WO2007055690A1 - A process for the selective hydrogenation of olefins - Google Patents
A process for the selective hydrogenation of olefins Download PDFInfo
- Publication number
- WO2007055690A1 WO2007055690A1 PCT/US2005/040741 US2005040741W WO2007055690A1 WO 2007055690 A1 WO2007055690 A1 WO 2007055690A1 US 2005040741 W US2005040741 W US 2005040741W WO 2007055690 A1 WO2007055690 A1 WO 2007055690A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- olefins
- catalyst
- selective hydrogenation
- hydrocarbonaceous
- aromatic compounds
- Prior art date
Links
- 150000001336 alkenes Chemical class 0.000 title claims abstract description 47
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000008569 process Effects 0.000 title claims abstract description 24
- 150000001491 aromatic compounds Chemical class 0.000 claims abstract description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 46
- 239000003054 catalyst Substances 0.000 claims description 30
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 26
- 229910052759 nickel Inorganic materials 0.000 claims description 22
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 230000032683 aging Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000001879 gelation Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 5
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 5
- 229910052794 bromium Inorganic materials 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000000017 hydrogel Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000003349 gelling agent Substances 0.000 description 3
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 3
- 239000004312 hexamethylene tetramine Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002816 nickel compounds Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
- 
        - C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
 
- 
        - C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/148—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
- C07C7/163—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
 
- 
        - C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1044—Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
 
- 
        - C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4006—Temperature
 
- 
        - C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4012—Pressure
 
- 
        - C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
 
Definitions
- the selectivity is not satisfactorily improved even when the hydrogenation operations are performed at low pressures of approximately 30 to 50 bar and at low temperatures between 50°C and 180°C.
- the prior art has taught that the selectivity of these catalysts can be improved by injecting sulfur compounds prior to the contacting of the catalyst and the reactive feedstock.
- US 5,417,844 B 1 (Boitiaux et al) discloses a process for the selective hydrogenation of diolefms in steam cracking petrol in the presence of a nickel catalyst and is characterized in that prior to the use of the catalyst, a sulfur-containing organic compound is incorporated into the catalyst outside of the reactor prior to use.
- the present invention is an improved process for tiie selective saturation of olefins in a hydrocarbonaceous stream containing olefins and aromatic compounds without significant hydrogenation of the aromatic compounds. It has been unexpectedly discovered that when the feedstock is reacted with an elemental nickel catalyst at relatively low temperatures and a low stoichiometric ratio of hydrogen to olefins, the selective saturation of olefins is high with low hydrogenation of the aromatic compounds.
- the present invention relates to a process for the selective hydrogenation of olefins contained in a hydrocarbonaceous feedstock comprising olefins and aromatic compounds which process comprises the steps of: (a) reacting the hydrocarbonaceous feedstock with hydrogen in a selective hydrogenation zone containing a catalyst comprising elemental nickel at olefin hydrogenation conditions including a temperature from 20°C to 9O 0 C, a pressure from 618 IcPa to 7000 kPa and a stoichiometric ratio of hydrogen to olefins from 1 : 1 to 5: 1 ; and (b) recovering a hydrocarbonaceous product stream comprising aromatic compounds and having a reduced concentration of olefins.
- any suitable hydrocarbonaceous feedstock may be used in the present invention.
- a preferred feedstock is a naphtha boiling in the range from 38 0 C to 204 0 C and containing olefins in an amount from 0.1 to 5 weight percent.
- the hydrocarbonaceous feedstock containing olefins and aromatic compounds is introduced along with hydrogen into a selective hydrogenation zone containing a selective hydrogenation catalyst comprising elemental nickel and operated at selective hydrogenation conditions including a temperature from 2O 0 C to
- Suitable selective hydrogenation catalysts in the present invention contain elemental nickel preferably supported on a high surface area support material, preferably alumina. In the case where the elemental nickel is present on a support, the nickel is preferably present in an amount from 2 to 40 weight percent of the total catalyst weight.
- Hydrocarbonaceous streams which contain aromatic compounds and olefins, are utilized in downstream processing wherein the presence of olefins is detrimental to the catalysts used in subsequent processing or is undesirable in product streams. Therefore, it is preferred and desirable that when such hydrocarbon streams are used, the olefins are selectively saturated while preventing or at least minimizing the saturation of the aromatic compounds.
- Suitable hydrocarbonaceous streams may be derived from any source and a common source for such a hydrocarbonaceous stream is the liquid effluent from a catalytic reformer processing a naphtha feedstock.
- the aromatic compounds are valuable while the co-produced olefins are considered to be contaminants, which must be removed while preserving the aromatic compounds.
- the present selective hydrogenation process can be employed to reduce the concentration of olefins in a hydrocarbonaceous feedstock containing aromatic compounds and olefins.
- a process for the selective hydrogenation of olefins comprising contacting a feed containing aromatic compounds and olefins in a reaction zone at selective hydrogenation conditions with a catalyst comprising elemental nickel to produce a product substantially free of olef ⁇ nic compounds.
- the selective hydrogenation conditions include a temperature from 20°C to 90°C, a pressure from 618 kPa to 7000 IdPa and a stoichiometric ratio of hydrogen to olefins from 1 : 1 to 5 : 1.
- the optimum set of conditions will be selected from these conditions and depend on the composition of the feed steam.
- the product from the selective hydrogenation reaction zone will be substantially free of olefins.
- substantially free means less than 1000 wppm weight basis of the olefinic compounds (0.1 weight percent). In addition, it is preferred that less than 0.5 weight percent of the aromatic compounds in the hydrocarbonaceous feedstock are hydrogenated.
- the selective hydrogenation catalyst is preferably employed in a fixed bed reactor containing a cylindrical bed of catalyst through which the reactants move in a vertical direction.
- the catalyst may be present within the reactor as pellets, spheres, extrudates. or irregular shaped granules, for example.
- the reactants would be preferably brought up to the desired inlet temperature of the reaction zone, admixed with hydrogen and then passed into and through the reactor.
- the reactants may be admixed with the desired amount of hydrogen and then heated to the desired inlet temperature.
- the effluent of the reaction zone may be passed into a product recovery facility for the removal of residual hydrogen or may be passed directly into downstream product utilization zones if the presence of residual hydrogen, if any, is acceptable.
- Hydrogen may be removed by flashing the effluent stream to a lower pressure or by passing the effluent stream into a stripping or a single stage flash column.
- the preferred form of the catalyst is spheres having a diameter between 0.4 mm and 6.3 mm.
- Spheres of solid catalyst support material can be made in a number of different ways including rolling and compaction techniques.
- spherical alumina particles be utilized as the catalyst support and formed by a method for effecting gelation of an alumina sol.
- This method of gelation of alumina to form spheres is commonly known in the art as the oil drop method.
- the alumina sol may be also formed a number of different ways. A typical one is to digest aluminum metal with an aqueous solution of approximately 12 percent hydrogen chloride to produce an aluminum chloride sol.
- Another method comprises electrolysis of a solution of aluminum chloride in an electrolytic cell.
- a common method of preparing an alumina sol is the addition of aluminum metal to an aqueous solution of aluminum chloride with this mixture being subjected to heating and digesting at its boiling point.
- a preferred method for effecting the gelation of the sol comprises the steps of admixing the sol with a gelling agent at a temperature below the gelation temperature and then dispersing the resulting admixture as droplets in the hot oil bath whereby gelation occurs with the formation of firm spherical gel particles.
- the alumina hydrogel spheres are then subjected to certain aging treatments in order to impart the desired physical characteristics.
- a complete aging treatment comprises aging in hot oil for a period of at least 10 hours, aging in a suitable liquid alkaline medium at least 10 hours and finally washing with water to reduce the concentration of alkaline medium.
- the hydrogel spheres are not to be contacted with water prior to being aged in the liquid alkaline medium.
- the spheres are water-soluble at these earlier stages of the process and can be destroyed upon contact with water.
- the aging treatment may be effected at a temperature from 49 0 C to 26O 0 C and above 100°C there exists a tendency for the rapid evolution of gases which cause the hydrogel spheres to rupture and otherwise become weak.
- higher temperatures may be employed for aging.
- the utilization of higher temperatures offers such advantages as the elimination of aging in a liquid alkaline solution.
- the spheres may therefore be washed with water immediately following the oil aging step.
- gelled particles are aged in the oil bath for a time from 1 to 24 hours at a temperature from 9O 0 C to 15O 0 C and a pressure ranging from atmospheric to 1000 kPa. If oil aged under atmospheric pressure conditions, the gelled particles are generally further aged in a dilute aqueous ammoniacal solution for 2 to 4 hours. After being aged, the particles are water washed, dried and calcined.
- the gelation of the alumina hydrosol may be effected by admixing the sol with hexamethylenetetramine (HMT), a weak base having a strong buffering action at a pH of from 4 to 10.
- HMT hexamethylenetetramine
- This material also has an increased rate of hydrolysis at increased temperature without a sudden evolution of gas which is advantageous in the gelation procedure.
- a mixture of urea and HMT may be employed as the gelling agent. Upon heating the mixture to an elevated temperature, the gelling agent decomposes and forms ammonia which causes the hydrosol to set to a gel and permits forming alumina hydrogel spheres.
- the particles may be oven dried at 110 °C and then heated gradually to 65O 0 C and calcined in air at this temperature for 2 hours.
- the resultant material after the air calcination is essentially gamma alumina.
- the resultant alumina support be comprised of at least 90 weight percent gamma alumina. To ensure that the support material be essentially gamma alumina, it is highly desirable that the support material not be exposed to a temperature in excess of 85O 0 C.
- an elemental nickel is required for the performance of the catalyst used in the present invention.
- the nickel may be present only on the outer surface of the alumina support material or uniformly throughout the support. Having the nickel on the outer surface of the support means that the nickel is surface- deposited, such that, essentially all of the nickel present on the support is concentrated within the outermost 200 micron layer of the support.
- the concentration of nickel in the finished catalyst is preferably between 5 and 25 weight percent, on the basis of the elemental metal.
- the nickel component can be added to the catalyst during the sphere formation procedure if it is so desired. However, it is preferred that the nickel component of the catalyst is added to the previously formed alumina spheres as by impregnation in which the formed alumina spheres are immersed into a solution of a nickel compound.
- the formed calcined alumina spheres are immersed in an aqueous solution of nickel nitrate, nickel chloride, nickel sulfate or nickel acetate or other water-soluble nickel compound. The solution is then preferably evaporated to dryness in contact with the spheres utilizing a rotary steam evaporator.
- the dried particles may then be calcined at a temperature of 150°C for one hour and then at 525 0 C for one hour.
- the formed spheres may then be dried and purged with nitrogen and are preferably subjected to a reduction step in contact with a hydrogen- containing gas.
- spherical alumina spheres are the preferred support for the nickel component of the catalyst, any suitable support may be utilized in the present invention.
- EXAMPLE 1 A model feedstock containing 99 weight percent toluene and 1 weight percent C 6 - C 8 olefinic hydrocarbons was reacted in a selective hydrogenation reaction zone containing elemental nickel on a gamma alumina support operated at selective hydrogenation conditions including a pressure of 5600 kPa, a temperature of 4O 0 C, a liquid hourly space velocity of 10, and a hydrogen to olefin mole ratio of 1.5.
- the Bromine Index which is a direct relationship of the olefin content, of the feedstock was 1000 and an analysis of the effluent from the selective hydrogenation reaction zone determined that the product Bromine Index was only 20. While essentially converting all of the feedstock olefins, only less than 0.2 weight percent of the toluene in the feedstock was saturated.
- a model feedstock containing 99 weight percent toluene and 1 weight percent C 6 - Cg olefinic hydrocarbons was reacted in a selective hydrogenation reaction zone containing elemental nickel on a gamma alumina support operated at a pressure of 5600 kPa, a liquid hourly space velocity of 10 and a hydrogen to olefin mole ratio of 1.5.
- the hydrogenation reaction was started by increasing the reaction zone temperature to 9O 0 C and the Bromine Index of the product stream was found to be 150. Without changing any other operating conditions, the reaction zone temperature was reduced from 90°C to 50°C and the Bromine Index was unexpectedly reduced from 150 to 40. A further reduction in the reaction zone temperature from 50°C to 40 0 C reduced the Bromine Index from 40 to 20. In this example, only less than 0.2 weight percent of the toluene in the feedstock was saturated.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| KR1020087007325A KR101109814B1 (ko) | 2002-06-25 | 2005-11-10 | 올레핀의 선택적 수소화 방법 | 
| PCT/US2005/040741 WO2007055690A1 (en) | 2005-11-10 | 2005-11-10 | A process for the selective hydrogenation of olefins | 
| CN2005800519900A CN101300213B (zh) | 2005-11-10 | 2005-11-10 | 烯烃的选择性加氢方法 | 
| JP2008539998A JP4829308B2 (ja) | 2005-11-10 | 2005-11-10 | オレフィン類の選択的水素化方法 | 
| IN2156DEN2008 IN2008DN02156A (pm) | 2005-11-10 | 2005-11-10 | 
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| PCT/US2005/040741 WO2007055690A1 (en) | 2005-11-10 | 2005-11-10 | A process for the selective hydrogenation of olefins | 
Publications (1)
| Publication Number | Publication Date | 
|---|---|
| WO2007055690A1 true WO2007055690A1 (en) | 2007-05-18 | 
Family
ID=38023550
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| PCT/US2005/040741 WO2007055690A1 (en) | 2002-06-25 | 2005-11-10 | A process for the selective hydrogenation of olefins | 
Country Status (4)
| Country | Link | 
|---|---|
| JP (1) | JP4829308B2 (pm) | 
| CN (1) | CN101300213B (pm) | 
| IN (1) | IN2008DN02156A (pm) | 
| WO (1) | WO2007055690A1 (pm) | 
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US3670041A (en) * | 1970-06-10 | 1972-06-13 | Monsanto Co | Hydrogenation process | 
| US4950820A (en) * | 1985-07-24 | 1990-08-21 | Ec Erdolchemie Gmbh | Process for the hydrogenation of olefinic hydrocarbons in hydrocarbon mixtures containing tert.-alkyl alkyl ethers | 
| US6284128B1 (en) * | 1999-09-02 | 2001-09-04 | Uop Llc | Reforming with selective reformate olefin saturation | 
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US3221078A (en) * | 1961-07-06 | 1965-11-30 | Engelhard Ind Inc | Selective hydrogenation of olefins in dripolene | 
| JPS4536226B1 (pm) * | 1963-08-04 | 1970-11-18 | ||
| JPS5821890B2 (ja) * | 1974-12-26 | 1983-05-04 | エクソン リサ−チ アンド エンヂニアリング コムパニ− | オレフインノ センタクテキスイソテンカホウ | 
| FR2460989A1 (fr) * | 1979-07-06 | 1981-01-30 | Inst Francais Du Petrole | Procede de purification d'une coupe d'hydrocarbures aromatiques contenant des hydrocarbures insatures olefiniques et acetyleniques | 
| FR2664610A1 (fr) * | 1990-07-13 | 1992-01-17 | Inst Francais Du Petrole | Hydrogenation selective des essences de vapocraquage sur des catalyseurs a base d'un metal supporte dans lesquels un compose organique a ete incorpore avant chargement dans le reacteur. | 
| JPH07102265A (ja) * | 1993-09-30 | 1995-04-18 | Sanyo Sekiyu Kagaku Kk | 炭化水素類中の不飽和炭化水素類及び有機硫化物の水素化方法 | 
| DE19603901A1 (de) * | 1996-02-03 | 1997-08-07 | Krupp Uhde Gmbh | Verfahren zur Gewinnung von Reinaromaten aus Reformatbenzin und Vorrichtung zur Durchführung des Verfahrens | 
| DE19608241A1 (de) * | 1996-03-04 | 1997-09-18 | Basf Ag | Verfahren zur selektiven Hydrierung von Dienen | 
| US5763714A (en) * | 1997-01-08 | 1998-06-09 | Catalytic Distillation Technologies | Process and apparatus for the production and recovery of p-xylene | 
- 
        2005
        - 2005-11-10 IN IN2156DEN2008 patent/IN2008DN02156A/en unknown
- 2005-11-10 JP JP2008539998A patent/JP4829308B2/ja active Active
- 2005-11-10 WO PCT/US2005/040741 patent/WO2007055690A1/en active Search and Examination
- 2005-11-10 CN CN2005800519900A patent/CN101300213B/zh active Active
 
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US3670041A (en) * | 1970-06-10 | 1972-06-13 | Monsanto Co | Hydrogenation process | 
| US4950820A (en) * | 1985-07-24 | 1990-08-21 | Ec Erdolchemie Gmbh | Process for the hydrogenation of olefinic hydrocarbons in hydrocarbon mixtures containing tert.-alkyl alkyl ethers | 
| US6284128B1 (en) * | 1999-09-02 | 2001-09-04 | Uop Llc | Reforming with selective reformate olefin saturation | 
Also Published As
| Publication number | Publication date | 
|---|---|
| CN101300213A (zh) | 2008-11-05 | 
| IN2008DN02156A (pm) | 2010-04-16 | 
| CN101300213B (zh) | 2011-05-11 | 
| JP4829308B2 (ja) | 2011-12-07 | 
| JP2009514949A (ja) | 2009-04-09 | 
Similar Documents
| Publication | Publication Date | Title | 
|---|---|---|
| US4695560A (en) | Catalyst for the selective hydrogenation of diolefinic hydrocarbons | |
| JP3831821B2 (ja) | 接触水素化方法およびこの方法において使用可能な触媒 | |
| US4762956A (en) | Novel catalyst and process for hydrogenation of unsaturated hydrocarbons | |
| JP5547880B2 (ja) | 水素化脱硫法 | |
| TWI301127B (en) | Catalyst for selective front-end hydrogenation of acetylene and its manufacture process and uses | |
| EP0029321B1 (en) | Hydrogenation catalyst material, a precursor thereto, method of making the latter and use of the catalyst for selective hydrogenation | |
| JP2000153154A (ja) | 炭化水素流中における不飽和化合物の選択的水素添加のための触媒及び方法 | |
| KR101264443B1 (ko) | 선택적 수소화 촉매 | |
| US5478791A (en) | Nickel/aluminum oxide catalyst, preparation thereof, use thereof and hydrogenation of aromatic hydrocarbons with the aid of the catalyst | |
| JP5702299B2 (ja) | スチレンの存在下でフェニルアセチレンに選択的に水素を付加する方法 | |
| CN107454860A (zh) | 具有50至300纳米中值大孔直径的中孔和大孔共混镍活性相催化剂及其在氢化中的用途 | |
| CN106604978A (zh) | 具有大于300纳米中值大孔直径的中孔和大孔共混镍活性相的催化剂及其在氢化中的用途 | |
| US4088603A (en) | Catalyst activation process | |
| JPH09173843A (ja) | 選択的水素化触媒及びこの触媒を用いた方法 | |
| US4734540A (en) | Catalyst for the selective hydrogenation of polyunsaturated organics | |
| JPS5814250B2 (ja) | コウテイリユウタイノ シヨリホウホウ | |
| US6977317B1 (en) | Process for the selective hydrogenation of olefins | |
| US4940687A (en) | Catalyst and process for hydrogenation of unsaturated hydrocarbons | |
| RU2550204C1 (ru) | Катализаторы, содержащие благородный металл и лантанид, нанесенные на по существу непористую подложку | |
| CN112934232B (zh) | 一种碳三馏分选择加氢的催化剂 | |
| CN108435193B (zh) | 一种可再生的脱除有机氯催化剂及其制备方法 | |
| US5611914A (en) | Method for removing sulfur from a hydrocarbon feed | |
| WO2007055690A1 (en) | A process for the selective hydrogenation of olefins | |
| EP0307520B1 (en) | High macropore selective hydrogenation catalyst | |
| TWI457313B (zh) | Study on the selective hydrogenation of phenylethylene in the presence of styrene in the presence of | 
Legal Events
| Date | Code | Title | Description | 
|---|---|---|---|
| WWE | Wipo information: entry into national phase | Ref document number: 200580051990.0 Country of ref document: CN | |
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase | Ref document number: 2156/DELNP/2008 Country of ref document: IN | |
| WWE | Wipo information: entry into national phase | Ref document number: 1020087007325 Country of ref document: KR | |
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| ENP | Entry into the national phase | Ref document number: 2008539998 Country of ref document: JP Kind code of ref document: A | |
| NENP | Non-entry into the national phase | Ref country code: DE | |
| 122 | Ep: pct application non-entry in european phase | Ref document number: 05819162 Country of ref document: EP Kind code of ref document: A1 | |
| WWE | Wipo information: entry into national phase | Ref document number: 1020107015261 Country of ref document: KR | |
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) |