WO2007063645A1 - 熱サイクル装置及び複合熱サイクル発電装置 - Google Patents

熱サイクル装置及び複合熱サイクル発電装置 Download PDF

Info

Publication number
WO2007063645A1
WO2007063645A1 PCT/JP2006/320369 JP2006320369W WO2007063645A1 WO 2007063645 A1 WO2007063645 A1 WO 2007063645A1 JP 2006320369 W JP2006320369 W JP 2006320369W WO 2007063645 A1 WO2007063645 A1 WO 2007063645A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
turbine
compressor
heat exchanger
generator
Prior art date
Application number
PCT/JP2006/320369
Other languages
English (en)
French (fr)
Inventor
Noboru Masada
Original Assignee
Noboru Masada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38091985&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007063645(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Noboru Masada filed Critical Noboru Masada
Priority to AU2006321122A priority Critical patent/AU2006321122B2/en
Priority to US12/085,351 priority patent/US7971424B2/en
Priority to BRPI0619376-5A priority patent/BRPI0619376B1/pt
Publication of WO2007063645A1 publication Critical patent/WO2007063645A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/005Using steam or condensate extracted or exhausted from steam engine plant by means of a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/10Closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a compressor, an expander, a generator, a thermal site apparatus including a first heat exchanger and a second heat exchanger, and a combined heat cycle power generation apparatus using the thermal site apparatus.
  • the working gas compressed by the compressor is cooled and condensed after driving the first turbine, passing through the heat release side of the first heat exchanger, and then boosted by the pump to be a high-pressure working fluid.
  • the high-pressure hydraulic fluid expands and evaporates in the expander to be turned into a working gas.
  • the working gas is heated (heat cross) through the heat receiving side of the first heat exchanger or the second heat exchanger, and then sent to the compressor.
  • the present invention relates to a thermal cycle apparatus to be introduced, and a combined thermal cycle power generation apparatus in which the thermal cycle apparatus is combined with a Rankine cycle apparatus.
  • Japanese Patent Application Laid-Open No. 54-27640 discloses a power generation facility that recovers thermal energy of high-temperature exhaust gas.
  • a waste heat boiler is arranged upstream of the high-temperature exhaust gas passage, and a fluid preheater is arranged downstream.
  • Japanese Laid-Open Patent Publication No. 61-229905 or GB2, 174, 148A discloses a mechanical power generation method combining a first cycle using two immiscible fluids and a second cycle using a refrigerant fluid.
  • Japanese Patent Application Laid-Open No. 2-40007 discloses a power system that combines a reverse Rankine cycle and a Rankine cycle.
  • the thermal efficiency of the thermal cycler will be considered. While the working substance performs one cycle, i.e., changes are made continuously and then returns to its original state, heat is generated from a high-temperature source at temperature T.
  • Receive quantity Q discard heat quantity Q to a low heat source at temperature T, and work to outside L (assuming calorie conversion value) h b b
  • the refrigerator or heat pump When the external force is applied to the working fluid, the refrigerator or heat pump is used.
  • the amount of heat Q received from a high heat source is small and the work L given to the outside is large. Is desirable. Therefore,
  • a device that transfers heat from a low-temperature object to a high-temperature object is called a refrigerator.
  • a refrigerator is generally a device intended to cool an object, but a device that transfers heat from a cold object to a hot object and heats the hot object is called a “heat pump”.
  • Heat pump can be said to be the name when the usage of the refrigerator is changed. The heat pump is used, for example, in the case of heating operation of an air conditioner for air conditioning. Heat absorbed from a low-temperature object Q
  • the heat pump gives the amount of heat Q to the same amount of work Q
  • Equation 6 Q ZL (Equation 6) is called the coefficient of performance or operating coefficient of the heat pump. From equation 5 above,
  • the thermal efficiency is the greatest among all cycles that operate between the same high and low heat sources.
  • FIG. 1 is a layout diagram showing components of a conventional heat cycle device that has a refrigeration mr force.
  • Refrigerant gas Fg boosted by compressor C is heated to fluid Z by heat exchanger (condenser) 7. After condensing with Q, it is expanded by the expansion valve V, the temperature decreases and the heat exchange 8 from the fluid Z
  • the heat calculation is examined for the freezer whose ammonia is ammonia. Easy It is assumed that there is no mechanical loss because it is an abbreviation.
  • One example of the refrigerant temperature is 110 ° C. (T) at the compressor C outlet, 38 ° C. (T) at the outlet of the condenser 7, and ⁇ 10 ° C. (T) at the evaporator V outlet. So
  • FIG. 2 is an arrangement diagram showing components of a thermal cycle device composed of a steam turbine (heat engine A).
  • the high-temperature and high-pressure steam Fg generated in the boiler B is supplied to the turbine S to rotate the turbine.
  • Power (work) W is generated, and steam is cooled to condensate Ee in a condenser Y that communicates with an exhaust port of the turbine.
  • the condensate Ee is pressurized by a pump P and supplied to boiler B. If the waste heat Q of the condenser Y is not used at all in the heat cycle device of Fig. 2,
  • the ratio of the work W generated in the turbine S to the Q is 7?
  • V (Q— which is the same as r?
  • the waste heat Q of the condenser ⁇ part or all of the waste water Q is preheated with water supply.
  • the generated power w (calorie value) is
  • the waste heat Q of the condenser Y is partially or completely preheated with water.
  • the thermal efficiency of the equipment 7 ? ie the ratio of the work W generated in the turbine S to the heat input of the heat cycle equipment 7 ⁇
  • Equation 25 Equation 25
  • the heat output is taken into the heat cycle device using a heat pump, and the power output is taken out by the turbine in the heat cycle device.
  • the heat cycle apparatus of the present invention uses a thermal cloth in order to extract power with high efficiency by a turbine.
  • Equation 27 cannot be realized in heat cycles other than the refrigeration cycle.
  • Patent Document 1 Japanese Patent Laid-Open No. 54-27640
  • Patent Document 2 JP-A 61-229905
  • Patent Document 3 GB2, 174, 148A
  • Patent Document 4 Japanese Patent Laid-Open No. 2-40007
  • An object of the present invention is to provide a high-efficiency heat cycle apparatus including a compressor, an expander, a first heat exchanger, and a second heat exchanger, and a combined heat cycle power generation apparatus using the heat cycle apparatus.
  • the present invention provides a heat cycle device which can be used as a room to be air-conditioned on a heat radiation side of a second heat exchanger of the heat cycle device, a low temperature chamber such as a refrigerator or an ice making room, or a heat radiation unit for various waste heat. With the goal.
  • An object of the present invention is to provide a high-efficiency thermal cycle apparatus that uses waste heat or natural heat by transferring it to a working fluid.
  • Another object of the present invention is to improve the thermal efficiency of a combined heat cycle apparatus in which a steam turbine and a refrigerator are combined. Another object of the present invention is to improve the thermal efficiency of the heat cycle power generator by transferring the waste heat of the steam turbine outlet steam to the working fluid at the inlet of the steam turbine (thermal cross).
  • the present invention combines the heat receiving side (heat absorption side) of the heat cycle device with the heat dissipation side of the cooling machine. Therefore, it is an object of the present invention to provide a heat cycle apparatus that can form a cold heat source having an extremely low temperature that can liquefy gas such as LNG and LPG.
  • Another object of the present invention is to convert low-temperature waste heat of the Rankine cycle into high-temperature heat output by a refrigerator. Still another object of the present invention is to use the refrigeration output of a refrigerator as a cooling heat source of a condenser (cooler) installed at a turbine outlet in Rankine Cyclone, and to cause the refrigerator to act as a heat pump, thereby releasing heat from the condenser. It is to provide a thermal cycle device that can be heated and supplied to the outside as heat output. The present invention uses the refrigeration cycle to increase the thermal cross Q,
  • the refrigeration cycle is a refrigeration cycle in which refrigerant is compressed by a compressor, and a turbine is disposed in front of the condenser.
  • the heat cycle device (basic cycle device) of the present invention includes a compressor, a first turbine, and a first heat exchanger.
  • the heat cycle apparatus of the present invention may include the following features.
  • the expander is a reaction water turbine (K), and the high-pressure hydraulic fluid (Fe) drives the reaction water wheel (K) and outputs work (W).
  • the working gas is heated through the heat receiving side (72) of the first heat exchanger and the heat receiving side (82) of the second heat exchanger, and then introduced into the compressor C.
  • the cooling machine is for an air conditioner, a refrigerator or an ice making machine.
  • the expander is an expansion valve (V), and the high-pressure hydraulic fluid is expanded through the expansion valve (V) and evaporated to become a working gas.
  • the heat dissipating part of the waste heat of the thermal machine (30) is the compressor, the first turbine. This is a heat dissipating part for dissipating waste heat from the lubrication cooling system of the first generator (G) and compressor drive motor.
  • the combined heat cycle apparatus of the present invention includes a refrigerator CO including a compressor, a first heat exchanger, a second heat exchanger, and an expander, as well as a boiler, a second turbine, a condenser, and a second turbine.
  • a steam engine ( ⁇ ⁇ ) including a third generator (G) and a second pump driven by With compressor (C)
  • the compressed working gas is cooled by passing through the heat release side (71) of the first heat exchange (7) to become working fluid (Fe), and the working fluid is expanded and operated by the expansion valve (V).
  • the gas (Fg) is heated and the working gas is heated through the heat receiving side (82) of the second heat exchanger and then introduced into the compressor, and the steam (Eg) generated in the boiler (B) is generated.
  • the heat dissipating side of the condenser (Y) After driving the second turbine (S), the heat dissipating side of the condenser (Y) (
  • the first heat exchanger may include a heat receiving part (74) for hot water supply.
  • the combined heat cycle apparatus of the present invention includes a heat cycle apparatus (basic cycle apparatus) including a compressor, a first turbine, a first heat exchanger, a first pump, an expander, and a first generator (G). And a steam engine including a boiler, a second turbine, a third generator (G), a condenser and a second pump.
  • a heat cycle apparatus basic cycle apparatus
  • a compressor including a compressor, a first turbine, a first heat exchanger, a first pump, an expander, and a first generator (G).
  • a steam engine including a boiler, a second turbine, a third generator (G), a condenser and a second pump.
  • the heat cycle apparatus of the present invention may include the following features. (1) Before the high pressure condensate (E e) is circulated to the boiler (B), the second heat receiving side (73) of the first heat exchanger or the heat receiving side of the condenser (Y) (83) Then, it is heated. (2) The first generator (G), the second engine of the steam engine 3rd generator (G) that converts work (W) output from the pin) into electric power, and power to the outside
  • the power supply system of the present invention is characterized in that the power generated by the combined heat cycle power generation device is transmitted to a power consuming area separated by 500 km or more by a transmission line.
  • the composite heat cycle apparatus of the present invention includes a first heat cycle apparatus including a compressor, a first turbine, a first heat exchanger, a second heat exchanger, a first pump, and an expander,
  • a first heat cycle apparatus including a compressor, a first turbine, a first heat exchanger, a second heat exchanger, a first pump, and an expander
  • the working gas compressed by the compressor (C) is cooled through the heat dissipation side (71) of the first heat exchanger (7) after driving the first turbine (S).
  • the refrigerant gas (8g) was cooled through the condenser (81) to become a refrigerant liquid (8e), and this refrigerant liquid was expanded in the second expander (V) and was absorbed on the heat absorption side of the evaporator (9) ( 92)
  • the heat source (91) of the evaporator (9) can constitute a cold source of the gas liquid device.
  • the combined heat cycle power generator of the present invention includes a first compressor, a first turbine, a generator, a first heat exchanger, a second heat exchanger, a first pump, an expander, and a first generator.
  • a heat cycle device and an open gas turbine including a second compressor, a combustor, a second turbine and a third generator.
  • the working gas (Fg) compressed by the first compressor (C) drives the first turbine (S) and then passes through the heat radiation side (71) of the first heat exchanger (7).
  • the pressure is raised by the first pump (P) to form a high-pressure working fluid (Fe), and this high-pressure working fluid is expanded and evaporated in the expander (V) to form working gas (Fg).
  • the fuel is mixed with the compressed air and ignited and combusted.
  • the generated combustion gas drives the second turbine (S) and then the heat radiation side (81) of the second heat exchanger.
  • the first generator (G) and the third generator (G) are The first generator (G) and the third generator (G).
  • a power generation heat output facility of the present invention includes a compressor, a first turbine, a generator driven by the first turbine, a first heat exchanger, a second heat exchanger, a first pump, and an expander. Includes thermal cycle equipment and electric boiler.
  • the working gas (Fg) compressed by the compressor (C) drives the first turbine (S) and then passes through the heat radiation side (71) of the first heat exchanger (7).
  • the pressure is raised by the first pump (P) to become high-pressure hydraulic fluid (Fe), and this high-pressure hydraulic fluid is expanded and evaporated in the expander (V) to become working gas (Fg).
  • the working gas is heated through the heat receiving side (82) of the second heat exchanger and then circulated to the compressor.
  • Water for heat output (U) is heated on the heat receiving side (73) of the first heat exchanger (7) and then heated to a predetermined temperature by the electric boiler (15), and the first turbine
  • the electric power generated by the generator (G) driven by is supplied to the electric boiler (15).
  • the working gas is heated through the heat receiving side (72) of the first heat exchanger (7) before passing through the heat receiving side (82) of the second heat exchanger, and is dissipated from the second heat exchanger.
  • the side (81) is composed of a low-temperature chamber or waste heat radiating section.
  • FIG. 1 is a layout view showing components of a conventional refrigerator.
  • FIG. 2 is a layout diagram showing basic components of a heat engine including a conventional turbine, that is, a heat cycle apparatus that performs a Rankine cycle.
  • FIG. 3 is a layout view of a thermal cycle device according to a first embodiment of the present invention.
  • FIG. 4 is a layout view of a thermal cycle device according to a second embodiment of the present invention.
  • FIG. 5 is a layout view of a thermal cycle device according to a third embodiment of the present invention.
  • FIG. 6 is a layout view of a combined heat cycle power generator according to a fourth embodiment of the present invention.
  • FIG. 7 is a layout view of a combined heat cycle power generator according to a fifth embodiment of the present invention.
  • FIG. 8 is a layout view of a combined heat cycle power generator according to a sixth embodiment of the present invention.
  • FIG. 9 is a layout view of a combined heat cycle power generator according to a seventh embodiment of the present invention.
  • FIG. 10 is a layout view of a composite heat cycle apparatus according to an eighth embodiment of the present invention.
  • FIG. 11 is a layout view of a composite heat cycle apparatus according to a ninth embodiment of the present invention.
  • FIG. 12 is a layout view of a composite heat cycle apparatus according to a tenth embodiment of the present invention.
  • A Heat engine (Rankine cycle), B: Boiler, C: Compressor, ⁇ : Coefficient of performance, ⁇ : Thermal efficiency of thermal cycler, 7 ?: Thermal efficiency of turbine alone, Eg: Steam, Ee: Water ( Supply water, condensate), Fg: refrigerant gas, Fe: refrigerant liquid, G, G, G: generator, J: heat cycle device (refrigerator, heat pump), K:
  • L, L Work (input)
  • N Fuel cell
  • M, M Motor
  • P, P2 Pump
  • FIG. 3 is a layout diagram of the heat cycle device g [of the first embodiment of the present invention.
  • This heat cycle device g [inserts the turbine S and the like into the refrigerator having the compressor C and the condenser. It has the same configuration.
  • the working fluid (refrigerant gas Fg) compressed by the compressor C drives the turbine S and outputs work W, and is then liquefied on the heat radiation side 71 of the heat exchanger 7.
  • the pump P connected to the outlet of the heat exchanger 7 sucks the hydraulic fluid Fe, lowers the back pressure of the turbine S, increases the turbine output W and increases the pressure of the hydraulic fluid Fe.
  • the pressurized hydraulic fluid Fe is driven by the reaction water turbine K that drives the reaction water wheel K to output work W and acts as an expansion valve.
  • working gas Fg It expands and evaporates to become working gas (refrigerant gas Fg).
  • working gas Fg is heated on the heat receiving side 72 of the heat exchanger 7, further heated by the heat exchanger 8, and then introduced into the compressor C.
  • the heat exchanger 7 performs the action of releasing the heat of the exhaust (refrigerant gas Fg) of the turbine S and heating the working gas at the outlet of the turbine K.
  • the refrigerant gas Fg discharged from the turbine S is cooled on the heat radiating side 71 of the heat exchanger 7 and is condensed and pressurized by the pump P.
  • the heat dissipation side 71 of the heat exchanger 7 increases the temperature difference between the working fluid at the inlet and the outlet of the turbine S by cooling the refrigerant gas Fg discharged from the turbine S, and the turbine output Increase W. Waste heat Q from the working fluid at the outlet of turbine S is the downstream of reaction water turbine K.
  • the hydraulic fluid Fe pressurized by the pump P; given the standing energy, recovers potential energy by the reaction water turbine K, and expands and gasifies at the same time.
  • the compressor power is 10 OOOkw
  • the potential energy recovered by the reaction water turbine K is 45kw. Therefore, when the compressor power is about 10, OOOkw, even if the reaction turbine K is a relatively low-cost expansion valve V as shown in the device in Fig. 4, the effect of changing thermal efficiency is small! / , And can be.
  • the heat radiating side 81 of the heat exchanger 8 is constituted by a heat radiating part of the cooling machine or a heat radiating part of the waste heat of the heat machine. That is, for example, a cooling machine that is any one of an air conditioner, a refrigerator, and an ice maker is a refrigerant compressor, a heat exchanger that includes the heat radiation side 81 of the heat exchanger 8 for cooling the compressed refrigerant, and an expansion. It is equipped with a valve and a heat absorption part, and the temperature in the room, refrigerator room or ice making room where the heat absorption part should be evacuated is lowered.
  • the heat radiating side 81 of the heat exchanger 8 can be configured by a waste heat radiating portion of the heat machine 30.
  • FIG. 4 is a layout diagram of the heat cycle device of the second embodiment of the present invention, in which the water turbine K of the heat cycle device of the first embodiment of the present invention is deformed to be simply an expansion valve V and temperature pressure FIG.
  • the exhaust of turbine S is cooled to 0 ° C (T) by the refrigerant vapor of -10 ° C (T) in the condenser (heat dissipation side 71 of heat exchanger 7), and then the pressure is 4.39kgfZcm
  • the refrigerant liquid whose pressure has been increased by the pump P is expanded and evaporated by the expansion valve V, and the heat of Q is heated on the heat receiving side 72 of the heat exchanger 7.
  • Turbine S inlet temperature is 110 ° C (T)
  • the heat radiating side 81 of the heat exchanger 8 is constituted by the waste heat heat dissipating part of the heat machine 30. That is, the thermal machine 30 includes a thermal machine body 31, a heat exchange composed of a heat radiation side 81 of the heat exchange 8 for releasing waste heat such as exhaust gas power, and an exhaust gas treatment device or chimney 33.
  • the heat radiating side 81 of the heat exchanger 8 can be configured by the heat radiating portion of the cooling machine, as in FIG.
  • FIG. 5 is a layout diagram of the heat cycle apparatus g [of the third embodiment of the present invention.
  • the heat cycle device of FIG. 5 is the heat cycle device of the first embodiment (FIG. 3) of the present invention, in which the heat radiation side 81 of the heat exchanger 8 is waste heat from the equipment constituting the heat cycle device itself, for example, It has a configuration that is changed to a heat release part to dissipate the waste heat of the compressor and turbine cooling system 41 or the waste heat of the lubrication system power (not shown).
  • Compressor waste heat from compressor includes waste heat from compressor cooling oil, lubricating oil, and waste heat from cooling compressor body.
  • the other configuration of the embodiment of FIG. 5 is the same as that of the heat cycle apparatus of the first embodiment of FIG. In the heat cycle apparatus of the embodiment of FIG. 5, waste heat from the equipment constituting the apparatus is recovered by the heat exchanger 8, and the amount of heat input to the heat cycle apparatus is reduced by the recovered amount.
  • FIG. 6 is a layout view of the composite heat cycle apparatus of the fourth embodiment of the present invention.
  • the combined heat cycle apparatus in FIG. 6 includes a compressor C, a first heat exchanger 7, a second heat exchanger 8, and a refrigerator (heat pump) J including an expander V, as well as a boiler, a second turbine S, and a recovery unit.
  • the second heat exchanger 8 is constituted by the condenser Y of the steam engine A.
  • the working gas Fg compressed by the compressor C is cooled through the heat radiation side 71 of the first heat exchanger 7 to become the working fluid Fe, and this working fluid is supplied to the expansion valve V. Then, it is expanded into a low-temperature working gas Fg, and this low-temperature working gas Fg is heated through the heat receiving side 82 of the condenser Y and then introduced into the compressor C.
  • the first heat exchanger 7 includes a heat receiving part 74 for hot water supply, and supplies, for example, hot water U at 80 ° C. to the outside.
  • the waste heat of the steam engine A that is the Rankine cycle that is, the waste heat of the condenser Y of the steam turbine S is used as the heat source of the heat cycle device of the first embodiment (FIG. 3) of the present invention.
  • FIG. 7 is a layout diagram of the composite heat cycle apparatus of the fifth embodiment of the present invention.
  • the combined heat cycle apparatus of FIG. 7 includes a compressor C, a first turbine S, a first heat exchanger 7, a first pump P, a water turbine K, and a refrigerator (heat pump) J including a first generator G, and Boiler, 2nd turbine S, 3rd
  • the working gas Fg compressed by the compressor C drives the first turbine S, and then passes through the heat radiation side 71 of the first heat exchanger 7 to be cooled. After that, the working gas Fg is pressurized by the first pump P and is pressurized.
  • the high-pressure hydraulic fluid is expanded and evaporated in the water turbine K to become the working gas Fg, and is heated through the heat receiving side 72 of the first heat exchanger 7 and the heat receiving side 82 of the condenser Y, and then the compressor. Introduced. Steam Eg generated in boiler B drives second turbine S and then cools in condenser Y
  • the steam Fg is introduced into the compressor C.
  • Equation 46 This is because the temperature difference increases from 340 ° C to 390 ° C by operating heat pump J in the combined heat cycle system of Fig. 6, and the thermal efficiency of the turbine body increases.
  • the thermal efficiency of the thermal cycler is 0.625.
  • the combined heat cycle device of FIG. 6 performs a heat cross in the Rankine cycle even if the power balance of the heat pump J (power consumption of the pump and generated work of the turbine) cancels or is somewhat positive.
  • the thermal efficiency can be improved.
  • the boiler inlet water supply temperature changes from 70 ° C
  • the boiler inlet water supply temperature only changes by 10 ° C. Therefore, it is not necessary to increase the boiler capacity.
  • FIG. 7 shows an example of the arrangement of the combined heat cycle device of heat pump J and Rankine cycle heat engine A and the amount of heat entering and leaving the working fluid.
  • the amount of heat given to the steam by boiler B is 10000KW
  • the output power of turbine S is 3000KW ( The heat efficiency is 0.3)
  • the waste heat of the turbine S (condenser waste heat) is 7000KW.
  • the amount of heat transferred from Eg to refrigerant Fg is 7000KW.
  • h is the performance coefficient of the refrigerator + 1, so
  • the generated power W of 5KW and water turbine K is 45KW.
  • FIG. 8 is a layout diagram of the composite heat cycle apparatus according to the sixth embodiment of the present invention.
  • the combined heat cycle apparatus of FIG. 8 includes a compressor C, a first turbine S, a first heat exchanger 7, a first pump P, a water turbine K, and a heat pump J including a first generator G, a boiler, a second Turbine S, 3rd generator G,
  • the combined heat cycle system shown in Fig. 8 has a heat pump that includes a turbine bin in heat engine A that itself performs a heat cross (combined with refrigeration mo, and cools the turbine bin exhaust of heat engine A with the refrigeration output of refrigeration mr. It is.
  • FIG. 9 is a layout diagram of the composite heat cycle apparatus according to the seventh embodiment of the present invention.
  • the shaft 91 of the second turbine S and the shaft 93 of the compressor C are connected by a connector 94.
  • this combined heat cycle device can cool the condenser Y without seawater, so it can be installed in a fuel production area separated from the coast. According to the combined heat cycle system shown in Figs. 7 to 9, the power generation efficiency can be reduced to about 1.9 of the conventional thermal power plant. For this reason, the power supply system using the combined heat cycle power generation device shown in FIGS. 7 to 9 can transmit the power generated by the combined heat cycle power generation device to a power consuming area separated by 500 km or more by a transmission line. To do.
  • FIG. 10 is a layout diagram of the composite heat cycle apparatus of the eighth embodiment of the present invention.
  • the combined heat cycle apparatus of FIG. 10 includes a first heat cycle apparatus including a compressor C, a first turbine S, a first heat exchanger 7, a second heat exchanger 8, a first pump P, and an expander V.
  • Second compressor C, condenser 81 Second compressor C, condenser 81
  • the working gas Fg compressed by the compressor C drives the first turbine S, is cooled through the heat radiation side 71 of the first heat exchanger 7, and then the first pump.
  • the pressure is increased by P to high pressure hydraulic fluid Fe, and this high pressure hydraulic fluid is expanded in the expander V to evaporate into a working gas Fg.
  • This working gas is the heat receiving side 72 of the first heat exchanger 7. And after passing through the heat receiving side 82 of the second heat exchanger 8, it is circulated to the compressor C.
  • the refrigerant gas 8g compressed by the second compressor C is cooled through the condenser 81 and is cooled.
  • This refrigerant liquid is expanded in the second expander V and is transferred to the heat absorption side 92 of the evaporator 9.
  • the refrigerant evaporates and absorbs heat from the heat radiating side 91 of the evaporator 9 to form a refrigerant gas 8g, which is circulated to the second compressor C.
  • the condenser 81 is connected to the heat dissipation side 81 of the second heat exchanger.
  • the combined heat cycle device of FIG. 10 has a structure in which two refrigeration cycles are arranged in series, and the second heat cycle device is cooled by the heat absorption side of the first heat cycle device.
  • the cold part of the heat cycle device that is, the heat radiating side 91 of the evaporator 9 can be at a very low temperature. Therefore, the cooling unit of the combined heat cycle apparatus of FIG. 10 can be used as a cooling source of a gas liquid apparatus for liquidating LNG, LPG, and the like, for example.
  • FIG. 11 is a layout diagram of the power generation heat output facility that is the combined heat cycle device of the ninth embodiment of the present invention.
  • the generator heat output facility in Fig. 11 includes a compressor C, a first turbine S, a generator G driven by the first turbine, a first heat exchanger 7, a second heat exchanger 8, a first pump P, and A heat cycle device including an expander V, an electric boiler 15 and a meteorite fuel boiler 16 are provided.
  • the working gas Fg compressed by the compressor C drives the first turbine S, and then passes through the heat radiation side 71 of the first heat exchanger 7 to be cooled and liquefied.
  • the pump P is pressurized to high pressure hydraulic fluid Fe, and this high pressure hydraulic fluid is expanded and expanded in expander V to become working gas Fg.
  • This working gas is heated through the heat receiving side 72 of the first heat exchanger 7 and the heat receiving side 82 of the second heat exchanger and then circulated to the compressor.
  • the electric boiler 15 After the water U for heat output is heated on the heat receiving side 73 of the first heat exchanger 7, it is heated to a predetermined temperature by the electric boiler 15 and supplied to the necessary place.
  • the electric boiler 15 is supplied with electric power generated by the generator G driven by the first turbine S.
  • the heat radiation side 81 of the second heat exchanger 8 can be constituted by a low greenhouse or a waste heat radiation part.
  • FIG. 12 is a layout diagram of a combined heat cycle power generation device that is the combined heat cycle device of the tenth embodiment of the present invention.
  • the combined heat cycle power generator shown in FIG. 12 includes a compressor C, a first turbine S, a first generator G driven by the first turbine, a first heat exchange 7, a second heat exchange 8, and a first pump P.
  • thermal cycle charge including expander V, second compressor C, combustor 35, second tar
  • An open type gas turbine 32 including a bottle S and a third generator is provided.
  • Figure 12 Combined Thermal Cycle
  • the working gas Fg compressed by the compressor C drives the first turbine S, and then passes through the heat radiation side 71 of the first heat exchanger 7 to be cooled and liquefied.
  • the pressure is increased to high pressure hydraulic fluid Fe, and this high pressure hydraulic fluid is expanded and expanded in the expander V.
  • the working gas is Fg.
  • the working gas Fg is heated through the heat receiving side 72 of the first heat exchanger 7 and the heat receiving side 82 of the second heat exchanger and then circulated to the compressor C.
  • the inlet air 34 is compressed by the second compressor C and supplied to the combustor 35, and fuel is combusted in the combustor 35.
  • the generated combustion gas drives the second turbine S.
  • the electric power generated by the generator G is supplied to the desired location.
  • the combined heat cycle power generation device of FIG. 12 generates power by putting the exhaust heat of the open gas turbine 32 into the heat input section (heat receiving side 82 of the second heat exchanger) of the heat cycle device g [.
  • Thermal cycle equipment g can use low-temperature waste heat. Accordingly, the thermal cycle power generation device of FIG. 12 can improve the thermal efficiency by expanding the use temperature range of the open type gas turbine to the low temperature side and expanding the heat drop of the open type gas turbine.
  • the combined thermal cycle power generator in Fig. 12 does not require a cooling water source and can be installed in desert areas.
  • the electric power generated by the present invention is not accompanied by waste of thermal energy in the conventional power generation system, the heat output (hot water or hot water) obtained from the electric heater (electric boiler) using the electric power is not included. Steam is not wasteful.
  • the heat obtained by recovering from the waste heat by the heat pump is heated by the electric boiler, so that a high-temperature heat output with high utility value can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 圧縮機、第1タービン、第1熱交換器7、第2熱交換器8、第1ポンプ、及び膨張器を含む高効率の熱サイクル装置並びにそれを用いた複合熱サイクル発電装置。圧縮機Cで圧縮された作動ガスFgが、第1タービンSを駆動した後、第1熱交換器7の放熱側71を通り冷却され、その後に第1ポンプPにより昇圧されて高圧作動液Feとされる。高圧作動液Feは膨張器Kにおいて膨張され蒸発し作動ガスFgとされる。作動ガスFgが、第2熱交換器の受熱側82を通り加熱された後、圧縮機Cへ導入される。第2熱交換器の放熱側81は、冷却機械の放熱部又は熱機械の廃熱の放熱部により構成される。

Description

熱サイクル装置及び複合熱サイクル発電装置
技術分野
[0001] 本発明は、圧縮機、膨張器、発電機、第 1熱交換器及び第 2熱交換器を含む熱サ イタル装置、並びにそれを利用した複合熱サイクル発電装置に関する。特に本発明 は、圧縮機で圧縮された作動ガスが、第 1タービンを駆動した後、第 1熱交換器の放 熱側を通り冷却凝縮され、その後にポンプにより昇圧されて高圧作動液とされ、この 高圧作動液が膨張器において膨張され蒸発し作動ガスとされ、作動ガスが第 1熱交 換器又は第 2熱交換器の受熱側を通り加熱 (熱クロス)された後、圧縮機へ導入され る熱サイクル装置、及び熱サイクル装置をランキンサイクル装置と結合した複合熱サ イタル発電装置に関する。
背景技術
[0002] 熱量を作動流体を介し仕事や電力に高効率で変換する多数の熱サイクル装置の 発明がなされてきた。例えば、特開昭 54— 27640号公報は、高温排気ガスの熱エネ ルギーを回収する発電設備を開示する。この発電設備は、高温排ガス流路の上流側 に廃熱ボイラ、下流側に流体予熱器をそれぞれ配置する。特開昭 61— 229905号 公報又は GB2, 174, 148Aは、二種類の非混和性の流体を用いる第 1サイクルと冷 媒流体を用いる第 2サイクルが組み合わせた機械的動力動力発生方法を開示する。 また、特開平 2— 40007号公報は、逆ランキンサイクルとランキンサイクルを組み合わ せた動力システムを開示する。
[0003] 最初に熱サイクル装置の熱効率について考察する。動作物質が、 1サイクルを行う 、即ち変化を連続して行った後に再び元の状態に戻る間に、温度 Tの高熱源から熱
h
量 Qを受取り、温度 Tの低熱源へ熱量 Qを捨て、外部へ仕事 L (熱量換算値とする) h b b
を行うとき、
Q =Q +L…(式 1)の関係がある。外部へ仕事 Lを与える場合が熱機関であり、仕 h b
事 Lを外部力も作動流体に与える場合が冷凍機又は熱ポンプ (heat pump)である。 熱機関の場合は、高熱源から受取る熱量 Qが少なく外部へ与える仕事 Lが大きいこ とが望ましい。従って、
η =L/Q…(式 2)を熱効率という。上式により Lを書き換えると、
h
r? = (Q -Q ) /Q…(式 3)である。可逆カルノーサイクルを行う熱機関の熱効率 r? h b h
を熱力学的温度 τ ° Κ及び Τ ° Κで表すと、
h b
r? = (τ -τ ) /τ = 1一(τ Ζτ ) ··· (式 4)である。
h b h b h
[0004] 一般的に低温物体から熱を高温物体に移す装置を冷凍機と称する。冷凍機は一 般的に物を冷やす目的の装置であるが、熱を低温側物体から高温物体へ移動させ 、高温物体を加熱する装置は、「熱ポンプ (heat pump)」と呼ばれる。「熱ポンプ」は、 冷凍機の使用方法を変更した場合の名称であると言える。熱ポンプは、例えば、冷 暖房用空調機の暖房運転の場合に使用される。低温物体から吸収した熱量 Q
b、高 温物体へ与える熱量 Q、熱ポンプを作動させるため外部力 した仕事量 L (熱量換 h
算値)の間には、
Q =Q +L…(式 5)の関係がある。
h b
[0005] 熱ポンプは、同一仕事量に対して、与える熱量 Q
hが大き 、程、その経済性が高 ヽ といえる。そこで
ε =Q ZL…(式 6)を熱ポンプの成績係数又は動作係数という。上記式 5から
h
L = Q— Q…(式 7)であるから、
h b
ε =Q / (Q -Q )…(式 8)である。低熱源の絶対温度を T ° Κ、高熱源の絶対温 h h b b
度を T ° Κ
h とすると、この両熱源の間に作用する熱ポンプで、最も成績係数の大きい ものは、逆カルノーサイクルを行う熱ポンプであり、その成績係数 εは、
ε =Τ / (Τ -Τ )…(式 9)である。逆カルノーサイクルは、 2つの等温変化及び 2つ b h b
の断熱変化であり、同一の高熱源と低熱源の間に作用するすべてのサイクルの中で 熱効率が最大である。
[0006] 図 1は、従来の冷凍 mr力 成る熱サイクル装置の構成要素を示す配置図であり、 圧縮機 Cで昇圧された冷媒ガス Fgが熱交換器 (凝縮器) 7で流体 Zに熱 Qを与えて h 凝縮された後、膨張弁 Vで膨張され、温度低下すると共に熱交 8で流体 Zから
2 熱 Qを吸収して流体 Ζを冷却し、その後、圧縮機 Cへ戻され、循環される。図 1の冷 b 2
凍機において、熱計算の検討を、冷媒がアンモニアである冷凍機について行う。簡 略ィ匕のため機械的損失がないとする。冷媒の温度の 1例は、圧縮機 C出口で 110° C (T )、凝縮器 7の出口で、 38° C (T )、蒸発器 V出口で、— 10° C (T)である。そ
3 2
れ故、この場合の逆カルノーサイクルでの冷凍機の成績係数 (理論的に最大の成績 係数) εを求めると、 εは、
ε =τ/ (τ 2 -τ)
= [273.15+ (— 10)]Ζ[38— (— 10) ] ^ 5.4· ·· (式 10)である。図 1の冷凍機にお
V、て、圧縮機 Cの入力 L (仕事)を 1とした場合、ヒートポンプの成績係数 ε は、冷凍 h 機成績係数 + 1であるから、
ε = 5.4+ 1 = 6.4· ·· (式 11)である。
h
[0007] 図 2は、蒸気タービン (熱機関 A)から成る熱サイクル装置の構成要素を示す配置 図であり、ボイラ Bで発生された高温高圧蒸気 Fgがタービン Sへ供給されタービンを 回転させて動力(仕事) Wを発生し、タービンの排気口と連通される復水器 Yにおい て蒸気が冷却され復水 Eeとされ、復水 Eeはポンプ Pで昇圧されボイラ Bへ供給され る。図 2の熱サイクル装置において、復水器 Yの廃熱 Qを全く利用しない場合、ター
2
ビン Sで発生される仕事 W (熱量換算値)は、
W=Q-Q…(式 12)であり、タービン Sの熱効率 7? は、
2 S
η = (Q-Q )ZQ…(式 13)である。ここで、 Qは、タービン入口側の作動流体の保
S 2
有熱量であり、 Q
2は、タービン出口側の作動流体よりの出熱量であり復水器 Yから排 出される廃熱に等しい。
[0008] 図 2の熱サイクル装置の熱効率 η 、即ち、熱サイクル装置の作動流体の入熱量(
0
保有熱量) Qに対するタービン Sで発生される仕事 Wの割合 7? は、
0
7] WZQ…(式 14)、この Wを式 12の W Q— Qで置換すると、
0 2
V = (Q— れは、前記 r? と同じであるから、
0 Q 2)ZQ…(式 16)であり、こ
S
η = η …(式 17)ということができる。
0 S
[0009] 図 2の熱サイクル装置にぉ 、て、復水器 Υの廃熱 Qの一部又は全部 Qを給水予熱
2 3 器 Υによりボイラ入口の復水へ移動させる、即ち、
2
0≤Q≤Q…(式 18)とすると共に、ボイラの入熱量を復水器 Yから移動される熱量
3 2
Qと同じだけ減少させると、ボイラの入熱量は、 Q— Qとなる。タービン S入口の蒸気 Fgの保有する熱量は、
ボイラの入熱量 (Q— Q ) + (Yによる移動熱量 Q ) =Q…(式 19)となる。タービン S
3 2 3
出口の蒸気 Fgの保有する熱量は Qであると考えることができるから、タービン Sで発
2
生される動力 w (熱量換算値)は、
W=Q-Q…(式 20)となる。それ故、タービン Sの熱効率 7? は、
2 S
7? = (Q-Q )ZQ…(式 21)であり、復水器 Yの廃熱 場合と同じで
S 2 Qを利用しない
2
ある。
[0010] 図 2の熱サイクル装置にぉ 、て、復水器 Yの廃熱 Qの一部又は全部 Qを給水予熱
2 3 器 Yによりボイラ入口の復水へ移動させると共に、ボイラの入熱量を復水器 Yから移
2
動される熱量 Qと同じだけ減少させる、即ち(Q— Q )とする場合、図 2の熱サイクル
3 3
装置の熱効率 7?、即ち熱サイクル装置の入熱量に対するタービン Sで発生される仕 事 Wの割合 7}は、仕事 Wが
W=Q-Q…(式 22)であり、熱サイクル装置の入熱量が(Q— Q )であるから、
2 3
7? =WZ(Q— Q ) = (Q— Q Q )…
3 2)Z(Q— (式 23)である。
3
[0011] 図 2の熱サイクル装置において、復水器 Yの廃熱 Qを全く利用しない、即ち、
2
Q =0の場合は、上述式 23は、
3
7? = (Q— Q 2)ZQ…(式 24)となる。
Q =が<3の一部即ち、 0≤Q≤Q…(式 18)の場合、上記式 23は、
3 2 3 2
7] = (Q-Q
2 )Z(Q— Q )…(式 25)であるから、式 24の場合に比べ、式 25の場合
3
は、分母が— Qだけ小さい分だけ 7?の値は、大きくなる。また、復水器の廃熱の全部
3
Qをポンプ Pの前又は後の復水へ移動させる場合は、 Q =Q…(式 26)であるから、
2 2 3
r? = 1· ·· (式 27)となる。
[0012] 図 2の熱サイクル装置において、 0≤Q≤Q…(式 18)の場合の熱サイクル装置の
3 2
熱効率 7?は、上記の通り、
r? = (Q-Q )Z(Q— Q )…(式 28)であり、分母及び分子を Qで割ると、
2 3
η =[ (Q— Q )ZQ]Z[ (Q— Q )ZQ]…(式 29)となる。これを変形すると、
2 3
r? = [ (Q-Q 2 )/Q]/[l- (Q 3 ZQ) ]…(式 30)であり、これに
r? = (Q— Q )ZQ…(式 21)を挿入すると、 η = η / (1-Q ZQ)…(式 32)となる。本発明は、廃熱等の利用価値の低い熱を
S 3
も熱ポンプを用いて熱サイクル装置内に取り入れ、熱サイクル装置内のタービンによ り動力出力を取り出す。本発明の熱サイクル装置は、タービンにより高効率で動力を 取り出すため、熱クロスを用いる。復水器 Yの廃熱 Qを全部利用する場合、式 27によ
2
り 7? = 1である。
[0013] 上記式 32からわ力るように、タービン Sの熱効率 7? 、及びポンプ Pの前又は後の復 s
水へ復水器 Yの廃熱力 移動させる熱量 Q
3が決まれば、熱サイクル装置の熱効率 r? が決まる。 Qが大きくなり Qに近づくに伴い、式 30の分母の(1— Q /Q)は小さくな
3 3
る力ら、 r?は、大きくなる。冷凍サイクル以外の熱サイクルでは、熱クロス率 Q 3 ZQを 大きくすることは困難である。熱移動 (熱クロス)させる為の高熱源と低熱源の温度差 を大きくとれな 、からである。また冷凍サイクル以外の熱サイクルでは式 27を実現で きない。
特許文献 1:特開昭 54— 27640号公報
特許文献 2:特開昭 61 - 229905号公報
特許文献 3 : GB2, 174, 148A
特許文献 4:特開平 2— 40007号公報
発明の開示
発明が解決しょうとする課題
[0014] 本発明は、圧縮機、膨張器、第 1熱交換器、及び第 2熱交換器を含む高効率の熱 サイクル装置、並びにそれを用いた複合熱サイクル発電装置を提供することを目的と する。本発明は、熱サイクル装置の第 2熱交換器の放熱側を空調すべき室、冷蔵庫 、製氷室等の低温室又は各種の廃熱の放熱部とすることができる熱サイクル装置を 提供することを目的とする。本発明は、廃熱又は自然界の熱を作動流体へ移動させ 利用する高効率熱サイクル装置を提供することを目的とする。本発明は、また蒸気タ 一ビンと冷凍機を組合せた複合熱サイクル装置の熱効率を向上させることを目的と する。本発明は、また蒸気タービン出口蒸気の廃熱を蒸気タービン入口の作動流体 へ移動 (熱クロス)させ熱サイクル発電装置の熱効率を向上させることを目的とする。 本発明は、熱サイクル装置の受熱側(吸熱側)を冷却機械の放熱側と組合せることに より、 LNG、 LPG等のガスを液ィ匕できる程度の極めて低い温度の冷熱源を形成可能 な熱サイクル装置を提供することを目的とする。
[0015] 本発明の別の目的は、ランキンサイクルの低温廃熱を冷凍機により高温熱出力に 変換することにある。本発明の更に別の目的は、ランキンサイクノレにおけるタービン 出口に設置した凝縮器 (冷却器)の冷熱源として冷凍機の冷凍出力を用いると共に、 冷凍機をヒートポンプとして作用させ、凝縮器の放出熱を昇温し外部へ熱出力として 供給可能な熱サイクル装置を提供することである。本発明は、冷凍サイクルを用いて 熱クロス Q を大きくし、
3
r? = 7? Z(1— Q ZQ)…(式 32)において、 7? = 1 · ·· (式 27)を実現する力、又は 7?
S 3
をできるだけ 1に近づけることである。本発明において、冷凍サイクルは、冷媒を圧縮 機で圧縮する冷凍サイクルにお 、て凝縮器の前にタービンを配置したものである。本 発明のその他の目的は、以下の説明において明らかにされる。
課題を解決するための手段
[0016] 本発明の熱サイクル装置 (基本サイクル装置)は、圧縮機、第 1タービン、第 1熱交
^,第 2熱交^^、第 1ポンプ、及び膨張器を含む。圧縮機 (c)で圧縮された作動 ガスが、第 1タービン (S)を駆動した後、第 1熱交換器 (7)の放熱側(71)を通り冷却 され、その後に第 1ポンプ (P)により昇圧されて高圧作動液 (Fe)とされ、該高圧作動 液が膨張器 (K、 V)にお 、て膨張され蒸発し作動ガス (Fg)とされ、該作動ガスが、第 2熱交換器の受熱側 (82)を通り加熱された後、圧縮機へ導入され、第 2熱交換器の 放熱側(81)は、冷却機械の放熱部又は熱機械(30)の廃熱の放熱部により構成さ れる。
[0017] 本発明の熱サイクル装置は、以下の特徴を含むことができる。(1)前記膨張器は反 動水車 (K)であり、高圧作動液 (Fe)が反動水車 (K)を駆動し仕事 (W )を出力する
2
と共に膨張され蒸発し作動ガスい とされる。(2)作動ガスが、第 1熱交^^の受熱 側(72)及び第 2熱交換器の受熱側 (82)を通り加熱された後、圧縮機 Cへ導入され る。(3)前記冷却機械は、空調機、冷蔵庫又は製氷機のためのものである。(4)前記 膨張器は、膨張弁 (V)であり、前記高圧作動液が膨張弁 (V)を通り膨張され蒸発し 作動ガスとされる。(5)前記熱機械 (30)の廃熱の放熱部は、前記圧縮機、第 1タービ ン、第 1発電機 (G)及び圧縮機駆動モータの潤滑冷却系統の廃熱を放熱するため の放熱部である。(6)第 1タービン (S)により駆動される第 1発電機 (G)外部へ電力を 供給するための出力端 (11)、並びに第 1発電機 (G)、出力端 (11)、圧縮機の駆動 モータ (M)、第 1ポンプの駆動モータ (M )を電気的に結合する導線(12)を含む。
2
[0018] 本発明の複合熱サイクル装置は、圧縮機、第 1熱交換器、第 2熱交換器、及び膨張 器を含む冷凍機 CO、並びにボイラ、第 2タービン、復水器、第 2タービンにより駆動さ れる第 3の発電機 (G )及び第 2ポンプを含む蒸気機関 (Α)から成る。圧縮機 (C)で
3
圧縮された作動ガスが、第 1熱交 (7)の放熱側(71)を通り冷却されて作動液 (F e)とされ、該作動液が膨張弁 (V)にお 、て膨張され作動ガス (Fg)とされ、該作動ガ スが、第 2熱交換器の受熱側(82)を通り加熱された後、圧縮機へ導入され、ボイラ( B)で発生された蒸気 (Eg)が第 2タービン (S )を駆動した後、復水器 (Y)の放熱側(
2
81)を通り冷却され、第 2ポンプ (P )で昇圧されて高圧復水 (Ee)となり、高圧復水 (E
2
e)が第 1熱交換器の受熱側(73)を通り加熱された後にボイラ (B)へ循環され、復水 器 (Y)の受熱側は第 2熱交換器の受熱側 (82)により構成される。前記第 1熱交換器 は、給湯のための受熱部(74)を備えることができる。
[0019] 本発明の複合熱サイクル装置は、圧縮機、第 1タービン、第 1熱交換器、第 1ポンプ 、膨張器、及び第 1発電機 (G)を含む熱サイクル装置 (基本サイクル装置)、並びに ボイラ、第 2タービン、第 3発電機 (G )、復水器及び第 2ポンプを含む蒸気機関を含
3
む。圧縮機 (C)で圧縮された作動ガスが、第 1タービン (S)を駆動した後、第 1熱交 換器 (7)の放熱側(71)を通り冷却され、その後に第 1ポンプ (P)により昇圧されて高 圧作動液 (Fe)とされ、該高圧作動液が膨張器 (K、 V)において膨張され蒸発し作動 ガス (Fg)とされ、圧縮機へ導入され、ボイラ (B)で発生された蒸気 (Eg)が第 2タービ ン (S )を駆動した後、復水器 (Y)で冷却され、第 2ポンプ (P )で昇圧されて高圧復
2 2
水 (Ee)となってボイラ (B)へ循環され、前記作動ガスが、第 1熱交^^の受熱側(72 )及び復水器 (Y)の受熱側 (82)を通り加熱された後、圧縮機 Cへ導入される。
[0020] 本発明の熱サイクル装置は、以下の特徴を含むことができる。 (1)前記高圧復水 (E e)はボイラ (B)へ循環される前に、第 1熱交換器の第 2の受熱側(73)又は復水器 (Y )の受熱側 (83)にお 、て加熱される。(2)前記第 1発電機 (G)、蒸気機関の第 2ター ピン )から出力される仕事 (W )を電力に変換する第 3発電機 (G )、外部へ電力
2 3 3 を供給するための出力端(11)、並びに第 1発電機、第 3発電機、及び出力端(11)と を電気的に結合する導線を含む。本発明の電力供給システムは、複合熱サイクル発 電装置により発生された電力を 500km以上離間した電力消費地へ送電線により送 電することを特徴とする。
[0021] 本発明の複合熱サイクル装置は、圧縮機、第 1タービン、第 1熱交換器、第 2熱交 換器、第 1ポンプ、及び膨張器を含む第 1の熱サイクル装置と、第 2の圧縮機、凝縮 器、第 2の膨脹器、及び蒸発器を含む第 2の熱サイクル装置とを結合したものである 。この複合熱サイクル装置において、圧縮機 (C)で圧縮された作動ガスが、第 1ター ビン (S)を駆動した後、第 1熱交換器 (7)の放熱側 (71)を通り冷却され、その後に第 1ポンプ (P)により昇圧されて高圧作動液 (Fe)とされ、この高圧作動液が膨張器 (V) において膨張され蒸発し作動ガス (Fg)とされ、この作動ガスが、第 2熱交 (8)の 吸熱側 (82)を通り加熱された後、圧縮機へ循環される。第 2の圧縮機 (C )で圧縮さ
2 れた冷媒ガス (8g)が凝縮器 (81)を通り冷却され冷媒液 (8e)とされ、この冷媒液が 第 2の膨張器 (V )において膨張され蒸発器 (9)の吸熱側(92)において蒸発すると
2
共に蒸発器 (9)の放熱側(91)の熱を吸収して冷媒ガス (8g)とされ、この冷媒ガスが 第 2の圧縮機 (C )へ循環される。第 2熱交換器の放熱側 (81)が凝縮器を構成する。
2
蒸発器 (9)の放熱側(91)によりガス液ィ匕装置の冷熱源を構成することができる。
[0022] 本発明の複合熱サイクル発電装置は、第 1圧縮機、第 1タービン、発電機、第 1熱 交換器、第 2熱交換器、第 1ポンプ、膨張器及び第 1発電機を含む熱サイクル装置、 並びに第 2圧縮機、燃焼器、第 2タービン及び第 3発電機を含む開放型ガスタービン を含む。この発電装置において、第 1圧縮機 (C)で圧縮された作動ガス (Fg)が、第 1 タービン (S)を駆動した後、第 1熱交換器 (7)の放熱側(71)を通り冷却され、その後 に第 1ポンプ (P)により昇圧されて高圧作動液 (Fe)とされ、この高圧作動液が膨張 器 (V)において膨張され蒸発し作動ガス (Fg)とされ、この作動ガス (Fg)が、第 1熱 交換器の受熱側 (72)及び第 2熱交換器の受熱側 (82)を通り加熱された後、圧縮機 (C)へ循環される。入口空気 (34)が第 2圧縮機 (C )により圧縮されて燃焼器 (35)
2
へ供給され、燃焼器にぉ 、て圧縮空気に燃料が混合され点火燃焼され燃焼ガスを 生じ、生じた燃焼ガスは第 2タービン (S )を駆動した後、第 2熱交換器の放熱側(81)
2
を通り降温され排気 (36)として大気へ放出され、第 1発電機 (G)及び第 3発電機 (G
3
)が、第 1タービン (S)及び第 2タービン (S )によりそれぞれ駆動される。
2
[0023] 本発明の発電熱出力設備は、圧縮機、第 1タービン、この第 1タービンにより駆動さ れる発電機、第 1熱交換器、第 2熱交換器、第 1ポンプ、及び膨張器を含む熱サイク ル装置と、電気ボイラを含む。この発電熱出力設備において、圧縮機 (C)で圧縮され た作動ガス (Fg)が、第 1タービン (S)を駆動した後、第 1熱交換器 (7)の放熱側 (71) を通り冷却され、その後に第 1ポンプ (P)により昇圧されて高圧作動液 (Fe)とされ、こ の高圧作動液が膨張器 (V)にお 、て膨張され蒸発し作動ガス (Fg)とされ、この作動 ガスが、第 2熱交換器の受熱側(82)を通り加熱された後、圧縮機へ循環される。熱 出力用の水 (U)が第 1熱交換器 (7)の受熱側(73)にお 、て加熱された後に前記電 気ボイラ(15)により所定の温度まで加熱され、前記第 1タービンにより駆動される発 電機 (G)により発生された電力が前記電気ボイラ(15)に供給される。好ましくは、前 記作動ガスが、第 2熱交換器の受熱側 (82)を通る前に第 1熱交換器 (7)の受熱側( 72)を通り加熱され、第 2熱交換器の放熱側(81)が低温室又は廃熱の放熱部により 構成される。
図面の簡単な説明
[0024] [図 1]従来の冷凍機の構成要素を示す配置図。
[図 2]従来のタービンを含む熱機関、即ちランキンサイクルを行う熱サイクル装置の基 礎的な構成要素を示す配置図。
[図 3]本発明の第 1実施例の熱サイクル装置の配置図。
[図 4]本発明の第 2実施例の熱サイクル装置の配置図。
[図 5]本発明の第 3実施例の熱サイクル装置の配置図。
[図 6]本発明の第 4実施例の複合熱サイクル発電装置の配置図。
[図 7]本発明の第 5実施例の複合熱サイクル発電装置の配置図。
[図 8]本発明の第 6実施例の複合熱サイクル発電装置の配置図。
[図 9]本発明の第 7実施例の複合熱サイクル発電装置の配置図。
[図 10]本発明の第 8実施例の複合熱サイクル装置の配置図。 [図 11]本発明の第 9実施例の複合熱サイクル装置の配置図。
[図 12]本発明の第 10実施例の複合熱サイクル装置の配置図である。
符号の説明
[0025] A:熱機関 (ランキンサイクル)、 B :ボイラ、 C :圧縮機、 ε:成績係数、 η:熱サイクル 装置の熱効率、 7? :タービン単体の熱効率、 Eg:蒸気、 Ee:水(給水、復水)、 Fg:冷 媒ガス、 Fe :冷媒液、 G、 G、 G:発電機、 J :熱サイクル装置 (冷凍機、熱ポンプ)、 K:
2 3
水車、
L、L:仕事(入力)、 N :燃料電池、 M、M :モータ、 P、 P2 :ポンプ、 Q、 Q、 Q、 Q:
2 2 2 3 4 熱量、 s、 s:タービン、 u:水、 V:膨張弁、 w、 w、
2 w:仕事(出力)、 Y:復水器、 7、
2 3
8 :熱交換器、 9 :蒸発器、 15 :電気ボイラ、 30 :熱機械、 31 :熱機械本体、 32 :開放 型ガスタービン、 33 :煙突 (処理装置)、 34 :入口空気、 35 :燃焼器、 36 :排気、 41 : 冷却系統、 71、 81、 91 :放熱側、 72、 73、 74、 82、 83 :受熱側(吸熱側)、 91、 93 : 軸、 92 :吸熱側、 94 :連結器。
発明を実施するための最良の形態
[0026] 図 3は、本発明の第 1実施例の熱サイクル装 g[の配置図であり、この熱サイクル装 g[は、圧縮機 C及び凝縮器を有する冷凍機にタービン Sその他を挿入した構成を有 する。圧縮機 Cで圧縮された作動流体 (冷媒ガス Fg)は、タービン Sを駆動し仕事 W を出力した後、熱交翻 7の放熱側 71において冷却液化される。熱交翻 7の出口 に接続されるポンプ Pは、作動液 Feを吸引し、タービン Sの背圧を下げ、タービン出 力 Wを増大させると共に作動液 Feの圧力を上昇させる。昇圧された作動液 Feは、反 動水車 Kを駆動し仕事 Wを出力すると共に、膨張弁の作用を行う反動水車 Kにより
2
膨張され蒸発し作動ガス (冷媒ガス Fg)となる。作動ガス Fgは、熱交換器 7の受熱側 72において加熱され、更に熱交換器 8で加熱された後、圧縮機 Cへ導入される。
[0027] 図 3の熱サイクル装衝において、熱交換器 7は、タービン Sの排気 (冷媒ガス Fg)の 熱を放出させ、水車 K出口の作動ガスを加熱する作用を行う。タービン Sから排出さ れた冷媒ガス Fgは、熱交 7の放熱側 71で冷却され凝縮液ィ匕しポンプ Pにより加 圧される。熱交翻7の放熱側 71は、タービン Sから排出された冷媒ガス Fgを冷却 することによりタービン Sの入口と出口の作動流体の温度差を大きくし、タービン出力 Wを大きくする。タービン Sの出口の作動流体からの廃熱 Qは、反動水車 Kの下流の
3
作動流体に移動 (熱クロス)される。ポンプ Pにより加圧さ; ^立置エネルギーを与えら れた作動液 Feは、反動水車 Kにより位置エネルギーを回収され、同時に膨張しガス 化される。この場合、図 7に示すように、圧縮機動力が 10, OOOkwの場合において、 反動水車 Kが回収する位置エネルギーは 45kwである。それ故、圧縮機動力が 10, OOOkw程度の規模の場合、反動水車 Kを、図 4の装置に示すように、比較的低コスト の膨張弁 Vとしても、変化する熱効率の影響は小さ!/、と 、うことができる。
[0028] 図 3の熱サイクル装置において、熱交^^ 7における放熱側 71から受熱側 72へ移 動される熱量、即ちタービン S出口側の作動流体力 圧縮機 C入口側の作動流体へ 移動 (熱クロス)される熱量を Qとし、熱交 8における放熱側 81 (外部)から受熱
3
側 82への移動熱量を Qとすると、熱サイクル装置の出力(タービン Sの出力) Wは、
4
W= (L + Q )…(式 33)となる。仕事 Wを電力に変換する第 1発電機 Gは導線 12を
4
介して出力端 11と電気結合される。
[0029] 図 3の熱サイクル装置において、熱交換器 8の放熱側 81は、冷却機械の放熱部又 は熱機械の廃熱の放熱部により構成される。即ち、例えば、空調機、冷蔵庫、又は製 氷機のいずれかである冷却機械は、冷媒圧縮機、圧縮された冷媒を冷却するための 熱交換器 8の放熱側 81からなる熱交換器、膨脹弁及び吸熱部を備え、吸熱部が空 調されるべき室、冷蔵室又は製氷室内の温度を降下させる。熱交換器 8の放熱側 81 は、熱機械 30の廃熱の放熱部により構成され得る。
[0030] 図 4は、本発明の第 2実施例の熱サイクル装 の配置図であり、本発明の第 1実施 例の熱サイクル装置の水車 Kを変形し単に膨張弁 Vとすると共に温度圧力の例を示 す配置図である。タービン Sの排気が凝縮器 (熱交換器 7の放熱側 71)においてー1 0° C (T )の冷媒蒸気により、 0° C (T )に冷却され、その後、圧力が 4.39kgfZcm
2 4
2absから 15.04kgfZcm2absまでポンプ Pで昇圧され液化される。 Tは、図 4におけ
4
る凝縮器 (熱交換器の放熱側 71)の出口の冷媒温度である。ポンプ Pで昇圧された 冷媒液は、膨張弁 Vで膨張され、蒸発され、熱交翻7の受熱側 72において Qの熱
3 を受け— 10° C (T )となる。タービン Sの入口温度は、 110° C (T )、凝縮器出口冷
2 3
媒温度が 0° C (T )であるから、カルノーサイクル上のタービン効率 η は、 r? = (T -T ) /T
S 3 4 3
= (110-0) / (273.15 + 110) 0.28· ·· (式 34)
である。
[0031] 図 4の熱サイクル装置において、熱交換器 8の放熱側 81は、熱機械 30の廃熱の放 熱部により構成される。即ち、熱機械 30は、熱機械本体 31、排ガス力ゝらの廃熱を放 出するための熱交 8の放熱側 81からなる熱交^^、及び排ガス処理装置又は 煙突 33を有する。し力しながら、図 4の熱サイクル装置において、熱交^^ 8の放熱 側 81は、図 3の場合と同様に、冷却機械の放熱部により構成することができる。
[0032] 図 5は、本発明の第 3実施例の熱サイクル装 g[の配置図である。図 5の熱サイクル 装置は、本発明の第 1実施例(図 3)の熱サイクル装置において、熱交換器 8の放熱 側 81が、熱サイクル装置自体を構成する機器からの廃熱、例えば、圧縮機やタービ ンの冷却系統 41の廃熱又は図示しない潤滑系統力 の廃熱を放熱するのための放 熱部に変更した構成を有する。圧縮機の冷却廃熱は、圧縮機の冷却油、潤滑油から の廃熱、圧縮機本体の冷却から生じる廃熱を含む。図 5の実施例のその他の構成は 、図 3の第 1実施例の熱サイクル装置と同様であり、重複説明を省略する。図 5の実 施例の熱サイクル装置は、装置を構成する機器よりの廃熱を熱交換器 8で回収し、そ の回収分だけ熱サイクル装置への入熱量を減少させる。
[0033] 図 6は、本発明の第 4実施例の複合熱サイクル装置の配置図である。図 6の複合熱 サイクル装置は、圧縮機 C、第 1熱交換器 7、第 2熱交換器 8及び膨張器 Vを含む冷 凍機 (熱ポンプ) J、並びにボイラ 、第 2タービン S、復水器 Y、第 2タービン Sにより
2 2 駆動される第 3の発電機 G及び第 2ポンプ ρを含む蒸気機関 Aから成り、冷凍 mrの
3 2
第 2熱交換器 8が蒸気機関 Aの復水器 Yによって構成される。この複合熱サイクル装 置において、圧縮機 Cで圧縮された作動ガス Fgが、第 1熱交換器 7の放熱側 71を通 り冷却されて作動液 Feとされ、この作動液が膨張弁 Vにお ヽて膨張され低温作動ガ ス Fgとされ、この低温作動ガス Fgが、復水器 Yの受熱側 82を通り加熱された後、圧 縮機 Cへ導入される 0
[0034] 図 6の本発明の第 4実施例の複合熱サイクル装置において、ボイラ Bで発生された 蒸気 Egが第 2タービン Sを駆動した後、復水器 Yの放熱側 81を通り冷却され、第 2ポ ンプ Pで昇圧されて高圧復水 Eeとなり、高圧復水 Eeが第 1熱交^^の受熱側 73を
2
通り加熱された後にボイラ Bへ循環される。第 1熱交 7は、給湯のための受熱部 7 4を備え、例えば、 80°Cの温水 Uを外部へ供給する。図 6の複合熱サイクル装置は、
2
本発明の第 1実施例(図 3)の熱サイクル装置の熱源としてランキンサイクルである蒸 気機関 Aの廃熱、即ち蒸気タービン Sの復水器 Yの廃熱を利用する。
2
[0035] 図 7は、本発明の第 5実施例の複合熱サイクル装置の配置図である。図 7の複合熱 サイクル装置は、圧縮機 C、第 1タービン S、第 1熱交換器 7、第 1ポンプ P、水車 K、 及び第 1発電機 Gを含む冷凍機 (熱ポンプ) J、並びにボイラ 、第 2タービン S、第 3
2 発電機 G、復水器 Y、及び第 2ポンプ Ρを含むランキンサイクル熱機関 Αを含む。圧
3 2
縮機 Cで圧縮された作動ガス Fgが、第 1タービン Sを駆動した後、第 1熱交翻 7の 放熱側 71を通り冷却され、その後に第 1ポンプ Pにより昇圧されて高圧作動液 Feとさ れ、この高圧作動液が水車 Kにおいて膨張され蒸発し作動ガス Fgとされ、第 1熱交 翻7の受熱側 72及び復水器 Yの受熱側 82を通り加熱された後、圧縮機へ導入さ れる。ボイラ Bで発生された蒸気 Egが第 2タービン Sを駆動した後、復水器 Yで冷却
2
され、第 2ポンプ Pで昇圧されて高圧復水 Eeとなってボイラ Bへ循環される。作動ガ
2
ス Fgは、第 1熱交翻の受熱側 72及び復水器 Yの受熱側 82を通り加熱された後、 圧縮機 Cへ導入される。
[0036] 図 6の複合熱サイクル装置において、熱ポンプ Jを休止した状態 (熱機関の排出蒸 気 Egと復水 Eeの間で直接的に熱交換させる)における熱機関の運転の 1例は、蒸気 温度(タービン入口 ) 400° C、復水温度(タービン出口 ) 60° Cであり、カルノーサイ クル上の熱効率 7}は、
7? = (400 - 60) / (400 + 273.15) =0.505· ·· (式 45)である。他方、蒸気温度を 4 00° Cとし、図 6のように熱ポンプ Jを作動させると、復水温度 (タービン出口)は 10° Cとなり、カルノーサイクル上の熱効率 7}は、
η 0.579· ·· (式 46)となった。これは、図 6の複合熱サイクル装置において、熱ポン プ Jを作動させることにより、温度差が 340° Cから 390° Cへ拡大し、タービン本体 の熱効率が
0.579— 0.505 = 0.074· ·· (式 47)だけ上昇したことを示すものである。 [0037] 次に図 6の熱サイクル装置の熱クロスについて考える。熱ポンプ Jを停止し熱クロス がな 、ときの復水温度 (タービン出口)及び給水温度 (ボイラ入口)が共に 10° Cであ り、これが 400° Cの蒸気になるには、 10° Cの給水を 100° Cにするための 90単 位の熱量、 100° Cの復水を 100° Cの蒸気にするための 539単位の熱量、並びに 100° Cの蒸気を 400° Cの蒸気に加熱するため蒸気の比熱を 0. 5として 150単位 の熱量が必要であるから、合計 779単位の熱量が必要である。
[0038] 熱ポンプ Jを作動させ熱クロスを行う場合、復水温度 (タービン出口)は 10° C、ボイ ラ入口の給水温度は 70° Cとなるから、熱クロスを行わない場合の 10° Cと比較する と、温度を 60° C上昇させる熱量、即ち 60単位の熱量が少なくてすみ、これは 60Z 779 = 0. 077· ·· (式 48)となる。それ故、熱クロスにより入熱量を減少させることにより 、図 6の熱サイクル装置は、前述の
r? = 7? Z(l— Q 3ZQ)…(式 32)、即ち、
S
η Ζ η = 1/ (1-Q ZQ)…(式 49)に基づくと、熱効率が
S 3
1 ÷ (1— 0.077) = 1. 08· ·· (式 50)となり、約 8%向上する。
[0039] 次に図 6の熱サイクル装置の熱クロスによる熱落差拡大を考える。熱ポンプ Jを停止 し熱クロスがないときのタービンの熱効率 は、
s
η = (400- 10) / (400 + 273.15) =0. 579· ·· (式 51)であり、上記熱効率上昇 s
割合を乗じると、熱サイクル装置の熱効率は、 0.625となる。
[0040] 図 6の複合熱サイクル装置は、熱ポンプ Jの動力収支(ポンプの消費動力とタービン の発生仕事)が相殺するか又は幾分プラスであっても、ランキンサイクルに熱クロスを 行うことにより熱効率を向上させ得る。またこれに伴ってボイラ容量を増加することは 必要でない。例えば、従来、蒸気温度 400° C、復水温度 (タービン出口) 60° C、 ボイラ入口給水温度 60° Cが、上記のように蒸気温度 400° C、復水温度 (タービン 出口) 10° C、ボイラ入口給水温度 70° Cと変わり、ボイラ入口給水温度が 10° C 変わるだけであり、従って、ボイラ容量の増加は不要である。
[0041] 図 7は熱ポンプ J及びランキンサイクル熱機関 Aの複合熱サイクル装置の配置及び 作動流体に出入りする熱量の 1例を示す。図 7の複合熱サイクル装置において、ボイ ラ Bにより蒸気に与えられる熱量は 10000KW、タービン Sの出力 W力 3000KW( 熱効率 0.3)、タービン Sの廃熱 (復水器廃熱)が 7000KWである。復水器 Yで蒸気
2
Egから冷媒 Fgへ移動される熱量は 7000KWである。
[0042] 図 7の右方の熱ポンプ Jの各要素において、圧縮機 Cの入力 Lを 1単位投入した (L
= 1)場合、タービン Sの出力 W、熱交 7出口における熱クロス Q、熱交 8に
3
おける外部からの取入れ熱量 Q
4は次の通りである。ヒートポンプの成績係数 ε
hは、 冷凍機成績係数 + 1であるから、
ε = 5.4+ 1 = 6.4· ·· (式 52)である。タービン Sの出力 Wは、
h
W= ε X η =6.4 X 0.28 1.7· ·· (式 53)である。熱交^^ 7出口における熱クロ h S
ス量 Qは、
3
Q =6.4— 1.7=4.7· ·· (式 54)である。熱交換器 8における外部よりの熱吸収量 Q
3 4 は、
Q
4 =冷凍機の成績係数 Q
3…(式 55)であるから、
Q = 5.4— 4.7 = 0.7· ·· (式 56)である。
4
[0043] 図 7の複合熱サイクル装置において、前記の通り復水器 Yにおける移動熱量が 70 OOKWであるとすると、吸熱量 0.7を 7000KWとする比例計算により、熱サイクル装 衝の各機器に出入りする熱量が得られる。即ち、図 7において 1単位が 10000KW であるから、圧縮機 Cの入力 Lは、 L= 10000KW、タービン Sの仕事 W= 17000K W、熱交換器 7における熱クロス Q =47000KWである。ポンプ Pの消費動力 Lは 4
3 2
5KW、水車 Kの発生動力 Wは 45KWである。
2
[0044] 図 8は、本発明の第 6実施例の複合熱サイクル装置の配置図である。図 8の複合熱 サイクル装置は、圧縮機 C、第 1タービン S、第 1熱交換器 7、第 1ポンプ P、水車 K、 及び第 1発電機 Gを含む熱ポンプ J、並びにボイラ 、第 2タービン S、第 3発電機 G、
2 3 復水器 Y、及び第 2ポンプ Ρを含むランキンサイクル熱機関 Αを含む。圧縮機 Cで圧
2
縮された作動ガス Fgが、第 1タービン Sを駆動した後、第 1熱交換器 7の放熱側 71を 通り冷却され、その後に第 1ポンプ Pにより昇圧されて高圧作動液 Feとされ、この高圧 作動液が水車 Kにおいて膨張され蒸発し作動ガス Fgとされ、第 1熱交 7の受熱 側 72及び復水器 Yの受熱側 82を通り加熱された後、圧縮機 Cへ導入される。ボイラ Bで発生された蒸気 Egが第 2タービン Sを駆動した後、復水器 Yで冷却され、第 2ポ ンプ Pで昇圧されて高圧復水 Eeとなり、復水器 Yの受熱側 83を通り加熱されボイラ B
2
へ循環される。図 8の複合熱サイクル装置は、それ自体熱クロスを行う熱機関 Aにタ 一ビンを含む熱ポンプ (冷凍 moを組合せ、冷凍 mrの冷凍出力により熱機関 Aのタ 一ビン排気を冷却するものである。
[0045] 図 9は、本発明の第 7実施例の複合熱サイクル装置の配置図である。図 9の複合熱 サイクル装置は、第 2タービン Sの軸 91と圧縮機 Cの軸 93が連結器 94により連結さ
2
れ、第 2タービン Sの機械的出力により圧縮機 Cが駆動される他は、図 8の実施例と
2
同様である。
[0046] 図 7乃至図 9の複合熱サイクル装置においては、ランキンサイクル熱機関 Aの復水 器 Yが冷凍機又は熱サイクル装 g[により冷却され、第 2タービン Sの出口温度を低く
2
することができるので、高い熱効率のタービン出力を得ることができる。また、この複 合熱サイクル装置は、海水なしで復水器 Yを冷却することができるので、海岸から離 間した燃料産出地域に設置することができる。図 7乃至図 9の複合熱サイクル装置に よれば、発電効率を従来の火力発電所の 1. 9程度とすることができる。そのため、図 7乃至図 9の複合熱サイクル装置を使用する電力供給システムは、複合熱サイクル発 電装置により発生された電力を 500km以上離間した電力消費地へ送電線により送 電することを可能とする。
[0047] 図 10は、本発明の第 8実施例の複合熱サイクル装置の配置図である。図 10の複合 熱サイクル装置は、圧縮機 C、第 1タービン S、第 1熱交換器 7、第 2熱交換器 8、第 1 ポンプ P、及び膨張器 Vを含む第 1の熱サイクル装置と、第 2の圧縮機 C、凝縮器 81
2
、第 2の膨脹器 V、及び蒸発器 92含む第 2の熱サイクル装置とを結合して成る。図 1
2
0の複合熱サイクル装置において、圧縮機 Cで圧縮された作動ガス Fgが、第 1タービ ン Sを駆動した後、第 1熱交換器 7の放熱側 71を通り冷却され、その後に第 1ポンプ P により昇圧されて高圧作動液 Feとされ、この高圧作動液が膨張器 Vにお ヽて膨張さ れ蒸発し作動ガス Fgとされ、この作動ガスが、第 1熱交換器 7の受熱側 72、及び第 2 熱交 8の受熱側 82を通り加熱された後、圧縮機 Cへ循環される。
[0048] また、第 2の圧縮機 Cで圧縮された冷媒ガス 8gが、凝縮器 81を通り冷却され冷媒
2
液 8eとされ、この冷媒液が第 2の膨張器 Vにおいて膨張され蒸発器 9の吸熱側 92に おいて蒸発すると共に蒸発器 9の放熱側 91の熱を吸収して冷媒ガス 8gとされ、この 冷媒ガスが第 2の圧縮機 Cへ循環される。凝縮器 81は、第 2熱交換器の放熱側 81
2
により構成される。図 10の複合熱サイクル装置は、 2つの冷凍サイクルを直列に配置 した構造を有し、第 2の熱サイクル装置の放熱側を第 1の熱サイクル装置の吸熱側で 冷却する故に、第 2の熱サイクル装置の冷熱部、即ち、蒸発器 9の放熱側 91は、極 めて低い温度とすることができる。従って、図 10の複合熱サイクル装置の冷熱部は、 例えば、 LNG、 LPG等を液ィ匕するためのガス液ィ匕装置の冷熱源とすることができる。
[0049] 図 11は、本発明の第 9実施例の複合熱サイクル装置である発電熱出力設備の配 置図である。図 11の発電熱出力設備は、圧縮機 C、第 1タービン S、第 1タービンによ り駆動される発電機 G、第 1熱交換器 7、第 2熱交換器 8、第 1ポンプ P及び膨張器 V を含む熱サイクル装置と、電気ボイラ 15及びィ匕石燃料ボイラ 16を備える。図 11の発 電熱出力設備において、圧縮機 Cで圧縮された作動ガス Fgが、第 1タービン Sを駆 動した後、第 1熱交換器 7の放熱側 71を通り冷却液化され、その後に第 1ポンプ P〖こ より昇圧されて高圧作動液 Feとされ、この高圧作動液が膨張器 Vにおいて膨張され 蒸発し作動ガス Fgとされる。この作動ガスが、第 1熱交 7の受熱側 72及び第 2熱 交換器の受熱側 82を通り加熱された後、圧縮機へ循環される。熱出力用の水 Uが第 1熱交翻7の受熱側 73において加熱された後、電気ボイラ 15により所定の温度ま で加熱され、必要個所へ供給される。電気ボイラ 15へは、第 1タービン Sにより駆動さ れる発電機 Gにより発生された電力が供給される。第 2熱交換器 8の放熱側 81は、低 温室又は廃熱の放熱部により構成されることができる。
[0050] 図 12は、本発明の第 10実施例の複合熱サイクル装置である複合熱サイクル発電 装置の配置図である。図 12の複合熱サイクル発電装置は、圧縮機 C、第 1タービン S 、第 1タービンにより駆動される第 1発電機 G、第 1熱交翻 7、第 2熱交翻 8、第 1 ポンプ P及び膨張器 Vを含む熱サイクル装衝と、第 2圧縮機 C、燃焼器 35、第 2ター
2
ビン S、及び第 3発電機含む開放型ガスタービン 32を備える。図 12の複合熱サイク
2
ル発電装置において、圧縮機 Cで圧縮された作動ガス Fgが、第 1タービン Sを駆動し た後、第 1熱交換器 7の放熱側 71を通り冷却液化され、その後に第 1ポンプ Pにより 昇圧されて高圧作動液 Feとされ、この高圧作動液が膨張器 Vにお ヽて膨張され蒸発 し作動ガス Fgとされる。この作動ガス Fgが、第 1熱交翻 7の受熱側 72及び第 2熱 交換器の受熱側 82を通り加熱された後、圧縮機 Cへ循環される。一方、入口空気 34 が第 2圧縮機 Cにより圧縮され、燃焼器 35へ供給され、燃焼器 35において燃料が
2
混合され点火燃焼され、燃焼ガスを生じる。生じた燃焼ガスは、第 2タービン Sを駆
2 動した後、第 2熱交^^の放熱側 81を通り降温され排気 36として大気へ放出される 。第 1タービン S及び第 2タービン Sによりそれぞれ駆動される第 1発電機 G及び第 3
2
発電機 Gにより発生された電力が所望の個所へ供給される。
3
[0051] 図 12の複合熱サイクル発電装置は、開放型ガスタービン 32の排気熱を熱サイクル 装 g[の入熱部 (第 2熱交換器の受熱側 82)へ入れ発電する。熱サイクル装 g[は、 低温廃熱を利用することが可能である。従って、図 12の熱サイクル発電装置は、開 放型ガスタービンの利用温度範囲を低温側に広げると共に、開放型ガスタービンの 熱落差を拡大することにより熱効率を向上させることができる。図 12の複合熱サイク ル発電装置は、冷却水源が不要であるので、砂漠地帯等に設置することができる。
[0052] 本発明により発電される電力は、従来の発電システムにおける熱エネルギーの無 駄を伴わな 、ものである故に、これを用いた電気ヒータ (電気ボイラ)より得られる熱出 力(温水又は蒸気)は無駄を伴わないものである。本発明においては、ヒートポンプに より廃熱から回収して得られた熱を上記電気ボイラにより加熱するので、利用価値の 高い高温熱出力を提供することができる。

Claims

請求の範囲
[1] 圧縮機、第 1タービン、第 1熱交換器、第 2熱交換器、第 1ポンプ、及び膨張器を含 む熱サイクル装置であって、圧縮機 (C)で圧縮された作動ガスが、第 1タービン (S) を駆動した後、第 1熱交換器 (7)の放熱側(71)を通り冷却され、その後に第 1ポンプ (P)により昇圧されて高圧作動液 (Fe)とされ、この高圧作動液が膨張器 (K、 V)にお いて膨張され蒸発し作動ガス (Fg)とされ、この作動ガスが、第 2熱交換器の受熱側( 82)を通り加熱された後、圧縮機へ導入され、第 2熱交換器の放熱側 (81)が低温室 又は熱機械(30)の廃熱の放熱部により構成される熱サイクル装置。
[2] 前記膨張器は反動水車 (K)であり、高圧作動液 (Fe)が反動水車 (K)を駆動し仕 事 (W )を出力すると共に膨張され蒸発し作動ガス (Fg)とされ、該作動ガスが、第 1
2
熱交換器の受熱側(72)及び第 2熱交換器の受熱側 (82)を通り加熱された後、圧縮 機 Cへ導入される請求項 1の熱サイクル装置。
[3] 前記膨張器は膨張弁 (V)であり、前記高圧作動液が膨張弁 (V)を通り膨張され蒸 発し作動ガスとされる請求項 1の熱サイクル装置。
[4] 前記低温室は、冷房室、冷蔵庫又は製氷室である請求項 1の熱サイクル装置。
[5] 前記熱機械 (30)の廃熱の放熱部は、前記圧縮機、第 1タービン、第 1発電機 (G) 及び圧縮機駆動モータの潤滑冷却系統の廃熱を放熱するための放熱部である請求 項 1の熱サイクル装置。
[6] 請求項 1の熱サイクル装置を用いる発電プラントであって、第 1タービン(S)により駆 動される第 1発電機 (G)、外部へ電力を供給するための出力端(11)、並びに第 1発 電機 (G)、出力端(11)、圧縮機の駆動モータ (M)、第 1ポンプの駆動モータ (M )を
2 電気的に結合する導線 ( 12)を含む発電プラント。
[7] 圧縮機、第 1熱交換器、第 2熱交換器及び膨張器を含む冷凍機 ω、並びにボイラ 、第 2タービン、復水器、第 2タービンにより駆動される第 3発電機及び第 2ポンプを 含む蒸気機関 (Α)から成る複合熱サイクル発電装置であって、
圧縮機 (C)で圧縮された作動ガスが、第 1熱交換器 (7)の放熱側 (71)を通り冷却 されて作動液 (Fe)とされ、該作動液が膨張弁 (V)にお 、て膨張され作動ガス (Fg)と され、該作動ガスが、第 2熱交翻 (Y)の受熱側 (82)を通り加熱された後、圧縮機 へ導入され、
ボイラ (B)で発生された蒸気 (Eg)が第 2タービン (S )を駆動した後、復水器 (Y)の
2
放熱側(81)を通り冷却凝縮され、第 2ポンプ (P )で昇圧されて高圧復水 (Ee)となり
2
、高圧復水 (Ee)が第 1熱交換器の受熱側(73)を通り加熱された後にボイラ (B)へ循 環され、復水器 (Y)の受熱側は第 2熱交^^の受熱側 (82)により構成される複合熱 サイクル発電装置。
[8] 前記第 1熱交換器 (7)は、給湯のための受熱部(74)を備える請求項 7の複合熱サ イタル発電装置。
[9] 圧縮機、第 1タービン、第 1熱交換器、第 1ポンプ、膨張器、及び第 1発電機を含む 熱サイクル装置 CO、並びにボイラ、第 2タービン、第 3発電機、復水器及び第 2ボン プを含む蒸気機関 (Α)を含む複合熱サイクル発電装置であって、
圧縮機 (C)で圧縮された作動ガスが、第 1タービン (S)を駆動した後、第 1熱交換 器 (7)の放熱側(71)を通り冷却され、その後に第 1ポンプ (Ρ)により昇圧されて高圧 作動液 (Fe)とされ、該高圧作動液が膨張器 (K、 V)において膨張され蒸発し作動ガ ス (Fg)とされ、圧縮機へ導入され、
ボイラ (B)で発生された蒸気 (Eg)が第 2タービン (S )を駆動した後、復水器 (Y)で
2
冷却され、第 2ポンプ (P )で昇圧されて高圧復水 (Ee)となってボイラ (B)へ循環され
2 前記作動ガス (Fg)が、第 1熱交換器の受熱側(72)及び復水器 (Y)の受熱側 (82 )を通り加熱された後、圧縮機 (C)へ導入され、第 1発電機 (G)が第 1タービンにより 駆動され、第 3発電機 (G )が第 2タービンにより駆動される複合熱サイクル発電装置
3
[10] 前記高圧復水 (Ee)はボイラ (B)へ循環される前に、第 1熱交換器の第 2の受熱側( 73)又は復水器 (Y)の受熱側(83)にお 、て加熱される請求項 8の複合熱サイクル 発電装置。
[11] 第 1圧縮機、第 1タービン、第 1発電機、第 1熱交換器、第 2熱交換器、第 1ポンプ、 及び膨張器を含む熱サイクル装置、並びに第 2圧縮機、燃焼器、第 2タービン及び 第 3発電機を含む開放型ガスタービン(32)を含む複合熱サイクル発電装置であって 第 1圧縮機 (C)で圧縮された作動ガス (Fg)が、第 1タービン (S)を駆動した後、第 1 熱交換器 (7)の放熱側(71)を通り冷却され、その後に第 1ポンプ (P)により昇圧され て高圧作動液 (Fe)とされ、この高圧作動液が膨張器 (V)において膨張され蒸発し 作動ガス (Fg)とされ、この作動ガス (Fg)が、第 1熱交換器の受熱側(72)及び第 2熱 交換器の受熱側 (82)を通り加熱された後、圧縮機 (C)へ循環され、
入口空気 (34)が第 2圧縮機 (C )により圧縮されて燃焼器 (35)へ供給され、燃焼
2
器にお!ヽて圧縮空気に燃料が混合され点火燃焼され燃焼ガスを生じ、生じた燃焼ガ スは第 2タービン (S )を駆動した後、第 2熱交換器の放熱側(81)を通り降温され排
2
気(36)として大気へ放出され、第 1発電機 (G)及び第 3発電機 (G )が、第 1タービン
3
(S)及び第 2タービン (S )によりそれぞれ駆動される複合熱サイクル発電装置。
2
[12] 請求項 9乃至 11のいずれか 1項の複合熱サイクル発電装置であって、外部へ電力 を供給するための出力端(11)、並びに第 1発電機、第 3発電機、及び出力端(11) を電気的に結合する導線( 12)を更に含む複合熱サイクル発電装置。
[13] 請求項 9乃至 12のいずれか 1項の複合熱サイクル発電装置により発生された電力 を 500km以上離間した電力消費地へ送電線により送電することを特徴とする電力供 給システム。
[14] 圧縮機、第 1タービン、第 1熱交換器、第 2熱交換器、第 1ポンプ、及び膨張器を含 む第 1の熱サイクル装置、並びに第 2圧縮機、凝縮器、第 2膨脹器、及び蒸発器を含 む第 2熱サイクル装置を含む複合熱サイクル装置であって、
圧縮機 (C)で圧縮された作動ガスが、第 1タービン (S)を駆動した後、第 1熱交換 器 (7)の放熱側(71)を通り冷却され、その後に第 1ポンプ (P)により昇圧されて高圧 作動液 (Fe)とされ、該高圧作動液が膨張器 (V)にお ヽて膨張され蒸発し作動ガス ( Fg)とされ、該作動ガスが、第 2熱交 (8)の受熱側(82)を通り加熱された後、圧 縮機へ循環され、
第 2圧縮機 (C )で圧縮された冷媒ガス (8g)が凝縮器 (81)を通り冷却され冷媒液 (
2
8e)とされ、該冷媒液が第 2膨張器 (V )にお 、て膨張され蒸発器 (9)の吸熱側 (92)
2
にお 、て蒸発すると共に蒸発器 (9)の放熱側(91)の熱を吸収して冷媒ガス (8g)とさ れ、該冷媒ガスが第 2圧縮機 (C )へ循環され、第 2熱交換器の放熱側 (81)により前
2
記凝縮器が構成される複合熱サイクル装置。
[15] 前記蒸発器 (9)の放熱側(91)によりガス液ィ匕装置の冷熱源を構成する請求項 14 の複合熱サイクル装置。
[16] 圧縮機、第 1タービン、該第 1タービンにより駆動される発電機、第 1熱交換器、第 2 熱交換器、第 1ポンプ、及び膨張器を含む熱サイクル装置と、電気ボイラを含む発電 熱出力設備であって、
圧縮機 (C)で圧縮された作動ガス (Fg)が、第 1タービン (S)を駆動した後、第 1熱 交換器 (7)の放熱側(71)を通り冷却液化され、その後に第 1ポンプ (P)により昇圧さ れて高圧作動液 (Fe)とされ、該高圧作動液が膨張器 (V)において膨張され蒸発し 作動ガス (Fg)とされ、該作動ガスが、第 2熱交^^の受熱側(82)を通り加熱された 後、圧縮機へ循環され、
熱出力用の水 (U)が第 1熱交換器 (7)の受熱側(73)において加熱された後に前 記電気ボイラ(15)により所定の温度まで加熱され、前記第 1タービンにより駆動され る発電機 (G)により発生された電力が前記電気ボイラ(15)に供給される発電熱出力 設備。
[17] 前記作動ガスが、第 2熱交換器の受熱側 (82)を通る前に第 1熱交換器 (7)の受熱 側(72)を通り加熱され、第 2熱交換器の放熱側(81)が低温室又は廃熱の放熱部に より構成される請求項 16の発電熱出力設備。
PCT/JP2006/320369 2005-11-29 2006-10-12 熱サイクル装置及び複合熱サイクル発電装置 WO2007063645A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2006321122A AU2006321122B2 (en) 2005-11-29 2006-10-12 Heat cycle system and composite heat cycle electric power generation system
US12/085,351 US7971424B2 (en) 2005-11-29 2006-10-12 Heat cycle system and composite heat cycle electric power generation system
BRPI0619376-5A BRPI0619376B1 (pt) 2005-11-29 2006-10-12 Sistema de ciclo térmico, central elétrica, sistema de geração de energia elétrica de ciclo térmico compósito e instalação de calor útil de geração de energia

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-343235 2005-11-29
JP2005343235A JP2007146766A (ja) 2005-11-29 2005-11-29 熱サイクル装置及び複合熱サイクル発電装置

Publications (1)

Publication Number Publication Date
WO2007063645A1 true WO2007063645A1 (ja) 2007-06-07

Family

ID=38091985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320369 WO2007063645A1 (ja) 2005-11-29 2006-10-12 熱サイクル装置及び複合熱サイクル発電装置

Country Status (5)

Country Link
US (1) US7971424B2 (ja)
JP (1) JP2007146766A (ja)
AU (1) AU2006321122B2 (ja)
BR (1) BRPI0619376B1 (ja)
WO (1) WO2007063645A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108798898A (zh) * 2018-04-20 2018-11-13 华电电力科学研究院有限公司 质子交换膜燃料电池与燃气轮机联合供应蒸汽和热水的系统及方法
US20230246211A1 (en) * 2022-02-03 2023-08-03 Caterpillar Inc. Systems and methods for energy generation during hydrogen regasification

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2442743A (en) * 2006-10-12 2008-04-16 Energetix Group Ltd A Closed Cycle Heat Transfer Device
EP2196633A1 (de) * 2008-12-15 2010-06-16 Siemens Aktiengesellschaft Kraftwerk mit einer Turbineneinheit und einem Generator
EP2419621A4 (en) * 2009-04-17 2015-03-04 Echogen Power Systems SYSTEM AND METHOD FOR MANAGING HEAT PROBLEMS IN GAS TURBINE ENGINES
JP5495293B2 (ja) 2009-07-06 2014-05-21 株式会社日立産機システム 圧縮機
CN101988397A (zh) * 2009-07-31 2011-03-23 王世英 一种低品位热流原动机、发电系统及其方法
US8479489B2 (en) * 2009-08-27 2013-07-09 General Electric Company Turbine exhaust recirculation
JP4932886B2 (ja) * 2009-09-30 2012-05-16 三菱重工コンプレッサ株式会社 ガス処理装置
US20110083620A1 (en) * 2009-10-08 2011-04-14 Yoon Yong K Waste Heat Recovery System and Method Thereof
TWM377472U (en) * 2009-12-04 2010-04-01 Cheng-Chun Lee Steam turbine electricity generation system with features of latent heat recovery
EP2627876B1 (en) * 2010-10-14 2015-03-11 Energreen Heat Recovery AS Method and system for the utilization of an energy source of relatively low temperature
US9784478B2 (en) * 2011-01-21 2017-10-10 Arthur F. Hurtado Systems and methods for using two refrigerants, augmentation and expansion valves to enhance mechanical advantage
ITMI20110243A1 (it) * 2011-02-18 2012-08-19 Exergy Orc S R L Impianto e processo co-generativo per la produzione di energia tramite ciclo rankine organico
ITRM20110296A1 (it) * 2011-06-13 2012-12-14 Shap Technology Corp Ltd Impianto per la produzione di energia elettrica con recupero termico
US9574446B2 (en) * 2011-09-19 2017-02-21 Ing Enea Mattei S.P.A. Expander for recovery of thermal energy from a fluid
DE102012100645B4 (de) * 2012-01-26 2016-07-14 Saxess Holding Gmbh ORC - Organischer Rankine Zyklus
SE536432C2 (sv) 2012-03-20 2013-10-29 Energihuset Foersaeljnings Ab Hardy Hollingworth Värmecykel för överföring av värme mellan medier och för generering av elektricitet
US8881527B2 (en) * 2012-04-30 2014-11-11 General Electric Company Systems and methods for generating electricity
DE102012210803A1 (de) * 2012-06-26 2014-01-02 Energy Intelligence Lab Gmbh Vorrichtung zum Erzeugen elektrischer Energie mittels eines ORC-Kreislaufs
US9322300B2 (en) * 2012-07-24 2016-04-26 Access Energy Llc Thermal cycle energy and pumping recovery system
CN102777221A (zh) * 2012-07-27 2012-11-14 江苏科技大学 基于有机朗肯循环的船用柴油发电机组废气余热发电系统
KR101245088B1 (ko) * 2012-08-13 2013-03-18 서영호 전기로를 이용한 발전장치
JP5934074B2 (ja) * 2012-10-16 2016-06-15 株式会社日立産機システム ガス圧縮機
US9540959B2 (en) 2012-10-25 2017-01-10 General Electric Company System and method for generating electric power
JP6075016B2 (ja) * 2012-11-07 2017-02-08 三浦工業株式会社 ボイラシステム
GB2509740A (en) 2013-01-11 2014-07-16 Dearman Engine Company Ltd Cryogenic engine combined with a power generator
KR20160028999A (ko) 2013-03-04 2016-03-14 에코진 파워 시스템스, 엘엘씨 큰 네트 파워 초임계 이산화탄소 회로를 구비한 열 엔진 시스템
US9540961B2 (en) 2013-04-25 2017-01-10 Access Energy Llc Heat sources for thermal cycles
KR102256476B1 (ko) * 2013-07-04 2021-05-27 한화에어로스페이스 주식회사 가스 터빈 시스템
KR20150017610A (ko) * 2013-08-07 2015-02-17 삼성테크윈 주식회사 압축기 시스템
JP5747058B2 (ja) * 2013-08-22 2015-07-08 株式会社日立産機システム 圧縮機
US9732699B2 (en) * 2014-05-29 2017-08-15 Richard H. Vogel Thermodynamically interactive heat flow process and multi-stage micro power plant
US9874114B2 (en) * 2014-07-17 2018-01-23 Panasonic Intellectual Property Management Co., Ltd. Cogenerating system
US9038390B1 (en) * 2014-10-10 2015-05-26 Sten Kreuger Apparatuses and methods for thermodynamic energy transfer, storage and retrieval
WO2016073252A1 (en) 2014-11-03 2016-05-12 Echogen Power Systems, L.L.C. Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
JP2016141868A (ja) * 2015-02-04 2016-08-08 三菱重工環境・化学エンジニアリング株式会社 排熱回収装置、発電システム、及び排熱回収方法
CN106246265A (zh) * 2015-06-08 2016-12-21 淮安信息职业技术学院 一种采用布列顿循环的汽车尾气余热发电装置
US10590959B2 (en) * 2015-10-09 2020-03-17 Concepts Nrec, Llc Methods and systems for cooling a pressurized fluid with a reduced-pressure fluid
CN105221363B (zh) * 2015-10-14 2017-12-19 东北电力大学 中低温地热和生物质燃气联合发电系统及发电成本计算方法
CN105909330B (zh) * 2016-04-14 2018-06-19 东南大学 一种基于有机朗肯循环的烟气余热回收及烟气处理系统
US10260820B2 (en) * 2016-06-07 2019-04-16 Dresser-Rand Company Pumped heat energy storage system using a conveyable solid thermal storage media
WO2018068430A1 (zh) * 2016-10-12 2018-04-19 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
US20180340713A1 (en) * 2018-06-22 2018-11-29 Jack Dowdy, III Power saver apparatus for refrigeration
US11460225B2 (en) * 2017-06-23 2022-10-04 Jack D. Dowdy, III Power saving apparatuses for refrigeration
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
ES2738663B2 (es) * 2018-07-23 2023-04-13 Mohedano Javier Carlos Velloso Una instalación para generación de energía mecánica mediante un Ciclo Combinado de potencia
CN110700904A (zh) * 2018-11-01 2020-01-17 李华玉 单工质联合循环蒸汽动力装置
CN110685761A (zh) * 2018-11-04 2020-01-14 李华玉 分级蒸发联合循环动力装置
CN111219215A (zh) * 2018-11-15 2020-06-02 李华玉 联合循环动力装置
US10767910B2 (en) * 2018-12-12 2020-09-08 William J. Diaz Refrigeration cycle ejector power generator
US20220228512A1 (en) * 2019-05-02 2022-07-21 Huayu Li Combined cycle power device
US20220228511A1 (en) * 2019-05-05 2022-07-21 Huayu Li Combined cycle power device
CN110359973B (zh) * 2019-06-28 2021-08-17 东风小康汽车有限公司重庆分公司 压缩机余能回收系统
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
CA3201373A1 (en) 2020-12-09 2022-06-16 Timothy Held Three reservoir electric thermal energy storage system
US11814963B2 (en) 2022-03-14 2023-11-14 Argyle Earth, Inc Systems and methods for a heat engine system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240007A (ja) * 1988-07-29 1990-02-08 Kawasaki Heavy Ind Ltd 動力システム
WO2005119016A1 (ja) * 2004-06-01 2005-12-15 Noboru Masada 高効率熱サイクル装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995431A (en) * 1972-08-10 1976-12-07 Schwartzman Everett H Compound brayton-cycle engine
DE2407617A1 (de) * 1974-02-16 1975-08-21 Linde Ag Verfahren zur energierueckgewinnung aus verfluessigten gasen
US3918282A (en) 1974-09-04 1975-11-11 Blaw Knox Foundry Mill Machine Combination pickling-rolling mill
JPS5427640A (en) 1977-07-30 1979-03-01 Kawasaki Heavy Ind Ltd Compound generating facility
JPS5631234A (en) 1979-08-24 1981-03-30 Clarion Co Ltd Beat interference eliminating unit
IT1176782B (it) 1984-09-24 1987-08-18 Eurodomestici Ind Riunite Turbina operante col fluido frigorigeno ad alto contenuto entalpico di un circuito refrigerante, per l'azionamento di un organo rotante
ES8607515A1 (es) 1985-01-10 1986-06-16 Mendoza Rosado Serafin Modificaciones de un proceso termodinamico de aproximacion practica al ciclo de carnot para aplicaciones especiales
IL108546A (en) * 1994-02-03 1997-01-10 Israel Electric Corp Ltd Compressed air energy storage method and system
JP4047944B2 (ja) 1996-10-07 2008-02-13 大林道路株式会社 舗装構造の施工方法
US20020053196A1 (en) * 2000-11-06 2002-05-09 Yakov Lerner Gas pipeline compressor stations with kalina cycles
JP2003227409A (ja) 2002-02-06 2003-08-15 Daikin Ind Ltd コージェネレーションシステム
JP2003322425A (ja) 2002-04-30 2003-11-14 Toshikatsu Yamazaki 発電機内蔵冷却装置
CN100351262C (zh) 2002-07-11 2007-11-28 三井化学株式会社 配糖体的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240007A (ja) * 1988-07-29 1990-02-08 Kawasaki Heavy Ind Ltd 動力システム
WO2005119016A1 (ja) * 2004-06-01 2005-12-15 Noboru Masada 高効率熱サイクル装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108798898A (zh) * 2018-04-20 2018-11-13 华电电力科学研究院有限公司 质子交换膜燃料电池与燃气轮机联合供应蒸汽和热水的系统及方法
CN108798898B (zh) * 2018-04-20 2023-11-28 华电电力科学研究院有限公司 质子交换膜燃料电池与燃气轮机联合供应蒸汽和热水的系统及方法
US20230246211A1 (en) * 2022-02-03 2023-08-03 Caterpillar Inc. Systems and methods for energy generation during hydrogen regasification

Also Published As

Publication number Publication date
US20090165456A1 (en) 2009-07-02
AU2006321122A1 (en) 2007-06-07
BRPI0619376A2 (pt) 2011-09-27
US7971424B2 (en) 2011-07-05
AU2006321122B2 (en) 2012-05-03
BRPI0619376B1 (pt) 2019-07-02
JP2007146766A (ja) 2007-06-14

Similar Documents

Publication Publication Date Title
WO2007063645A1 (ja) 熱サイクル装置及び複合熱サイクル発電装置
KR101092691B1 (ko) 고효율 열 사이클 장치
EP2446122B1 (en) System and method for managing thermal issues in one or more industrial processes
CN102132012B (zh) 用于储存热电能的热电能储存系统和方法
Xue et al. A review of cryogenic power generation cycles with liquefied natural gas cold energy utilization
US20100307169A1 (en) Trigeneration system and method
MX2011010342A (es) Sistema de acondicionamiento de aire a partir de calor residual.
JP2011526670A (ja) 冷却、熱生成及び/又は仕事生成プラント
CN109026243A (zh) 能量转换系统
KR102322529B1 (ko) 열원 공급 장치 및 공기조화 시스템
CN202501677U (zh) 有机朗肯循环驱动的蒸气压缩制冷装置
JP2002161716A (ja) 廃熱回収ランキンサイクルシステム及び廃熱回収方法
CN111520202B (zh) 一种冷凝解耦与梯级蒸发耦合冷热电联产系统
CN113819671B (zh) 一种基于二氧化碳的发电制冷联合系统
CN114811990B (zh) 一种二氧化碳动力循环和热泵循环结合的联产系统及方法
JP2002188438A (ja) 動力回収システム
JP7241794B2 (ja) 中間冷却復熱式ガスタービン及び冷媒複合ボトミングサイクルの複合化システム
KR100658321B1 (ko) 열흡수식 동력발생장치
CN117824187A (zh) 一种燃气供热装置
CN116839241A (zh) 用于蓄能的冷热电三联供系统
CN115930476A (zh) 一种基于超临界二氧化碳发电制冷联合系统
UA124256C2 (uk) Когенераційна установка
PL215564B1 (pl) Układ agregatu trójgeneracyjnego

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12085351

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006321122

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006321122

Country of ref document: AU

Date of ref document: 20061012

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 06811666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0619376

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080528