsubishi Electric Corp 交流直流間電力変換装置
JP2000354376A (ja) * 1999-06-10 2000-12-19 I Hitsutsu Kenkyusho:Kk 交流電圧調整器
JP2003088124A (ja) * 2001-09-06 2003-03-20 Toshiba Corp 整流装置
JP2003304680A (ja) * 2002-04-09 2003-10-24 Chiyoda:Kk 交直流両用双方向昇降圧変換器
JP2004215469A (ja) * 2003-01-09 2004-07-29 Renesas Technology Corp スイッチング電源装置および電源制御用半導体集積回路
JP2005287251A (ja) * 2004-03-30 2005-10-13 Kawasaki Heavy Ind Ltd 整流装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145776A (en) * 1980-03-24 1981-11-12 Hisao Matsumoto 3-phase frequency converter improved in ac current waveform
JP2000050634A (ja) * 1998-07-29 2000-02-18 Mitsubishi Electric Corp 交流直流間電力変換装置
JP2000354376A (ja) * 1999-06-10 2000-12-19 I Hitsutsu Kenkyusho:Kk 交流電圧調整器
JP2003088124A (ja) * 2001-09-06 2003-03-20 Toshiba Corp 整流装置
JP2003304680A (ja) * 2002-04-09 2003-10-24 Chiyoda:Kk 交直流両用双方向昇降圧変換器
JP2004215469A (ja) * 2003-01-09 2004-07-29 Renesas Technology Corp スイッチング電源装置および電源制御用半導体集積回路
JP2005287251A (ja) * 2004-03-30 2005-10-13 Kawasaki Heavy Ind Ltd 整流装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078546A (zh) * 2013-01-21 2013-05-01 南京航空航天大学 基于双向开关管的电流源型双向多脉冲变流器

Also Published As

Publication number Publication date
JP4808221B2 (ja) 2011-11-02
CN101331671A (zh) 2008-12-24
JPWO2007069556A1 (ja) 2009-05-21
CN101331671B (zh) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4808221B2 (ja) 高周波変復調多相整流装置
US8737097B1 (en) Electronically isolated method for an auto transformer 12-pulse rectification scheme suitable for use with variable frequency drives
Kushwaha et al. A modified luo converter-based electric vehicle battery charger with power quality improvement
EP1564875B1 (en) Filter
US5668707A (en) Multi-phase power converter with harmonic neutralization
EP2270968B1 (en) Power Transmission Method and Power Transmission Apparatus
US6831442B2 (en) Utilizing zero-sequence switchings for reversible converters
US11329544B2 (en) Filter arrangement
EP2830210B1 (en) Generator excitation apparatus and power conversion system
JP2865194B2 (ja) 単相入力3相全波整流回路及び単相入力疑似4相全波整流回路
CN215815555U (zh) 多相自耦变压器及整流器系统
US8270188B1 (en) Apparatus and methodology for generating an auxiliary low power output by using three-phase input power
CN107148730B (zh) 电力转换装置
Singh et al. Power-quality improvements in vector-controlled induction motor drive employing pulse multiplication in AC-DC converters
EP2621073A1 (en) Multilevel converter
US6297971B1 (en) Phase converter
EP3742596B1 (en) Power converter
CN115528928A (zh) 一种电源电路及其应用
US20130258729A1 (en) Medium voltage power apparatus
JP3696855B2 (ja) 整流装置
CN112820523A (zh) 多相自耦变压器及整流器系统
Cheng et al. The topology analysis and compare of high-frequency power electronic transformer
CN210518135U (zh) 一种电源装置及电子设备
JP3580089B2 (ja) ダイオード整流回路
JP2023072652A (ja) 電力変換器とその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046806.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007550161

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834401

Country of ref document: EP

Kind code of ref document: A1