WO2007063734A1 - 成形品の製造方法、保持部材および成形装置 - Google Patents

成形品の製造方法、保持部材および成形装置 Download PDF

Info

Publication number
WO2007063734A1
WO2007063734A1 PCT/JP2006/323135 JP2006323135W WO2007063734A1 WO 2007063734 A1 WO2007063734 A1 WO 2007063734A1 JP 2006323135 W JP2006323135 W JP 2006323135W WO 2007063734 A1 WO2007063734 A1 WO 2007063734A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
molding material
holding member
holding
heating
Prior art date
Application number
PCT/JP2006/323135
Other languages
English (en)
French (fr)
Inventor
Mikio Chisha
Masaaki Matsushima
Noriaki Taguchi
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to KR1020087015576A priority Critical patent/KR101332103B1/ko
Priority to CN2006800449828A priority patent/CN101321701B/zh
Priority to US12/095,648 priority patent/US7950252B2/en
Priority to JP2007547902A priority patent/JP5042033B2/ja
Priority to BRPI0619241-6A priority patent/BRPI0619241A2/pt
Priority to EP06832985.3A priority patent/EP1961707B1/en
Publication of WO2007063734A1 publication Critical patent/WO2007063734A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0252Re-forming glass sheets by bending by gravity by gravity only, e.g. sagging

Definitions

  • the present invention relates to a method for producing a molded article by a hot droop molding method, and a holding member and a molding apparatus that can be used in the method.
  • a heat-resistant matrix made by a mechanical grinding / polishing method or an electrical machining method such as a mechanical grinding method or an electric discharge cage is used.
  • a grinding program is used for each surface shape to be obtained, or a method for forming a mother die having a corresponding surface shape is adopted, such as a method of transferring the surface shape of the mother die by heat-softening blanks.
  • a molding material made of a thermosoftening material such as glass is placed on a mold, and the molding material is softened by heating to a temperature equal to or higher than the softening point to be in close contact with the mold.
  • the mold shape is transferred to the upper surface of the molding material to obtain a molded product having a desired surface shape.
  • the surface shape of the molding surface is transferred to the upper surface of the molding material. Therefore, in order to obtain high surface accuracy, it is preferable to accurately control the mounting position of the molding material. .
  • the present invention provides a molded article with high molding accuracy by accurately positioning the molding material on the molding die and preventing misalignment during heat softening in the hot droop molding method.
  • the purpose is to manufacture.
  • the present invention provides:
  • a molding material made of a heat-softening substance is placed on the molding surface of the mold, the molding material is heated to a deformable temperature, and the entire lower surface of the molding material is brought into close contact with the molding surface, thereby forming the molding material.
  • a method for producing a molded product comprising molding an upper surface of a material into a desired shape,
  • the molding material is arranged such that the molding material is held by a holding member, and at least a part of the periphery of the lower surface of the molding material is in close contact with the molding surface and the center of the lower surface of the molding material is separated from the molding surface.
  • Holding by the holding member is performed by holding at least a part of the upper end portion of the molding material side surface by the holding member in a state where the lower part of the molding material side surface is separated from the holding member.
  • the present invention provides:
  • a molding material made of a thermosoftening material placed on the molding surface is heated to a deformable temperature, and the lower surface of the molding material is brought into close contact with the molding surface, so that the upper surface of the molding material has a desired shape.
  • a holding region that contacts at least a part of the upper end of the side surface of the molding material disposed on the molding surface before heating, and a non-holding region that is not in contact with the molding material are provided on the inner periphery of the annular portion.
  • the present invention provides:
  • a molding material made of a heat-softening substance is placed on the molding surface of the mold, the molding material is heated to a deformable temperature, and the entire lower surface of the molding material is brought into close contact with the molding surface, thereby forming the molding material.
  • a molding apparatus for use in a method of manufacturing a molded article including molding an upper surface of a material into a desired shape,
  • the molding surface relates to the molding apparatus including a peripheral contact portion that is in close contact with at least a part of a peripheral portion of the lower surface of the molding material and a center separation portion that is separated from the central portion of the lower surface of the molding material before the heating.
  • a molded product having a desired shape can be manufactured with high accuracy by a hot sag molding method.
  • a molding material made of a thermosoftening substance is placed on a molding surface of a mold, the molding material is heated to a deformable temperature, and the entire lower surface of the molding material is brought into close contact with the molding surface.
  • the present invention also relates to a method for manufacturing a molded product in which the upper surface of the molding material is molded into a desired shape.
  • the molding material is arranged such that the molding material is held by a holding member, and at least a part of the peripheral edge of the lower surface of the molding material is in close contact with the molding surface, and the center of the lower surface of the molding material is separated from the molding surface.
  • the holding by the holding member is performed by holding at least a part of the upper end portion of the molding material side surface by the holding member in a state where the lower part of the molding material side surface is separated from the holding member.
  • the molding material is positioned and held on the mold by the holding member that does not cause the molding material and the holding member to be fused by arranging the molding material and holding the holding material as described above. be able to. This point will be described below with reference to FIGS.
  • FIG. 1 is a schematic view of a contact state between a molding material and a mold before and after softening.
  • a meniscus molding material having a convex bottom surface and a concave top surface is formed into a convex shape.
  • FIG. 2 is an enlarged schematic view of the contact state between the holding member and the side surface of the molding material before and after softening.
  • the molding material is placed on the molding die molding surface while being held by the holding member.
  • holding by the holding member is performed by holding at least a part of the upper end portion of the molding material side surface by the holding member in a state where the lower part of the molding material side surface is separated from the holding member.
  • the upper end portion of the side surface of the molding material is, for example, in the range of the upper 4/5 of the side surface of the molding material, and preferably in the range of 1/2 of the upper side of the molding material.
  • the part located below the part held by the member is, for example, in the range of the upper 4/5 of the side surface of the molding material, and preferably in the range of 1/2 of the upper side of the molding material.
  • the molding material is placed in a state where the periphery of the lower surface of the molding material is in close contact with the molding surface and the center of the lower surface of the molding material is separated from the molding surface. It arrange
  • molding surface so that it may become.
  • the molding material lower surface center portion means, for example, a position from the molding surface center to a radius 1/2, and preferably a position from the molding surface center to a radius of 50 mm.
  • adhered to a molding surface is a part located outside the said molding material lower surface center part.
  • the contact area with the molding surface of the mold is only the peripheral edge of the lower surface of the molding material. And are separated from each other to form a space.
  • the molding material is positioned on the mold without causing the fusion between the molding material and the holding member, and the positional deviation at the time of heat softening is prevented. Molding can be performed. Further, since the lower part of the side surface of the molding material does not come into contact with the holding member during molding, it is not pressed by the difference in thermal expansion, and generation of distortion or the like can be prevented.
  • the molding material changes in shape due to heat softening (the movement of the center of the molding material lower surface in the direction in contact with the molding surface and the accompanying shrinkage of the molding material upper surface). Since the contact between the material and the holding member is released, it is not necessary to remove the holding member to avoid fusion. Therefore, in the present invention, molding can be performed without causing fusion between the molding material and the holding member without removing the holding member from the mold. In the present invention, it is possible to maintain the fixed state of the holding member on the molding die at least until the upper end of the side surface of the molding material is separated from the holding member, and further until the molding of the upper surface of the molding material is completed. preferable. Thereby, exact positioning can be performed and molding accuracy can be improved.
  • the holding member used in the present invention has a shape capable of holding at least a part of the upper end portion of the molding material side surface while maintaining a non-contact state with the lower portion of the molding material side surface.
  • a cross-sectional view in FIG. 1 an annular member having a circular shape along the outer peripheral end surface of the molding material and a space where the molding material is placed becomes a space. it can.
  • FIG. 3 (a) A top view of the annular member shown in FIG. 1 is shown in FIG. 3 (a), and a cross-sectional view taken along line I-I in FIG. 3 (a) is shown in FIG. 3 (b).
  • the holding member only needs to hold at least a part of the upper end portion of the side surface of the molding material. However, in order to stably hold the molding material, the holding member abuts at least three points on the upper end portion of the side surface of the molding material. It is even more preferable to hold the molding material by contacting the entire circumference of the upper edge of the side surface of the molding material, which is preferable to hold the molding material.
  • the annular member shown in FIG. 1 has a protrusion 1101 and an end surface 1102 on its inner periphery, and the protrusion 1101 abuts the upper end of the side surface of the formed material, thereby forming the molding material. Hold.
  • the end surface 1102 faces the side surface of the molding material, but is a surface that is not in contact with the side surface.
  • the protruding portion is formed in an annular shape around the inner periphery of the holding member.
  • the shape of the protrusion 1101 can be determined in consideration of the size and shape of the molding material to be positioned and held. For example, when the protrusion 1101 is formed on the entire inner periphery of the holding member, the inner diameter of the protrusion 1101 is, for example, when a molding material having an outer diameter of 60 to 90 mm is used, and the outer shape of the molding material is based on the outer diameter of the molding material. Tolerance can be in the range of _0 to +0.05 mm.
  • the width of the contact portion of the protrusion 1101 with the upper end of the side surface of the molding material is preferably a width that can hold the molding material and can be separated after softening.
  • the width of the side surface of the molding material (D in FIG. 2) is 3 to 20 mm, it is preferably about 10 to 20% of D, for example.
  • the upper edge part of the projection part 1101 is disposed so as to contact the upper edge part of the molding material.
  • the holding member can be fitted and arranged on the upper part of the periphery of the mold. It is preferable to set the shape of the end surface 1105 to be fitted to the mold according to the shape of the mold. For example, when using a molding material having the above outer diameter, the tolerance + 0 based on the outer diameter of the mold lmm to 0.2mm. In addition, by providing a stepped portion on the side surface of the mold and fitting with the bottom surface of the outer periphery of the holding member, the force S for supporting the holding member more stably can be achieved.
  • a dust-proof lid can be placed on a molding die on which a molding material is arranged to prevent foreign matter (dust, dust, etc.) from being mixed during molding.
  • the dust-proof lid is arranged by fitting the end surface 1103 at the step portion on the outer periphery of the molding material and the opening of the dust-proof lid.
  • the width of the end face 1103 may be, for example, about 6 to 8 mm as long as there is a sufficient area for the opening of the dust cover.
  • the surface of the end surface 1103 can be mirror-finished in order to improve adhesion to the dust cover.
  • the holding member holds at least a part of the upper end portion of the side surface of the molding material, preferably the entire periphery of the upper end portion of the side surface of the molding material, which is placed by the protrusion 1101 provided on the inner periphery, and Positioning is performed for placement at a desired position on the molding surface.
  • the desired position is, for example, the geometric center of the molding surface and the optical center or geometric center of the molding material. It is a matching position.
  • the holding member is preferably formed of a heat resistant material.
  • a heat resistant stainless steel material is preferred, and for example, austenite is suitable.
  • the austenitic stainless steel material has a composition containing C, Si, Mn, P, S, Ni, Cr, and Mo. Percentage of chemical components containing (mass%), for example C is 0.08% or less, Si is 1.50% or less, Mn force 2. 00 o / o or less, [rho is 0. 045 o / o or less, S Force 0.030 ⁇ / ⁇ or less, Ni force 19.00-22.00%, Cr 24.0-26.0%. Specifically, high chromium and high nickel SUS 310S can be used.
  • the holding member can be shaped using a machining center or an NC milling machine. It is preferable to form an oxide film on the surface of the holding member in order to improve durability.
  • As the surface treatment for forming the film for example, electrolytic polishing finish or electrostatic coating can be used.
  • thermosoftening material made of a thermosoftening substance.
  • Glass can be used as the thermosoftening material.
  • glass of crown type, flint type, noble type, phosphate type, fluorine-containing type, fluoric acid type, etc. are suitable.
  • As a component of the glass material first, for example, SiO, BO, AlO is included, and the glass material composition is SiO 45-85% in molar percentage, A10O force ⁇ 4-32% , Na O + Li ⁇ is 8-30% (better Li ⁇ is less than 70% of NaO + Li ⁇ ), ZnO and / or F total amount is 2-13% (better F 8
  • the glass material composition has a molar percentage of SiO power of 0 to 76%, and A10 is
  • a glass of / AlO force 2/3 to 4/1, SiO + A1O + LiO + NaO + LiO + ZnO + F> 90% is suitable.
  • TiO, ZrO and colored metal oxides can be added to stabilize the glass, facilitate melting, and coloring.
  • the thermal properties include a strain point of 460 ° C, a cooling point of 490 ° C, a soft melting point of 650 ° C, a glass transition temperature (Tg) of 485 ° C,
  • Tg glass transition temperature
  • the yield point (Ts) is 535 ° C
  • the specific gravity is 2.47 (g / cm 3 )
  • the refractive index is ⁇ , Ndl.
  • the present invention can be applied to other than the above glass, and is not limited to the above embodiment.
  • the molding material can be obtained by processing a thermosoftening substance into a desired shape. Processing of the molding material can be performed by a known method.
  • the shape of the molding material is flat, spherical, elliptical, rotationally symmetric (toric lens, aspherical rotationally symmetric lens), free-form surface (progressive lens, aspherical double-sided lens), etc. It is preferably a meniscus shape having a spherical polished surface on both sides.
  • a meniscus molding material having a convex surface and a concave upper surface is placed on the molding surface of the concave molding die, and a meniscus molding material having a concave bottom surface and a convex upper surface is used. It is preferable to arrange on the molding surface.
  • the present invention it is preferable to provide a space between the lower surface of the molding material and the molding surface at the start of molding so that the upper surface of the molding material can be contracted by heat softening and the holding member and the molding material can be separated.
  • the distance (interval) between the center of the bottom surface of the molding material and the center of the molding surface at the start of molding can be a force that varies depending on the dimensions of the molding material, for example, 0.2 to 5 mm. It is preferable that the lower surface of the molding material and the molding surface of the molding die have surface shapes that approximate to the extent that the above-described separated state can be maintained.
  • the molding surface is a free-form surface and the bottom surface of the molding material is a spherical shape
  • the surface shape of the molding material bottom surface and the molding surface is completely Does not match.
  • the molding surface is a desired free-form surface
  • the bottom surface of the molding material is placed on the molding die and contacts the molding surface at the periphery of the bottom surface of the molding material. It is preferable to set the curvature radius within a range in which a space can be formed between the two.
  • the radius of curvature of the lower surface of the molding material is such that the contact with the molding surface is only at the peripheral edge, and the curvature radius that forms a predetermined distance from the molding surface except the peripheral edge is between the center of the lower surface of the molding material and the center of the molding surface. It is preferable to select a value that minimizes the interval.
  • one arbitrary point on the outermost periphery of the contact portion between the lower surface of the molding material and the molding surface is E, and one point facing E is E ', and E and E' are connected.
  • the vertical distance between the line (dotted line in Fig. 1) and the center of the molding surface is dh (mm)
  • the distance between E and E ' is D (mm)
  • the distance between the molding material lower surface center and the molding surface center Is H (mm)
  • r is the curvature of the bottom surface of the molding material
  • R is the curvature of the molding surface (average curvature for free-form surfaces):
  • the surface of the molding material is preferably a mirror surface, and the surface roughness is preferably the maximum roughness height RmaxO. 04 ⁇ m or less.
  • the arithmetic average roughness Ra is 0.005 zm. It is preferable that:
  • the lower limit of the roughness of the molding material is, for example, 0.07 ⁇ m at the maximum roughness Rmax and 0.006 ⁇ m at the arithmetic average roughness Ra.
  • the deformable temperature is preferably a temperature not lower than the glass transition point (Tg). Heating can be performed by a known method, for example, by placing a mold in an electric furnace. By controlling the atmospheric temperature in the electric furnace so that the molding material has a set temperature, the molding material can be heated to a desired temperature. Details of the temperature control will be described later. By heating and softening in this way, the front surface of the lower surface of the molding material adheres to the molding surface. Thereby, the shape of the molding surface is transferred to the upper surface of the molding material, and the upper surface of the molding material can be molded into a desired shape. In particular, in the present invention, it is preferable to use a mold having a free curved surface. As a result, a free-form optical surface can be easily formed on the upper surface of the molding material by combining a high-precision spherical-shaped molding material having a spherical polished surface and a free-form surface mold.
  • the mold a known mold generally used in a hot sag molding method can be used.
  • the metal has poor durability at a general maximum temperature of 800 ° C for softening and has a large coefficient of thermal expansion, so that the shape is greatly deformed due to thermal expansion at a temperature change near 800 ° C. If the amount of deformation is large, the contact surface between the molding material and the mold cannot withstand the shrinkage difference during cooling, and at least one of the molding material or the mold may be damaged. Therefore, the mold used in the present invention is preferably formed from a heat-resistant material having an expansion coefficient close to that of a molding material and excellent in durability. Examples of heat-resistant materials are alumina (A10), Altic (Al 2 O 3 -TiC), Zircoyu (ZrO 2), and silicon nitride.
  • Ceramics mainly composed of SiO, AlO or MgO such as (SiN), aluminum nitride (A1N), silicon carbide (SiC), and silicon dioxide (SiO2) are suitable.
  • “main component” means that the above components occupy 50% by mass or more of the mold components.
  • a heat-resistant material suitable as a mold material is, for example, a ceramic containing 99% or more of SiO, Al 2 O, or MgO, and additionally containing Ko or the like.
  • the mold material for example, first, hardness (Vickers hardness) 7-24, bending strength 400 0-2000 MPa, Young's modulus 180-410 GPa, thermal conductivity 3.0-: 170 W / mk , Linear expansion coefficient 4.30 ⁇ : 10. 8 X 10E-6, heat resistance temperature 750 ⁇ 850. C, density 3.10 ⁇ : 10. 70g / cm 3 Is suitable.
  • hardness (Vickers hardness) of 7 to 15 Young's modulus 190 to 210GPa, linear expansion coefficient 6.0 to 7.0 X 10E-6, heat resistance temperature 775 to 825 ° C Is preferred.
  • the third is the hardness (Vickers hardness) 9 ⁇ : 15, Young's modulus 180 ⁇ 402GPa, linear expansion coefficient 4. 30-10. 8 X 10E-6, heat resistant temperature 800 ° C or more Particularly suitable. Furthermore, the mold material is preferably hydrophobic.
  • a molding material made of a thermosoftening material disposed on a molding surface is heated to a deformable temperature, and a lower surface of the molding material is brought into close contact with the molding surface.
  • the present invention relates to a holding member used for holding a molding material arranged on the molding surface in a molding method for molding the upper surface of the molding material into a desired shape.
  • the holding member of the present invention has an annular portion, and a holding region that is in contact with at least a part of the upper end portion of the side surface of the molding material disposed on the molding surface before heating on the inner circumference of the annular portion, and the molding It has a non-holding area in contact with the material.
  • a molding material made of a thermosoftening substance is disposed on a molding die molding surface, the molding material is heated to a deformable temperature, and the entire lower surface of the molding material is covered with the molding surface.
  • the molding apparatus of the present invention includes a molding die having a molding surface and the holding member of the present invention.
  • the molding surface includes a peripheral contact portion that is in close contact with at least a part of the peripheral portion of the lower surface of the molding material and a center separation portion that is separated from the central portion of the lower surface of the molding material before the heating.
  • the mold is placed with the molding surface facing up. Thereafter, the holding member is fitted to the peripheral portion of the molding surface and the stepped portion of the side surface. Then, the molding material is placed at a predetermined position on the molding surface along the holding member. In the horizontal direction, the upper end of the side surface of the molding material is supported and fixed by the holding member, while in the vertical direction, the peripheral portion of the lower surface of the molding material is held and fixed in contact with the molding surface of the molding die. The central portion of the molding material on the side of the contact surface with the mold is separated from the mold molding surface. [0038] In the next stage, the dust-proof lid is preferably fitted with the holding member. After sealing the molding material with a dust-proof lid, it is transported from the clean room to the electric furnace, and the combination of the mold, holding member, molding material, and dust-proof lid is placed in the electric furnace and heat-treated in the electric furnace.
  • the heat softening treatment can be performed while controlling the temperature based on the temperature program set in advance.
  • electric furnaces batch type electric furnaces, continuous input type electric furnaces, and misalignments can be used. First, a batch type electric furnace will be described.
  • a batch type electric furnace is a device in which a power object is installed in a relatively small closed space, and the temperature in the furnace is changed according to a predetermined temperature program. With multiple sensors, temperature can be measured with multiple sensors, and each heater can be controlled for temperature management.
  • a batch-type thermal softening furnace has a support portion for holding a power object inside. In addition, the support is movable in the furnace. By operating the support, the temperature distribution imbalance due to the location in the furnace can be averaged.
  • a continuous charging type electric furnace has an inlet and an outlet, and heat treatment is performed by passing the target object through the electric furnace with a set temperature distribution for a certain period of time by means of a conveyor or the like. It is.
  • the temperature distribution inside the furnace can be made uniform by using a plurality of heaters and a control structure of the air circulation in the furnace in consideration of heat generation and heat dissipation.
  • PID control can be used for temperature control of each sensor and heater of the electric furnace.
  • PID control is a control method for detecting a deviation between a programmed desired temperature and an actual temperature and returning (feedback) the deviation from the desired temperature to zero.
  • PID control is a method for obtaining "Proportional", “Integral” and “Differential” when calculating the output from the deviation. The general formula for PID control is shown below.
  • e is deviation
  • K is gain
  • subscript I gain is integral gain
  • subscript D gain is differential gain
  • a t is sampling time (sampling time, Control cycle)
  • the subscript n indicates the current time.
  • the specific embodiment of the continuous input type electric furnace that can be used in the present invention is a non-sliding transfer method, PID control for temperature control, and "K-coupled thermocouple of 30 points" for temperature measurement.
  • the temperature is 800 ° C
  • the normal use temperature is 590 ⁇ 650 ° C
  • the internal atmosphere is dry air (Oil dust free)
  • atmosphere control is inlet air curtain
  • furnace purge is a non-sliding transfer method
  • outlet air curtain is ⁇ 3 ° C
  • cooling method is air cooling.
  • the temperature in the electric furnace can be raised to a temperature higher than the glass transition point and lower than the glass softening point by heating and heating. It is preferable to keep the temperature below the glass softening point for a certain period of time and then slowly cool it down to room temperature.
  • Temperature control in the electric furnace is performed with a predetermined time as one cycle.
  • Temperature control in the furnace can be performed in seven steps.
  • the first step is (A) Preliminary temperature raising process
  • the second step is (B) rapid heating temperature raising step
  • the third step is (C) slow heating temperature raising step
  • the fourth step is (D)
  • the fifth step is (E) a low-speed cooling step
  • the sixth step is (F) a rapid cooling step
  • the seventh step is a (G) natural cooling step.
  • Preliminary temperature raising step fix at a constant temperature near room temperature for 90 minutes. This is to make the temperature distribution of each part of the glass material uniform and to easily reproduce the heat distribution of the glass material by controlling the temperature of heat softening. Fix it at room temperature (approximately 20-30 ° C).
  • the second step is (B) a rapid heating and heating step, from room temperature (for example, 25 ° C) to glass transition temperature (hereinafter also referred to as Tg) to 50 ° C (hereinafter also referred to as T1), for example, Heat at a rate of 4 ° CZmin for about 90 minutes.
  • Tg glass transition temperature
  • T1 50 ° C
  • T1 heat at a rate of 4 ° CZmin for about 90 minutes.
  • the third step (C) the slow heating and heating step, the heating is performed from the temperature T1 to about -50 ° C (hereinafter also referred to as T2) from the glass soft spot, for example, at 2 ° CZmin for 120 minutes.
  • T2 glass transition temperature
  • the glass material heated at the temperature T2 is heated for 30 minutes in the constant temperature holding step. Furthermore at temperature T2
  • the molding material is softened and deformed, the entire lower surface of the molding material is brought into close contact with the molding surface, and the upper surface of the molding material can be molded into a desired shape.
  • the fifth cooling process (E)
  • Tg_100 ° C (hereinafter also referred to as T3) for about 300 minutes at a rate of, for example, l ° C / min, and changes in shape due to softening. Let it settle. Also, this slow cooling process It also includes the elements of Anil except
  • the speed is about 1.5 ° C Zmin.
  • the (G) rapid cooling step which is the seventh step, is performed.
  • the lower surface of the glass material and the molding surface are in a male-female relationship.
  • the upper surface of the glass material is deformed according to the shape deformation of the lower surface of the glass material, and a desired optical surface is formed.
  • the glass material can be removed from the mold and a molded product can be obtained.
  • the molded product thus obtained can be used as a spectacle lens mold.
  • the method of the present invention is suitable as a method for obtaining a spectacle lens mold having a complicated surface shape because the surface shape of the molding surface of the mold can be transferred to the upper surface of the molding material with high accuracy. is there.
  • a progressive power lens can be mentioned.
  • the mold of the present invention can be suitably used for molding a spectacle lens mold, particularly a multifocal spectacle lens mold.
  • FIG. 1 is a schematic view of a contact state between a molding material and a mold before and after softening.
  • FIG. 2 is an enlarged schematic view of the contact state between the holding member before and after the soft and the side surface of the molding material.
  • FIG. 3 A top view of the annular member shown in FIG. 1 is shown in FIG. 3 (a), and a cross-sectional view taken along line II in FIG. 3 (a) is shown in FIG. 3 (b).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

本発明は、熱軟化性物質からなる成形素材を成形型成形面上に配置し、前記成形素材を変形可能な温度まで加熱し、該成形素材の下面全面を前記成形面に密着させることにより、前記成形素材の上面を所望の形状に成形することを含む成形品の製造方法に関する。前記成形素材の配置は、前記成形素材を保持部材によって保持し、かつ成形素材下面周縁部の少なくとも一部が成形面と密着し、成形素材下面中心部が成形面と離間した状態になるように行われ、前記保持部材による保持は、成形素材側面下方部は保持部材と離間した状態で、成形素材側面上端部の少なくとも一部を前記保持部材によって保持することで行われる。本発明によれば、熱垂下成形法により、所望形状の成形品を高精度で製造することができる。

Description

明 細 書
成形品の製造方法、保持部材および成形装置
技術分野
[0001] 本発明は、熱垂下成形法による成形品の製造方法、ならびに前記方法に使用され 得る保持部材および成形装置に関する。
背景技術
[0002] 眼鏡レンズ用ガラスモールドの成形方法としては、機械的研削研磨法や、機械的 研削法や放電カ卩ェ等の電気的加工法により作成した耐熱性母型を用い、これにガラ スブランクスを接触加熱軟化させて母型の面形状を転写する方法等、得ようとする面 形状ごとに研削プログラムを用いたり、対応する面形状を有する母型を成形する方法 が採用されている。
[0003] 近年、軸対称の非球面レンズ設計を組み入れることにより、薄肉軽量化を図った多 焦点眼鏡レンズの需要が増大している。そのため、このような複雑な形状の眼鏡レン ズを得るためのモールドの成形法として、熱垂下成形法が提案されている(特開平 6 — 130333号公報、特開平 4— 275930号公報参照)。
発明の開示
[0004] 熱垂下成形法は、ガラス等の熱軟化性物質からなる成形素材を型の上に載せ、そ の軟化点以上の温度に加熱することにより成形素材を軟化させて型と密着させること により、型形状を成形素材の上面に転写させて所望の面形状を有する成形品を得る 成形法である。
[0005] 熱垂下成形法では、型成形面の面形状を成形素材上面に転写するため、高い面 精度を得るためには、成形素材の載置位置を正確に制御することが好ましレ、。
そこで、例えばリング状の保持部材を用いて成形型上の成形素材を保持し、位置 決めを行うことが考えられる。しかし、保持部材がガラス等の成形素材と接触したまま 加熱軟化されると、保持部材と成形素材の熱膨張係数の違いにより、接触部に圧力 や変形が生じ、成形精度を低下させる要因となる。また、保持部材が成形素材と接触 したまま加熱軟化されると、成形素材と保持部材の間に融着が発生するという問題も ある。
[0006] そこで、上記融着を防止するため、位置決め後に保持部材を除去することも考えら れる。しかし、成形型上に配置した成形素材の位置をまったく変えずに保持部材を 成形素材から除去することは困難であり、また、熱軟化がある程度進行するまで成形 素材を保持しなければ、搬送等により成形素材が位置ずれを起こすおそれもある。
[0007] かかる状況下、本発明は、熱垂下成形法において、成形型上の成形素材を正確に 位置決めするとともに、加熱軟化時の位置ずれを防ぐことにより、高い成形精度をも つて成形品を製造することを目的とする。
[0008] 本発明は、
熱軟化性物質からなる成形素材を成形型成形面上に配置し、前記成形素材を変 形可能な温度まで加熱し、該成形素材の下面全面を前記成形面に密着させることに より、前記成形素材の上面を所望の形状に成形することを含む成形品の製造方法で あって、
前記成形素材の配置は、前記成形素材を保持部材によって保持し、かつ成形素 材下面周縁部の少なくとも一部が成形面と密着し、成形素材下面中心部が成形面と 離間した状態になるように行われ、
前記保持部材による保持は、成形素材側面下方部は保持部材と離間した状態で、 成形素材側面上端部の少なくとも一部を前記保持部材によって保持することで行わ れる、前記方法
に関する。
[0009] 更に、本発明は、
成形型成形面上に配置した熱軟化性物質からなる成形素材を変形可能な温度ま で加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材 の上面を所望の形状に成形する成形法において、前記成形面上に配置された成形 素材を保持するために使用される保持部材であって、
環状部を有し、かつ、
環状部内周に、前記加熱前の成形面上に配置された成形素材の側面上端部の少 なくとも一部と当接する保持領域と、該成形素材と非接触状態にある非保持領域とを 有する、前記保持部材
に関する。
[0010] 更に、本発明は、
熱軟化性物質からなる成形素材を成形型成形面上に配置し、前記成形素材を変 形可能な温度まで加熱し、該成形素材の下面全面を前記成形面に密着させることに より、前記成形素材の上面を所望の形状に成形することを含む成形品の製造方法に 使用される成形装置であって、
成形面を有する成形型と前記保持部材とを含み、
前記成形面は、前記加熱前に成形素材下面周縁部の少なくとも一部と密着する周 縁密着部と成形素材下面中心部と離間する中心離間部を含む、前記成形装置 に関する。
[0011] 本発明によれば、熱垂下成形法により、所望形状の成形品を高精度で製造するこ とがでさる。
発明を実施するための最良の形態
[0012] 以下、本発明について更に詳細に説明する。
本発明は、熱軟化性物質からなる成形素材を成形型成形面上に配置し、前記成形 素材を変形可能な温度まで加熱し、該成形素材の下面全面を前記成形面に密着さ せることにより、前記成形素材の上面を所望の形状に成形する成形品の製造方法に 関する。前記成形素材の配置は、前記成形素材を保持部材によって保持し、かつ成 形素材下面周縁部の少なくとも一部が成形面と密着し、成形素材下面中心部が成 形面と離間した状態になるように行われ、前記保持部材による保持は、成形素材側 面下方部は保持部材と離間した状態で、成形素材側面上端部の少なくとも一部を前 記保持部材によって保持することで行われる。本発明では、上記のように成形素材の 配置および保持部材による保持を行うことにより、成形素材と保持部材の融着を起こ すことなぐ保持部材によって成形型上の成形素材の位置決め、保持を行うことがで きる。以下、この点について図 1および図 2に基づき説明する。
[0013] 図 1は、軟化前後の成形素材と成形型との接触状態の模式図である。図 1に示す 態様では、下面が凸面、上面が凹面のメニスカス形状の成形素材を、凸面形状の成 形型成形面に配置している。図 2は、軟化前後の保持部材と成形素材側面の接触状 態の拡大模式図である。
本発明では、成形開始にあたり、成形素材を保持部材によって保持した状態で成 形型成形面上に配置する。図 2 (a)に示すように、保持部材による保持は、成形素材 側面下方部は保持部材と離間した状態で、成形素材側面上端部の少なくとも一部を 前記保持部材によって保持することにより行われる。ここで、成形素材側面上端部は 、例えば、成形素材側面の上側 4/5の範囲であり、好ましくは、上側 1/2の範囲で あり、成形素材側面下方部とは、上記のように保持部材によって保持される部分より 下に位置する部分をいう。
更に、本発明では、成形開始にあたり、図 1 (a)に示すように、成形素材を、成形素 材下面周縁部が成形面と密着し、成形素材下面中心部が成形面と離間した状態と なるように、成形型成形面上に配置する。ここで、成形素材下面中心部とは、例えば 、成形面中心から半径 1/2までの位置をいい、好ましくは、成形面中心から半径 50 mmまでの位置をいう。また、成形面と密着する成形素材下面周縁部は、上記成形 素材下面中心部より外側に位置する部分である。成形開始時には、成形型成形面と の接触部は成形素材下面周縁部のみであり、周縁部より内側の成形素材幾何中心 へ向力うすべての範囲で、載置された成形素材下面と成形面とは離間した状態にあ り、空間を形成する。
このように、下面周縁部でのみ成形型成形面と接触させた状態で、成形素材をカロ 熱軟化すると、加熱に伴い、軟化した成形素材中心部が自重により鉛直方向に変形 し、図 1 (b)に示すように、下面中心部が成形面と接触した状態となる。この下面の形 状変化により、成形素材上面は微小量収縮する形状変化を起こす。本発明では、成 形素材を側面上端部でのみ保持部材によって保持するため、上記の成形素材上面 の収縮により、成形素材と保持部材との接触が解除され、図 2 (b)に示すように、保持 部材が成形素材と離間する。一方、成形素材周縁部は、成形開始時から成形面と接 触した状態にあるため、熱膨張による拡大が抑制されるので、成形素材側面下方部 と保持部材との非接触状態を維持することができる。こうして、少なくとも成形素材下 面全面が成形型成形面に密着したときには、成形素材は保持部材と離間した状態と することができる。このように、本発明によれば、成形素材と保持部材との融着を起こ すことなぐ成形型上の成形素材の位置決めを行い、加熱軟化時の位置ずれを防止 することにより、高精度で成形を行うことができる。また、成形中、成形素材側面下方 部は保持部材と接触しないため、熱膨張の違いにより圧迫されることはなく歪み等の 発生を防ぐこともできる。
[0015] なお、本発明によれば、成形素材の加熱軟化による形状変化 (成形素材下面中心 部の成形面と接触する方向への移動、およびそれに伴う成形素材上面の収縮)に伴 い、成形素材と保持部材との接触が解除されるため、融着回避のために保持部材を 除去する必要はない。よって、本発明では、保持部材を成形型上から除去することな ぐ成形素材と保持部材との融着を起こさずに成形を行うことができる。本発明では、 少なくとも成形素材側面上端部と保持部材が離間するまでの間、更には成形素材上 面の成形が完了するまでの間、成形型上での保持部材の固定状態を維持することが 好ましい。これにより、正確な位置決めを行い成形精度を高めることができる。
[0016] 次に、上記保持部材および保持部材による保持の詳細について説明する。
前述のように、本発明において使用される保持部材は、成形素材側面下方部との 非接触状態を維持しつつ、成形素材側面上端部の少なくとも一部を保持することが 可能な形状を有する。そのような保持部材の一例としては、図 1に断面図を示すよう に、成形素材外周端面に沿って円形状をなし、成形素材を載置する部分が空間とな る環状部材を挙げることができる。図 1に示す環状部材の上面図を図 3 (a)に、図 3 (a )の I一 I線断面図を図 3 (b)に示す。
[0017] 前記保持部材は、成形素材側面上端部の少なくとも一部を保持すればよいが、成 形素材を安定に保持するためには、成形素材側面上端部の少なくとも 3点と当接す ることにより成形素材を保持することが好ましぐ成形素材側面上端部全周と当接す ることにより成形素材を保持することが更に好ましい。例えば、図 1に示す環状部材は 、図 2に示すように、その内周に突起部 1101と端面 1102を有し、突起部 1101が成 形素材側面上端部と当接することにより、成形素材を保持する。端面 1102は、成形 素材側面に面するが、該側面とは非接触状態にある面である。なお、上記突起部は 、必ずしも保持部材内周全周に配置する必要はなぐ部分的に配置することも可能 である。例えば、保持部材内周上に、例えば 3つ以上の突出部を、好ましくは等角度 で配置することも可能である。但し、確実な位置決め保持を行うためには、前記突起 部を保持部材内周全周に環状に形成することが好ましい。
[0018] 突起部 1101の形状は、位置決め保持する成形素材の寸法および形状を考慮して 決定することができる。例えば、保持部材内周全周に突起部 1101を形成する場合、 突起部 1101の内径は、例えば、外径 60〜 90mmの成形素材を用いる場合、成形 素材の外径を基準として、成形素材の外形に対して公差 _0〜+ 0. 05mmの範囲 とすること力 Sできる。突起部 1101の成形素材側面上端部との接触部の幅(図 2中の d )は、成形素材を保持可能であり、かつ軟ィヒ後に離間可能な程度の幅とすることが好 ましぐ例えば、成形素材側面の幅(図 2中の D)が 3〜20mmの場合には、例えば D の 10〜20%程度とすることが好ましい。なお、突起部 1101の上縁部が、成形素材 上縁端部と接触するように配置することが好ましい。
[0019] 図 1および図 2に示すように、保持部材は、成形型周縁の上部に嵌合して配置する こと力 Sできる。そして成形型と嵌合する端面 1105の形状は、成形型の形状にあわせ て設定することが好ましぐ例えば、上記外径の成形素材を用いる場合、成形型の外 径を基準として公差 + 0. lmm〜0. 2mmとすることができる。また、成形型側面に 段付け部を設け、保持部材外周底面と嵌合させることにより、保持部材をより安定に 支持すること力 Sできる。
[0020] 本発明では、図 1に示すように、成形素材を配置した成形型上に、防塵用の蓋をか ぶせ、成形時の異物 (塵、埃等)混入を防止することもできる。防塵蓋を使用する場 合には、例えば、図 2に示すように、成形素材外周の段差部にある端面 1103と防塵 蓋の開口部を嵌合させて防塵蓋を配置する。端面 1103の幅は、防塵蓋の開口部に 対して十分な面積があればよぐ例えば 6〜8mm程度とすることができる。なお、端 面 1103の表面は、防塵蓋との密着性を高めるため、鏡面加工することができる。
[0021] 前記保持部材は、内周部に設けた突起部 1101で載置される成形素材側面上端 部の少なくとも一部、好ましくは成形素材側面上端部全周囲を保持し、成形素材を 成形型成形面の所望の位置に配置するための位置決めを行う。上記所望の位置と は、例えば、成形型成形面の幾何中心と成形素材の光学中心又は幾何中心とがー 致する位置である。
[0022] 前記保持部材は、耐熱性材料から形成することが好ましい。耐熱性材料としては、 耐熱ステンレス材が好まし 例えばオーステナイト系が適している。オーステナイト 系ステンレス材は、 C、 Si、 Mn、 P、 S、 Ni、 Cr、 Moを含む組成よりなるものである。 含有する化学成分の割合(質量%)は、例えば Cが 0. 08%以下、 Siが 1. 50%以下 、 Mn力 2. 00ο/ο以下、 Ρが 0. 045ο/ο以下、 S力 0. 030ο/ο以下、 Ni力 19. 00〜22. 00%、 Crが 24. 00〜26. 00%である。具体的には、高クロム'高ニッケル系の SUS 310Sを用いることができる。
[0023] 保持部材の形状加工は、マシニングセンタまたは NCフライス盤を用いて行うことが できる。保持部材表面には、耐久性向上のため酸化被膜を形成することが好ましい。 被膜形成のための表面処理としては、例えば電解研磨仕上、または静電塗装等を用 レ、ることができる。
[0024] 次に、本発明において使用される成形素材について説明する。
本発明では、熱軟化性物質からなる成形素材を用いる。前記熱軟化性物質として は、ガラスを用いることができる。中でも、クラウン系、フリント系、ノくリウム系、リン酸塩 系、フッ素含有系、フッリン酸系等のガラスが適している。ガラス材料素材の構成成 分として、第一には、例えば Si〇、 B O、 Al Oを含み、ガラス材料組成はモル百分 率で Si〇カ 45〜85%、 A1〇力 ^4〜32%、 Na O + Li〇が 8〜30% (伹し Li〇は N a O + Li〇の 70%以下)、 Zn〇および/または Fの合計量が 2〜13% (伹し Fく 8
%)、 Li O + Na O/Al O力 2/3〜4/l、 SiO +A1〇 + Na O + Li 0 + ZnO +
F〉90%なるガラスが適している。
[0025] また第 2には、例えばガラス材料組成はモル百分率で SiO力 0〜76%、 A1〇が
4. 8〜14. 90/0、 Na O + Li〇力 ^ 13. 8〜27. 3% ({RLLi 0¾Na O + Li O(O70%
2 2 2 2 2
以下)、 Zn〇および/または Fの合計量が 3〜11 % (伹し Fく 8%)、 Li O + Na〇
/Al〇力 2/3〜4/1、 SiO +A1〇 + Li O + Na O + Li O + ZnO + F > 90% なるガラスは好適である。
[0026] 加えて第 3には例えば、
SiO (47. 8%)、A1〇 (14. 0%)、Na O (12. 1 %)、B〇 (%)、Zn〇(6. 0%)、 F (2%)、 Mg〇(2%)、 Li 0 (16. 1 %)、 As O (0. 3%)よりなるガラス組成: さらに第 4には例えば、
SiO (63. 6%)、 Al O (12. 8%)、 Na 0 (10. 5%)、 B O (1. 5%)、 ZnO (6. 3
%)、 Li〇(4. 8%)、 As O (0. 3%)、 Sb O (0. 2%)よりなるガラス組成はさらに好 適である。
そして 10%を越えない範囲で他の金属酸化物、例えば Mg〇、 PbO、 Cd〇、 B〇
、 TiO、 ZrOや着色金属酸化物等をガラスの安定化、溶融の容易、着色等のため に加えることができる。
[0027] またガラス材料の他の特徴として、例えば熱的性質は、歪点 460°C、除冷点 490°C 、軟ィ匕点 650°C、ガラス転移温度 (Tg)が 485°C、屈伏点 (Ts)が 535°C、比重は 2. 47 (g/cm3)、屈折率 ίま、 Ndl . 52300、熱拡散];匕率 ίま 0. 3576cm2 * min、ポアソ ン比 0. 214、光弾性定数 2. 82 X 10E— 12、ヤング率 8340kgf/mm2、線膨張係 数 8· 5 X 10E— 6/°Cである。
但し、本発明は、上記ガラス以外にも適用可能であり、上記態様に限定されるもの ではない。
[0028] 前記成形素材は、熱軟化性物質を所望の形状に加工することにより得ることができ る。成形素材の加工は、公知の方法で行うことができる。成形素材の形状は、平板状 、球状、楕円形状、回転対称形状(トーリックレンズ、非球面回転対称屈折力レンズ) 、 自由曲面形状 (累進屈折力レンズ、非球面型両面屈折力レンズ)等であることがで き、好ましくは、両面に球面の研磨面を有するメニスカス形状である。特に、前述のよ うに、成形開始時に成形素材下面中心部と成形面とを離間状態とするとともに、加熱 軟化に伴い成形素材上面を収縮させて保持部材との接触を解除するためには、下 面が凸面、上面が凹面のメニスカス形状の成形素材を、凹面形状の成形型成形面 上に配置すること、および、下面が凹面、上面が凸面のメニスカス形状の成形素材を 、凸面形状の成形型成形面に配置することが好ましい。
[0029] 本発明では、加熱軟化により成形素材上面を収縮させ、保持部材と成形素材を離 間させ得るように、成形開始時に成形素材下面と成形面との間に空間を設けることが 好ましぐこの点を考慮して成形素材下面および成形型成形面の曲率半径等を設定 することが好ましい。成形開始時における成形素材下面中心と成形型成形面中心と の距離(間隔)は、成形素材の寸法等によっても異なる力 例えば 0. 2〜5mmとする こと力できる。成形素材下面と成形型成形面とは、前述の離間状態が維持できる範 囲で、近似する表面形状を有することが好ましい。但し、例えば、累進屈折力レンズ 用モールド作製のために、成形型成形面を自由曲面とし、成形素材下面を球面形状 とする場合等は、成形素材下面と成形型成形面との表面形状は完全には一致しな い。例えば成形型成形面は所望の自由曲面形状とし、成形素材下面は成形型上に 載置した状態で成形素材下面の周縁部では成形面に接触し、周縁部以外では成形 素材下面と成形面との間に空間を形成できる範囲の曲率半径とすることが好ましい。 更に、成形素材下面の曲率半径は、成形面との接触が周縁部のみで、周縁部以外 では成形面と所定の間隔を形成する曲率半径の中で、成形素材下面中心と成形面 中心との間隔が最小となる値を選択することが好ましい。
更に、本発明では、図 1において、成形素材下面と成形型成形面との接触部の最 外周の任意の 1点を E、 Eと対向する 1点を E'とし、 Eと E'を結ぶ線(図 1中の点線部) と成形面中心との鉛直方向の距離を dh (mm)、 E-E'間の距離を D (mm)、成形素 材下面中心と成形面中心との距離を H (mm)、成形素材下面の曲率を r、成形面の 曲率(自由曲面の場合は平均曲率)を Rとした場合、下記式:
Figure imgf000011_0001
[D ll f
(dh - H)2 +
2{dh - H) を満たすように、成形素材および成形型を設計することが好ましレ、。
なお、成形素材の表面は、鏡面とすることが好ましぐその表面粗度は、粗さ最大高 さ RmaxO. 04 μ m以下であることが好ましぐ算術平均粗さ Raは 0. 005 z m以下で あることが好ましい。成形素材の粗さの下限値は、例えば、最大粗さ Rmaxで 0. 07 μ m、算術平均粗さ Raで 0. 006 μ mである。 [0032] 本発明では、前述のように、保持部材によって保持した状態で成形型成形面上に 成形素材を配置した後、この成形素材を、成形型上で変形可能な温度まで加熱する 。変形可能な温度とは、成形素材がガラスからなるものである場合には、ガラス転移 点 (Tg)以上の温度であることが好ましい。加熱は、公知の方法、例えば成形型を電 気炉内に配置して行うことができる。成形素材が設定した温度となるように電気炉内 の雰囲気温度を制御することにより、成形素材を所望の温度に加熱することができる 。なお、温度制御の詳細については後述する。こうして加熱軟化することにより、成形 素材の下面前面が成形面に密着する。これにより、成形面形状が、成形素材上面に 転写され、成形素材上面を所望形状に成形することができる。特に、本発明では、自 由曲面形状の成形面を有する成形型を用いることが好ましい。これにより、球面形状 をした研磨面を有する高精度な球面形状成形素材と自由曲面形状型との組み合わ せにより、成形素材上面に、 自由曲面の光学面を容易に形成することができる。
[0033] 前記成形型としては、一般に熱垂下成形法に使用される公知の成形型を用いるこ とができる。但し、金属は、軟化加工の一般的な最高温度 800°Cでの耐久性に乏しく 、また熱膨張率が大きいため、 800°C近い温度変化では熱膨張により形状が大きく 変形する。変形量が大きいと成形材料と成形型の接触面では冷却時に収縮差に耐 えられず成形材料または成形型の少なくとも一方が破損するおそれがある。そこで、 本発明において使用される成形型は、膨張係数が成形素材に近ぐ耐久性に優れ た耐熱性材料から形成したものであることが好ましレ、。耐熱性材料としては、例えば アルミナ系(A1〇)、アルチック系(Al O -TiC)、ジルコユア(ZrO )、窒化ケィ素系
(Si N )、窒化アルミニウム系(A1N)、炭化ケィ素系(SiC)、二酸化ケイ素系(SiO ) 等の SiO、 Al〇または Mg〇を主成分とするセラミックが適している。ここで、「主成 分とする」とは、上記成分が、成形型構成成分の 50質量%以上を占めることをいう。 成形型素材として好適な耐熱性材料は、例えば SiO、 Al O、 MgOを 99%以上、そ の他に K o等を含むセラミックである。
[0034] 成形型素材としては、例えば、第 1には硬さ(ビッカーズ硬さ) 7〜24、曲げ強度 40 0〜2000MPa、ヤング率 180〜410GPa、熱伝導率 3. 0〜: 170W/mk、線膨張係 数 4. 30〜: 10. 8 X 10E— 6、耐熱温度 750〜850。C、密度 3. 10〜: 10. 70g/cm3 のものが適している。さらに第 2には、特に硬さ(ビッカーズ硬さ) 7〜15、ヤング率 19 0〜210GPa、線膨張係数 6. 0〜7. 0 X 10E— 6、耐熱温度 775〜825°Cのもの力 好適である。カロえて第 3には、硬さ(ビッカーズ硬さ) 9〜: 15、ヤング率 180〜402GP a、線膨張係数 4. 30-10. 8 X 10E— 6、耐熱温度 800°C以上のものが特に好適で ある。さらに、成形型素材は疎水性であることが好適である。
[0035] 更に、本発明は、成形型成形面上に配置した熱軟化性物質からなる成形素材を変 形可能な温度まで加熱し、該成形素材の下面を前記成形面に密着させることにより、 前記成形素材の上面を所望の形状に成形する成形法において、前記成形面上に配 置された成形素材を保持するために使用される保持部材に関する。本発明の保持 部材は、環状部を有し、かつ、環状部内周に、前記加熱前の成形面上に配置された 成形素材の側面上端部の少なくとも一部と当接する保持領域と、該成形素材と非接 触状態にある非保持領域とを有する。本発明の保持部材の詳細は、先に説明した通 りである。
[0036] 更に、本発明は、熱軟化性物質からなる成形素材を成形型成形面上に配置し、前 記成形素材を変形可能な温度まで加熱し、該成形素材の下面全面を前記成形面に 密着させることにより、前記成形素材の上面を所望の形状に成形することを含む成形 品の製造方法に使用される成形装置に関する。本発明の成形装置は、成形面を有 する成形型と本発明の保持部材とを含む。前記成形面は、前記加熱前に成形素材 下面周縁部の少なくとも一部と密着する周縁密着部と成形素材下面中心部と離間す る中心離間部を含む。本発明の成形装置の詳細は、先に説明した通りである。
[0037] 次に、本発明の成形品の製造方法の具体的態様について説明する。但し、本発明 は下記態様に限定されるものではない。
まず、好ましくはクリーンルーム内で、成型面を上にして成形型を設置する。その後 、成型面周縁部および側面の段付け部に保持部材を嵌合させる。そして保持部材に 沿って成形素材を成型面の所定の位置に載置する。水平方向には成形素材側面上 端部が保持部材によって支持固定され、一方垂直方向には成形素材下面の周縁部 力 成形型の成型面と接触して保持固定される。そして成形素材の成形型との接触 面側の中央部は、型成型面より離間している。 [0038] 次レ、で、好ましくは防塵蓋を保持部材と嵌合させて載置する。防塵蓋で成形素材を 密閉した後、クリーンルームから電気炉へ搬送し、電気炉内に成形型、保持部材、成 形素材、防塵蓋の組み合わせを載置して電気炉によって加熱処理を行う。
[0039] 電気炉において、あら力じめ設定された温度プログラムに基づいて温度制御をしなが ら加熱軟化処理を行うことができる。電気炉としては、バッチ型電気炉、連続投入型 電気炉のレ、ずれを用いてもょレ、。まずバッチ型電気炉にっレ、て説明する。
[0040] バッチ型電気炉は、比較的小さい閉じた空間内に被力卩ェ物を設置し、予め決めら れた温度プログラムに従って炉内の温度を変化させる装置である。複数のセンサー を備え、複数のセンサーにより温度を計測し、各ヒーターを制御して温度管理をする ことができる。バッチ型の熱軟化炉は、内部に被力卩ェ物を保持する支持部がある。更 に支持部は炉内で可動する。支持部が稼働することによって炉内の場所による温度 分布の不均衡を平均化することができる。
[0041] 次に連続投入型電気炉にっレ、て説明する。
連続投入型電気炉は入り口と出口を有しており、設定された温度分布の電気炉内 部を、コンベア一等の搬送装置によって被力卩ェ物を一定時間で通過させて熱処理を 行う装置である。連続投入型電気炉では、発熱と放熱を考慮した複数のヒーターと炉 内空気循環の制御構造によって、炉内部の温度分布を均一化することができる。
[0042] 電気炉の各センサーとヒーターの温度制御には、 PID制御を用いることができる。
なお、 PID制御は、プログラムされた所望の温度と実際の温度との偏差を検出し、所 望の温度との偏差が 0になるように戻す (フィードバック)ための制御方法である。そし て PID制御とは、偏差から出力を計算するときに、「比例(Proportional)」、「積分 (I ntegral)」、「微分(Differential)」的に求める方法である。 PID制御の一般式を次 に示す。
[0043] ほ女 2] pro制欄 Φ—匿式
Figure imgf000015_0001
Figure imgf000015_0002
I D
Figure imgf000015_0003
一 e f
Figure imgf000015_0004
Ae = e.;,― e — i とし . ,
f ― ^ . 'Ί
At " ' し feが τ*
Figure imgf000015_0005
[0044] 上記式中、 eは偏差、 Kはゲイン (添字 Pのゲインを比例ゲイン、添字 Iのゲインを積 分ゲイン、添字 Dのゲインを微分ゲイン)、 A tはサンプノレ時間(サンプリング時間、制 御周期)、添字 nは現在の時刻を示す。
PID制御を用いることにより、投入された処理物形状および数量による熱量分布の変 化に対する炉内温度の温度制御精度を高くすることができる。また電気炉内における 搬送は、無摺動方式 (例えばウォーキングビーム)を採用することができる。
[0045] 本発明において使用可能な連続投入型電気炉の具体的態様は、搬送方式が無摺 動方式、温度制御が PID制御、温度測定器は"プラチナ製 K熱電対 30ポイント"、 最高使用温度は 800°C、常用使用温度は 590〜650°C、内部雰囲気はドライエアー (オイルダストフリー)、雰囲気制御は入り口エアーカーテン、炉内パージ、出口エア 一カーテン、温度制御精度は ± 3°C、冷却方法は空冷である。
[0046] 電気炉内の温度は、成形素材としてガラス材料を用いる場合、加熱昇温により室温 力もガラス転移点を越えて、ガラス軟化点未満まで上昇させることができる。ガラス軟 化点未満で一定時間温度を保持した後、徐冷して室温まで温度を下げることが好ま しい。
[0047] 電気炉内の温度制御は、所定時間を 1サイクルとして行われる。
以下に、成形素材としてガラス材料を用いて 17時間を 1サイクルとする温度制御の一 例を説明する。但し、本発明は以下に示す態様に限定されるものではない。
[0048] 炉内の温度制御は、 7つの工程で行うことができる。第一の工程は (A)予備昇温ェ 程、第二の工程は(B)急速加熱昇温工程、第三の工程は(C)低速加熱昇温工程、 第四の工程は(D)定温保持工程、第五の工程は(E)低速冷却工程、第六の工程は (F)急速冷却工程、第七の工程は(G)自然冷却工程である。
[0049] 第一の工程である (A)予備昇温工程にぉレ、ては、室温付近の一定温度で 90分間 固定する。ガラス材料各部の温度分布を均一にし、加熱軟化加工の温度制御による ガラス材の熱分布が容易に再現できるようにするためである。固定する温度は室温程 度(約 20〜30°C)の何れかの温度にて行う。
[0050] 第二の工程は(B)急速加熱昇温工程であり、室温 (例えば 25°C)からガラス転移温 度(以降 Tgともいう) _ 50°C (以降 T1ともいう)まで、例えば 4°CZminの速度で約 90 分加熱する。そして第三の工程である(C)低速加熱昇温工程は、温度 T1からガラス 軟ィ匕点より約 _ 50°C (以降 T2ともいう)まで、例えば 2°CZminで 120分間加熱する 。第四の工程である(D)定温保持工程は、温度 T2で約 60分温度一定にする。
[0051] 温度 T2で加熱されたガラス材料は定温保持工程で 30分加熱する。更に温度 T2で
30分加熱を行う。これにより、成形素材を軟化変形させ、成形素材下面全面を成形 面に密着させ、成形素材上面を所望形状に成形することができる。
[0052] 次レ、で、熱軟化変形完了後、冷却を行う。冷却工程である第五の工程 (E)低速冷 却工程は、 Tg_ 100°C (以降 T3ともいう)まで、例えば l°C/minの速度で約 300分 間冷却し、軟化による形状変化を定着させる。またこの低速冷却工程は、ガラスの歪 みを除くァニールの要素も含んでいる。
[0053] 次いで、第六の工程である(F)急速冷却工程において、速度約 1. 5°CZminで約
200°C程度まで冷却する。軟化加工を終了したガラスと成形型は、 自らの熱収縮や 温度変化に対する相互の熱膨張係数の違いにより破損するおそれがある。従って破 損しなレ、程度に温度の変化率を小さくすることが好ましレ、。
[0054] さらに、温度が 200°C以下になると、第七の工程である(G)急速冷却工程を行う。 (
G)急速冷却工程において、 200°C以下になると以降は自然冷却により室温まで冷 却する。
[0055] 軟ィヒ加工が完了すると、ガラス材料下面と型成形面が互いに雌雄の関係になる。
一方ガラス材料上面は、ガラス材料下面の形状変形に応じて変形し、所望の光学面 が形成される。以上の工程によりガラス光学面を形成した後、ガラス材料を成形型か ら除去し、成形品を得ることができる。こうして得られた成形品は、眼鏡レンズ用モー ルドとして用いることができる。特に、本発明の方法は、成形型成形面の面形状を成 形素材上面に高精度で転写することができるため、複雑な面形状を有する眼鏡レン ズ用モールドを得るための方法として好適である。そのような眼鏡レンズ用モールドと しては、累進屈折力レンズを挙げることができる。
産業上の利用可能性
[0056] 本発明の成形型は、眼鏡レンズ用モールド、特に多焦点眼鏡レンズ用モールド成 形のために好適に用いることができる。
図面の簡単な説明
[0057] [図 1]軟化前後の成形素材と成形型との接触状態の模式図である。
[図 2]軟ィヒ前後の保持部材と成形素材側面の接触状態の拡大模式図である。
[図 3]図 1に示す環状部材の上面図を図 3 (a)に、図 3 (a)の I— I線断面図を図 3 (b) に示す。

Claims

請求の範囲
[1] 熱軟化性物質からなる成形素材を成形型成形面上に配置し、前記成形素材を変形 可能な温度まで加熱し、該成形素材の下面全面を前記成形面に密着させることによ り、前記成形素材の上面を所望の形状に成形することを含む成形品の製造方法であ つて、
前記成形素材の配置は、前記成形素材を保持部材によって保持し、かつ成形素材 下面周縁部の少なくとも一部が成形面と密着し、成形素材下面中心部が成形面と離 間した状態になるように行われ、
前記保持部材による保持は、成形素材側面下方部は保持部材と離間した状態で、 成形素材側面上端部の少なくとも一部を前記保持部材によって保持することで行わ れる、前記方法。
[2] 少なくとも前記成形素材下面密着時以降、前記成形素材側面上端部と保持部材が 離間する、請求項 1に記載の成形品の製造方法。
[3] 前記加熱により成形素材上面が収縮することにより、成形素材側面上端部と保持部 材が離間する、請求項 2に記載の成形品の製造方法。
[4] 少なくとも成形素材側面上端部と保持部材が離間するまでの間、前記保持部材の固 定状態を維持する、請求項 2または 3に記載の成形品の製造方法。
[5] 前記保持部材は、前記保持において成形素材側面上端部の少なくとも 3点と当接す る請求項 1〜4のいずれ力 4項に記載の成形品の製造方法。
[6] 前記保持部材は、前記保持において成形素材側面上端部全周と当接する請求項 5 に記載の成形品の製造方法。
[7] 前記保持部材は、内周に突起部を有する環状部材であり、該突起部が成形素材側 面上端部と当接することにより、前記成形素材を保持する請求項:!〜 6のいずれか 1 項に記載の成形品の製造方法。
[8] 成形型成形面上に配置した熱軟化性物質からなる成形素材を変形可能な温度まで 加熱し、該成形素材の下面を前記成形面に密着させることにより、前記成形素材の 上面を所望の形状に成形する成形法において、前記成形面上に配置された成形素 材を保持するために使用される保持部材であって、 環状部を有し、かつ、
環状部内周に、前記加熱前の成形面上に配置された成形素材の側面上端部の少な くとも一部と当接する保持領域と、該成形素材と非接触状態にある非保持領域とを有 する、前記保持部材。
[9] 前記保持領域は、前記加熱前の成形面に配置された成形素材の側面上端部の少 なくとも 3点と当接する請求項 8に記載の保持部材。
[10] 前記保持領域は、前記加熱前の成形面に配置された成形素材の側面上端部の全 周と当接する請求項 9に記載の保持部材。
[11] 前記保持領域は、前記環状部の内周に形成された突起部である請求項 8〜: 10のい ずれ力 1項に記載の保持部材。
[12] 熱軟化性物質からなる成形素材を成形型成形面上に配置し、前記成形素材を変形 可能な温度まで加熱し、該成形素材の下面全面を前記成形面に密着させることによ り、前記成形素材の上面を所望の形状に成形することを含む成形品の製造方法に 使用される成形装置であって、
成形面を有する成形型と請求項 8〜: 11のいずれ力 1項に記載の保持部材とを含み、 前記成形面は、前記加熱前に成形素材下面周縁部の少なくとも一部と密着する周 縁密着部と成形素材下面中心部と離間する中心離間部を含む、前記成形装置。
PCT/JP2006/323135 2005-11-30 2006-11-20 成形品の製造方法、保持部材および成形装置 WO2007063734A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020087015576A KR101332103B1 (ko) 2005-11-30 2006-11-20 성형품의 제조 방법, 지지 부재 및 성형 장치
CN2006800449828A CN101321701B (zh) 2005-11-30 2006-11-20 成形品的制造方法、保持部件及成形装置
US12/095,648 US7950252B2 (en) 2005-11-30 2006-11-20 Method of manufacturing formed article, support member, and forming apparatus
JP2007547902A JP5042033B2 (ja) 2005-11-30 2006-11-20 成形品の製造方法、保持部材および成形装置
BRPI0619241-6A BRPI0619241A2 (pt) 2005-11-30 2006-11-20 Método para fabricar um artigo conformado, membro de apoio para uso em um método de conformação, e, aparelho de conformação para uso em um método de fabricar um artigo formado
EP06832985.3A EP1961707B1 (en) 2005-11-30 2006-11-20 Process for production of molded articles, holders and molding equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005345459 2005-11-30
JP2005-345459 2005-11-30

Publications (1)

Publication Number Publication Date
WO2007063734A1 true WO2007063734A1 (ja) 2007-06-07

Family

ID=38092069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323135 WO2007063734A1 (ja) 2005-11-30 2006-11-20 成形品の製造方法、保持部材および成形装置

Country Status (8)

Country Link
US (1) US7950252B2 (ja)
EP (1) EP1961707B1 (ja)
JP (1) JP5042033B2 (ja)
KR (1) KR101332103B1 (ja)
CN (1) CN101321701B (ja)
BR (1) BRPI0619241A2 (ja)
RU (1) RU2417959C2 (ja)
WO (1) WO2007063734A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144943A1 (ja) * 2008-05-30 2009-12-03 Hoya株式会社 レンズ用鋳型の製造方法
WO2010150801A1 (ja) * 2009-06-26 2010-12-29 Hoya株式会社 成形品の製造方法および製造装置、ならびに眼鏡レンズの製造方法
US8197727B2 (en) 2005-11-30 2012-06-12 Hoya Corporation Method of manufacturing formed article, covering member, and forming apparatus comprising the same
US8277704B2 (en) 2005-11-18 2012-10-02 Hoya Corporation Method of manufacturing formed article, mold and method of manufacturing the same
US8641937B2 (en) 2009-02-27 2014-02-04 Hoya Corporation Method of manufacturing lens casting mold and method of manufacturing eyeglass lens
US9242889B2 (en) 2005-11-18 2016-01-26 Hoya Corporation Method of manufacturing formed article, glass material, and method of determining shape of glass material and mold

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110163466A1 (en) * 2009-02-27 2011-07-07 Hoya Corporation Method of manufacturing lens casting mold and method of manufacturing eyeglass lens
JP5552284B2 (ja) * 2009-09-14 2014-07-16 信越化学工業株式会社 多結晶シリコン製造システム、多結晶シリコン製造装置および多結晶シリコンの製造方法
JP6162234B2 (ja) * 2012-06-29 2017-07-12 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 眼用レンズ製造用の特徴部位を有するレンズ前駆体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275930A (ja) * 1991-02-26 1992-10-01 Asahi Optical Co Ltd 熱軟化性物質の熱垂下成形方法及び成形装置
JPH09124339A (ja) * 1995-08-28 1997-05-13 Asahi Glass Co Ltd 曲面ガラス
JPH1025123A (ja) * 1996-07-09 1998-01-27 A F C Ceramic:Kk ガラス板の湾曲成形型

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607186A (en) * 1970-04-08 1971-09-21 Corning Glass Works Method and apparatus for forming hollow articles from sheet glass
US4105429A (en) * 1977-05-02 1978-08-08 Delgado Manuel M Method and apparatus for precision forming of plastic materials such as glass to precise dimensions from sheet material
US4119424A (en) * 1977-06-03 1978-10-10 Ppg Industries, Inc. Method and apparatus for shaping glass sheets on a bending mold
US4115090A (en) * 1977-07-28 1978-09-19 Ppg Industries, Inc. Shaping glass sheets by gravity sagging on solid molds
JPS557507A (en) * 1978-06-26 1980-01-19 Hitachi Tokyo Electronics Co Ltd Glass plate forming method and holding jig
CA1257480A (en) * 1984-07-19 1989-07-18 Masaaki Nushi Apparatus for and method of bending glass sheets
SU1426954A2 (ru) 1987-03-16 1988-09-30 Предприятие П/Я А-7840 Способ изготовлени гнутых изделий из стекла
FI89475C (fi) * 1991-09-27 1993-10-11 Tamglass Eng Oy Foerfarande och anordning foer boejning och haerdning av en glasskiva
RU2087430C1 (ru) 1994-03-03 1997-08-20 Обнинское научно-производственное предприятие "Технология" Устройство для формования изделий из стекла
JP3879152B2 (ja) * 1996-08-12 2007-02-07 旭硝子株式会社 ガラス板の曲げ成形装置、曲げ成形型およびその製造方法
AU741587B2 (en) * 1997-05-16 2001-12-06 Hoya Kabushiki Kaisha Mechanism for placing optical lens blank in holder
US6629436B1 (en) * 2000-11-03 2003-10-07 Ppg Industries Ohio, Inc. Apparatus for thermal treatment of glass and method and thermally treated glass therefrom
JP4811774B2 (ja) * 2001-04-10 2011-11-09 旭硝子株式会社 ガラス板曲げ成形装置および成形方法
US7437892B2 (en) 2004-04-21 2008-10-21 Ppg Industries Ohio, Inc. Apparatus having vacuum applying facilities and method of using vacuum to bend and/or shape one or more sheets

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275930A (ja) * 1991-02-26 1992-10-01 Asahi Optical Co Ltd 熱軟化性物質の熱垂下成形方法及び成形装置
JPH09124339A (ja) * 1995-08-28 1997-05-13 Asahi Glass Co Ltd 曲面ガラス
JPH1025123A (ja) * 1996-07-09 1998-01-27 A F C Ceramic:Kk ガラス板の湾曲成形型

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1961707A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277704B2 (en) 2005-11-18 2012-10-02 Hoya Corporation Method of manufacturing formed article, mold and method of manufacturing the same
US9242889B2 (en) 2005-11-18 2016-01-26 Hoya Corporation Method of manufacturing formed article, glass material, and method of determining shape of glass material and mold
US8197727B2 (en) 2005-11-30 2012-06-12 Hoya Corporation Method of manufacturing formed article, covering member, and forming apparatus comprising the same
WO2009144943A1 (ja) * 2008-05-30 2009-12-03 Hoya株式会社 レンズ用鋳型の製造方法
JP5393664B2 (ja) * 2008-05-30 2014-01-22 Hoya株式会社 レンズ用鋳型の製造方法
US8641937B2 (en) 2009-02-27 2014-02-04 Hoya Corporation Method of manufacturing lens casting mold and method of manufacturing eyeglass lens
WO2010150801A1 (ja) * 2009-06-26 2010-12-29 Hoya株式会社 成形品の製造方法および製造装置、ならびに眼鏡レンズの製造方法
CN102471127A (zh) * 2009-06-26 2012-05-23 Hoya株式会社 成形品的制造方法及制造装置、以及眼镜片的制造方法

Also Published As

Publication number Publication date
US7950252B2 (en) 2011-05-31
EP1961707A4 (en) 2014-10-01
KR101332103B1 (ko) 2013-11-21
KR20080076976A (ko) 2008-08-20
RU2008126286A (ru) 2010-01-10
JP5042033B2 (ja) 2012-10-03
RU2417959C2 (ru) 2011-05-10
CN101321701B (zh) 2012-07-04
US20090295033A1 (en) 2009-12-03
CN101321701A (zh) 2008-12-10
EP1961707A1 (en) 2008-08-27
BRPI0619241A2 (pt) 2011-09-20
EP1961707B1 (en) 2017-04-26
JPWO2007063734A1 (ja) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5042032B2 (ja) 成形品の製造方法、ガラス素材、ならびにガラス素材および成形型の面形状決定方法
JP5121460B2 (ja) 成形品の製造方法、閉塞部材およびそれを含む成形装置
JP5042033B2 (ja) 成形品の製造方法、保持部材および成形装置
JP5121458B2 (ja) 成形品の製造方法、成形型およびその製造方法
JP5393664B2 (ja) レンズ用鋳型の製造方法
JP5326773B2 (ja) ガラス成形体の製造方法
JP2013252986A (ja) 光学素子の成形装置、成形型及び光学素子の成形方法
JP3753415B2 (ja) ガラス光学素子の成形方法
JP2016124767A (ja) 光学素子の製造方法
JP2004345943A (ja) モールドプレス成形装置及び光学素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044982.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007547902

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006832985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006832985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087015576

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008126286

Country of ref document: RU

Ref document number: 3360/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12095648

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0619241

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080529