WO2007060915A1 - 蒸気発生器及び蒸気発生器における冷却水の流動抵抗調整方法 - Google Patents

蒸気発生器及び蒸気発生器における冷却水の流動抵抗調整方法 Download PDF

Info

Publication number
WO2007060915A1
WO2007060915A1 PCT/JP2006/323119 JP2006323119W WO2007060915A1 WO 2007060915 A1 WO2007060915 A1 WO 2007060915A1 JP 2006323119 W JP2006323119 W JP 2006323119W WO 2007060915 A1 WO2007060915 A1 WO 2007060915A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow resistance
steam generator
cooling water
heat transfer
inlet
Prior art date
Application number
PCT/JP2006/323119
Other languages
English (en)
French (fr)
Inventor
Hisato Watakabe
Tomoyuki Inoue
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to US12/063,914 priority Critical patent/US7878159B2/en
Publication of WO2007060915A1 publication Critical patent/WO2007060915A1/ja

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/02Arrangements of auxiliary equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/023Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • F22B1/162Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour in combination with a nuclear installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/002Component parts or details of steam boilers specially adapted for nuclear steam generators, e.g. maintenance, repairing or inspecting equipment not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a steam generator used as a heat exchanger in a nuclear power plan and a method for adjusting the flow resistance of cooling water in the steam generator.
  • the present invention solves the above-described problem, and a steam generator and a steam generator capable of suppressing a decrease in heat recovery efficiency by adjusting a flow resistance of primary cooling water flowing through the heat transfer tube group It aims at providing the flow resistance adjustment method of the cooling water in.
  • An inlet-side water chamber that communicates with one end of the heat transfer tube, an outlet-side water chamber that is provided at the lower end of the barrel and communicates with the other ends of the plurality of heat transfer tubes, and secondary cooling within the barrel
  • a steam generator equipped with a secondary cooling water supply channel that supplies water and exchanges heat with the primary cooling water flowing through the plurality of heat transfer tubes!
  • the flow resistance adjusting means is provided in at least one of the inlet nozzle provided and the outlet nozzle provided in the outlet side water chamber. It is characterized in.
  • the flow resistance adjusting means includes a plurality of flow resistance adjusting plates that are detachably provided on the inlet nozzle or the outlet nozzle and have different flow path areas. It is characterized by having.
  • the method for adjusting the flow resistance of the cooling water in the steam generator of the invention of claim 6 includes a hollow hermetically sealed body portion and a primary cooling that is disposed in the body portion and forms an inverted U shape.
  • a heat transfer tube group including a plurality of heat transfer tubes in which water flows, a tube plate fixed to a lower portion in the body portion and supporting ends of the plurality of heat transfer tubes, and a lower end portion of the body portion.
  • An inlet-side water chamber communicating with one end of each of the plurality of heat transfer tubes and a lower end of the body portion, A secondary water chamber that communicates with the other end of each of the plurality of heat transfer tubes and a secondary cooling water that is supplied into the trunk portion and that flows through the plurality of heat transfer tubes.
  • the flow resistance of primary cooling water flowing into the inlet-side water chamber or the flow resistance discharged from the outlet-side water chamber according to the operating state of the steam generator It is characterized by adjusting.
  • the flow rate meter is provided to measure the inlet nozzle force, the amount of water supplied into the inlet-side water chamber or the amount of drainage discharged from the outlet-side water chamber to the outlet nozzle. Since the flow resistance adjustment gate is moved based on the amount of water supply or drainage measured by the flow meter using the resistance adjustment means, it is possible to move the primary flow resistance adjustment gate by moving the flow resistance adjustment gate based on the amount of water supply or drainage to the steam generator. The flow resistance of the cooling water can be reliably adjusted to an appropriate value.
  • FIG. 1 is a schematic view showing the structure of a water chamber in a steam generator according to Embodiment 1 of the present invention. It is sectional drawing.
  • FIG. 2 is a schematic configuration diagram of a power generation facility having a pressurized water reactor to which the steam generator of Example 1 is applied.
  • FIG. 4 is a cross-sectional view showing an inlet nozzle of an inlet-side water chamber in a steam generator according to Embodiment 2 of the present invention.
  • FIG. 8 is a cross-sectional view showing an inlet nozzle of an inlet side water chamber in a steam generator according to Embodiment 6 of the present invention.
  • FIG. 10 is a cross-sectional view showing an inlet nozzle of an inlet-side water chamber showing a method for adjusting the flow resistance of cooling water in a steam generator according to Embodiment 8 of the present invention.
  • FIG. 1 is a cross-sectional view of a principal part showing the structure of a water chamber in a steam generator according to Embodiment 1 of the present invention.
  • FIG. 2 shows a pressurized water reactor to which the steam generator of Embodiment 1 is applied.
  • FIG. 3 is a schematic configuration diagram showing a steam generator according to the first embodiment.
  • the pressurized water reactor 12 light water is heated as the primary cooling water by the low-concentration uranium or MOX as fuel, and the high-temperature light water is maintained at a predetermined high pressure by the pressurizer 16, and steam is passed through the cooling water pipe 14. Sent to generator 13. In the steam generator 13, heat exchange is performed between high-pressure and high-temperature light water and water as secondary cooling water, and the cooled light water is returned to the pressurized water reactor 12 through the cooling water pipe 15.
  • the steam generator 13 is connected to a turbine 18 and a condenser 19 provided outside the reactor containment vessel 11 via cooling water pipes 20 and 21, and is connected to the cooling water pipe 21 with a water supply pump 22. Is provided. Further, a generator 23 is connected to the turbine 18, and a condenser pipe 19 is connected to a supply pipe 24 and a water pipe 25 that supply and discharge cooling water (for example, seawater). Therefore, steam generated by exchanging heat with high-pressure and high-temperature light water in the steam generator 13 is sent to the turbine 18 through the cooling water pipe 20, and the turbine 18 is driven by this steam to be generated by the generator 23. Generate electricity. The steam that has driven the turbine 18 is cooled by the condenser 19 and then returned to the steam generator 13 through the cooling water pipe 21.
  • a plurality of tube support plates 35 are arranged at height positions corresponding to the jack assemblies 34, and a plurality of tube support plates 35 extending upward from the tube plate 33 are provided. Supported by stay rod 36.
  • a heat transfer tube group 38 including a plurality of heat transfer tubes 37 having an inverted U shape is disposed in the tube group outer tube 32, and an end portion of each heat transfer tube 37 penetrates the tube plate 33. The intermediate portion is supported by a plurality of tube support plates 35. In this case, a large number of through holes (not shown) are formed in the tube support plate 35, and the respective heat transfer tubes 37 pass through the through holes in a non-contact state.
  • a lower hemispherical mirror portion 39 is fixed to the lower end of the body portion 31, and the interior is partitioned by a partition wall 40 by an inlet side water chamber 41 and an outlet side water chamber 42, and this inlet side water chamber. 41 and outlet side water chamber 42 are connected to inlet nozzle 43 and outlet nozzle 44.
  • the inlet-side water chamber 41 communicates with one end of each heat transfer tube 37, and the outlet-side water chamber 42 communicates with the other end of each heat transfer tube 37.
  • the inlet nozzle 43 is connected to the cooling water pipe 14 described above, while the outlet nozzle 44 is connected to the cooling water pipe 15.
  • a water supply passage 49 is provided for exchanging heat with the hot water (primary cooling water) flowing through the heat transfer tubes 37 when circulating in the heat transfer tube group 38.
  • the cooling water pipe 21 is connected to the water supply pipe 47, while the cooling water pipe 20 is connected to the steam outlet 48.
  • the primary cooling water heated in the pressurized water reactor 12 is sent from the inlet nozzle 43 to the inlet side water chamber 41 of the steam generator 13 through the cooling water pipe 14 and passes through the heat transfer pipes 37. It circulates and reaches the outlet side water chamber 42.
  • the secondary cooling water cooled by the condenser 19 is sent to the water supply pipe 47 of the steam generator 13 through the cooling water pipe 21 and flows in the heat transfer pipe 47 through the water supply passage 49 in the trunk 31. Exchanges heat with hot water (primary cooling water). That is, heat exchange is performed between the high-pressure and high-temperature primary cooling water and the secondary cooling water in the body portion 31 to cool the primary cooling water.
  • the reject water is returned from the outlet water chamber 42 to the pressurized water reactor 12 through the cooling water pipe 15.
  • the secondary cooling water that has exchanged heat with the high-pressure and high-temperature primary cooling water rises in the body 31 and is separated into steam and hot water by the steam / water separator 45, and this is separated by the moisture separator 46. After removing the moisture from the steam, it is sent to the turbine 18 through the cooling water pipe 20.
  • the flow resistance of the primary cooling water flowing through the inlet nozzle 43 is set by the flow resistance adjusting plate 52.
  • the amount of water supplied to the inlet side water chamber 41 is set by the through hole 52a of the flow resistance adjusting plate 52. If damage to the heat transfer tube 37 is found during regular inspections of the steam generator 13, etc., the worker or work robot is used to enter the water chambers 41, 42 from the manholes 41a, 42a to repair the heat transfer tube 37. And block work.
  • the flow resistance at the inlet nozzle 43 decreases, the flow resistance of the steam generator 13 also decreases, and the flow rate of the primary cooling water flowing through the heat transfer tube group 38 increases, so that the heat recovery efficiency of the primary cooling hydraulic power is increased. Is suppressed.
  • the heat transfer tube group 38 including the plurality of heat transfer tubes 37 in which the primary cooling water flows in an inverted U shape in the body portion 31 is arranged.
  • the end side of each heat transfer tube 37 is supported by the tube plate 33, and the lower hemispherical mirror portion 39 is fixed to the lower end portion of the trunk portion 31, so that the inlet side water chamber communicated with one end portion of each heat transfer tube 37. 41 and an outlet-side water chamber 42 communicating with the other end of each heat transfer tube 37.
  • the inlet nozzle 43 provided in the inlet-side water chamber 41 has two sheets as a means for adjusting the flow resistance of the primary cooling water.
  • the flow resistance adjusting plates 51 and 52 are detachably provided.
  • the flow resistance adjusting means is two flow resistance adjusting plates 51 and 52 having different flow area areas welded to the inner wall surface of the inlet nozzle 43. Therefore, as the flow resistance of the heat transfer tube group 38 increases, the flow resistance adjusting plates 51 and 52 are removed to reduce the flow resistance at the inlet nozzle 43, thereby reducing the primary resistance of the entire steam generator 13. The flow resistance of the cooling water can be easily adjusted.
  • FIG. 4 is a cross-sectional view illustrating an inlet nozzle of an inlet-side water chamber in the steam generator according to Embodiment 2 of the present invention. Note that parts having the same functions as those described in the above-described embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the two flow resistance adjusting plates 51 and 52 are provided as the flow resistance adjusting means for the primary cooling water in the inlet nozzle 43 provided in the inlet side water chamber. It is detachably provided with fastening bolts 53.
  • FIG. 5 is a cross-sectional view illustrating an inlet nozzle of an inlet side water chamber in a steam generator according to Embodiment 3 of the present invention. Note that parts having the same functions as those described in the above-described embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • flow resistance adjusting plates 61 to 64 as flow resistance adjusting means are provided on the inner wall surface of the inlet nozzle 43 as fastening bolts 65 to 67. It is fixed detachably.
  • the flow resistance adjusting plates 61 to 64 have different inner diameters of the through holes 61a to 64a formed in the center, so that the flow passage areas through which the primary cooling water flows are different.
  • the through hole 64a of the flow resistance adjusting plate 64 has a smaller diameter than the through hole 61a.
  • the manhole force also enters the inlet side water chamber using the operator or the work robot, and the inlet side water chamber force also causes the flow resistance adjusting plates 62 to 64 to move by loosening the fastening bolts 65 to 67 using the work tool. Can be removed.
  • the flow resistance adjusting plate 61 may be removed as necessary by adjusting the number of the flow resistance adjusting plates 61 to 64 to be removed according to the number of heat transfer tubes that cannot be used.
  • FIG. 6 is a schematic cross-sectional view showing an inlet nozzle of an inlet-side water chamber in a steam generator according to Embodiment 4 of the present invention. Note that members having the same functions as those described in the above-described embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the control device 75 that controls the drive device 73 of the flow resistance adjusting gate 71 includes a supply amount of primary cooling water flowing from the inlet nozzle 43 into the inlet water chamber (or from the outlet water chamber to the outlet nozzle).
  • a flow meter 76 for measuring the amount of primary cooling water discharged in the flowmeter is connected, and the control device 75 controls the flow resistance adjustment gate 71 based on the amount of water supply (or the amount of drainage) measured by the flow meter 76. Has moved.
  • the inlet nozzle 43 provided in the inlet-side water chamber is provided with the flow resistance adjusting gate 71 movably as the flow resistance adjusting means of the primary cooling water,
  • the drive device 73 is movable, and the control device 75 drives and controls the drive device 73 based on the amount of primary cooling water supplied from the inlet nozzle 43 measured by the flow meter 76 to the inlet water chamber.
  • FIG. 7 is a schematic cross-sectional view showing the inlet nozzle of the inlet-side water chamber in the steam generator according to Embodiment 5 of the present invention. Note that members having the same functions as those described in the above-described embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the inlet nozzle 43 has a pair of upper and lower flow resistance adjusting gates 81, 82 as flow resistance adjusting means.
  • the fixed upper and lower support members 83 and 84 are supported so as to be able to approach and separate from each other along the radial nose of the inlet nose and the nose 43.
  • the flow resistance adjusting gates 81 and 82 are energized and supported by the compression coil springs 85 and 86 in a direction approaching each other, while the coils 88 and 89 are energized from the power supply unit 87 to generate mutual flow. It can move in the direction of separation, and the flow passage area through which the primary cooling water flows can be changed according to the moving position.
  • a flow meter 76 for measuring the amount of primary cooling water supplied from the inlet nozzle 43 to the inlet-side water chamber is connected to the control device 90 that drives and controls the power supply 87 that energizes the coils 88 and 89.
  • the control device 90 moves the flow resistance adjusting gates 81 and 82 based on the amount of water supplied by the flow meter 76.
  • the control device 90 drives and controls the power supply unit 87 based on the amount of primary cooling water flowing into the inlet side water chamber from the inlet nozzle 43 measured by the flow meter 76, and moves the flow resistance adjusting gates 81 and 82.
  • the control device 90 may move only one of the flow resistance adjusting gates 81 and 82 according to the amount of primary cooling water supplied by the flow meter 76. Therefore, the flow resistance at the inlet nozzle 43 decreases, the flow resistance of the steam generator also decreases, and the flow rate of the primary cooling water flowing through the heat transfer tube group increases, so that the efficiency of heat recovery from the primary cooling water is increased. The decrease of the is suppressed.
  • the flow resistance adjusting gates 81 and 82 are connected to the compression nozzle as the flow resistance adjusting means for the primary cooling water at the inlet nozzle 43 provided in the inlet side water chamber.
  • it is supported by the springs 85 and 86, and can be moved by energizing the respective coins 88 and 89 from the power source, and the control device 90 is connected to the inlet side water chamber from the inlet nozzle 43 measured by the flow meter 76.
  • the power source 87 is driven and controlled on the basis of the amount of primary cooling water flowing into the tank.
  • the control device 90 drives and controls the power supply unit 87 based on the amount of primary cooling water flowing into the inlet side water chamber from the inlet nozzle 43, and adjusts the flow resistance.
  • the flow resistance of the primary cooling water can be adjusted to the optimum value, and the flow resistance of the primary cooling water in the entire steam generator can be adjusted. And the fall of heat recovery efficiency can be controlled.
  • FIG. 8 is a cross-sectional view illustrating an inlet nozzle of an inlet side water chamber in a steam generator according to Embodiment 6 of the present invention. Note that parts having the same functions as those described in the above-described embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the flow resistance adjusting cylindrical tubes 91, 92, 93 as the flow resistance adjusting means for the primary cooling water in the inlet nozzle 43 provided in the inlet side water chamber. Is detachable by welding.
  • the flow resistance adjusting cylindrical tubes 91, 92, 93 are removed by cutting the welded portion with a cutting tool in accordance with the increase in the flow resistance of the heat transfer tube group of the steam generator.
  • the flow resistance adjusting cylindrical tubes 91, 92, 93 as the flow resistance adjusting means, it is possible to stabilize the primary cooling water flowing inside.
  • FIG. 9 is a cross-sectional view showing an inlet nozzle of an inlet-side water chamber showing a method for adjusting the flow resistance of cooling water in a steam generator according to Embodiment 7 of the present invention.
  • members having the same functions as those described in the above-described embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • two flow resistance adjusting plates 51 and 52 are detachably fixed to the inner wall surface of the inlet nozzle 43 by welding.
  • the flow resistance adjusting plates 51 and 52 have different flow passage areas through which the primary cooling water flows due to the different inner diameters of the through holes 5la and 52a formed in the center.
  • the manhole force also enters the inlet side water chamber using an operator or a work robot, and the inner surface of the through hole 52a of the flow resistance adjusting plate 52 is ground from the inlet side water chamber using the grinding tool 101.
  • the channel area can be adjusted.
  • the inner surface of the through hole 51a of the flow resistance adjusting plate 51 is ground using the grinding tool 101 to adjust the flow path area. You can also.
  • the inner surfaces of the through holes 51a, 52a of the flow resistance adjusting plates 51, 52 are ground from the inlet side water chamber by the polishing tool 101. Therefore, the flow resistance at the inlet nozzle 43 can be reduced, and the flow resistance of the primary cooling water in the steam generator can be reduced by easily adjusting the flow resistance of the primary cooling water in the entire steam generator. Can be adjusted.
  • FIG. 10 is a cross-sectional view showing an inlet nozzle of an inlet-side water chamber showing a method for adjusting the flow resistance of cooling water in a steam generator according to Embodiment 8 of the present invention. Note that members having the same functions as those described in the above-described embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • weld overlays 111 and 112 are formed in advance on the inner wall surface of the inlet nozzle 43 as flow resistance adjusting means. Therefore, by entering the manhole force inlet side water chamber using a worker or a working robot and grinding the surfaces of the weld overlays 111 and 112 using the grinding tool 101 from this inlet side water chamber, the flow path area is increased. Can be adjusted.
  • the weld overlays 111 and 112 are previously formed in the inlet nozzle 43 provided in the inlet-side water chamber as the flow resistance adjusting means for the primary cooling water. The flow path area can be adjusted by grinding the surfaces of the weld overlays 111 and 112 using the grinding tool 101 as necessary.
  • the surface of the weld build-up portions 111 and 112 is ground from the inlet side water chamber by the polishing tool 101 in accordance with the increase in the flow resistance of the heat transfer tube group of the steam generator.
  • the flow resistance of the primary cooling water in the steam generator can be easily adjusted by easily adjusting the flow resistance of the primary cooling water in the entire steam generator. Monkey.
  • the flow resistance adjustment method for cooling water in the steam generator and the steam generator of the present invention is as follows.
  • the present invention is not limited to this case.
  • when replacing a steam generator when installing a steam generator that reduces or reduces the number of heat transfer tubes while maintaining or improving heat recovery efficiency, It is also possible to adjust the flow resistance of the new steam generator by applying the flow resistance adjustment method of cooling water in the steam generator and the steam generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Plasma & Fusion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

 蒸気発生器及び蒸気発生器における冷却水の流動抵抗調整方法において、胴部31内に逆U字形状をなして一次冷却水が流動する複数の伝熱管37からなる伝熱管群38を配設し、各伝熱管37の端部を管板33により支持し、胴部31の下端部に下部半球鏡部39を固定することで、各伝熱管37の一端部に連通する入口側水室41を設けると共に、各伝熱管37の他端部に連通する出口側水室42を設け、この入口側水室41に設けられた入口ノズル43に一次冷却水の流動抵抗調整手段として2枚の流動抵抗調整板51,52を着脱自在に設けることにより、伝熱管群を流れる一次冷却水の流動抵抗を調整することで熱回収効率の低下を抑制可能とする。

Description

明 細 書
蒸気発生器及び蒸気発生器における冷却水の流動抵抗調整方法 技術分野
[0001] 本発明は、原子力プランに熱交換器として使用される蒸気発生器及びこの蒸気発 生器における冷却水の流動抵抗調整方法に関するものである。
背景技術
[0002] 例えば、加圧水型原子炉(PWR: Pressurized Water Reactor)では、軽水を原子 炉冷却材及び中性子減速材として使用し、炉心全体にわたって沸騰しない高温高 圧水とし、この高温高圧水を蒸気発生器に送って熱交換により蒸気を発生させ、この 蒸気をタービン発電機へ送って発電するものである。そして、この加圧水型原子炉は 、高温高圧の一次冷却水の熱を蒸気発生器を介して二次冷却水に伝え、二次冷却 水で水蒸気を発生させるものである。この蒸気発生器は、多数の細い伝熱管の内側 を一次冷却水が流れ、外側を流れる二次冷却水に熱を伝えて水蒸気を生成し、この 水蒸気によりタービンを回して発電して 、る。
[0003] この蒸気発生器は、中空密閉形状をなす胴部内に、その内壁面と所定間隔をもつ て管群外筒を配設し、この管群外筒内に逆 U字形状をなす複数の伝熱管を配設し、 各伝熱管の端部を管板に支持すると共に、中間部を管板力 延びるステーロッドによ り支持された複数の管支持板により支持し、胴部の下端部に入口側水室及び出口側 水室が形成されて構成されて ヽる。
[0004] 従って、冷却水配管より入口側水室を通して複数の伝熱管に一次冷却水が供給さ れる一方、胴部の上部に形成された給水管力 この胴部内に二次冷却水が供給さ れる。すると、複数の伝熱管内を流れる一次冷却水 (熱水)と胴部内を循環する二次 冷却水(冷水)との間で熱交換を行われることで、二次冷却水が熱を吸収して水蒸気 が生成される。そして、生成された蒸気が胴部の上端部力 排出される一方、熱交換 を終了した一次冷却水が出口側水室力 冷却水配管に排出される。
[0005] なお、このような蒸気発生器としては、下記特許文献 1に記載されて 、る。
[0006] 特許文献 1 :特開平 01— 235897号公報 発明の開示
発明が解決しょうとする課題
[0007] 上述した蒸気発生器において、長期の使用により伝熱管群における一部の伝熱管 が腐食や劣化したり、機械的なストレスにより損傷することがあり、定期検査時などに 伝熱管の損傷などが見つ力つたときには、この損傷などした伝熱管を閉塞することで 使用不能としている。ところが、伝熱管群における一部の伝熱管を使用不能とすると 、蒸気発生器の流動抵抗が増加し、伝熱管群を流れる一次冷却水の流量が減少す ることで、一次冷却水からの熱回収効率が低下してしまう。
[0008] また、蒸気発生器を 20〜30年程度まで使用すると、閉塞して使用不能とする伝熱 管の本数も増えて流動抵抗が増大し、熱回収効率が更に低下することから、蒸気発 生器自体を取り替える工事を行うようにしている。この場合、既存の原子力プラントに 合わせて、新たに設置する蒸気発生器の流動抵抗、つまり、一次冷却水の流量が適 量となるように設計する必要があるが、従来設計を踏襲しながら流動抵抗を維持しつ つ、且つ、製造コストを低減することは困難である。そのため、既存の原子力プラント と蒸気発生器を取り替えた新規の原子力プラントとで、一次冷却水の流動抵抗が変 化して熱回収効率が低下してしまうおそれがある。
[0009] 更に、蒸気発生器を取り替える工事を行う場合、伝熱管の本数を減らして小型化を 図る一方で、熱回収効率を維持、または向上させるような蒸気発生器を設置したいと いう要望がある。この場合、既存の原子力プラントに対して、伝熱管の本数を減らして 熱回収効率を向上するように流動抵抗を設定した蒸気発生器を設計することは困難 である。
[0010] なお、上述した特許文献 1には、原子炉圧力容器に発生した蒸気の圧力に基づい て蒸気流量を求めるものが開示されて 、るが、この蒸気の流動抵抗を調整することは できない。
[0011] 本発明は上述した課題を解決するものであり、伝熱管群を流れる一次冷却水の流 動抵抗を調整することで熱回収効率の低下を抑制可能とした蒸気発生器及び蒸気 発生器における冷却水の流動抵抗調整方法を提供することを目的とする。
課題を解決するための手段 [0012] 上記の目的を達成するための請求項 1の発明の蒸気発生器は、中空密閉形状を なす胴部と、該胴部内に配設されて逆 u字形状をなして一次冷却水が流動する複数 の伝熱管からなる伝熱管群と、前記胴部内の下部に固定されて前記複数の伝熱管 の端部を支持する管板と、前記胴部の下端部に設けられて前記複数の伝熱管の一 端部に連通する入口側水室と、前記胴部の下端部に設けられて前記複数の伝熱管 の他端部に連通する出口側水室と、前記胴部内に二次冷却水を給水して前記複数 の伝熱管内を流れる一次冷却水との間で熱交換を行う二次冷却水給水路とを具え た蒸気発生器にお!、て、前記入口側水室に設けられた入口ノズルまたは前記出口 側水室に設けられた出口ノズルの少なくともいずれか一方に流動抵抗調整手段が設 けられたことを特徴とするものである。
[0013] 請求項 2の発明の蒸気発生器では、前記流動抵抗調整手段は、前記入口ノズルま たは前記出口ノズルに着脱自在に設けられた流路面積の異なる複数の流動抵抗調 整板を有することを特徴として 、る。
[0014] 請求項 3の発明の蒸気発生器では、前記流動抵抗調整手段は、前記入口ノズルま たは前記出口ノズルの径方向に沿って移動自在に設けられた流動抵抗調整ゲート を有することを特徴として 、る。
[0015] 請求項 4の発明の蒸気発生器では、前記入口ノズルから前記入口側水室に流入 する給水量または前記出口側水室力 前記出口ノズルに排出される排水量を計測 する流量計が設けられ、前記流動抵抗調整手段は、該流量計が計測した給水量ま たは排水量に基づ ヽて前記流動抵抗調整ゲートを移動することを特徴として!ヽる。
[0016] 請求項 5の発明の蒸気発生器では、前記流動抵抗調整手段は、前記入口ノズルま たは前記出口ノズルに着脱自在に設けられた複数の流動抵抗調整用円筒管を有す ることを特徴としている。
[0017] また、請求項 6の発明の蒸気発生器における冷却水の流動抵抗調整方法は、中空 密閉形状をなす胴部と、該胴部内に配設されて逆 U字形状をなして一次冷却水が流 動する複数の伝熱管からなる伝熱管群と、前記胴部内の下部に固定されて前記複 数の伝熱管の端部を支持する管板と、前記胴部の下端部に設けられて前記複数の 伝熱管の一端部に連通する入口側水室と、前記胴部の下端部に設けられて前記複 数の伝熱管の他端部に連通する出口側水室と、前記胴部内に二次冷却水を給水し て前記複数の伝熱管内を流れる一次冷却水との間で熱交換を行う二次冷却水給水 路とを具えた蒸気発生器において、前記蒸気発生器の運転状態に応じて前記入口 側水室に流入する一次冷却水の流動抵抗または前記出口側水室から排出される流 動抵抗を調整することを特徴とするものである。
[0018] 請求項 7の発明の蒸気発生器における冷却水の流動抵抗調整方法では、前記入 口側水室への一次冷却水の給水を停止した状態で、マンホールを開放して作業者 または作業ロボットが前記入口側水室または前記出口側水室に入り、入口ノズルの 開放量または出口ノズルの開放量を調整することを特徴として 、る。
発明の効果
[0019] 請求項 1の発明の蒸気発生器によれば、中空密閉形状をなす胴部内に逆 U字形 状をなして一次冷却水が流動する複数の伝熱管からなる伝熱管群を配設し、複数の 伝熱管の端部を胴部内の下部に固定された管板により支持し、胴部の下端部に複 数の伝熱管の一端部に連通する入口側水室を設けると共に、複数の伝熱管の他端 部に連通する出口側水室を設け、胴部内に二次冷却水を給水して複数の伝熱管内 を流れる一次冷却水との間で熱交換を行う二次冷却水給水路とを設けて構成し、入 口側水室に設けられた入口ノズルまたは出口側水室に設けられた出口ノズルの少な くともいずれか一方に流動抵抗調整手段を設けたので、既存の蒸気発生器または新 設の蒸気発生器に対して、この流動抵抗調整手段により入口ノズルから入口側水室 に流入する一次冷却水の流動抵抗または出口側水室から出口ノズルに排出される 一次冷却水の流動抵抗を調整することで、伝熱管群を流れる一次冷却水の流動抵 抗を調整することができ、既存の蒸気発生器における熱回収効率の低下を抑制する ことができると共に、新設の蒸気発生器における熱回収効率の調整を容易に行うこと ができる。
[0020] 請求項 2の発明の蒸気発生器によれば、流動抵抗調整手段を、入口ノズルまたは 出口ノズルに着脱自在に設けられた流路面積の異なる複数の流動抵抗調整板とし たので、この流動抵抗調整板を装着したり、取外したりすることで、容易に一次冷却 水の流動抵抗を調整することができる。 [0021] 請求項 3の発明の蒸気発生器によれば、流動抵抗調整手段を、入口ノズルまたは 出口ノズルの径方向に沿って移動自在に設けられた流動抵抗調整ゲートとしたので 、流動抵抗調整ゲートを移動することで、容易に一次冷却水の流動抵抗を調整する ことができると共に、構造の簡素化を図ることができる。
[0022] 請求項 4の発明の蒸気発生器によれば、入口ノズル力 入口側水室に流入する給 水量または出口側水室から出口ノズルに排出される排水量を計測する流量計を設け 、流動抵抗調整手段により流量計が計測した給水量または排水量に基づいて流動 抵抗調整ゲートを移動するので、蒸気発生器に対する給水量または排水量に基づ V、て流動抵抗調整ゲートを移動することで、一次冷却水の流動抵抗を確実に適正値 に調整することができる。
[0023] 請求項 5の発明の蒸気発生器によれば、流動抵抗調整手段を、入口ノズルまたは 出口ノズルに着脱自在に設けられた複数の流動抵抗調整用円筒管としたので、この 流動抵抗調整用円筒管を装着したり、取外したりすることで、容易に一次冷却水の流 動抵抗を調整することができると共に、給水と排水を安定して行うことができる。
[0024] また、請求項 6の発明の蒸気発生器における冷却水の流動抵抗調整方法によれば 、蒸気発生器の運転状態に応じて入口側水室に流入する一次冷却水の流動抵抗ま たは出口側水室力 排出される一次冷却水の流動抵抗を調整するようにしたので、 既存の蒸気発生器または新設の蒸気発生器に対して、この流動抵抗調整手段によ り入口ノズルから入口側水室に流入する一次冷却水の流動抵抗または出口側水室 力も出口ノズルに排出される一次冷却水の流動抵抗を調整することで、伝熱管群を 流れる一次冷却水の流動抵抗を容易に調整することができる。
[0025] 請求項 7の発明の蒸気発生器における冷却水の流動抵抗調整方法によれば、入 口側水室への一次冷却水の給水を停止した状態で、マンホールを開放して作業者 または作業ロボットが入口側水室または出口側水室に入り、入口ノズルの開放量また は出口ノズルの開放量を調整するようにしたので、安全性を確保した上で、容易に一 次冷却水の流動抵抗を調整することができる。
図面の簡単な説明
[0026] [図 1]図 1は、本発明の実施例 1に係る蒸気発生器における水室の構造を表す要部 断面図である。
[図 2]図 2は、実施例 1の蒸気発生器が適用された加圧水型原子炉を有する発電設 備の概略構成図である。
[図 3]図 3は、実施例 1の蒸気発生器を表す概略構成図である。
[図 4]図 4は、本発明の実施例 2に係る蒸気発生器における入口側水室の入口ノズル を表す断面図である。
[図 5]図 5は、本発明の実施例 3に係る蒸気発生器における入口側水室の入口ノズル を表す断面図である。
[図 6]図 6は、本発明の実施例 4に係る蒸気発生器における入口側水室の入口ノズル を表す断面概略図である。
[図 7]図 7は、本発明の実施例 5に係る蒸気発生器における入口側水室の入口ノズル を表す断面概略図である。
[図 8]図 8は、本発明の実施例 6に係る蒸気発生器における入口側水室の入口ノズル を表す断面図である。
[図 9]図 9は、本発明の実施例 7に係る蒸気発生器における冷却水の流動抵抗調整 方法を表す入口側水室の入口ノズルを表す断面図である。
[図 10]図 10は、本発明の実施例 8に係る蒸気発生器における冷却水の流動抵抗調 整方法を表す入口側水室の入口ノズルを表す断面図である。
符号の説明
13 蒸気発生器
31 胴部
32 管群外筒
33 管板
35 管支持板
37 伝熱管
38 伝熱管群
41 入口側水室
42 出口側水室 41a, 42a マンホール
43 入口ノズル
44 出口ノズノレ
49 給水路
51, 52, 61, 62, 63, 64 流動抵抗調整板 (流動抵抗調整手段)
51a, 52a, 61a, 62a, 63a, 64a 貫通孔
53, 65, 66, 67 締結ボル卜
71, 81, 82 流動抵抗調整ゲート (流動抵抗調整手段)
73 駆動装置
75, 90 制御装置
76 流量計
85, 86 圧縮コイルばね
87 電源部
88, 89 コィノレ
91, 92, 93 流動抵抗調整用円筒部 (流動抵抗調整手段)
101 研削工具
111, 112 溶接肉盛部
発明を実施するための最良の形態
[0028] 以下に添付図面を参照して、本発明に係る蒸気発生器及び蒸気発生器における 冷却水の流動抵抗調整方法の好適な実施例を詳細に説明する。なお、この実施例 によりこの発明が限定されるものではない。
実施例 1
[0029] 図 1は、本発明の実施例 1に係る蒸気発生器における水室の構造を表す要部断面 図、図 2は、実施例 1の蒸気発生器が適用された加圧水型原子炉を有する発電設備 の概略構成図、図 3は、実施例 1の蒸気発生器を表す概略構成図である。
[0030] 実施例 1の原子炉は、軽水を原子炉冷却材及び中性子減速材として使用し、炉心 全体にわたって沸騰しな 、高温高圧水とし、この高温高圧水を蒸気発生器に送って 熱交換により蒸気を発生させ、この蒸気をタービン発電機へ送って発電する加圧水 型原子炉(PWR : Pressurized Water Reactor)である。
[0031] 即ち、この加圧水型原子炉を有する発電設備において、図 2に示すように、原子炉 格納容器 11内には、加圧水型原子炉 12及び蒸気発生器 13が格納されており、この 加圧水型原子炉 12と蒸気発生器 13とは冷却水配管 14, 15を介して連結されており 、冷却水配管 14に加圧器 16が設けられ、冷却水配管 15に冷却水ポンプ 17が設け られている。この場合、減速材及び一次冷却水として軽水を用い、炉心部における一 次冷却水の沸騰を抑制するために、一次冷却系統は加圧器 16により 150〜160気 圧程度の高い圧力をかけている。従って、加圧水型原子炉 12にて、燃料として低濃 縮ウランまたは MOXにより一次冷却水として軽水が加熱され、高温の軽水が加圧器 16により所定の高圧に維持した状態で冷却水配管 14を通して蒸気発生器 13に送ら れる。この蒸気発生器 13では、高圧高温の軽水と二次冷却水としての水との間で熱 交換が行われ、冷やされた軽水は冷却水配管 15を通して加圧水型原子炉 12に戻さ れる。
[0032] 蒸気発生器 13は、原子炉格納容器 11の外部に設けられたタービン 18及び復水 器 19と冷却水配管 20, 21を介して連結されており、冷却水配管 21に給水ポンプ 22 が設けられている。また、タービン 18には発電機 23が接続され、復水器 19には冷却 水 (例えば、海水)を給排する供給管 24及び配水管 25が連結されている。従って、 蒸気発生器 13にて、高圧高温の軽水と熱交換を行って生成された蒸気は、冷却水 配管 20を通してタービン 18に送られ、この蒸気によりタービン 18を駆動して発電機 2 3により発電を行う。タービン 18を駆動した蒸気は、復水器 19で冷却された後、冷却 水配管 21を通して蒸気発生器 13に戻される。
[0033] 加圧水型原子炉を有する発電設備における蒸気発生器 13おいて、図 3に示すよう に、胴部 31は、密閉された中空円筒形状をなし、上部に対して下部が若干小径とな つている。この胴部 31内には、この胴部 31の内壁面と所定間隔をもって円筒形状を なす管群外筒 32が配設され、下端部が管板 33の近傍まで延設されている。そして、 この管群外筒 32は、長手方向における所定間隔離間した位置で、且つ、周方向に おける所定間隔離間した位置で、複数のジャッキ組立体 34により胴部 31に位置決 め支持されている。 [0034] また、管群外筒 32内には、ジャッキ組立体 34に対応した高さ位置に複数の管支持 板 35が配設されており、管板 33から上方に延設された複数のステーロッド 36により 支持されている。そして、この管群外筒 32内には、逆 U字形状をなす複数の伝熱管 37からなる伝熱管群 38が配設されており、各伝熱管 37の端部は管板 33を貫通して 支持されると共に、中間部が複数の管支持板 35により支持されている。この場合、管 支持板 35には多数の貫通孔(図示略)が形成されており、各伝熱管 37がこの貫通孔 内に非接触状態で貫通して 、る。
[0035] 胴部 31の下端部には下部半球鏡部 39が固定されており、内部が隔壁 40により入 口側水室 41及び出口側水室 42により区画されると共に、この入口側水室 41及び出 口側水室 42に入口ノズル 43及び出口ノズル 44が連結されて!、る。そして、入口側 水室 41が各伝熱管 37の一端部に連通し、出口側水室 42が各伝熱管 37の他端部 に連通している。なお、この入口ノズル 43には上述した冷却水配管 14が連結される 一方、出口ノズル 44には冷却水配管 15が連結されている。
[0036] 胴部 31の上部には、給水を蒸気と熱水とに分離する気水分離器 45、分離された 蒸気の湿分を除去して乾き蒸気に近!ヽ状態とする湿分分離器 46が設けられて ヽる。 また、胴部 31にて、伝熱管群 38と気水分離器 45との間には、胴部 31内に二次冷却 水の給水を行う給水管 47が挿入される一方、天井部には蒸気排出口 48が形成され ている。そして、胴部 31内には、給水管 47からこの胴部 31内に給水された二次冷却 水を、胴部 31と管群外筒 32との間を流下して管板 33にて上方に循環し、伝熱管群 38内を上昇するときに各伝熱管 37内を流れる熱水(一次冷却水)との間で熱交換を 行う給水路 49が設けられている。なお、給水管 47には上述した冷却水配管 21が連 結される一方、蒸気排出口 48には冷却水配管 20が連結されている。
[0037] 従って、加圧水型原子炉 12で加熱された一次冷却水が冷却水配管 14を通して入 口ノズル 43から蒸気発生器 13の入口側水室 41に送られ、多数の伝熱管 37内を通 つて循環して出口側水室 42に至る。一方、復水器 19で冷却された二次冷却水が冷 却水配管 21を通して蒸気発生器 13の給水管 47に送られ、胴部 31内の給水路 49を 通って伝熱管 47内を流れる熱水(一次冷却水)と熱交換を行う。即ち、胴部 31内で、 高圧高温の一次冷却水と二次冷却水との間で熱交換が行われ、冷やされた一次冷 却水は出口側水室 42から冷却水配管 15を通して加圧水型原子炉 12に戻される。 一方、高圧高温の一次冷却水と熱交換を行った二次冷却水は、胴部 31内を上昇し 、気水分離器 45で蒸気と熱水とに分離され、湿分分離器 46でこの蒸気の湿分を除 去してから、冷却水配管 20を通してタービン 18に送られる。
[0038] このように構成された蒸気発生器 13にて、本実施例では、入口ノズル 43に流動抵 抗調整手段が設けられており、この流動抵抗調整手段により入口ノズル 43を流れる 一次冷却水の流動抵抗を調整することで、蒸気発生器 13内を流動する一次冷却水 の流動抵抗を調整することができる。
[0039] 即ち、図 1に示すように、入口ノズル 43の内壁面には、流動抵抗調整手段としての 2枚の流動抵抗調整板 51, 52が溶接により固定されている。この流動抵抗調整板 5 1, 52は、中央部に形成された貫通孔 5 la, 52aの内径が相違することで、一次冷却 水が流通する流路面積が相違している。本実施例では、流動抵抗調整板 51の貫通 孔 51aに対して、流動抵抗調整板 52の貫通孔 51aの方が小径に設定されている。な お、各水室 41, 42には、検査や補修作業用のマンホール 4 la, 42aが設けられてい る。
[0040] 従って、入口ノズル 43内に 2枚の流動抵抗調整板 51, 52が溶接により固定された 状態では、この入口ノズル 43を流れる一次冷却水の流動抵抗は流動抵抗調整板 52 によって設定され、入口側水室 41への給水量は流動抵抗調整板 52の貫通孔 52a によって設定されている。そして、蒸気発生器 13の定期検査などで伝熱管 37の損傷 などが見つかったときには、作業者または作業ロボットを用いてマンホール 41a, 42a から各水室 41, 42に入り、伝熱管 37の補修作業や閉塞作業などを行う。
[0041] このとき、伝熱管群 38における一部の伝熱管 37を閉塞して使用不能になると、蒸 気発生器 13の流動抵抗が増加し、伝熱管群 38を流れる一次冷却水の流量が減少 することで、一次冷却水からの熱回収効率が低下してしまう。そこで、作業者は、入口 側水室 41から作業工具を用いて溶接部を切削し、流動抵抗調整板 52を撤去する。 すると、入口ノズル 43内に 1枚の流動抵抗調整板 51だけが固定された状態となり、 入口ノズル 43を流れる一次冷却水の流動抵抗は流動抵抗調整板 51によって設定さ れ、入口側水室 41への給水量は流動抵抗調整板 51の貫通孔 51aによって設定さ れることとなる。そのため、入口ノズル 43での流動抵抗が減少することで、蒸気発生 器 13の流動抵抗も減少し、伝熱管群 38を流れる一次冷却水の流量が増加すること で、一次冷却水力 の熱回収効率の低下が抑制される。
[0042] なお、使用不能になる伝熱管 37の本数が多いときには、全ての流動抵抗調整板 5 1, 52を撤去することで、入口ノズル 43を流れる一次冷却水の流動抵抗を更に減少 することで、蒸気発生器 13の流動抵抗を減少するようにしてもょ 、。
[0043] このように実施例 1の蒸気発生器にあっては、胴部 31内に逆 U字形状をなして一 次冷却水が流動する複数の伝熱管 37からなる伝熱管群 38を配設し、各伝熱管 37 の端部を管板 33により支持し、胴部 31の下端部に下部半球鏡部 39を固定すること で、各伝熱管 37の一端部に連通する入口側水室 41を設けると共に、各伝熱管 37の 他端部に連通する出口側水室 42を設け、この入口側水室 41に設けられた入口ノズ ル 43に一次冷却水の流動抵抗調整手段として 2枚の流動抵抗調整板 51, 52を着 脱自在に設けている。
[0044] 従って、既存の蒸気発生器 13に対して、この流動抵抗調整板 51, 52により入ロノ ズル 43から入口側水室 41に流入する一次冷却水の流動抵抗を調整することで、伝 熱管群 38を流れる一次冷却水の流動抵抗を調整することができ、使用できる伝熱管 37の本数が減少した場合であっても、一次冷却水の流動抵抗を調整して蒸気発生 器 13における熱回収効率の低下を抑制することができる。
[0045] また、本実施例では、流動抵抗調整手段を、入口ノズル 43の内壁面に溶接した流 路面積の異なる 2枚の流動抵抗調整板 51, 52としている。従って、伝熱管群 38の流 動抵抗の上昇に応じて、各流動抵抗調整板 51, 52を除去して入口ノズル 43での流 動抵抗を減少することで、蒸気発生器 13全体での一次冷却水の流動抵抗を容易に 調整することができる。
実施例 2
[0046] 図 4は、本発明の実施例 2に係る蒸気発生器における入口側水室の入口ノズルを 表す断面図である。なお、前述した実施例で説明したものと同様の機能を有する部 材には同一の符号を付して重複する説明は省略する。
[0047] 実施例 2の蒸気発生器において、図 4に示すように、入口ノズル 43の内壁面には、 流動抵抗調整手段としての 2枚の流動抵抗調整板 51, 52が締結ボルト 53により固 定されている。従って、作業者または作業ロボットを用いてマンホール力も入口側水 室に入り、この入口側水室力も作業工具を用いて締結ボルト 53を弛緩することで流 動抵抗調整板 52を撤去することができる。
[0048] このように実施例 2の蒸気発生器にあっては、入口側水室に設けられた入口ノズル 43に一次冷却水の流動抵抗調整手段として 2枚の流動抵抗調整板 51, 52を締結 ボルト 53により着脱自在に設けて 、る。
[0049] 従って、蒸気発生器の伝熱管群の流動抵抗の上昇に応じて、締結ボルト 53を弛緩 した後に、流動抵抗調整板 52を除去して入口ノズル 43での流動抵抗を減少すること で、蒸気発生器全体での一次冷却水の流動抵抗を容易に調整することができる。 実施例 3
[0050] 図 5は、本発明の実施例 3に係る蒸気発生器における入口側水室の入口ノズルを 表す断面図である。なお、前述した実施例で説明したものと同様の機能を有する部 材には同一の符号を付して重複する説明は省略する。
[0051] 実施例 3の蒸気発生器において、図 5に示すように、入口ノズル 43の内壁面には、 流動抵抗調整手段としての 4枚の流動抵抗調整板 61〜64が締結ボルト 65〜67に より着脱自在に固定されている。この流動抵抗調整板 61〜64は、中央部に形成され た貫通孔 61a〜64aの内径が相違することで、一次冷却水が流通する流路面積が相 違しており、流動抵抗調整板 61の貫通孔 61aに対して、流動抵抗調整板 64の貫通 孔 64aの方が小径に設定されている。従って、作業者または作業ロボットを用いてマ ンホール力も入口側水室に入り、この入口側水室力も作業工具を用いて締結ボルト 6 5〜67を弛緩することで流動抵抗調整板 62〜64を撤去することができる。この場合 、使用不能になる伝熱管の本数に応じて撤去する流動抵抗調整板 61〜64の枚数 を調節すればよぐ必要に応じて流動抵抗調整板 61を撤去するようにしてもよい。
[0052] このように実施例 3の蒸気発生器にあっては、入口側水室に設けられた入口ノズル 43に一次冷却水の流動抵抗調整手段として 4枚の流動抵抗調整板 61〜64を締結 ボルト 65〜67により着脱自在に設けて 、る。
[0053] 従って、蒸気発生器の伝熱管群の流動抵抗の上昇に応じて、締結ボルト 65〜67 を弛緩した後に、流動抵抗調整板 61〜64を所定の枚数だけ除去して入口ノズル 43 での流動抵抗を減少することで、蒸気発生器全体での一次冷却水の流動抵抗を容 易に調整することができ、蒸気発生器における一次冷却水の流動抵抗を細力べ調整 することができる。
[0054] なお、上述した実施例 1、 2、 3にて、流動抵抗調整板 51, 52, 61〜64の枚数は、 各実施例に限定されるものではなぐ必要に応じて設定すればよぐ流動抵抗調整 板 51, 52, 61〜64を撤去した後に、新たな流動抵抗調整板を固定するようにしても 良い。また、流動抵抗調整板 51, 52, 61〜64の固定方法も溶接や締結ボルト 53, 65〜67に限らず、一次冷却水の水圧に耐えることができれば、別の固定方法であつ てもよい。
実施例 4
[0055] 図 6は、本発明の実施例 4に係る蒸気発生器における入口側水室の入口ノズルを 表す断面概略図である。なお、前述した実施例で説明したものと同様の機能を有す る部材には同一の符号を付して重複する説明は省略する。
[0056] 実施例 4の蒸気発生器において、図 6に示すように、入口ノズル 43には、流動抵抗 調整手段としての流動抵抗調整ゲート 71力 入口ノズル 43に固定された支持部材 7 2により入口ノズル 43の径方向に沿って移動自在に支持されて 、る。この流動抵抗 調整ゲート 71は、駆動装置 73によりねじ軸 74を軸方向に移動することで、入口ノズ ル 43内を移動可能であり、その移動位置に応じて一次冷却水が流通する流路面積 を変更することができる。また、流動抵抗調整ゲート 71の駆動装置 73を駆動制御す る制御装置 75には、この入口ノズル 43から入口側水室に流入する一次冷却水の給 水量 (または、出口側水室から出口ノズルに排出される一次冷却水の排水量)を計測 する流量計 76が接続されており、制御装置 75は、この流量計 76が計測した給水量( または、排水量)に基づいて流動抵抗調整ゲート 71を移動している。
[0057] 従って、蒸気発生器の定期検査などで伝熱管の損傷などが見つ力つたときには、 作業者または作業ロボットを用いてマンホール力も各水室に入り、伝熱管の補修作 業や閉塞作業などを行う。このとき、一部の伝熱管を閉塞して使用不能になると、蒸 気発生器の流動抵抗が増加し、伝熱管群を流れる一次冷却水の流量が減少するこ とで、一次冷却水力もの熱回収効率が低下してしまう。そこで、制御装置 75は、流量 計 76が計測した入口ノズル 43から入口側水室に流入する一次冷却水の給水量に 基づ ヽて駆動装置 73を駆動制御し、流動抵抗調整ゲート 71を移動して入口ノズル 4 3の流路面積 (流動抵抗調整ゲート 71の開放量)を最適なものに調整する。そのため 、入口ノズル 43での流動抵抗が減少することで、蒸気発生器の流動抵抗も減少し、 伝熱管群を流れる一次冷却水の流量が増加することで、一次冷却水からの熱回収 効率の低下が抑制される。
[0058] このように実施例 4の蒸気発生器にあっては、入口側水室に設けられた入口ノズル 43に一次冷却水の流動抵抗調整手段として流動抵抗調整ゲート 71を移動自在に 設け、駆動装置 73により移動可能とし、制御装置 75は流量計 76が計測した入ロノ ズル 43から入口側水室に流入する一次冷却水の給水量に基づいて駆動装置 73を 駆動制御している。
[0059] 従って、既存の蒸気発生器に対して、制御装置 75が、入口ノズル 43から入口側水 室に流入する一次冷却水の給水量に基づいて駆動装置 75を駆動制御し、流動抵 抗調整ゲート 71を移動して入口ノズル 43の流路面積を調整することで、一次冷却水 の流動抵抗を最適値に調整することができ、蒸気発生器全体における一次冷却水の 流動抵抗を調整し、熱回収効率の低下を抑制することができる。
実施例 5
[0060] 図 7は、本発明の実施例 5に係る蒸気発生器における入口側水室の入口ノズルを 表す断面概略図である。なお、前述した実施例で説明したものと同様の機能を有す る部材には同一の符号を付して重複する説明は省略する。
[0061] 実施例 5の蒸気発生器において、図 7〖こ示すよう〖こ、入口ノズル 43〖こは、流動抵抗 調整手段としての上下一対の流動抵抗調整ゲート 81, 82が、入口ノズル 43に固定 された上下の支持部材 83, 84〖こより入口ノス、ノレ 43の径方向〖こ沿って、且つ、互いに 接近離反自在に支持されている。この流動抵抗調整ゲート 81, 82は、圧縮コイルば ね 85, 86により互いに接近する方向に付勢支持される一方、電源部 87から各コイル 88, 89に通電することで、発生する磁力により互いに離間する方向に移動することが でき、その移動位置に応じて一次冷却水が流通する流路面積を変更することができ る。また、各コイル 88, 89に通電する電源部 87を駆動制御する制御装置 90には、こ の入口ノズル 43から入口側水室に流入する一次冷却水の給水量を計測する流量計 76が接続されており、制御装置 90は、この流量計 76が計測した給水量に基づいて 流動抵抗調整ゲート 81, 82を移動している。
[0062] 従って、蒸気発生器の定期検査などで伝熱管の損傷などが見つ力つたときには、 作業者または作業ロボットを用いてマンホール力も各水室に入り、伝熱管の補修作 業や閉塞作業などを行う。このとき、一部の伝熱管を閉塞して使用不能になると、蒸 気発生器の流動抵抗が増加し、伝熱管群を流れる一次冷却水の流量が減少するこ とで、一次冷却水力もの熱回収効率が低下してしまう。そこで、制御装置 90は、流量 計 76が計測した入口ノズル 43から入口側水室に流入する一次冷却水の給水量に 基づいて電源部 87を駆動制御し、流動抵抗調整ゲート 81, 82を移動して入口ノズ ル 43の流路面積 (流動抵抗調整ゲート 81, 82の開放量)を最適なものに調整する。 この場合、制御装置 90は、流量計 76が計測した一次冷却水の給水量に応じて一方 の流動抵抗調整ゲート 81, 82だけを移動してもよい。そのため、入口ノズル 43での 流動抵抗が減少することで、蒸気発生器の流動抵抗も減少し、伝熱管群を流れる一 次冷却水の流量が増加することで、一次冷却水からの熱回収効率の低下が抑制さ れる。
[0063] このように実施例 5の蒸気発生器にあっては、入口側水室に設けられた入口ノズル 43に一次冷却水の流動抵抗調整手段として流動抵抗調整ゲート 81, 82を圧縮コィ ノレば、ね 85, 86により付勢支持すると共に、電源咅 力ら各コィノレ 88, 89に通電す ることで移動可能とし、制御装置 90は流量計 76が計測した入口ノズル 43から入口側 水室に流入する一次冷却水の給水量に基づいて電源部 87を駆動制御している。
[0064] 従って、既存の蒸気発生器に対して、制御装置 90が、入口ノズル 43から入口側水 室に流入する一次冷却水の給水量に基づいて電源部 87を駆動制御し、流動抵抗 調整ゲート 81, 82を移動して入口ノズル 43の流路面積を調整することで、一次冷却 水の流動抵抗を最適値に調整することができ、蒸気発生器全体における一次冷却 水の流動抵抗を調整し、熱回収効率の低下を抑制することができる。
[0065] なお、上述した実施例 4、 5では、制御装置 75, 90は、流量計 76が計測した入口ノ ズル 43から入口側水室に流入する一次冷却水の給水量に基づいて駆動装置 73ま たは電源部 87を駆動制御し、流動抵抗調整ゲート 71, 81, 82を移動して入口ノズ ル 43の流路面積を調整するようにした力 一次冷却水の給水量と相関関係にある原 子力プラントの発電量に応じて流動抵抗調整ゲート 71, 81, 82を移動して入口ノズ ル 43の流路面積を調整するようにしてもょ ヽ。
実施例 6
[0066] 図 8は、本発明の実施例 6に係る蒸気発生器における入口側水室の入口ノズルを 表す断面図である。なお、前述した実施例で説明したものと同様の機能を有する部 材には同一の符号を付して重複する説明は省略する。
[0067] 実施例 6の蒸気発生器において、図 8に示すように、入口ノズル 43の内壁面には、 流動抵抗調整手段としての 3個の流動抵抗調整用円筒管 91, 92, 93が溶接により 着脱自在に固定されている。従って、作業者または作業ロボットを用いてマンホール 力 入口側水室に入り、この入口側水室力 切削工具を用いて溶接部を切除するこ とで流動抵抗調整用円筒管 91, 92, 93を撤去することができる。
[0068] このように実施例 6の蒸気発生器にあっては、入口側水室に設けられた入口ノズル 43に一次冷却水の流動抵抗調整手段として流動抵抗調整用円筒管 91, 92, 93を 溶接により着脱自在に設けて 、る。
[0069] 従って、蒸気発生器の伝熱管群の流動抵抗の上昇に応じて、切削工具を用いて溶 接部を切除することで、流動抵抗調整用円筒管 91, 92, 93を除去して入口ノズル 4 3での流動抵抗を減少することで、蒸気発生器全体での一次冷却水の流動抵抗を容 易に調整することができる。この場合、流動抵抗調整手段として流動抵抗調整用円 筒管 91, 92, 93を用いることで、内部を流れる一次冷却水の安定ィ匕を図ることがで きる。
実施例 7
[0070] 図 9は、本発明の実施例 7に係る蒸気発生器における冷却水の流動抵抗調整方法 を表す入口側水室の入口ノズルを表す断面図である。なお、前述した実施例で説明 したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略す る。 [0071] 実施例 7の蒸気発生器において、図 9に示すように、入口ノズル 43の内壁面には、 2枚の流動抵抗調整板 51, 52が溶接により着脱自在に固定されている。この流動抵 抗調整板 51 , 52は、中央部に形成された貫通孔 5 la, 52aの内径が相違することで 、一次冷却水が流通する流路面積が相違している。従って、作業者または作業ロボ ットを用いてマンホール力も入口側水室に入り、この入口側水室から研削工具 101を 用いて流動抵抗調整板 52の貫通孔 52aの内面を研削することで、その流路面積を 調整することができる。また、溶接部を切削して流動抵抗調整板 52を撤去してから、 研削工具 101を用いて流動抵抗調整板 51の貫通孔 51aの内面を研削することで、 その流路面積を調整することもできる。
[0072] このように実施例 7の蒸気発生器にあっては、入口側水室に設けられた入口ノズル 43に一次冷却水の流動抵抗調整手段として流動抵抗調整板 51, 52を設け、必要 に応じて研削工具 101を用いて流動抵抗調整板 51, 52の貫通孔 51a, 52aの内面 を研削することで、その流路面積を調整可能としている。
[0073] 従って、蒸気発生器の伝熱管群の流動抵抗の上昇に応じて、入り口側水室から研 削工具 101により流動抵抗調整板 51, 52の貫通孔 51a, 52aの内面を研削すること で、入口ノズル 43での流動抵抗を減少することができ、蒸気発生器全体での一次冷 却水の流動抵抗を容易に調整することで、蒸気発生器における一次冷却水の流動 抵抗を細力べ調整することができる。
実施例 8
[0074] 図 10は、本発明の実施例 8に係る蒸気発生器における冷却水の流動抵抗調整方 法を表す入口側水室の入口ノズルを表す断面図である。なお、前述した実施例で説 明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略 する。
[0075] 実施例 8の蒸気発生器において、図 10に示すように、入口ノズル 43の内壁面には 、流動抵抗調整手段として溶接肉盛部 111, 112が予め形成されている。従って、作 業者または作業ロボットを用いてマンホール力 入口側水室に入り、この入口側水室 から研削工具 101を用いて溶接肉盛部 111, 112の表面を研削することで、その流 路面積を調整することができる。 [0076] このように実施例 8の蒸気発生器にあっては、入口側水室に設けられた入口ノズル 43に一次冷却水の流動抵抗調整手段として溶接肉盛部 111, 112を予め形成し、 必要に応じて研削工具 101を用いて溶接肉盛部 111, 112の表面を研削することで 、その流路面積を調整可能としている。
[0077] 従って、蒸気発生器の伝熱管群の流動抵抗の上昇に応じて、入り口側水室から研 削工具 101により溶接肉盛部 111, 112の表面を研削することで、入口ノズル 43で の流動抵抗を減少することができ、蒸気発生器全体での一次冷却水の流動抵抗を 容易に調整することで、蒸気発生器における一次冷却水の流動抵抗を細力べ調整す ることがでさる。
[0078] なお、上述した各実施例では、流動抵抗調整手段を入口ノズル 43〖こ設けることで、 入口側水室 41に流入する一次冷却水の流動抵抗を調整するようにした力 出口ノズ ル 44に設けることで、出口側水室 42から排出される一次冷却水の流動抵抗を調整 するようにしてもよぐ入口ノズル 43及び出口ノズル 44に設けることで、入口側水室 4 1に流入する一次冷却水の流動抵抗と出口側水室 42から排出される一次冷却水の 流動抵抗を調整するようにしてもょ ヽ。
[0079] また、各実施例では、蒸気発生器 13の定期検査などで伝熱管 37の損傷などが見 つかり、一部の伝熱管 37を閉塞して伝熱管群 38の流動抵抗が増加したとき、入ロノ ズル 43の流動抵抗を減少することで、蒸気発生器 13全体の流動抵抗が減少するよ うにしたが、本発明の蒸気発生器及び蒸気発生器における冷却水の流動抵抗調整 方法は、この場合に適用することに限定するものではない。例えば、蒸気発生器を取 り替える工事を行う場合、伝熱管の本数を減らして小型化を図る一方で、熱回収効 率を維持、または向上させるような蒸気発生器を設置するとき、本発明の蒸気発生器 及び蒸気発生器における冷却水の流動抵抗調整方法を適用し、新設の蒸気発生器 の流動抵抗を調整することもできる。
産業上の利用可能性
[0080] 本発明に係る蒸気発生器及び蒸気発生器における冷却水の流動抵抗調整方法 は、入口ノズルまたは出口ノズルに流動抵抗調整手段を設けることで、容易に蒸気 発生器における冷却水の流動抵抗を調整可能としたものであり、いずれの種類の蒸 気発生器にも適用することができる。

Claims

請求の範囲
[1] 中空密閉形状をなす胴部と、該胴部内に配設されて逆 u字形状をなして一次冷却 水が流動する複数の伝熱管からなる伝熱管群と、前記胴部内の下部に固定されて 前記複数の伝熱管の端部を支持する管板と、前記胴部の下端部に設けられて前記 複数の伝熱管の一端部に連通する入口側水室と、前記胴部の下端部に設けられて 前記複数の伝熱管の他端部に連通する出口側水室と、前記胴部内に二次冷却水を 給水して前記複数の伝熱管内を流れる一次冷却水との間で熱交換を行う二次冷却 水給水路とを具えた蒸気発生器にぉ 、て、前記入口側水室に設けられた入口ノズル または前記出口側水室に設けられた出口ノズルの少なくともいずれか一方に流動抵 抗調整手段が設けられたことを特徴とする蒸気発生器。
[2] 請求項 1に記載の蒸気発生器にお!、て、前記流動抵抗調整手段は、前記入口ノズ ルまたは前記出口ノズルに着脱自在に設けられた流路面積の異なる複数の流動抵 抗調整板を有することを特徴とする蒸気発生器。
[3] 請求項 1に記載の蒸気発生器にお!、て、前記流動抵抗調整手段は、前記入口ノズ ルまたは前記出口ノズルの径方向に沿って移動自在に設けられた流動抵抗調整ゲ ートを有することを特徴とする蒸気発生器。
[4] 請求項 3に記載の蒸気発生器において、前記入口ノズルから前記入口側水室に流 入する給水量または前記出口側水室から前記出口ノズルに排出される排水量を計 測する流量計が設けられ、前記流動抵抗調整手段は、該流量計が計測した給水量 または排水量に基づいて前記流動抵抗調整ゲートを移動することを特徴とする蒸気 発生器。
[5] 請求項 1に記載の蒸気発生器にお!、て、前記流動抵抗調整手段は、前記入口ノズ ルまたは前記出口ノズルに着脱自在に設けられた複数の流動抵抗調整用円筒管を 有することを特徴とする蒸気発生器。
[6] 中空密閉形状をなす胴部と、該胴部内に配設されて逆 U字形状をなして一次冷却 水が流動する複数の伝熱管からなる伝熱管群と、前記胴部内の下部に固定されて 前記複数の伝熱管の端部を支持する管板と、前記胴部の下端部に設けられて前記 複数の伝熱管の一端部に連通する入口側水室と、前記胴部の下端部に設けられて 前記複数の伝熱管の他端部に連通する出口側水室と、前記胴部内に二次冷却水を 給水して前記複数の伝熱管内を流れる一次冷却水との間で熱交換を行う二次冷却 水給水路とを具えた蒸気発生器において、前記蒸気発生器の運転状態に応じて前 記入口側水室に流入する一次冷却水の流動抵抗または前記出口側水室から排出さ れる流動抵抗を調整することを特徴とする蒸気発生器における冷却水の流動抵抗調 整方法。
請求項 6に記載の蒸気発生器における冷却水の流動抵抗調整方法において、前 記入口側水室への一次冷却水の給水を停止した状態で、マンホールを開放して作 業者または作業ロボットが前記入口側水室または前記出口側水室に入り、入口ノズ ルの開放量または出口ノズルの開放量を調整することを特徴とする蒸気発生器にお ける冷却水の流動抵抗調整方法。
PCT/JP2006/323119 2005-11-28 2006-11-20 蒸気発生器及び蒸気発生器における冷却水の流動抵抗調整方法 WO2007060915A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/063,914 US7878159B2 (en) 2005-11-28 2006-11-20 Steam generator and method of adjusting flow resistance of cooling water in steam generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005342411A JP2007147163A (ja) 2005-11-28 2005-11-28 蒸気発生器及び蒸気発生器における冷却水の流動抵抗調整方法
JP2005-342411 2005-11-28

Publications (1)

Publication Number Publication Date
WO2007060915A1 true WO2007060915A1 (ja) 2007-05-31

Family

ID=38067142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323119 WO2007060915A1 (ja) 2005-11-28 2006-11-20 蒸気発生器及び蒸気発生器における冷却水の流動抵抗調整方法

Country Status (3)

Country Link
US (1) US7878159B2 (ja)
JP (1) JP2007147163A (ja)
WO (1) WO2007060915A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101281697B1 (ko) 2011-07-13 2013-07-03 김원영 전기 온수/스팀 보일러
EP2605379B1 (en) 2011-12-14 2015-04-29 GE Jenbacher GmbH & Co. OG System and Method for Cooling Dynamoelectric Machine
JP5840049B2 (ja) * 2012-03-27 2016-01-06 三菱重工業株式会社 蒸気発生器製造方法
US9997262B2 (en) 2013-12-26 2018-06-12 Nuscale Power, Llc Integral reactor pressure vessel tube sheet
US9897308B2 (en) * 2013-12-26 2018-02-20 Nuscale Power, Llc Steam generator with tube aligning orifice
US10354762B2 (en) * 2015-10-26 2019-07-16 Nuscale Power, Llc Passive cooling to cold shutdown
US10937557B2 (en) * 2017-10-17 2021-03-02 Ge-Hitachi Nuclear Energy Americas Llc Systems and methods for airflow control in reactor passive decay heat removal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134591U (ja) * 1979-03-19 1980-09-24
JPH04290683A (ja) * 1991-03-20 1992-10-15 Fujitsu Ltd 流量調整用バルブ
JPH0552990A (ja) * 1991-08-26 1993-03-02 Hitachi Ltd 原子炉及びその運転方法並びにその蒸気発生方法
JPH05196792A (ja) * 1992-01-21 1993-08-06 Toshiba Corp 原子炉設備の配管装置
JPH1038209A (ja) * 1996-07-23 1998-02-13 Mitsubishi Heavy Ind Ltd オリフィス装置
WO1998038002A1 (en) * 1997-02-28 1998-09-03 Electric Power Research Institute, Inc. Apparatus and method for centering a laser welding probe within a tube
JP2000346306A (ja) * 1999-06-03 2000-12-15 Ishikawajima Harima Heavy Ind Co Ltd 蒸気発生器の給水入口部
JP2002349515A (ja) * 2001-05-23 2002-12-04 Mitsubishi Heavy Ind Ltd 多段オリフィス

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3651789A (en) * 1968-06-13 1972-03-28 Westinghouse Electric Corp Steam generator
DE2346411A1 (de) * 1973-09-14 1975-04-03 Kraftwerk Union Ag Dampferzeuger
US3983903A (en) * 1974-12-23 1976-10-05 Combustion Engineering, Inc. Multiple orifice assembly
JPS54134591U (ja) 1978-03-08 1979-09-18
US4671326A (en) * 1984-09-17 1987-06-09 Westinghouse Electric Corp. Dual seal nozzle dam and alignment means therefor
US4690172A (en) * 1985-12-17 1987-09-01 Westinghouse Electric Corp. Foldable dual-seal nozzle dam
JPS62226017A (ja) 1986-03-28 1987-10-05 Toshiba Corp 流量測定装置
DE3742876A1 (de) * 1987-12-17 1989-06-29 Siemens Ag Verfahren und anordnung zur erneuerung eines senkrecht angeordneten dampferzeugers, insbesondere in kernkraftwerken
JPH01235897A (ja) 1988-03-17 1989-09-20 Toshiba Corp 主蒸気流量測定装置
US5171514A (en) * 1991-02-01 1992-12-15 Westinghouse Electric Corp. Nozzle dam having a unitary plug
JP2952102B2 (ja) * 1991-04-05 1999-09-20 ウエスチングハウス・エレクトリック・コーポレイション 熱交換器
JPH07120586A (ja) 1993-10-21 1995-05-12 Toshiba Corp 原子力発電プラントの流量測定方法と流量測定装置
US5695003A (en) * 1994-07-19 1997-12-09 Foster-Miller, Inc. System for sealing the nozzle of a steam generator
KR0156508B1 (ko) * 1994-12-01 1998-12-15 이세엽 원자력발전소 증기발생기의 노즐관 막음장치
US5764717A (en) * 1995-08-29 1998-06-09 Westinghouse Electric Corporation Chemical cleaning method for the removal of scale sludge and other deposits from nuclear steam generators
JPH09222202A (ja) 1996-02-16 1997-08-26 Mitsubishi Heavy Ind Ltd 異常診断装置
FR2778224B1 (fr) * 1998-05-04 2000-07-28 Framatome Sa Generateur de vapeur comportant un dispositif d'alimentation en eau perfectionne
FR2858683B1 (fr) * 2003-08-07 2005-11-04 Framatome Anp Echangeur de chaleur et en particulier generateur de vapeur a fond convexe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134591U (ja) * 1979-03-19 1980-09-24
JPH04290683A (ja) * 1991-03-20 1992-10-15 Fujitsu Ltd 流量調整用バルブ
JPH0552990A (ja) * 1991-08-26 1993-03-02 Hitachi Ltd 原子炉及びその運転方法並びにその蒸気発生方法
JPH05196792A (ja) * 1992-01-21 1993-08-06 Toshiba Corp 原子炉設備の配管装置
JPH1038209A (ja) * 1996-07-23 1998-02-13 Mitsubishi Heavy Ind Ltd オリフィス装置
WO1998038002A1 (en) * 1997-02-28 1998-09-03 Electric Power Research Institute, Inc. Apparatus and method for centering a laser welding probe within a tube
JP2000346306A (ja) * 1999-06-03 2000-12-15 Ishikawajima Harima Heavy Ind Co Ltd 蒸気発生器の給水入口部
JP2002349515A (ja) * 2001-05-23 2002-12-04 Mitsubishi Heavy Ind Ltd 多段オリフィス

Also Published As

Publication number Publication date
US7878159B2 (en) 2011-02-01
US20090260584A1 (en) 2009-10-22
JP2007147163A (ja) 2007-06-14

Similar Documents

Publication Publication Date Title
WO2007060915A1 (ja) 蒸気発生器及び蒸気発生器における冷却水の流動抵抗調整方法
US10512991B2 (en) Method of manufacturing a helical coil steam generator
US20130121452A1 (en) Pressure-tube reactor with pressurized moderator
JP7072038B2 (ja) 原子力発電所内のひび割れた溶接部を構造的に代替する装置
KR20090096492A (ko) 원자로 정렬판 구조체
US20150377756A1 (en) Water jet peening compressive residual stress test method, test device, and test facility
WO2012117779A1 (ja) 中性子束検出器の案内装置
WO2014104030A1 (ja) 管台補修方法及び原子炉容器
JP2012157950A (ja) ボルトテンショナ
US11935663B2 (en) Control rod drive system for nuclear reactor
JP2009198400A (ja) 制御棒駆動装置の冷却構造及び方法並びに原子炉
EP2264716A2 (en) Decontamination method of heat exchanger and decontamination method
JP2019090708A (ja) 締結弛緩装置および締結弛緩方法
KR200431176Y1 (ko) 고정판 상단부위의 전열관 내경 절단장치
KR200431175Y1 (ko) 증기발생기 전열관의 보링장치
KR200409916Y1 (ko) 증기발생기 전열관의 보링장치
CA2622547A1 (en) Pressurized fuel channel type nuclear reactor
JP5871472B2 (ja) 管群外筒の組立方法及び蒸気発生器の組立方法、管群外筒の移動装置
EP2641680A1 (en) Hole drilling device, and method
JP5755060B2 (ja) 制御棒クラスタ案内管用支持ピンの取外し方法及び装置
JP6081206B2 (ja) 原子炉補修監視装置及び原子炉補修方法
US8950365B2 (en) Feed water pipe for steam generator
KR200412327Y1 (ko) 고정판 상단부위의 전열관 내경 절단장치
US20240266081A1 (en) Nuclear fuel core and methods of fueling and/or defueling a nuclear reactor, control rod drive system for nuclear reactor, shutdown system for nuclear steam supply system, nuclear reactor shroud, and/or loss-of-coolant accident reactor cooling system
WO2012063731A1 (ja) 蒸気発生器、蒸気発生器の組立方法、気水分離器の移動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12063914

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832969

Country of ref document: EP

Kind code of ref document: A1