WO2007059787A1 - Laserbearbeitungsdüse - Google Patents

Laserbearbeitungsdüse Download PDF

Info

Publication number
WO2007059787A1
WO2007059787A1 PCT/EP2005/012625 EP2005012625W WO2007059787A1 WO 2007059787 A1 WO2007059787 A1 WO 2007059787A1 EP 2005012625 W EP2005012625 W EP 2005012625W WO 2007059787 A1 WO2007059787 A1 WO 2007059787A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser processing
cavity
processing nozzle
gas
nozzle
Prior art date
Application number
PCT/EP2005/012625
Other languages
English (en)
French (fr)
Inventor
Nicolai Speker
Original Assignee
Trumpf Werkzeugmaschinen Gmbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36685568&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007059787(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Trumpf Werkzeugmaschinen Gmbh + Co. Kg filed Critical Trumpf Werkzeugmaschinen Gmbh + Co. Kg
Priority to AT05825522T priority Critical patent/ATE494981T1/de
Priority to PCT/EP2005/012625 priority patent/WO2007059787A1/de
Priority to DE502005010866T priority patent/DE502005010866D1/de
Priority to CN2005800521421A priority patent/CN101321601B/zh
Priority to EP05825522A priority patent/EP1957232B1/de
Priority to JP2008541591A priority patent/JP5039050B2/ja
Priority to EP06818852A priority patent/EP1976658A1/de
Priority to PCT/EP2006/011361 priority patent/WO2007060008A1/de
Publication of WO2007059787A1 publication Critical patent/WO2007059787A1/de
Priority to US12/125,384 priority patent/US8188403B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • B23K26/1438Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means for directional control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire

Definitions

  • the invention relates to a laser processing nozzle with at least one feed space for the laser beam and for a processing gas.
  • Such a laser processing nozzle has become known, for example, from US Pat. No. 6,423,928 B1.
  • the orifice diameter of a laser processing nozzle designed as a hole nozzle is to be increased in fusion cutting (for example, VA) with increasing sheet thickness to be processed.
  • fusion cutting for example, VA
  • gas pressures are needed.
  • Increasing gas pressures mean, however, an ever-increasing gas density in the kerf, which makes plasma formation more and more likely.
  • the plasma wave-length depends on the irradiated power density (high power density or process temperature >> plasma) and the focus position (high focus position >> plasma) and represents a limitation of the better quality fusion cut.
  • a nozzle for laser beam cutting in such a way that higher quality cuts with respect to the cutting edge roughness can be achieved, it being of particular Interest is to increase the cutting efficiency, ie higher feed rates are to be achieved while maintaining the high quality of cut. Especially when cutting thick sheets, plasma formation must be counteracted.
  • a laser processing nozzle of the type mentioned wherein the laser processing nozzle has a arranged in the region of the mouth of the gas supply space cavity which is open only in the direction of the workpiece to be machined, wherein the opening has a wedge-shaped edge.
  • the effect of the laser processing nozzle according to the invention aims to obtain a greater degree of coverage of the cutting front without having to increase the orifice diameter of the laser processing nozzle. This avoids the effect of creating a diffuser, which results in a lower momentum on the melt.
  • a roll flow is formed.
  • the roll flow causes the main gas jet first flows into a volume (storage volume), the pressure of which is increased in relation to the environment.
  • the processing gas thereby achieved in comparison to known laser processing nozzles a higher outflow velocity from the mouth, whereby an improved momentum transfer to the plate or on the cutting front is possible.
  • the roll flow also has a supporting effect for the main gas jet in the area above the workpiece. Another support effect is created inside the kerf.
  • the main gas jet dissolves in comparison to known laser processing nozzles only further down from the cutting front. This leads to an improved cutting edge.
  • the cavity is arranged rotationally symmetrical to the mouth of the gas supply space.
  • the processing gas can be very well stowed and flow into the cavity.
  • the formation of the roll flow is further supported by the fact that the cavity in the region of the cavity floor has a round inner contour.
  • the cavity has an angularly formed inner contour in the region of the cavity floor.
  • machining gas may flow into the cavity almost radially.
  • the extension of the cavity behind the mouth of the gas supply space optimizes the flow conditions.
  • the backflow gas can flow coaxially to the main gas jet. This additionally improves the cutting results.
  • Fig. 1 shows the structure of a laser cutting machine
  • FIG. 2 shows a first laser processing nozzle according to the invention in FIG.
  • 3a, 3b further laser processing nozzles according to the invention
  • FIG. 1 shows the construction of a laser processing system 1 for laser cutting with a CO 2 laser 2, a laser processing head 4 (laser processing nozzle 4 a) and a workpiece support 5.
  • a generated laser beam 6 is guided by means of deflection mirrors to the laser processing head 4 and directed by means of mirrors on a workpiece 8.
  • the laser beam 6 Before a continuous kerf is formed, the laser beam 6 must penetrate the workpiece 8.
  • the sheet 8 must be spot-molten or oxidized at one point, and the melt must be blown out. Both piercing and laser cutting are assisted by the addition of a gas.
  • cutting gases 9 oxygen, nitrogen, compressed air and / or application-specific gases can be used. Which gas is ultimately used depends on which materials are cut and what quality requirements are placed on the workpiece.
  • Resulting particles and gases can be sucked out of a suction chamber 11 by means of a suction device IO.
  • the laser processing nozzle 4a is constructed from two components 12 and 13 which are connected to one another.
  • the laser processing nozzle 4a designed as a hole nozzle has a central feed space 14 for the cutting gas and the laser beam.
  • a cylindrical mouth 15 of the hole nozzle 4 a is withdrawn behind a nozzle tip 16 as seen in the flow direction.
  • an annular cavity 17 is provided for receiving cutting gas.
  • the cavity 17 is only to the bottom of the laser processing nozzle 4a, i. towards the workpiece and the mouth 15 out, open and has a circular bottom 18.
  • the storage volume available for the cutting gas thus spreads radially and also beyond the nozzle orifice 15.
  • Arrows (main gas jet 19 and jammed gas jet 19 ') indicate in FIG. 2 the flow of the cutting gas.
  • the laser processing nozzle 4a has a diameter much larger than the mouth 15 itself.
  • the additional storage space provided by means of the cavity 17 is therefore mounted and shaped so that parts of the radially outflowing Gas are recycled via a "roll flow” and encase the cutting gas jet.
  • For the formation of the roll flow is primarily the wedge-shaped tapered edge 18 'at the bottom of the laser processing nozzle 4a responsible. Radial outflowing processing gas is partially deflected from here into the cavity 17 and flows along the inner surfaces 17 'and 17 "of the cavity 17 via the outlet edge 18" back to the main gas jet 19.
  • the wedge-shaped geometry causes the flow separation of the radially outflowing processing gas and, on the other hand, acts as a flow-guiding geometry for the formation of the roll flow.
  • the shape of the cavity 17 and the extent of the cavity 17 to behind the nozzle orifice 15 for the formation of the roll flow are relevant.
  • the cutting distance that is the distance between the nozzle lower edge of the nozzle tip 16 and the sheet surface, must be relatively small ( ⁇ 0.7 mm, the best cutting distance being 0.3 to 0.5 mm) become. If the cutting distance is greater, creates a pressure pad on the surface of the sheet, which prevents effective momentum transfer of the processing gas. In addition, it no longer comes to the formation of the roll flow.
  • the inside of the cavity 17, which adjoins the nozzle opening may be inclined outwardly.
  • the angle of inclination i. the angle between the inner side 17 'and the workpiece, the deflection of the radially outflowing gas is less loss, the greater the inclination, i. the sharper the angle of inclination, is.
  • the geometry in the region of the bottom 18 and the subsequent flanks 18 ' can be circular or elliptical.
  • FIGS. 3a and 3b show alternatives to the hole nozzle 4a according to FIG. 1.
  • a laser machining nozzle 20 has a conical mouth 21 (Laval nozzle).
  • a laser processing nozzle 22 has an annular gap 23.
  • FIGS. 4a and 4b show alternatives to the storage volume of the laser processing nozzle 4a according to FIG. 1. As shown in FIGS. 4a and 4b, angular shapes of the cavity in the laser processing nozzles 24 (cavity 25) and 26 (cavity 27) are conceivable in addition to round geometries.

Abstract

Eine Laserbearbeitungsdüse (4a) mit mindestens einem Zuführungsraum (14) für den Laserstrahl und für ein Bearbeitungsgas weist einen im Bereich der Mündung (15) des Gaszuführungsraums (14) angeordneten Hohlraum (17) auf, welcher in Richtung des zu bearbeitenden Werkstücks offen ist, wobei diese Öffnung eine keilförmige Kante (18') aufweist.

Description

B E SC H RE I B U N G
Laserbearbeitungsdüse
Die Erfindung betrifft eine Laserbearbeitungsdüse mit mindestens einem Zuführungsraum für den Laserstrahl und für ein Bearbeitungsgas.
Eine derartige Laserbearbeitungsdüse ist beispielsweise durch die US 6,423,928 Bl bekannt geworden.
Gemäß dem Stand der Technik ist der Mündungsdurchmesser einer als Lochdüse ausgebildeten Laserbearbeitungsdüse beim Schmelzschneiden (z.B. VA) mit zunehmender zu bearbeitender Blechdicke zu vergrößern. Aus diesem Grund werden immer höhere Gasdrücke benötigt. Steigende Gasdrücke bedeuten aber eine immer höhere Gasdichte im Schnittspalt, wodurch die Plasmabildung immer wahrscheinlicher wird. Die Plasmaschwelle ist unter anderem auch von der eingestrahlten Leistungsdichte (hohe Leistungsdichte bzw. Prozesstemperatur >> Plasma) und der Fokuslage (hohe Fokuslage >> Plasma) abhängig und stellt eine Beschränkung des qualitativ besseren Schmelzschnitts dar.
Beim Schneiden dicker Bleche lassen sich bessere Schnittflankenqualitäten erreichen, wenn der Schneidgasdruck verringert wird. Damit ist aber immer die Bildung eines starken Grat verbunden.
Es soll die Aufgabe gelöst werden, eine Düse zum Laserstrahlschneiden derart weiterzubilden, dass qualitativ höherwertige Schnitte bezüglich der Schneidflankenrauigkeit erreicht werden können, wobei es von besonderem Interesse ist, die Schneideffizienz zu erhöhen, d.h. es sollen höhere Vorschübe unter Beibehaltung der hochwertigen Schnittqualität erreicht werden. Speziell beim Schneiden dicker Bleche muss der Plasmabildung entgegen gewirkt werden.
Diese Aufgabe wird durch eine Laserbearbeitungsdüse der eingangs genannten Art gelöst, wobei die Laserbearbeitungsdüse einen im Bereich der Mündung des Gaszuführungsraums angeordneten Hohlraum aufweist, welcher nur in Richtung des zu bearbeitenden Werkstücks offen ist, wobei die Öffnung eine keilförmige Kante aufweist.
Die Wirkung der erfindungsgemäßen Laserbearbeitungsdüse zielt darauf ab, einen größeren Überdeckungsgrad der Schneidfront zu erhalten, ohne dass der Mündungsdurchmesser der Laserbearbeitungsdüse vergrößert werden muss. Dabei wird vermieden, dass in der Wirkung ein Diffusor entsteht, welcher einen geringeren Impuls auf die Schmelze zur Folge hat.
Mithilfe der erfindungsgemäßen keilförmigen Kante kommt es zur Ausbildung einer Walzenströmung. Die Walzenströmung führt dazu, dass der Hauptgasstrahl zunächst in ein Volumen (Stauvolumen) einströmt, dessen Druck gegenüber der Umgebung erhöht ist. Das Bearbeitungsgas erreicht dadurch im Vergleich zu bekannten Laserbearbeitungsdüsen eine höhere Ausströmgeschwindigkeit aus der Mündung, wodurch ein verbesserter Impulsübertrag auf das Blech bzw. auf die Schneidfront möglich wird. Durch die gleichgerichteten Geschwindigkeiten im Übergangsbereich zwischen der Walzenströmung und dem Hauptgasstrahl werden die Reibungsverluste zwischen dem Hauptgasstrahl und der Umgebung im Vergleich zu bekannten Laserbearbeitungsdüsen vermindert. Die Walzenströmung hat zudem eine Stützwirkung für den Hauptgasstrahl im Bereich über dem Werkstück. Ein weiterer Stützeffekt entsteht im Inneren des Schnittspalts. Der Hauptgasstrahl löst sich im Vergleich zu bekannten Laserbearbeitungsdüsen erst weiter unten von der Schneidfront. Dies führt zu einer verbesserten Schneidkante.
Bei einer bevorzugten Ausführungsform der Erfindung ist der Hohlraum rotationssymmetrisch zur Mündung des Gaszuführungsraums angeordnet. Durch diese Anordnung ergibt sich eine Ummantelung des Bearbeitungsgasstrahls mit einem Stauvolumen von Bearbeitungsgas. Dies erzeugt eine rotationssymmetrische Überdeckung der Schneidfront.
Wenn die Mündung des Gaszuführungsraums hinter die Düsenspitze der Laserbearbeitungsdüse zurückgezogen ist, kann das Bearbeitungsgas sehr gut gestaut werden und in den Hohlraum einströmen.
Die Ausbildung der Walzenströmung wird weiter dadurch unterstützt, dass der Hohlraum im Bereich des Hohlraumbodens eine rund ausgebildete Innenkontur aufweist.
Es ist aber auch denkbar, dass der Hohlraum im Bereich des Hohlraumbodens eine eckig ausgebildete Innenkontur aufweist.
Wenn die Innenseiten des Hohlraums bezüglich der Richtung des Gaszuführungsraums quer angeordnet sind bzw. geneigt verlaufen, kann Bearbeitungsgas nahezu radial in den Hohlraum einströmen.
Die Erstreckung des Hohlraums hinter die Mündung des Gaszuführungsraums optimiert die Strömungsverhältnisse. Mithilfe der Auslaufkante kann das rückströmende Gas dem Hauptgasstrahl möglich koaxial zu strömen. Dies verbessert die Schneidergebnisse zusätzlich.
Ausführungsbeispiele der Erfindung sind in der Zeichnung schematisch dargestellt und werden nachfolgend mit Bezug zu den Figuren der Zeichnung näher erläutert. Es zeigt im Einzelnen:
Fig. 1 den Aufbau einer Laserschneidanlage;
Fig. 2 eine erste erfindungsgemäße Laserbearbeitungsdüse im
Längsschnitt;
Fig. 3a, 3b weitere erfindungsgemäße Laserbearbeitungsdüsen;
Fig. 4a bis weitere erfindungsgemäße Laserbearbeitungsdüsen.
Aus der Figur 1 ist der Aufbau einer Laserbearbeitungsanlage 1 zum Laserschneiden mit einem CO2-Laser 2, einem Laserbearbeitungskopf 4 (Laserbearbeitungsdüse 4a) und einer Werkstückauflage 5 ersichtlich. Ein erzeugter Laserstrahl 6 wird mithilfe von Umlenkspiegeln zum Laserbearbeitungskopf 4 geführt und mithilfe von Spiegeln auf ein Werkstück 8 gerichtet.
Bevor eine durchgängige Schnittfuge entsteht, muss der Laserstrahl 6 das Werkstück 8 durchdringen. Das Blech 8 muss an einer Stelle punktförmig geschmolzen oder oxidiert werden, und die Schmelze muss ausgeblasen werden. Sowohl das Einstechen als auch das Laserschneiden werden durch Hinzufügen eines Gases unterstützt. Als Schneidgase 9 können Sauerstoff, Stickstoff, Druckluft und/oder anwendungsspezifische Gase eingesetzt werden. Welches Gas letztendlich verwendet wird, ist davon abhängig, welche Materialien geschnitten und welche Qualitätsansprüche an das Werkstück gestellt werden.
Entstehende Partikel und Gase können mithilfe einer Absaugeinrichtung IO aus einer Absaugkammer 11 abgesaugt werden.
Gemäß Figur 2 ist die erfindungsgemäße Laserbearbeitungsdüse 4a aus zwei miteinander verbundenen Bauteilen 12 und 13 aufgebaut. Die als Lochdüse ausgebildete Laserbearbeitungsdüse 4a weist einen zentralen Zuführungsraum 14 für das Schneidgas und den Laserstrahl auf.
Eine zylindrische Mündung 15 der Lochdüse 4a ist in Strömungsrichtung gesehen hinter eine Düsenspitze 16 zurückgezogen. Rotationssymmetrisch zur Mündung 15 ist ein ringförmig verlaufender Hohlraum 17 zur Aufnahme von Schneidgas vorgesehen. Der Hohlraum 17 ist nur zur Unterseite der Laserbearbeitungsdüse 4a, d.h. zum Werkstück und zur Mündung 15 hin, offen und weist einen rund ausgebildeten Boden 18 auf. Das für das Schneidgas zur Verfügung stehende Stauvolumen breitet sich somit radial und auch hinter die Düsenmündung 15 hin aus. Pfeile (Hauptgasstrahl 19 und gestauter Gasstrahl 19') deuten in der Figur 2 die Strömung des Schneidgases an. An der Düsenspitze 16 hat die Laserbearbeitungsdüse 4a einen vielfach größeren Durchmesser als die Mündung 15 selbst.
Das zusätzlich mithilfe des Hohlraums 17 angebrachte Stauvolumen ist deshalb so angebracht und ausgeformt, dass Teile des radial abströmenden Gases über eine "Walzenströmung" rückgeführt werden und den Schneidgasstrahl ummanteln. Je näher die Düsenspitze 16 zum zu bearbeitenden Blech angeordnet ist, umso höher wird der Strömungswiderstand und um so wirkungsvoller lässt sich das Staudruckprofil radial ausweiten. Für die Entstehung der Walzenströmung ist in erster Linie die keilförmig zulaufende Kante 18' an der Unterseite der Laserbearbeitungsdüse 4a verantwortlich. Radial abströmendes Bearbeitungsgas wird von hier teilweise in den Hohlraum 17 umgelenkt und strömt entlang der Innenflächen 17' und 17" des Hohlraums 17 über die Auslaufkante 18" zum Hauptgasstrahl 19 zurück. Die keilförmige Geometrie bewirkt einerseits die Strömungsablösung des radial abströmenden Bearbeitungsgases und wirkt andererseits als Strömungsleitgeometrie zur Ausbildung der Walzenströmung. Neben der Kante 18' sind die Form des Hohlraums 17 und die Erstreckung des Hohlraums 17 bis hinter die Düsenmündung 15 für die Ausbildung der Walzenströmung relevant.
Damit die Walzenströmung entsteht, muss außerdem der Schneidabstand, das heißt der Abstand zwischen der Düsenunterkante der Düsenspitze 16 und der Blechoberfläche, verhältnismäßig klein (< 0,7 mm, wobei sich der beste Schneidabstand für 0,3 bis 0,5 mm ergibt) gewählt werden. Ist der Schneidabstand größer, entsteht auf der Blechoberfläche ein Druckpolster, das einen effektiven Impulsübertrag des Bearbeitungsgases verhindert. Außerdem kommt es nicht mehr zur Ausbildung der Walzenströmung.
Dies ergibt einen höheren Überdeckungsgrad der Schneidfront, der sich positiv auf - Qualität (Schmelzschnitt anstelle Plasmaschnitt im Dickblechbereich, gleichförmige Riefenstruktur);
- Vorschub (+10 bis +20%, in Einzelfällen +80 bis +100%); - Plasmaschwelle (Schmelzschnitt im Dickblechbereich);
- Gasverbrauch
auswirkt.
Bei gleichem Mündungsdurchmesser liegt der Schneidgasverbrauch unter den derzeitigen Standardwerten. Erste Untersuchungen lassen erkennen, dass zudem mit kleineren Mündungsdurchmessern geschnitten werden kann, so dass der Schneidgasverbrauch weiter reduziert werden kann.
Für eine zufrieden stellende Funktion der Laserbearbeitungsdüse 4a kann die Innenseite des Hohlraums 17, welche an die Düsenöffnung anschließt, nach außen geneigt sein. Abhängig vom Neigungswinkel, d.h. dem Winkel zwischen der Innenseite 17' und dem Werkstück, erfolgt die Umlenkung des radial abströmenden Gases um so verlustfreier, je größer die Neigung, d.h. je spitzer der Neigungswinkel, ist. Zur bestmöglichen Ausformung der Walzenströmung ist es notwendig, das Stauvolumen hinter die Ebene des Mündungsbereichs zurückzuziehen. Die Geometrie im Bereich des Bodens 18 und der anschließenden Flanken 18' kann dabei kreisrund oder elliptisch ausgebildet sein.
Die Figuren 3a und 3b zeigen Alternativen zur Lochdüse 4a gemäß Figur 1. Wie in Figur 3a gezeigt, besitzt eine Laserbearbeitungsdüse 20 eine konische Mündung 21 (Lavaldüse). Wie in Figur 3b dargestellt, besitzt eine Laserbearbeitungsdüse 22 einen Ringspalt 23. Diese alternativen Ausführungsformen sind mit einem bezüglich der Laserbearbeitungsdüse 4a gemäß Figur 1 unveränderten Stauvolumen kombiniert. Die erfindungsgemäße Funktionsweise bleibt daher erhalten.
Die Figuren 4a und 4b zeigen Alternativen zu dem Stauvolumen der Laserbearbeitungsdüse 4a gemäß Figur 1. Wie in Figur 4a und 4b gezeigt, sind außer runden Geometrien auch eckige Ausbildungen des Hohlraums bei den Laserbearbeitungsdüsen 24 (Hohlraum 25) und 26 (Hohlraum 27) denkbar.

Claims

PATENTANSPRÜCHE
1. Laserbearbeitungsdüse (4a; 20; 22; 24; 26) mit mindestens einem Zuführungsraum (14) für den Laserstrahl und für ein Bearbeitungsgas, dadurch gekennzeichnet, dass die
Laserbearbeitungsdüse (4a; 20; 22; 24; 26) einen im Bereich der Mündung (15) des Gaszuführungsraums (14) angeordneten Hohlraum (17; 25; 27) aufweist, welcher in Richtung des zu bearbeitenden Werkstücks offen ist, wobei diese Öffnung eine keilförmige Kante (18') aufweist.
2. Laserbearbeitungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass der Hohlraum (17; 25; 27) rotationssymmetrisch zur Mündung (15) des Gaszuführungsraums (14) angeordnet ist.
3. Laserbearbeitungsdüse nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mündung (15) des Gaszuführungsraums (14) hinter die Düsenspitze (16) der Laserbearbeitungsdüse (4a; 20; 22; 24; 26) zurückgezogen ist.
4. Laserbearbeitungsdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hohlraum (17) im Bereich des Hohlraumbodens (18) eine rund ausgebildete Innenkontur aufweist.
5. Laserbearbeitungsdüse nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Hohlraum (25; 27) im Bereich des Hohlraumboden eine eckig ausgebildete Innenkontur aufweist.
6. Laserbearbeitungsdüse nach einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, dass die Innenseiten (17', 17") des Hohlraums (17; 25; 27) bezüglich der Richtung des Gaszuführungsraums (14) quer angeordnet sind.
7. Laserbearbeitungsdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich der Hohlraum (17;
25; 27) bis hinter die Mündung (15) des Gaszuführungsraums (14) erstreckt.
8. Laserbearbeitungsdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Öffnung des
Hohlraums (17; 25; 27) eine Auslaufkante (18") aufweist.
PCT/EP2005/012625 2005-11-25 2005-11-25 Laserbearbeitungsdüse WO2007059787A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AT05825522T ATE494981T1 (de) 2005-11-25 2005-11-25 Laserbearbeitungsdüse
PCT/EP2005/012625 WO2007059787A1 (de) 2005-11-25 2005-11-25 Laserbearbeitungsdüse
DE502005010866T DE502005010866D1 (de) 2005-11-25 2005-11-25 Laserbearbeitungsdüse
CN2005800521421A CN101321601B (zh) 2005-11-25 2005-11-25 激光加工喷嘴
EP05825522A EP1957232B1 (de) 2005-11-25 2005-11-25 Laserbearbeitungsdüse
JP2008541591A JP5039050B2 (ja) 2005-11-25 2005-11-25 レーザ加工ノズル
EP06818852A EP1976658A1 (de) 2005-11-25 2006-11-27 Laserbearbeitungsdüse
PCT/EP2006/011361 WO2007060008A1 (de) 2005-11-25 2006-11-27 Laserbearbeitungsdüse
US12/125,384 US8188403B2 (en) 2005-11-25 2008-05-22 Nozzle for a laser machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2005/012625 WO2007059787A1 (de) 2005-11-25 2005-11-25 Laserbearbeitungsdüse

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/125,384 Continuation US8188403B2 (en) 2005-11-25 2008-05-22 Nozzle for a laser machining device

Publications (1)

Publication Number Publication Date
WO2007059787A1 true WO2007059787A1 (de) 2007-05-31

Family

ID=36685568

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2005/012625 WO2007059787A1 (de) 2005-11-25 2005-11-25 Laserbearbeitungsdüse
PCT/EP2006/011361 WO2007060008A1 (de) 2005-11-25 2006-11-27 Laserbearbeitungsdüse

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/011361 WO2007060008A1 (de) 2005-11-25 2006-11-27 Laserbearbeitungsdüse

Country Status (7)

Country Link
US (1) US8188403B2 (de)
EP (2) EP1957232B1 (de)
JP (1) JP5039050B2 (de)
CN (1) CN101321601B (de)
AT (1) ATE494981T1 (de)
DE (1) DE502005010866D1 (de)
WO (2) WO2007059787A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053729A1 (de) 2008-10-29 2010-05-12 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laserbearbeitungsdüse zum Bearbeiten von Blechen

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052656B3 (de) * 2008-10-22 2009-12-10 Marco Czaban Schneiddüse
DE102009014947A1 (de) * 2009-03-30 2010-10-07 Iht Automation Gmbh & Co. Kg Schweiß- oder Schneidbrenner
DE102010029112A1 (de) 2010-05-19 2011-11-24 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zur Laserbearbeitung und Laserbearbeitungskopf zur Durchführung des Verfahrens
DE102014009308A1 (de) 2014-06-26 2015-12-31 Iht Automation Gmbh & Co. Kg Schweiß- oder Schneidwerkzeug
WO2017075566A1 (en) 2015-10-30 2017-05-04 Hypertherm, Inc. Double nozzle for a laser processing head
US10569360B2 (en) 2015-10-30 2020-02-25 Hypertherm, Inc. Highly positioned laser processing nozzle
US11850681B2 (en) 2015-10-30 2023-12-26 Hypertherm, Inc. Highly positioned laser processing nozzle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774392A (en) * 1985-04-16 1988-09-27 Amada Engineering & Service Co., Inc. Laser cutting method for high chromium steel and a device to carry out that method
US6118097A (en) * 1992-10-23 2000-09-12 Mitsubishi Denki Kabushiki Kaisha Machining head and laser machining apparatus

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907408A (en) * 1973-08-20 1975-09-23 Caterpillar Tractor Co Cassegrainian mirror arrangement for lasers
US4121085A (en) * 1976-05-07 1978-10-17 Caterpillar Tractor Co. Gas nozzle for laser welding
FR2488539A1 (fr) * 1980-08-12 1982-02-19 Didiot John Torche de decoupe munie d'un capteur de distance capacitif et machine de decoupe pourvue d'une telle torche
JPS626790A (ja) * 1985-07-02 1987-01-13 Mitsubishi Electric Corp レ−ザ加工ヘツド
JPS6356389A (ja) * 1986-08-25 1988-03-10 Amada Co Ltd レ−ザ加工機の加工ヘツド
FR2626511B1 (fr) * 1988-02-03 1990-05-18 Air Liquide Buse de decoupe laser, tete de decoupe comportant une telle buse et procede de decoupe les mettant en oeuvre
JP2998517B2 (ja) * 1992-10-23 2000-01-11 三菱電機株式会社 加工ヘッド及びレーザ加工装置
JP3355260B2 (ja) 1995-07-12 2002-12-09 株式会社吉野工業所 卓上表示装置
JPH1029083A (ja) * 1996-07-12 1998-02-03 Daihen Corp レーザ加工装置用ノズルハイトセンサ
JP2000126888A (ja) 1998-10-21 2000-05-09 Nippei Toyama Corp レーザ加工装置
CN1112276C (zh) * 2000-01-07 2003-06-25 清华大学 垂直装卸的分体式激光熔覆同轴送粉喷嘴
US6423928B1 (en) 2000-10-12 2002-07-23 Ase Americas, Inc. Gas assisted laser cutting of thin and fragile materials
CN1139455C (zh) * 2001-03-30 2004-02-25 清华大学 可调宽带双向对称送粉激光熔覆喷嘴
US7619180B2 (en) * 2003-06-25 2009-11-17 Reinhard Diem Laser head of a laser beam processing machine comprising alternating nozzles
CN2659622Y (zh) * 2003-12-16 2004-12-01 中国航空工业第一集团公司北京航空制造工程研究所 激光焊平焊接头气体保护装置
CN2666594Y (zh) * 2004-01-13 2004-12-29 中国航空工业第一集团公司北京航空制造工程研究所 激光焦点位置随动控制焊接头
EP1669159A1 (de) * 2004-12-07 2006-06-14 Bystronic Laser AG Bearbeitungsdüse zum Laserschneiden mir einer über den Düsenkörper hinausragenden Düsenhülse, Laserbearbeitungsvorrichtung und Laserbearbeitungsverfahren mit der entsprechenden Bearbeitungsdüse

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774392A (en) * 1985-04-16 1988-09-27 Amada Engineering & Service Co., Inc. Laser cutting method for high chromium steel and a device to carry out that method
US6118097A (en) * 1992-10-23 2000-09-12 Mitsubishi Denki Kabushiki Kaisha Machining head and laser machining apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053729A1 (de) 2008-10-29 2010-05-12 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laserbearbeitungsdüse zum Bearbeiten von Blechen
DE102008053729B4 (de) * 2008-10-29 2011-07-07 TRUMPF Werkzeugmaschinen GmbH + Co. KG, 71254 Laserbearbeitungsdüse zum Bearbeiten von Blechen
DE102008053729C5 (de) * 2008-10-29 2013-03-07 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laserbearbeitungsdüse zum Bearbeiten von Blechen

Also Published As

Publication number Publication date
EP1976658A1 (de) 2008-10-08
CN101321601A (zh) 2008-12-10
ATE494981T1 (de) 2011-01-15
CN101321601B (zh) 2011-05-11
EP1957232A1 (de) 2008-08-20
US8188403B2 (en) 2012-05-29
DE502005010866D1 (de) 2011-02-24
EP1957232B1 (de) 2011-01-12
JP2009517216A (ja) 2009-04-30
JP5039050B2 (ja) 2012-10-03
WO2007060008A1 (de) 2007-05-31
US20080237207A1 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
EP1957232B1 (de) Laserbearbeitungsdüse
EP2219813B1 (de) Aerostatisches lager und verfahren zu dessen herstellung
DE102016215019B4 (de) Verfahren zum Laserschneiden mit optimierter Gasdynamik
DE102008053729C5 (de) Laserbearbeitungsdüse zum Bearbeiten von Blechen
WO2003015978A1 (de) Verfahren und vorrichtung zum einbringen von löchern in werkstücke mittels laserstrahlen
EP3914418B1 (de) Prozess zur strahlbearbeitung eines platten- oder rohrförmigen werkstücks
DE102011106506A1 (de) Schweißwerkzeug zum Verbinden von wenigstens zwei Werkstücken, Schweißverfahren und Werkstück
EP1506070A1 (de) Fr swerkzeug
EP2635394A1 (de) Einlippenbohrer
EP1916048B1 (de) Düse zur industriellen Bearbeitung
EP3331658A1 (de) Auswechselbarer schneidkopf, werkzeugschaft und schaftwerkzeug
EP3525976B1 (de) Laserschneiddüse für eine laserbearbeitungsanlage mit einem konvergenzabschnitt und einem divergenzabschnitt ; laserbearbeitungsanlage mit einer solchen düse ; verfahren zum betreiben einer solchen laserbearbeitungsanlage
DE102004018280B4 (de) Verfahren sowie Düse zur Bearbeitung oder Analyse eines Werkstücks oder einer Probe mit einem energetischen Strahl
WO2021151407A1 (de) Werkzeughalter
WO1988009238A1 (en) Electrode for electric spark cutting
DE19944472B4 (de) Verwendung eines Schneidgases und Verfahren zum Laserstrahlschmelzschneiden
WO2009030431A2 (de) Laserbearbeitungskopf zur bearbeitung eines werkstücks mittels eines laserstrahls mit lösbar verbundenem gehäuse, aufnahmevorrichtung und düse; düsenelement mit einem verrundeten verjüngungsbereich; aufnahmevorrichtung
DE102004002504A1 (de) Verfahren zum gratfreien Trennen von Halbzeug aus duktilem Material und dessen Verwendung
EP0962277B1 (de) Plasma-Schweissbrenner
WO2023217611A1 (de) Düse für die laserbearbeitung mit hohen fokuslagen
DE3810620C1 (en) Plasma burner
DE102013214551B4 (de) Drahtdüse und Verfahren zum Laserfügen mit Zusatzdraht mit taktiler Drahtführung
DE19848152A1 (de) Bearbeitungskopf für eine Vorrichtung zum Bearbeiten, insbesondere Schneiden oder Bohren, von Werkstücken mit Licht- oder Teilchenstrahlen
WO2007115563A2 (de) Sprühlanze
DD294550A5 (de) Duesensystem fuer lichtbogentrennbrenner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580052142.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005825522

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008541591

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2005825522

Country of ref document: EP