WO2007069439A1 - 超音波処理装置 - Google Patents

超音波処理装置 Download PDF

Info

Publication number
WO2007069439A1
WO2007069439A1 PCT/JP2006/323475 JP2006323475W WO2007069439A1 WO 2007069439 A1 WO2007069439 A1 WO 2007069439A1 JP 2006323475 W JP2006323475 W JP 2006323475W WO 2007069439 A1 WO2007069439 A1 WO 2007069439A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
water
casing
housing
processing apparatus
Prior art date
Application number
PCT/JP2006/323475
Other languages
English (en)
French (fr)
Inventor
Haru Miyake
Takamura Miyake
Original Assignee
Haru Miyake
Takamura Miyake
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005359357A external-priority patent/JP2006218473A/ja
Application filed by Haru Miyake, Takamura Miyake filed Critical Haru Miyake
Publication of WO2007069439A1 publication Critical patent/WO2007069439A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/025Ultrasonics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to an ultrasonic treatment apparatus.
  • an ultrasonic treatment apparatus that generates ultrasonic waves and prevents the growth of microorganisms in water as a liquid to be treated.
  • the ultrasonic treatment apparatus includes a water storage tank for storing water, and an ultrasonic element is attached to a side wall of the water storage tank.
  • an ultrasonic element is attached to a side wall of the water storage tank.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-202321
  • the conventional ultrasonic treatment apparatus cannot sufficiently irradiate water with ultrasonic waves and cannot sufficiently prevent the growth of microorganisms in water! /.
  • the present invention provides an ultrasonic processing apparatus that solves the problems of the conventional ultrasonic processing apparatus and can sufficiently prevent the growth of microorganisms in the liquid to be processed. It is intended to provide.
  • a housing body that contains a liquid to be processed and has a supply port and a discharge port, and a housing body that is disposed in the housing, A retention member that retains the liquid, and an ultrasonic element that is disposed at a predetermined location of the housing, generates ultrasonic waves, and irradiates the liquid to be treated in the irradiation region formed by the retention member.
  • the liquid to be processed supplied from the supply port into the casing passes through the irradiation region, is sent to the discharge port, and is discharged from the discharge loca.
  • a case body that contains a liquid to be processed and includes a supply port and a discharge port, and a housing body that is disposed in the housing, A staying member for staying, and an ultrasonic element that is disposed at a predetermined position of the housing, generates ultrasonic waves, and irradiates the liquid to be treated in the irradiation region formed by the staying member.
  • the liquid to be processed supplied from the supply port into the casing passes through the irradiation region, is sent to the discharge port, and is discharged from the discharge loca.
  • the liquid to be processed supplied from the supply port into the housing passes through the irradiation region, is sent to the discharge port, and is discharged from the discharge region. Therefore, the liquid to be processed passes through the irradiation region. In the meantime, receive ultrasound.
  • FIG. 1 is a diagram illustrating the principle of an ultrasonic processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the ultrasonic treatment apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a control circuit of the ultrasonic processing apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing an oscillation circuit according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of an ultrasonic treatment apparatus according to a second embodiment of the present invention.
  • FIG. 6 is a conceptual diagram of an ultrasonic processing apparatus according to a third embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of an ultrasonic processing apparatus according to a fourth embodiment of the present invention.
  • FIG. 8 is a conceptual diagram of an ultrasonic processing apparatus according to a fifth embodiment of the present invention.
  • FIG. 9 is a conceptual diagram of an ultrasonic processing apparatus according to a sixth embodiment of the present invention.
  • FIG. 10 is a conceptual diagram of an ultrasonic processing apparatus according to a seventh embodiment of the present invention.
  • FIG. 11 is a conceptual diagram of an ultrasonic processing apparatus according to an eighth embodiment of the present invention.
  • FIG. 1 is a diagram showing the principle of the ultrasonic processing apparatus according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the ultrasonic processing apparatus according to the first embodiment of the present invention
  • FIG. FIG. 4 is a diagram showing a control circuit of the ultrasonic processing apparatus according to the first embodiment of the present invention
  • FIG. 4 is a diagram showing an oscillation circuit according to the first embodiment of the present invention.
  • reference numeral 81 denotes a processing tank
  • the processing tank 81 includes a casing 90 having a cylindrical shape, and is not illustrated as a liquid to be processed to be processed inside the casing 90.
  • Water is stored.
  • a supply port 17 for supplying water into the housing 90 is formed near the lower end of the housing 90.
  • a discharge port 18 for discharging water in the housing 90 is formed near the upper end of the housing 90. It is done.
  • An ultrasonic element ml is disposed on the bottom wall 82 of the treatment tank 81 in order to generate ultrasonic waves and irradiate the water in the housing 90.
  • the directivity increases as the frequency increases. Therefore, when the ultrasonic element ml is formed by a plate having a circular shape, the irradiation area AR11 has the housing.
  • the body 90 is formed in a cylindrical shape above the ultrasonic element ml. When the diameter of the ultrasonic element ml is D1, the irradiation area AR1 1 is straight
  • the dimensions of the housing are set in correspondence with the dimensions of the ultrasonic element so that the non-irradiation area AR12 is not formed.
  • reference numeral 11 denotes a treatment tank whose upper and lower ends are sealed.
  • the treatment tank 11 is formed of a metal such as stainless steel, tempered glass, or the like, and has a predetermined shape, in this embodiment.
  • a casing 20 having a cylindrical shape, and water (not shown) as a liquid to be processed to be processed is accommodated in the casing 20.
  • the casing 20 includes a bottom wall 12, a side wall 13 and a top wall 14 raised from the bottom wall 12, for supplying water into the casing 20 near the lower end of the casing 20.
  • the supply port 17 is formed with a discharge port 18 for discharging the water in the housing 20.
  • an ultrasonic element ml made of, for example, a ceramic vibrator is attached to the bottom wall 12.
  • a flange portion fg is formed on the bottom wall 12 so as to protrude outward in the radial direction, and the outer peripheral edge of the ultrasonic element ml and the outer peripheral edge of the flange portion fg are matched. .
  • the diameter of the ultrasonic element ml is D1
  • the diameter of the irradiation area AR1 irradiated with ultrasonic waves is D2
  • the diameter of the housing 20 is D3
  • the diameter D3 is smaller than the diameter D1
  • the irradiation area AR1 is formed in the entire case 20, the entire water up to the upper end of the lower end force in the case 20 can be irradiated with ultrasonic waves.
  • the ultrasonic frequency is 950 [kHz] or more and 2 [M Hz] is set to a predetermined value set in the range below, and the driving voltage and the intensity (amplitude) representing the output of the ultrasonic wave are in the range of 10 [mWZcm 2 ] or more and 200 [WZcm 2 ] or less. And set to a predetermined value corresponding to the required processing capacity.
  • a temperature as a temperature detection unit for detecting the temperature of water is present at a predetermined location on the side wall 13, in the present embodiment, near the lower end of the housing 20.
  • Sensor 5 4 is installed.
  • the temperature sensor 54 is attached in the vicinity of the lower end of the casing 20, but may be attached in the vicinity of the upper end of the casing 20 or in the center of the casing 20. can do.
  • a heater 55 as a heating member for heating the water in the housing 20 is disposed in a predetermined portion of the side wall 13 in the vicinity of the lower end of the housing 20.
  • 30 is a control unit
  • 21 is a drive circuit as drive processing means for driving the ultrasonic element ml
  • the drive circuit 21 forms an oscillation circuit as shown in FIG.
  • Reference numeral 22 denotes an operation detection circuit as an operation detection processing means for detecting the operation of the ultrasonic element ml, that is, the intensity of the ultrasonic wave generated by the ultrasonic element ml
  • 23 denotes water in the casing 20.
  • the temperature control circuit as a temperature control processing means to control the temperature of the
  • the power supply circuit applies a control voltage of 5 [V] and a predetermined voltage for driving the ultrasonic element ml to the drive circuit 21, the operation detection circuit 22 and the temperature control circuit 23.
  • the drive circuit 21 includes a transistor Trl as a switching element, a coil L1 as a detected element for detecting the intensity of ultrasonic waves, and a coil L2 as a detecting element for detecting the intensity of ultrasonic waves
  • the terminal t2 is connected to the collector of the transistor Trl through the coil L1, and the terminals tl and t2 are connected to the power supply circuit 24 through the output variable (voltage variable) circuit 35.
  • a first series circuit comprising an ultrasonic element ml and a capacitor C1 and constituting an LC circuit and a second series circuit comprising capacitors C2 and C3 are connected between the collector and the base of the transistor Trl.
  • the coil L1 is connected between the emitter and the midpoint between the capacitors C2 and C3.
  • the coil L2 is arranged to face the coil L1, and the coil L2 and the motion detection circuit 22 are connected. It is.
  • the oscillation circuit uses the principle of the Colpitts oscillation circuit.
  • the drive circuit 21 performs drive processing.
  • drive the ultrasonic element ml that is, when noise enters the transistor Trl in the oscillation circuit, the noise is amplified by the ultrasonic element ml and the capacitor C1 and sent to the ultrasonic element ml as a drive signal.
  • the drive signal is fed back to the transistor Trl and further amplified. In this way, the above operation is repeated, and the ultrasonic element ml resonates at the natural frequency and generates a stable ultrasonic wave.
  • the intensity of the ultrasonic wave generated by the ultrasonic element ml can be changed by changing the voltage applied between the terminals tl and t2. That is, when the voltage applied between the terminals tl and t2 changes, an ultrasonic wave is generated by switching of the transistor Trl, and the amplitude of the current flowing through the coil L1 changes.
  • the motion detection circuit 22 performs motion detection processing, reads the current generated in the coil L2 as a current flows through the coil L1 as a detection current, converts the current into a voltage, and converts the voltage into an ultrasonic wave. Detect as strength.
  • An output control processing unit (not shown) of the control unit 30 performs an output control process, compares the detected ultrasonic intensity with a set value, calculates a deviation, and performs feedback control based on the deviation.
  • the voltage applied to the drive circuit 21 is changed.
  • the coils Ll and L2 constitute a current sensor as a current detection unit.
  • water sent from a not-shown liquid supply source such as a water supply curan is supplied into the casing 20 through the supply port 17, flows upward in the casing 20, and is discharged. It is discharged as a processing liquid through the outlet 18 and sent to a processing liquid storage section (not shown).
  • the ultrasonic wave generated by the ultrasonic element ml is irradiated to the entire water in the housing 20.
  • water is decomposed by ultrasonic waves to generate hydroxyl radicals and hydrogen atoms.
  • the hydrogen atom reacts with oxygen or hydrogen gas to become hydrogen peroxide.
  • microorganisms are oxidized, decomposed and sterilized in water.
  • the drive circuit 21 constitutes hydroxyl radical generation processing means, and the hydroxyl radical generation processing means performs hydroxyl radical generation processing and performs ultrasonic element ml To generate the hydroxyl radical.
  • the irradiation region AR1 is formed in the entire housing 20, and the entire water in the housing 20 is sufficiently irradiated with ultrasonic waves, so that microorganisms are reliably oxidized in water. Can be decomposed and sterilized. Therefore, it is possible to sufficiently prevent microorganisms from growing in water.
  • the ultrasonic element ml since the ultrasonic element ml is disposed at the lower end of the casing 20, the ultrasonic element ml can irradiate water with ultrasonic waves simultaneously with the supply of water to the supply port 17. Therefore, the driving of the ultrasonic element ml can be started immediately.
  • hydroxyl radicals are efficiently generated when the ultrasonic frequency is set to fall within the range of 950 [kHz] or more and 2 [MHz] or less. In particular, it is most efficient to set it within the range of 1600 [kHz] or more and 1650 [kHz] or less.
  • the temperature control circuit 23 performs a temperature control process, reads the temperature detected by the temperature sensor 54 as a detected temperature, compares the detected temperature with a set value, calculates a deviation, and feeds by the deviation. Back control is performed to turn the heater 55 on and off.
  • FIG. 5 is a cross-sectional view of an ultrasonic treatment apparatus according to the second embodiment of the present invention.
  • a supply port 17 for supplying water (not shown) as a liquid to be treated into the casing 20 is provided at the lower end of the casing 20 in the vicinity of the upper end of the casing 20.
  • a discharge port 18 for discharging water is formed.
  • an ultrasonic element ml is attached to the bottom wall 12, and the outer peripheral edge of the ultrasonic element ml and the outer peripheral edge of the bottom wall 12 are matched.
  • the ultrasonic wave is sufficiently irradiated to the water even in the radially outward direction from the irradiation region AR1, and the narrower ring-shaped addition is made wider as it goes downward. Is formed, that is, an additional irradiation area AR2. And the housing
  • a non-irradiation area AR3 is formed in the portion other than the irradiation area AR1 and the additional irradiation area AR2 in 20 while the ultrasonic waves are not irradiated.
  • the diameter of the ultrasonic element ml is D1
  • the diameter of the irradiation area AR1 is D2
  • the diameter of the housing 20 is D3
  • the diameter D3 is equal to the diameter D1 and from the diameter D2. Enlarge.
  • the casing 20 can be shaped along the irradiation area AR1 and the additional irradiation area AR2.
  • FIG. 6 is a conceptual diagram of an ultrasonic processing apparatus according to the third embodiment of the present invention.
  • the casing 20 is formed in a spiral shape as a guide member for guiding water (not shown) as a liquid to be treated and as a retaining member for retaining water in the casing 20.
  • the spiral 15 is disposed with the outer peripheral edge in contact with the inner peripheral surface of the housing 20, and a water flow path 16 as a spiral liquid flow path to be treated is formed along the spiral 15.
  • the spiral 15 is made of a metal such as stainless steel.
  • a supply port 17 for supplying water into the casing 20 near the lower end of the casing 20 discharges water in the casing 20 near the upper end of the casing 20.
  • a discharge port 18 is formed, an introduction portion 51 is formed between the bottom wall 12 and the inlet of the water flow path 16, and a lead-out portion 52 is formed between the top wall 14 and the discharge port 18.
  • a plurality of holes 19 are formed in the central portion of the spiral 15 so as to penetrate in the axial direction of the casing 20 so that ultrasonic waves can be applied to water from the lower end to the upper end in the casing 20. Then, an irradiation area AR1 is formed by the holes 19.
  • the force with which the ultrasonic element ml is disposed at one location of the bottom wall 12 is determined at predetermined locations on the other locations of the bottom wall 12, the side wall 13 and the top wall 14.
  • Ultrasonic elements can also be arranged in places.
  • the water sent from the liquid supply source to be treated is supplied into the housing 20 through the supply port 17, and is supplied to the water channel 16 through the introduction unit 51, along the water channel 16. In addition to flowing in a spiral, it flows short-circuited through each hole 19, stirred and stirred up, supplied to the outlet 52, and then discharged as processing liquid through the discharge port 18. Then, it is sent to the processing liquid reservoir.
  • the ultrasonic waves generated by the ultrasonic element ml are irradiated to the water in the casing 20, mainly the water in the irradiation area AR1.
  • water is decomposed by ultrasonic waves to generate hydroxyl radicals and hydrogen atoms.
  • the hydrogen atom reacts with oxygen or hydrogen gas to become hydrogen peroxide.
  • microorganisms are oxidized, decomposed and sterilized in water.
  • FIG. 7 is a conceptual diagram of an ultrasonic processing apparatus according to the fourth embodiment of the present invention.
  • annular plates 65 as retaining members that retain water (not shown) as a liquid to be treated in the casing 20 are provided in the casing 20 with the outer peripheral edge thereof being the inner periphery of the casing 20.
  • a water storage section 66 is disposed between the annular plates 65 as a liquid storage section to be treated.
  • the annular plate 65 is made of a metal such as stainless steel.
  • the supply port 17 for supplying water into the housing 20 near the lower end of the housing 20 discharges the water in the housing 20 near the upper end of the housing 20.
  • the discharge port 18 is formed, the introduction portion 51 is formed between the bottom wall 12 and the lowermost annular plate 65, and the lead-out portion 52 is formed between the top wall 14 and the uppermost annular plate 65.
  • an ultrasonic element ml is disposed at a predetermined position of the bottom wall 12, in the present embodiment.
  • a plurality of holes 69 are formed through the center of each annular plate 65 in the axial direction of the casing 20.
  • an irradiation area AR1 is formed by the holes 69.
  • a temperature sensor (not shown) as a temperature detection unit is attached to a predetermined portion of the side wall 13, in the present embodiment, in the vicinity of the lower end of the housing 20, toward the introduction unit 51.
  • a heater (not shown) as a heating member for heating the water in the housing 20 is disposed in the introduction part 51.
  • the water sent from the liquid supply source to be treated is supplied into the casing 20 through the supply port 17, and is supplied to each water storage section 66 through the introduction section 51 and each hole 69, and The water is agitated and raised in each water storage section 66, supplied to the outlet section 52, discharged as a processing liquid through the discharge port 18, and sent to the processing liquid storage section.
  • the ultrasonic waves generated by the ultrasonic element ml are irradiated on the water in the casing 20, mainly the water in the irradiation area AR1. Be shot.
  • water is decomposed by ultrasonic waves to generate hydroxyl radicals and hydrogen atoms.
  • microorganisms are oxidized, decomposed and sterilized in water.
  • ultrasonic waves are irradiated to water from the lower end to the upper end in the housing 20 by the irradiation area AR1.
  • water flows through the hole 69 every time it is supplied to the water storage section 66, and during that time, it repeatedly passes through the irradiation region AR1, and thus is sufficiently irradiated with ultrasonic waves. Therefore, it is possible to sufficiently prevent microorganisms from growing in water.
  • the treatment time can be extended. Therefore, since the ultrasonic wave can be sufficiently irradiated to the water, it is possible to further prevent the microorganisms from growing in the water.
  • the supply port 17 is provided near the lower end of the casing 20, and the upper end of the casing 20 is
  • the discharge port 18 can be arranged near the lower end of the casing 20 and the supply port can be arranged near the upper end of the casing 20.
  • FIG. 8 is a conceptual diagram of an ultrasonic processing apparatus according to the fifth embodiment of the present invention.
  • the lower end is placed at a predetermined distance from the bottom wall 12, and the upper end is passed through the top wall 14 to retain water as a liquid to be treated, not shown.
  • a cylindrical body 75 as a staying member is disposed concentrically.
  • a discharge port 18 is connected to the upper end of the cylindrical body 75.
  • the cylindrical body 75 is made of a metal such as stainless steel.
  • An introduction portion 76 is provided adjacent to the supply port 17 in the vicinity of the upper end of the casing 20, so that the cylinder An inversion portion 77 is formed near the lower end of the cylindrical body 75, and a lead-out portion 78 is formed adjacent to the discharge port 18 above the upper end of the cylindrical body 75.
  • the casing 20 and the cylindrical body 75 are formed separately and then fixed by a predetermined fixing member. However, the casing 20 and the cylindrical body 75 are integrated. Can be formed.
  • a first flow path 81 is formed between the casing 20 and the cylindrical body 75
  • a second flow path 82 is formed in the cylindrical body 75, and is supplied to the supply port 17.
  • the water is moved downward in the first flow path 81, reversed in the reversing section 77, and then moved in the second flow path 82 to be led out. Is discharged to the section 78 and discharged from the discharge port 18 as a processing solution.
  • an ultrasonic element ml is arranged at a predetermined position on the lower surface of the bottom wall 12, in the present embodiment.
  • an irradiation area AR1 is formed by the second flow path 82, and ultrasonic waves are irradiated to the entire water from the lower end to the upper end in the irradiation area AR1.
  • hydroxyl radicals and hydrogen atoms are generated by all the water that passes through the irradiation region AR1.
  • generation of hydroxyl radicals and hydrogen atoms was observed in the irradiation region AR1 having a diameter of about 15 [mm].
  • the water supplied to the casing 20 always passes through the irradiation area AR1, so that it is possible to reliably prevent the microorganisms from growing in the water.
  • FIG. 9 is a conceptual diagram of an ultrasonic processing apparatus in the sixth embodiment of the present invention.
  • the ultrasonic elements ml and m2 are disposed at a plurality of positions on the bottom wall 12, and in two positions in the present embodiment, at a predetermined angle with respect to the bottom wall 12. The Therefore, since the ultrasonic waves generated by the ultrasonic elements ml and m2 are repeatedly reflected on the side wall 13 and transmitted upward, an irradiation region is formed over a wide range in the housing 20. be able to.
  • water (not shown) supplied as the liquid to be treated supplied to the housing 20 always passes through the irradiation region, so that it is possible to reliably prevent the microorganisms from growing in the water.
  • the angle at which each of the ultrasonic elements ml, m2 is inclined with respect to the bottom wall 12 can be made equal, but can also be made different from each other.
  • FIG. 10 is a conceptual diagram of an ultrasonic processing apparatus according to the seventh embodiment of the present invention.
  • water (not shown) as the liquid to be treated supplied to the casing 20 always passes through the irradiation region, so that it is possible to reliably prevent the growth of microorganisms in the water.
  • FIG. 11 is a conceptual diagram of an ultrasonic processing apparatus according to the eighth embodiment of the present invention.
  • water (not shown) as the liquid to be treated supplied to the casing 20 always passes through the irradiation region, so that it is possible to reliably prevent the growth of microorganisms in the water.
  • water to be treated such as a pond, a pool, a bathtub, a hot spring, etc. that is configured to treat the water sent from a treatment liquid supply source such as currant by the treatment tank 11.
  • the water sent from the source can be treated by the treatment tank 11.
  • a pump as a liquid to be processed circulation member is disposed between the liquid supply source to be processed and the processing tank 11.
  • the housing 20 can be immersed in a pond, a pool, a bathtub, a hot spring, or the like.
  • the liquid to be treated and the liquid reservoir for the liquid to be treated are constituted by a pond, a pool, a bathtub, a hot spring, etc.
  • the water in the housing 20 is discharged directly into the pond, pool, bathtub, hot spring, etc. through the discharge port 18.
  • the temperature of the water rises as the ultrasonic wave is irradiated, and the water moves upward in the case 20. Therefore, it is necessary to provide a pump for circulating the water.
  • an auxiliary pump can be installed. In this case, it is preferable to arrange a plurality of ultrasonic elements mi side by side!
  • the present invention can be applied to an ultrasonic treatment apparatus for preventing the growth of microorganisms in water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

 被処理液中で微生物が繁殖するのを十分に防止することができるようにした超音波処理装置を提供する。被処理液を収容し、供給口(17)及び排出口(18)を備えた筐(きょう)体(20)と、筐体(20)内に配設され、被処理液を滞留させる滞留部材と、筐体(20)の所定の箇所に配設され、超音波を発生させ、滞留部材によって形成された照射領域(AR1)の被処理液に超音波を照射する超音波素子(m1)とを有する。供給口(17)から筐体(20)内に供給された被処理液は、照射領域(AR1)を通過して排出口(18)に送られ、排出口(18)から排出される。供給口(17)から筐体(20)内に供給された被処理液は、照射領域(AR1)を通過して排出口(18)に送られ、排出口(18)から排出され、超音波の照射を受ける。

Description

明 細 書
超音波処理装置
技術分野
[0001] 本発明は、超音波処理装置に関するものである。
背景技術
[0002] 従来、超音波を発生させて被処理液としての水中で微生物が繁殖するのを防止す るようにした超音波処理装置が提供されて!、る。
[0003] 該超音波処理装置にお!、ては、水を貯留するための貯水槽を備え、該貯水槽の側 壁に超音波素子が取り付けられる。該超音波素子によって超音波を発生させて貯水 槽内の水に照射すると、水が超音波によって分解され、その結果、水中で微生物は 酸化され、分解され、殺菌され、繁殖するのが防止される (例えば、特許文献 1参照。
) o
特許文献 1 :特開 2004— 202321号公報
発明の開示
発明が解決しょうとする課題
[0004] しかしながら、前記従来の超音波処理装置においては、超音波を十分に水に照射 することができず、水中で微生物が繁殖するのを十分に防止することができな!/、。
[0005] 本発明は、前記従来の超音波処理装置の問題点を解決して、被処理液中で微生 物が繁殖するのを十分に防止することができるようにした超音波処理装置を提供する ことを目的とする。
課題を解決するための手段
[0006] そのために、本発明の超音波処理装置においては、被処理液を収容し、供給口及 び排出口を備えた筐 (きょう)体と、該筐体内に配設され、被処理液を滞留させる滞留 部材と、前記筐体の所定の箇所に配設され、超音波を発生させ、前記滞留部材によ つて形成された照射領域の被処理液に超音波を照射する超音波素子とを有する。
[0007] そして、前記供給口から筐体内に供給された被処理液は、前記照射領域を通過し て排出口に送られ、該排出ロカ 排出される。 発明の効果
[0008] 本発明によれば、超音波処理装置においては、被処理液を収容し、供給口及び排 出口を備えた筐 (きょう)体と、該筐体内に配設され、被処理液を滞留させる滞留部材 と、前記筐体の所定の箇所に配設され、超音波を発生させ、前記滞留部材によって 形成された照射領域の被処理液に超音波を照射する超音波素子とを有する。
[0009] そして、前記供給口から筐体内に供給された被処理液は、前記照射領域を通過し て排出口に送られ、排出ロカ 排出される。
[0010] この場合、前記供給口から筐体内に供給された被処理液は、前記照射領域を通過 して排出口に送られ、排出ロカ 排出されるので、被処理液は照射領域を通過する 間に超音波の照射を受ける。
[0011] したがって、被処理液中で微生物が繁殖するのを十分に防止することができる。
図面の簡単な説明
[0012] [図 1]本発明の第 1の実施の形態における超音波処理装置の原理を示す図である。
[図 2]本発明の第 1の実施の形態における超音波処理装置の断面図である。
[図 3]本発明の第 1の実施の形態における超音波処理装置の制御回路を示す図であ る。
[図 4]本発明の第 1の実施の形態における発振回路を示す図である。
[図 5]本発明の第 2の実施の形態における超音波処理装置の断面図である。
[図 6]本発明の第 3の実施の形態における超音波処理装置の概念図である。
[図 7]本発明の第 4の実施の形態における超音波処理装置の概念図である。
[図 8]本発明の第 5の実施の形態における超音波処理装置の概念図である。
[図 9]本発明の第 6の実施の形態における超音波処理装置の概念図である。
[図 10]本発明の第 7の実施の形態における超音波処理装置の概念図である。
[図 11]本発明の第 8の実施の形態における超音波処理装置の概念図である。
符号の説明
[0013] 12 底壁
13 側壁
15 スパイラル 17 供給口
18 排出口
20 筐体
55 ヒータ
65 環状プレート
75 筒状体
AR1 照射領域
mi、 ml、 m2 超音波素子
発明を実施するための最良の形態
[0014] 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
[0015] 図 1は本発明の第 1の実施の形態における超音波処理装置の原理を示す図、図 2 は本発明の第 1の実施の形態における超音波処理装置の断面図、図 3は本発明の 第 1の実施の形態における超音波処理装置の制御回路を示す図、図 4は本発明の 第 1の実施の形態における発振回路を示す図である。
[0016] 図 1において、 81は処理槽であり、該処理槽 81は円筒形の形状を有する筐体 90 を備え、該筐体 90の内部に処理の対象となる被処理液としての図示されない水が収 容される。前記筐体 90の下端の近傍に、筐体 90内に水を供給するための供給口 17 力 筐体 90の上端の近傍に、筐体 90内の水を排出するための排出口 18が形成され る。そして、超音波を発生させて筐体 90内の水に照射するために、前記処理槽 81の 底壁 82に、超音波素子 mlが配設される。
[0017] 該超音波素子 mlが駆動されると、超音波が発生させられ、照射領域 AR11内の水 に照射される。これに伴い、水が超音波によって分解され、ヒドロキシルラジカル及び 水素原子が生成され、該水素原子が酸素又は水素ガスと反応して過酸化水素にな る。その結果、水中で微生物は酸化され、分解され、殺菌される。
[0018] ところで、超音波素子 mlにおいては、周波数が高くなるほど指向性が高くなるので 、前記超音波素子 mlが円形の形状を有する板状体によって形成される場合、照射 領域 AR11は、前記筐体 90内において超音波素子 mlより上方に、円筒形の形状に なるように形成される。そして、超音波素子 mlの直径を D1としたとき、照射領域 AR1 1は、直
径 D1より小さい直径 D2で形成される。したがって、図 1に示されるように、筐体 90の 直径を D3としたとき、直径 D3が直径 D1より大きい場合は、筐体 90内における照射 領域 AR11より外側に、超音波が照射されない非照射領域 AR12が形成される。
[0019] 該非照射領域 AR12にお ヽては、水が分解されず、ヒドロキシルラジカル及び水素 原子が生成されないので、過酸ィ匕水素が生成されず、水中で微生物を酸ィ匕したり、 分解したり、殺菌したりすることができない。例えば、直径が25〜28〔111111〕の超音波 素子 mlを使用して実験を行ったところ、直径が約 15〔mm〕の範囲より外側では、ヒド 口キシルラジカル及び水素原子の生成が観測されなかった。
[0020] そこで、本実施の形態にぉ ヽては、前記非照射領域 AR12が形成されな ヽように、 筐体の寸法を超音波素子の寸法に対応させて設定するようにして 、る。
[0021] 図 2において、 11は、上端及び下端が密閉された処理槽であり、該処理槽 11は、 ステンレス鋼等の金属、強化ガラス等によって形成され、所定の形状、本実施の形態 においては、円筒状の形状を有する筐体 20を備え、該筐体 20の内部に処理の対象 となる被処理液としての図示されない水が収容される。前記筐体 20は、底壁 12、該 底壁 12から立ち上げられた側壁 13及び頂壁 14から成り、前記筐体 20の下端の近 傍に、筐体 20内に水を供給するための供給口 17が、筐体 20の上端の近傍に、筐体 20内の水を排出するための排出口 18が形成される。
[0022] そして、超音波を発生させて筐体 20内の水に照射するために、前記底壁 12に、例 えば、セラミック振動子によって構成された超音波素子 mlが取り付けられる。そのた めに、前記底壁 12に、径方向外方に向けて突出させてフランジ部 fgが形成され、前 記超音波素子 mlの外周縁とフランジ部 fgの外周縁とがー致させられる。
[0023] また、超音波素子 mlの直径を D1とし、超音波が照射される照射領域 AR1の直径 を D2とし、筐体 20の直径を D3としたとき、直径 D3を直径 D1より小さくし、かつ、直 径 D2と等しくする。したがって、筐体 20内の全体に、照射領域 AR1が形成されるの で、筐体 20内における下端力 上端までの水の全体に超音波を照射することができ る。
[0024] 前記超音波素子 mlにお 、て、超音波の周波数は、 950 [kHz]以上、かつ、 2 [M Hz〕以下の範囲で設定された所定の値にされ、駆動電圧、及び超音波の出力を表 す強さ(振幅)は、 10〔mWZcm2〕以上、かつ、 200〔WZcm2〕以下の範囲にされ、 必要となる処理能力に対応させて設定された所定の値にされる。
[0025] また、図 3に示されるように、前記側壁 13の所定の箇所、本実施の形態においては 、筐体 20の下端の近傍には、水の温度を検出する温度検出部としての温度センサ 5 4が取り付けられる。なお、本実施の形態において、温度センサ 54は、筐体 20の下 端の近傍に取り付けられるようになっているが、筐体 20の上端の近傍に取り付けたり 、筐体 20の中央に取り付けたりすることができる。そして、前記側壁 13の所定の箇所 、本実施の形態においては、筐体 20の下端の近傍には、筐体 20内の水を加熱する ための加熱部材としてのヒータ 55が配設される。
[0026] また、 30は制御部、 21は超音波素子 mlを駆動するための駆動処理手段としての ドライブ回路であり、該ドライブ回路 21は図 4に示されるような発振回路を形成する。 そして、 22は、超音波素子 mlの動作、すなわち、超音波素子 mlによって発生させ られる超音波の強さを検出する動作検出処理手段としての動作検出回路、 23は前 記筐体 20内の水の温度を制御するための温度制御処理手段としての温度コントロー ル回路、 24は
、前記ドライブ回路 21、動作検出回路 22及び温度コントロール回路 23に、 5〔V〕の 制御用の電圧、及び超音波素子 mlの駆動用の所定の電圧を印加する電源回路で ある。
[0027] 前記ドライブ回路 21は、スイッチング素子としてのトランジスタ Trl、超音波の強さを 検出するための被検出要素としてのコイル L1、超音波の強さを検出するための検出 要素としてのコイル L2等を備え、トランジスタ Trlのコレクタに端子 tl力 ェミッタにコ ィル L1を介して端子 t2が接続され、前記端子 tl、 t2が出力可変 (電圧可変)回路 35 を通して電源回路 24に接続される。また、前記コレクタとトランジスタ Trlのベースと の間に、超音波素子 ml及びコンデンサ C1から成り、 LC回路を構成する第 1の直列 回路、並びにコンデンサ C2、 C3から成る第 2の直列回路が接続され、前記ェミッタと コンデンサ C2、 C3の中間点との間に前記コイル L1が接続される。該コイル L1と対 向させて前記コイル L2が配設され、該コイル L2と前記動作検出回路 22とが接続さ れる。
[0028] 前記発振回路は、コルピッツ発振回路の原理を利用したものであり、各発振回路の 前記端子 tl、 t2間に、電源回路 24によって電圧が印加されると、ドライブ回路 21は 駆動処理を行い、超音波素子 mlを駆動する。すなわち、発振回路において、トラン ジスタ Trlにノイズが入ると、該ノイズは、前記超音波素子 ml及びコンデンサ C1によ つて増幅されて超音波素子 mlに駆動信号として送られる。そして、該駆動信号は、ト ランジスタ Trlにフィードバックされて更に増幅される。このように、前記動作が繰り返 され、前記超音波素子 mlは、固有振動数で共振し、安定した超音波を発生させる。
[0029] また、前記構成の発振回路において、端子 tl、 t2間に印加される電圧を変化させ ると、超音波素子 mlによって発生させられる超音波の強さを変更することができる。 すなわち、端子 tl、 t2間に印加される電圧が変化すると、トランジスタ Trlのスィッチ ングによって超音波が発生させられ、コイル L1を流れる電流の振幅が変化する。
[0030] そして、前記動作検出回路 22は、動作検出処理を行い、コイル L1に電流が流れる のに伴ってコイル L2に発生する電流を検出電流として読み込んで電圧に変換し、該 電圧を超音波の強さとして検出する。そして、前記制御部 30の図示されない出力制 御処理手段は、出力制御処理を行い、検出された超音波の強さと設定値とを比較し て偏差を算出し、該偏差に基づいてフィードバック制御を行い、ドライブ回路 21に印 加する電圧を変化させる。なお、前記コイル Ll、 L2によって電流検出部としての電 流センサが構成される。
[0031] ところで、水道のカラン等の図示されない被処理液供給源から送られた水は、供給 口 17を介して筐体 20内に供給され、筐体 20内を上方に向けて流れ、排出口 18を 介して処理液となって排出され、図示されない処理液貯留部に送られる。そして、そ の間、超音波素子 mlによって発生させられた超音波は、筐体 20内の水の全体に照 射される。これに伴い、水が超音波によって分解され、ヒドロキシルラジカル及び水素 原子が生成される。この場合、該水素原子は酸素又は水素ガスと反応して過酸ィ匕水 素になる。その結果、水中で微生物は酸化され、分解され、殺菌される。なお、前記 ドライブ回路 21によってヒドロキシルラジカル生成処理手段が構成され、該ヒドロキシ ルラジカル生成処理手段は、ヒドロキシルラジカル生成処理を行い、超音波素子 ml を駆動することによって前記ヒドロキシルラジカルを生成する。
[0032] このように、筐体 20内の全体に照射領域 AR1が形成され、筐体 20内の水の全体 に超音波が十分に照射されるので、水中で微生物を、確実に、酸化し、分解し、殺菌 することができる。したがって、水中で微生物が繁殖するのを十分に防止することが できる。
[0033] また、超音波素子 mlが筐体 20の下端に配設されるので、供給口 17に水が供給さ れると同時に超音波素子 mlが水に超音波を照射することができる。したがって、直 ちに超音波素子 mlの駆動を開始することができる。
[0034] なお、ヒドロキシルラジカルは、超音波の周波数を 950 [kHz]以上、かつ、 2 [MHz 〕以下の範囲に収まるように設定したときに効率良く生成されることが実験結果によつ て分かっていて、特に、 1600〔kHz〕以上、かつ、 1650〔kHz〕以下の範囲に収まる ように設定すると、最も効率が良い。
[0035] また、前記ヒドロキシルラジカルの生成は、水の温度に依存し、温度が高くなるほど 生成量が多くなり、殺菌能力が高くなるが、過度に生成量が多くなると、処理液の品 質を低下させてしまう。そこで、適正な量のヒドロキシルラジカルを生成するために、 水の温度が制御され、所定の範囲内の温度、本実施の形態においては、 35〜45〔 °C〕、好ましくは、 40〔で〕に維持される。そのために、前記温度コントロール回路 23 は、温度制御処理を行い、温度センサ 54によって検出された温度を検出温度として 読み込み、該検出温度と設定値とを比較して偏差を算出し、該偏差によってフィード バック制御を行い、ヒータ 55の通電をオン'オフさせる。
[0036] 次に、筐体の直径を超音波素子の直径と等しくした本発明の第 2の実施の形態に ついて説明する。なお、第 1の実施の形態と同じ構造を有するものについては、同じ 符号を付与することによってその説明を省略し、同じ構造を有することによる発明の 効果については同実施の形態の効果を援用する。
[0037] 図 5は本発明の第 2の実施の形態における超音波処理装置の断面図である。
[0038] この場合、筐体 20の下端に、筐体 20内に被処理液としての図示されない水を供給 するための供給口 17が、筐体 20の上端の近傍に、筐体 20内の水を排出するための 排出口 18が形成される。また、超音波を発生させて筐体 20内の水に照射するため に、前記底壁 12に超音波素子 mlが取り付けられ、該超音波素子 mlの外周縁と底 壁 12の外周縁とがー致させられる。
[0039] ところで、前記超音波素子 mlの表面の近傍においては、照射領域 AR1より径方 向外方においても、超音波が十分に水に照射され、下方ほど広ぐ上方ほど狭い環 状の付加的な照射領域、すなわち、付加照射領域 AR2が形成される。そして、筐体
20内における照射領域 AR1及び付加照射領域 AR2以外の部分に、超音波が照射 されな ヽ非照射領域 AR3が形成される。
[0040] ところが、前述されたように、筐体 20の底壁 12に隣接させて供給口 17を形成すると
、供給口 17を介して筐体 20内に進入する水は、付加照射領域 AR2を通過するので
、超音波の照射を十分に受けることができる。
[0041] そして、超音波素子 mlの直径を D1とし、照射領域 AR1の直径を D2とし、筐体 20 の直径を D3としたとき、直径 D3を、直径 D1と等しぐかつ、直径 D2より大きくする。 また、筐体 20を、照射領域 AR1及び付加照射領域 AR2に沿った形状にすることも できる。
[0042] 続いて、筐体 20の直径を超音波素子 mlの直径より大きくした本発明の第 3の実施 の形態について説明する。なお、第 1の実施の形態と同じ構造を有するものについて は、同じ符号を付与することによってその説明を省略し、同じ構造を有することによる 発明の効果については同実施の形態の効果を援用する。
[0043] 図 6は本発明の第 3の実施の形態における超音波処理装置の概念図である。
[0044] この場合、筐体 20内には、螺旋状に形成され、被処理液としての図示されない水 を案内する案内部材としての、かつ、筐体 20内に水を滞留させる滞留部材としての スパイラル 15が、外周縁を筐体 20の内周面に接触させて配設され、スパイラル 15に 沿って螺旋状の被処理液流路としての水流路 16が形成される。なお、スパイラル 15 はステンレス鋼等の金属によって形成される。
[0045] また、前記筐体 20の下端の近傍に、筐体 20内に水を供給するための供給口 17が 、筐体 20の上端の近傍に、筐体 20内の水を排出するための排出口 18が形成され、 前記底壁 12と水流路 16の入口との間に導入部 51が、前記頂壁 14と排出口 18との 間に導出部 52が形成される。 [0046] そして、超音波を発生させて筐体 20内の水に照射するために、前記底壁 12の所 定の箇所、本実施の形態においては、中央に超音波素子 mlが配設される。また、 筐体 20内における下端から上端までの水に超音波を照射することができるように、前 記スパイラル 15の中央部に、筐体 20の軸方向に貫通させて複数の穴 19が形成され 、該各穴 19によって照射領域 AR1が形成される。
[0047] 本実施の形態においては、底壁 12の 1箇所に前記超音波素子 mlが配設されるよ うになつている力 底壁 12の他の箇所、側壁 13、頂壁 14の所定の箇所等にも超音 波素子を配設することができる。
[0048] 前記被処理液供給源から送られた水は、供給口 17を介して筐体 20内に供給され 、導入部 51を介して水流路 16に供給され、該水流路 16に沿って螺旋状に流れると ともに、各穴 19を介して短絡して流れ、攪拌 (かくはん)されて上昇し、導出部 52に供 給された後、排出口 18を介して処理液となって排出され、前記処理液貯留部に送ら れる。そして、その間、超音波素子 mlによって発生させられた超音波は、筐体 20内 の水、主として照射領域 AR1内の水に照射される。これに伴い、水が超音波によつ て分解され、ヒドロキシルラジカル及び水素原子が生成される。この場合、該水素原 子は酸素又は水素ガスと反応して過酸ィ匕水素になる。その結果、水中で微生物は酸 化し、分解し、殺菌される。
[0049] ところで、超音波は、周波数が高くなるほど指向性が高くなるので、所定の範囲、す なわち、超音波素子 mlの前方において、超音波素子 mlの直径の所定の範囲を外 れると、ヒドロキシルラジカル及び水素原子が生成されなくなってしまう。
[0050] そこで、前述されたように、前記照射領域 AR1によって筐体 20内における下端から 上端までの水に超音波が照射されるようになっている。また、筐体 20内において、水 は、水流路 16に沿って螺旋状に流れるとともに、穴 19を短絡して流れ、その間に、 繰り返し照射領域 AR1を通過するので、超音波の照射を十分に受ける。したがって、 水中で微生物が繁殖するのを十分に防止することができる。
[0051] また、水は水流路 16に沿って螺旋状に流れる分だけ筐体 20内において滞留させ られるので、供給口 17に供給されて力 排出口 18から排出されるまでの時間、すな わち、処理時間を長くすることができる。したがって、水に超音波を十分に照射するこ とができるので、水中で微生物が繁殖するのを一層防止することができる。
[0052] 次に、本発明の第 4の実施の形態について説明する。なお、第 1の実施の形態と同 じ構
造を有するものについては、同じ符号を付与することによってその説明を省略し、同 じ構造を有することによる発明の効果については同実施の形態の効果を援用する。
[0053] 図 7は本発明の第 4の実施の形態における超音波処理装置の概念図である。
[0054] この場合、筐体 20内には、筐体 20内に被処理液としての図示されない水を滞留さ せる滞留部材としての複数の環状プレート 65が、外周縁を筐体 20の内周面に接触 させて配設され、各環状プレート 65間に被処理液貯留部としての水貯留部 66が形 成される。なお、環状プレート 65はステンレス鋼等の金属によって形成される。
[0055] また、前記筐体 20の下端の近傍に、筐体 20内に水を供給するための供給口 17が 、筐体 20の上端の近傍に、筐体 20内の水を排出するための排出口 18が形成され、 底壁 12と最下端の環状プレート 65との間に導入部 51が、頂壁 14と最上端の環状プ レート 65との間に導出部 52が形成される。
[0056] そして、超音波を発生させて筐体 20内の水に照射するために、前記底壁 12の所 定の箇所、本実施の形態においては、中央に超音波素子 mlが配設される。また、 筐体 20内における下端から上端までの水に超音波を照射することができるように、前 記各環状プレート 65の中央部に、筐体 20の軸方向に貫通させて複数の穴 69が形 成され、該各穴 69によって照射領域 AR1が形成される。
[0057] なお、側壁 13の所定の箇所、本実施の形態においては、筐体 20の下端の近傍に は温度検出部としての図示されな 、温度センサが導入部 51に向けて取り付けられ、 筐体 20内、本実施の形態においては、導入部 51内に、筐体 20内の水を加熱するた めの加熱部材としての図示されないヒータが配設される。
[0058] 前記被処理液供給源から送られた水は、供給口 17を介して筐体 20内に供給され 、導入部 51及び各穴 69を介して各水貯留部 66に供給され、該各水貯留部 66内に おいて攪拌されて上昇し、導出部 52に供給された後、排出口 18を介して処理液とな つて排出され、前記処理液貯留部に送られる。そして、その間、超音波素子 mlによ つて発生させられた超音波は、筐体 20内の水、主として照射領域 AR1内の水に照 射される。これに伴い、水が超音波によって分解され、ヒドロキシルラジカル及び水素 原子が生成される。その結果、水中で微生物は酸化され、分解され、殺菌される。
[0059] また、前述されたように、前記照射領域 AR1によって筐体 20内における下端から 上端までの水に超音波が照射されるようになっている。そして、筐体 20内において、 水は、水貯留部 66に供給されるごとに穴 69を流れ、その間に、繰り返し照射領域 A R1を通過するので、超音波の照射を十分に受ける。したがって、水中で微生物が繁 殖するのを十分に防止することができる。
[0060] し力も、水は、各穴 69を介して水貯留部 66に供給される分だけ処理槽 11内におい て滞留させられるので、処理時間を長くすることができる。したがって、水に超音波を 十分に照射することができるので、水中で微生物が繁殖するのを一層防止することが できる。
[0061] なお、水に超音波が照射されることによって、水の温度が上昇するので、各水貯留 部 66内において水は自然対流を起こす。したがって、各水貯留部 66内における水 の攪拌を促進することができるので、水に超音波が均等に照射される。
[0062] 前記各実施の形態においては、筐体 20の下端の近傍に供給口 17が、筐体 20の 上端
の近傍に排出口 18が配設されるようになつている力 筐体 20の下端の近傍に排出 口を、筐体 20の上端の近傍に供給口を配設することができる。
[0063] 次に、本発明の第 5の実施の形態について説明する。なお、第 1の実施の形態と同 じ構造を有するものについては、同じ符号を付与することによってその説明を省略し 、同じ構造を有することによる発明の効果については同実施の形態の効果を援用す る。
[0064] 図 8は本発明の第 5の実施の形態における超音波処理装置の概念図である。
[0065] この場合、筐体 20内に、下端を底壁 12から所定の距離を置いて、上端部を頂壁 1 4を貫通させて、被処理液としての図示されな 、水を滞留させる滞留部材としての筒 状体 75が同心状に配設される。該筒状体 75の上端には排出口 18が接続される。な お、筒状体 75はステンレス鋼等の金属によって形成される。
[0066] そして、前記筐体 20の上端の近傍に供給口 17と隣接させて導入部 76が、前記筒 状体 75の下端の近傍に反転部 77が、前記筒状体 75の上端より上方に排出口 18と 隣接させて導出部 78が形成される。なお、本実施の形態においては、筐体 20及び 筒状体 75をそれぞれ別体に形成した後、所定の固定部材によって固定するようにな つているが、筐体 20及び筒状体 75を一体に形成することができる。
[0067] また、前記筐体 20と筒状体 75との間に第 1の流路 81が、筒状体 75内に第 2の流 路 82が形成され、前記供給口 17に供給された水は、前記導入部 76に導入された後 、第 1の流路 81を下方に移動させられ、反転部 77において反転させられた後、第 2 の流路 82を上方に移動させられ、導出部 78に導出され、排出口 18から処理液とし て排出される。
[0068] そして、超音波を発生させて筐体 20内の水に照射するために、前記底壁 12の下 面における所定の箇所、本実施の形態においては、中央に超音波素子 mlが配設さ れる。また、前記第 2の流路 82によって照射領域 AR1が形成され、該照射領域 AR1 内における下端から上端までの水の全体に超音波が照射される。
[0069] したがって、照射領域 AR1を通過するすべての水によってヒドロキシルラジカル及 び水素原子が生成させられる。なお、例えば、直径が 30〔mm〕の超音波素子 mlを 使用して実験を行ったところ、直径が約 15〔mm〕の照射領域 AR1でヒドロキシルラジ カル及び水素原子の生成が観測された。
[0070] また、単細胞真核生物のユーグレナ (E. gracilisZ)を使用し、細胞の増殖実験を 行い、超音波を照射しない場合と、周波数が 1650〔kHz〕、強さが 30〔W〕の超音波 を 5〔秒〕間照射した場合とについて比較したところ、 5日間の培養後の細胞数は、超 音波を照射しない場合、 13 X 105 [cells/ml]になったのに対して、照射した場合、 4. 3 X 105 [cells/ml]であった。すなわち、超音波を 5〔秒〕間照射するだけで、細 胞の増殖を約 1Z3に抑制することができる。
[0071] このように、筐体 20に供給された水は必ず照射領域 AR1を通過するので、水中で 微生物が繁殖するのを確実に防止することができる。
[0072] なお、照射領域 AR1内の水に超音波が照射されるのに伴って、筒状体 75に超音 波の振動が伝達され、筒状体 75の外側、すなわち、第 1の流路 81内においても、ヒ ドロキシルラジカル及び水素原子が生成される。その結果、水中で微生物が繁殖す るのを一層確実に防止することができる。
[0073] 本実施の形態においては、一つの超音波素子 mlを使用して、全長が 30〜60〔c m〕程度の筐体 20に適用することができる力 超音波素子 mlの出力によっては 60〔 cm]以上の筐体 20に適用することもできる。
[0074] 次に、本発明の第 6の実施の形態について説明する。なお、第 1の実施の形態と同 じ構造を有するものについては、同じ符号を付与することによってその説明を省略し 、同じ構造を有することによる発明の効果については同実施の形態の効果を援用す る。
[0075] 図 9は本発明の第 6の実施の形態における超音波処理装置の概念図である。
[0076] この場合、底壁 12の複数の位置に、本実施の形態においては、二つの位置に、超 音波素子 ml、 m2が底壁 12に対して所定の角度で傾斜させて配設される。したがつ て、各超音波素子 ml、 m2によって発生させられた超音波は、側壁 13において繰り 返し反射させられて上方に伝達されるので、筐体 20内の広範囲にわたって照射領 域を形成することができる。
[0077] その結果、筐体 20に供給された被処理液としての図示されな 、水は、必ず照射領 域を通過するので、水中で微生物が繁殖するのを確実に防止することができる。
[0078] なお、前記各超音波素子 ml、 m2が底壁 12に対して傾斜させられる角度は、等し くすることができるが、互いに異ならせることもできる。
[0079] 次に、本発明の第 7の実施の形態について説明する。なお、第 1の実施の形態と同 じ構造を有するものについては、同じ符号を付与することによってその説明を省略し 、同じ構造を有することによる発明の効果については同実施の形態の効果を援用す る。
[0080] 図 10は本発明の第 7の実施の形態における超音波処理装置の概念図である。
[0081] この場合、底壁 12のほぼ全体にわたり、複数の位置に超音波素子 mi (i= l、 2、… )が配設される。したがって、筐体 20内の広範囲にわたって照射領域を形成すること ができる。その結果、筐体 20に供給された被処理液としての図示されない水は必ず 照射領域を通過するので、水中で微生物が繁殖するのを確実に防止することができ る。 [0082] 次に、本発明の第 8の実施の形態について説明する。なお、第 1の実施の形態と同 じ構造を有するものについては、同じ符号を付与することによってその説明を省略し 、同じ構造を有することによる発明の効果については同実施の形態の効果を援用す る。
[0083] 図 11は本発明の第 8の実施の形態における超音波処理装置の概念図である。
[0084] この場合、側壁 13の複数の位置に、下方から上方にかけて螺旋状に超音波素子 mi (1= 1, 2、…;)が配設される。したがって、筐体 20内の広範囲にわたって照射領 域を形成することができる。その結果、筐体 20に供給された被処理液としての図示さ れない水は、必ず照射領域を通過するので、水中で微生物が繁殖するのを確実に 防止することができる。
[0085] 前記各実施の形態においては、カラン等の被処理液供給源から送られた水を処理 槽 11によって処理するようになっている力 池、プール、浴槽、温泉等の被処理液供 給源カゝら送られた水を処理槽 11によって処理することができる。その場合、被処理液 供給源と処理槽 11との間に被処理液循環部材としてのポンプが配設される。
[0086] さらに、前記筐体 20を池、プール、浴槽、温泉等に浸漬させることができる。その場 合、池、プール、浴槽、温泉等によって被処理液供給源及び被処理液貯留部が構 成され、池、プール、浴槽、温泉等の水は直接供給口 17を介して筐体 20内に供給さ れ、筐体 20内の水は排出口 18を介して直接、池、プール、浴槽、温泉等に排出され る。なお、筐体 20内において、水は、超音波が照射されるのに伴って、温度が上昇し 、筐体 20内を上方に移動するので、水を循環させるためにポンプを配設する必要は ないが、補助的にポンプを配設することができる。また、この場合、複数の超音波素 子 miを並べて配設するのが好まし!/、。
[0087] なお、本発明は前記各実施の形態に限定されるものではなぐ本発明の趣旨に基 づいて種々変形させることが可能であり、それらを本発明の範囲力 排除するもので はない。
産業上の利用可能性
[0088] 本発明を、水中で微生物が繁殖するのを防止するための超音波処理装置に適用 することができる。

Claims

請求の範囲
[1] (a)被処理液を収容し、供給口及び排出口を備えた筐体と、
(b)該筐体内に配設され、被処理液を滞留させる滞留部材と、
(c)前記筐体の所定の箇所に配設され、超音波を発生させ、前記滞留部材によって 形成された照射領域の被処理液に超音波を照射する超音波素子とを有するとともに
(d)前記供給口から筐体内に供給された被処理液は、前記照射領域を通過して排 出口に送られ、該排出口から排出されることを特徴とする超音波処理装置。
[2] 前記供給口又は排水口は超音波素子に隣接させて形成される請求項 1に記載の 超音波処理装置。
[3] 前記照射領域は前記滞留部材を貫通して形成される請求項 1に記載の超音波処 理装置。
[4] (a)前記滞留部材は筒状体であり、
(b)該筒状体内に前記照射領域が形成される請求項 2に記載の超音波処理装置。
[5] 前記超音波素子は複数配設される請求項 1〜4のいずれか 1項に記載の超音波処 理装置。
[6] 前記各超音波素子は、底壁の複数の位置に、底壁に対して所定の角度で傾斜さ せて配設される請求項 5に記載の超音波処理装置。
[7] 前記各超音波素子は側壁の複数の位置に螺旋状に配設される請求項 5に記載の 超音波処理装置。
[8] 前記筐体内に、被処理液を加熱する加熱部材が配設される請求項 1〜7のいずれ 力 1項に記載の超音波処理装置。
PCT/JP2006/323475 2005-12-13 2006-11-24 超音波処理装置 WO2007069439A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005359357A JP2006218473A (ja) 2005-01-13 2005-12-13 超音波処理装置
JP2005-359357 2005-12-13

Publications (1)

Publication Number Publication Date
WO2007069439A1 true WO2007069439A1 (ja) 2007-06-21

Family

ID=38162752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323475 WO2007069439A1 (ja) 2005-12-13 2006-11-24 超音波処理装置

Country Status (1)

Country Link
WO (1) WO2007069439A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2111873A1 (en) * 2006-12-20 2009-10-28 Haru Miyake Ultrasonic treatment apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157699A (ja) * 1997-08-20 1999-03-02 Marine Giken:Kk 水域浄化装置
JP2000117247A (ja) * 1998-10-19 2000-04-25 Toto Ltd 水の浄化・殺菌装置
JP2002172389A (ja) * 2000-12-05 2002-06-18 Kobe Steel Ltd 有機性廃液の超音波処理装置
JP2002519197A (ja) * 1998-07-06 2002-07-02 パーシャル、ウーリック 超音波振動により液体を処理する方法及び装置
JP2002355551A (ja) * 2001-03-28 2002-12-10 Fuji Electric Co Ltd 環境汚染物質の分解方法及び装置
JP2004202321A (ja) * 2002-12-24 2004-07-22 Jfe Engineering Kk 水処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157699A (ja) * 1997-08-20 1999-03-02 Marine Giken:Kk 水域浄化装置
JP2002519197A (ja) * 1998-07-06 2002-07-02 パーシャル、ウーリック 超音波振動により液体を処理する方法及び装置
JP2000117247A (ja) * 1998-10-19 2000-04-25 Toto Ltd 水の浄化・殺菌装置
JP2002172389A (ja) * 2000-12-05 2002-06-18 Kobe Steel Ltd 有機性廃液の超音波処理装置
JP2002355551A (ja) * 2001-03-28 2002-12-10 Fuji Electric Co Ltd 環境汚染物質の分解方法及び装置
JP2004202321A (ja) * 2002-12-24 2004-07-22 Jfe Engineering Kk 水処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2111873A1 (en) * 2006-12-20 2009-10-28 Haru Miyake Ultrasonic treatment apparatus
EP2111873A4 (en) * 2006-12-20 2010-02-03 Haru Miyake ULTRASONIC TREATMENT APPARATUS
US8226894B2 (en) 2006-12-20 2012-07-24 Haru Miyake Ultrasonic treatment apparatus

Similar Documents

Publication Publication Date Title
JP5229423B1 (ja) 浄化装置
US20100219136A1 (en) Fluid treatment using plasma technology
JP5604511B2 (ja) 過酸化水素ガス生成装置
US7431892B2 (en) Apparatus for sterilizing a liquid with focused acoustic standing waves
JP2002172389A (ja) 有機性廃液の超音波処理装置
KR101594997B1 (ko) 플라즈마 수처리장치
WO2007069439A1 (ja) 超音波処理装置
US20220402785A1 (en) Systems and methods for cleaning and sterilizing fluids and articles using electromagnetic waves
JP2006218473A (ja) 超音波処理装置
JP3999256B2 (ja) 超音波処理装置及び超音波処理方法
KR101318604B1 (ko) 마이크로 버블 살균장치
NL2005488C2 (nl) Draadloze geluidsbron, inrichting en werkwijze voor het desinfecteren van een fluã¯dum.
JP4382544B2 (ja) テラヘルツ波照射方式
JP2004202322A (ja) 超音波処理方法および装置
AU2020203982B2 (en) Enhanced contact electrical discharge plasma reactor for liquid and gas processing
KR101931261B1 (ko) 초음파 세척을 이용한 하수고도처리 공정
KR100342599B1 (ko) 초음파조사에의한용수의살균처리방법
WO2024044738A2 (en) Systems and methods for cleaning and sterilizing fluids and articles using electromagnetic waves
WO2012115509A1 (en) Device and method for photocatalytic treatment of a fluid
JP2003290800A (ja) 汚泥処理方法及び装置
JP2013138646A (ja) 浄化装置及び浄化方法
JP2008114159A (ja) 超音波処理装置
JP2017525566A (ja) 内容物を含んだ液体を浄化するための方法および装置
KR100428855B1 (ko) 저전압 펄스의 수중방전을 이용한 폐수처리장치
JP2013139952A (ja) 製氷用水浄化装置及びそれを備えた製氷機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833279

Country of ref document: EP

Kind code of ref document: A1