WO2007054582A1 - Systeme d'antenne plate a acces direct en guide d'ondes - Google Patents

Systeme d'antenne plate a acces direct en guide d'ondes Download PDF

Info

Publication number
WO2007054582A1
WO2007054582A1 PCT/EP2006/068430 EP2006068430W WO2007054582A1 WO 2007054582 A1 WO2007054582 A1 WO 2007054582A1 EP 2006068430 W EP2006068430 W EP 2006068430W WO 2007054582 A1 WO2007054582 A1 WO 2007054582A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
ground plane
waveguide
sub
transmission line
Prior art date
Application number
PCT/EP2006/068430
Other languages
English (en)
Inventor
Eduardo Motta Cruz
Julien Sarrazin
Yann Mahe
Original Assignee
Bouygues Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bouygues Telecom filed Critical Bouygues Telecom
Priority to JP2008540599A priority Critical patent/JP2009516446A/ja
Priority to EP06819455A priority patent/EP1949496B1/fr
Priority to US12/085,006 priority patent/US20090096692A1/en
Priority to KR1020087014216A priority patent/KR101166665B1/ko
Priority to ES06819455T priority patent/ES2384887T3/es
Priority to CN2006800425236A priority patent/CN101310413B/zh
Publication of WO2007054582A1 publication Critical patent/WO2007054582A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • H01Q21/0081Stripline fed arrays using suspended striplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart

Definitions

  • the field of the invention is that of telecommunication antennas, and more particularly that of antennas for radio-relay systems (FH antennas).
  • FH antennas radio-relay systems
  • the invention more specifically relates to a flat antenna for microwave radio systems fed by a waveguide.
  • FIG. 1a shows schematically a parabolic antenna 1 connected to a waveguide G.
  • flat antennas are known to be generally as effective as parabolic antennas.
  • Flat antennas are also characterized by their compactness and low wind resistance (especially because of a small thickness) and thus tend to be preferred to satellite dishes.
  • An advantage of the printed technology exploited in the context of the flat antenna is its good ability to adapt to coaxial connections, for example those of the SMA-3, 5 mm type.
  • FIG. 1b it is thus possible to connect a flat antenna 2 having a coaxial connector to a waveguide G via a guide-coaxial transition TGC.
  • the flat antenna 2 comprises an array of radiating elements integrated in the dielectric substrate of the antenna.
  • the antenna 2 more specifically comprises a set of linear subarrays a r 4 parallel to each other, each linear subarray a r 4 being constituted by a set of radiating elements 3.
  • the radiating elements typically each consist of a conductive square surface having a corner connected to a brb subnetwork feeder line 4 (typically in the form of a micro-ribbon line).
  • FIG. 2 more specifically represents an exemplary embodiment of the power supply of a flat antenna 2 via a guide-coaxial transition TGC.
  • a supply line L (typically a micro-ribbon line) fed by the waveguide via the guide-coaxial transition TGC is arranged transversely to the linear subarray a to r 4 .
  • This supply line L thus makes it possible to supply the power supply lines of sub-networks and consequently the radiating elements of all the sub-networks.
  • the coaxial connection is effectively fragile and sensitive to galvanic cuts.
  • the micro-ribbon feed line L has significant linear losses, generally greater than the losses of the waveguide.
  • the object of the invention is to propose a flat antenna FH which does not have the drawbacks associated with the use of a coaxial guide transition, while allowing an equiphase supply of all the radiating elements of the same sub-network.
  • the invention proposes a flat antenna system comprising at least one sub-array of radiating elements disposed on a face of a substrate superimposed on a ground plane, each sub-network consisting of a plurality radiating elements adapted to be fed by a sub-network supply line to which they are connected, a slot being formed in the ground plane opposite each sub-network supply line, the system comprising in addition to a power transmission line arranged with respect to the ground plane so as to effect electromagnetic coupling by slot between said power transmission line and each of the sub-network supply lines, the system being characterized in that that the power transmission line is arranged to extend obliquely with respect to the subnetwork supply lines.
  • the energy transmission line is a rectangular waveguide, one side of which is pressed against the ground plane, and wave radiation slots are formed in said waveguide face so that the slits of the ground plane and the slits of the waveguide are superimposed;
  • the energy transmission line is a waveguide having a U-shape in section, and said waveguide is arranged in such a way that the ground plane closes the space of the waveguide;
  • the energy transmission line is a triplate line comprising a conductive line sandwiched between two ground planes of triplate line, wave radiation slots being made in the one of the plane planes of the triplate line which is pressed against said ground plane so that the slits of the ground plane and the slots of the triplate line are superimposed;
  • the energy transmission line is a triplate line comprising a conductive line sandwiched between two plane planes of triplate line, and in that one of the ground planes of the triplate line coincides with said ground plane ;
  • the system comprises a plurality of linear subarrays parallel to each other and in that the slots in the ground plane are positioned vertically to the supply lines;
  • the slots in the transmission line are notches made obliquely in the length of the transmission line;
  • each supply line with respect to the corresponding slot is performed so as to control the coupling ratio between the energy transmission line and the said supply line;
  • each subnetwork supply line comprises means for weighting the amplitudes of radiation of the radiating elements of the sub-network
  • the weighting means comprise impedance transformers interposed between the radiating elements;
  • the size of the radiating elements of a sub-network is weighted so as to weight the radiation amplitudes of said radiating elements; the weighting of the size of a radiating element in the form of a conducting surface consists in reducing one of the characteristic dimensions of said surface; and
  • the supply line of a sub-array of radiating elements is a micro-ribbon line.
  • FIG. 1 c schematically shows a flat antenna having a direct waveguide access
  • FIG. 3 represents a possible embodiment of a flat antenna system
  • FIGS. 4a and 4b illustrate different ways of weighting amplitudes of the radiating elements
  • FIGS. 5a and 5b illustrate the slot coupling between a waveguide and a supply line as a function of the position of the line relative to the center of the slot;
  • - Figure 6 shows an advantageous embodiment of a flat antenna system according to the invention.
  • FIG. 3 shows a possible embodiment of a system 10. flat antenna.
  • the same references have been used for the elements that are common to FIG.
  • the system 10 comprises a flat antenna 20 as well as a waveguide G.
  • the flat antenna 20 conventionally comprises in itself a flat metal conductive plate constituting a ground plane 5 (at the rear on FIG. 3), and a substrate in the form of a superimposed dielectric plate and substantially parallel to the ground plate
  • a circuit is printed on the face of the substrate opposite to the ground plane 5 and comprises radiating elements 3.
  • the antenna 20 comprises a set of linear subarray a r 4 arranged on the face of the substrate opposite to the ground plane, parallel to each other, each linear subarray a r 4 being constituted by a set of radiating elements 3 able to be fed by a subarray supply line b r b 4 to which they are connected.
  • the supply line is typically a microstrip line ("microstrip" according to the English terminology) printed on the same substrate or on another layer.
  • the radiating elements typically consist of a conductive square surface whose apex is connected to the corresponding subarray supply line b r b 4 , the diagonal of the square starting from this vertex being perpendicular to the supply line b r b 4 corresponding.
  • the invention is not limited to a particular form of the radiating elements, nor to a particular connection to the corresponding supply line.
  • the radiating elements may thus consist of a conductive surface having the shape of a polygon (for example a triangle or a rectangle) or even a circle.
  • the radiating elements may also be supplied at other points of the conductive surface at one of the peaks of said surface, for example along one of the sides or inside the conductive surface.
  • a slot F 1 -F 4 is formed in the ground plane 5 opposite each subarray supply line b r b 4 .
  • the slots are preferentially identical. Each slot F 1 -F 4 is thus placed transversely to the corresponding supply line.
  • the system 10 also comprises a power transmission line G arranged with respect to the ground plane 5 so as to achieve an electromagnetic coupling by slot between said transmission line and each of the subnetwork supply lines.
  • the energy transmission line may be a waveguide, or any other type of transmission line, in particular a triplate line.
  • the waveguide has for example a waveguide having a rectangular sectional shape. It may also be a waveguide having a U-shape in section.
  • the electromagnetic fields propagate in the rectangular cavity of the waveguide from bottom to top in the example of FIG.
  • a terminal resistor may be provided at an upper plate 1 1 of the waveguide G.
  • wave radiation slots identical to the slots of the ground plane are made, for example by machining, in the body of the waveguide, in particular on one of the faces of the waveguide intended to be pressed against the ground plane 5 so that the slits of the ground plane and the slots of the waveguide are superimposed (for these reasons, we have taken the same references to designate all the slots).
  • the electromagnetic fields propagating in the space of the guide then radiate, via the superimposed slots made in the ground plane of the antenna and in the face of the waveguide pressed against the ground plane, and come to excite the power lines of the subnetworks.
  • the waveguide has a U-shaped section, the waveguide is arranged so that the ground plane 5 closes the waveguide space. The electromagnetic fields propagating in the space of the guide then radiate through the slots in the ground plane of the antenna.
  • the antenna structure further comprises a power supply means of the transmission line (not shown), so as to supply electrical energy to said line, this energy propagating inside that and radiating through the slots F 1 -F 4 .
  • slots are made on the same face of the waveguide (when a rectangular waveguide is used), and said face is arranged opposite the ground plane of the antenna 20, on the side opposite to the dielectric substrate of the antenna. In such a way, the guide access is secured to the ground plane of the antenna. Access is bein also understood solidarity with the ground plane when it comes close the space of the waveguide.
  • a power supply line in the form of a triplate line comprising a conductive line sandwiched between two plane planes triplate line.
  • one of the triplate line ground planes coincides with the ground plane of the antenna (in which the slots are made).
  • wave radiation slots are formed in one of the triplate line ground planes which is pressed against the ground plane of the antenna so that the slits of the ground plane 5 and those of the ground plane of the triplate line are superimposed.
  • the transmission line (here in the form of a waveguide, but this also applies to the embodiment with a triplate line ) is arranged so that it extends generally perpendicular to the subnetwork supply lines.
  • the slots are made in the length of the transmission line (for example in the form of rectangular notches) so as to be positioned perpendicular to the supply lines. Due to this coupling, a transfer of energy takes place between power transmission lines, that is to say between the waveguide or the triplate line on the one hand and each of the power supply lines. subnet network on the other hand. In this way, each sub-network supply line is then excited by the energy radiated by the slots, and then supplies all the radiation elements connected to this line.
  • the antenna structure of FIG. 2 provides for the supply of the sub-networks of radiating elements by a transverse supply line L
  • the antenna structure according to the invention thus proposes to use a plurality of slots performed to achieve electromagnetic coupling between each sub-network and a portion of the power transmission line, on the opposite side to the dielectric substrate of the antenna.
  • this document does not relate to the supply of an antenna having a circuit on which radiating elements are printed, and therefore does not deal with the supply of such elements.
  • this document does not envisage exploiting the radiation of slots to form a coupling between two power transmission lines, and in particular a coupling of the waveguide with radiating element supply lines.
  • the flat antenna is a network of radiating elements.
  • the level of the side lobes is likely to be about -13 dB.
  • the following description relates to two possible embodiments of a weighting of amplitudes of the radiating elements of the flat antenna, in particular for containing the level of secondary lobes, for example at about -20 dB. It will be appreciated that these embodiments are not limited to the scope of the present invention for direct waveguide access by electromagnetic slot coupling between the waveguide and the subnetwork feed lines. It will also be appreciated that these embodiments may be implemented separately or together.
  • impedance transformers T are inserted between the radiating elements 3 of the same sub-network in the sub-network supply line bj.
  • Transformers T are more precisely provided with transformation ratios corresponding to the progressive attenuations that one wishes to obtain.
  • Transformers T are typically quarter-wave or half-wave transformers; they may also be transformers with so-called progressive laws (eg exponential or logarithmic laws).
  • the weighting is "integrated" with the radiating elements 3 by varying the area of said elements.
  • the reduction of the surface of a radiating element is accompanied by a reduction in the energy transfer capacity from the radiating element towards the outside, while nevertheless maintaining the same signal level.
  • This second embodiment is advantageous in that it allows not to use transformers. These actually produce discontinuities on the subscriber line bj.
  • the subnetwork supply line bj no longer has the discontinuities related to the use of transformers.
  • the different radiating elements 3 of the sub-network are then equalized in that they are all fed in the same way by the supply line b
  • the radiating elements generally have the form of square conductive plates, on the side 12, which represents the guided wavelength on the substrate of the printed circuit on which the radiating elements are formed and which corresponds to the main radiation frequency of the antenna .
  • a radiating element in the form of a rectangular conductive plate having a length of / 2 and a width of / n, where n is greater than 2.
  • the "integrated" weighting is preferably implemented by favoring the radiating elements 3i at the center of the sub-network (with respect to the excitation point P of the sub-feed line). network at the center of the line), and gradually reducing the size of the radiating elements 3 2 , 3 3 as one deviates from the excitation point P, symmetrically with respect to the point P.
  • it controls the transfer of energy between the two transmission lines (between the waveguide or the line triplate and a subnetwork supply line), i.e., the coupling rate is controlled, by varying the offset of the subnetwork supply line from the center of the subnetwork. slot.
  • the slots are identical to each other (for example identical rectangular notches made both in the ground plane and in the body of the rectangular waveguide) and it will be noted that the control of the coupling ratio is performed within the scope of the invention without playing on the dimensions of the slots (that is to say in particular without providing different sizes of slots).
  • This control of the coupling ratio is advantageous in that it makes it possible to compensate for the decrease in the power of the electromagnetic fields propagating inside the waveguide.
  • FIG. 5a shows a slot F 1 of length L (actually two superimposed slits when using a rectangular section waveguide, or a triplate line whose ground plane is pressed against the plane of mass of the antenna) coming to excite a subscriber supply line bj. It is known that the distribution of currents along a half-wavelength slot has a maximum value at the center and decreasing towards the ends.
  • FIG. 5b shows the coupling ratio between the slot and the feed line as a function of the longitudinal positioning of the line relative to the slot. It is found that the coupling is maximum when the line b ⁇ is placed perpendicular to the slot Fi at the center of the slot (point b). The coupling decreases as one moves away from the center of the slot (see points a and c, coupling at a greater than the coupling in c).
  • FIG. 6 illustrates the advantageous embodiment of a flat antenna system according to the invention according to which a control of the coupling ratio between the energy transmission line and the various supply lines is carried out.
  • the transmission line here waveguide G
  • the transmission line has a series of oblique slots F 1 -F 4 , and is here arranged slightly obliquely with respect to the supply lines of the sub-networks so that the slots of the waveguide are superimposed on the slits of the ground plane and thus positioned perpendicularly to the supply lines, while gradually varying, from one subnetwork supply line to the other, the coupling ratio between the waveguide and power line.
  • the coupling ratio increases from one supply line to the other in the incoming direction (from bottom to top in FIG.
  • the arrangement according to the invention of the waveguide oblique with respect to the supply lines of the sub-networks, as illustrated by FIG. 6, is further adapted to allow a supply of all the radiating elements of a same subnet with the same phase (phase feed).
  • the two types of transmission lines have different dielectric media.
  • the wavelength in the substrate of low losses of the antenna is of the order of 0.7 to 0.8 times the wavelength in the free space.
  • the wavelength in the free space is close to the wavelength in the waveguide.
  • the gap between the radiating elements does not exceed about 0.8 length. wave in free space.
  • said line which is 0.8 wavelength in the vacuum between two radiating elements, has an electric length of one wavelength in the dielectric between two radiating elements, allowing the supply of all elements with the same phase.
  • the positioning of the waveguide obliquely with respect to the power supply lines of the sub-networks makes it possible to achieve at a gap of one wavelength in the vacuum, and therefore an equi-phase power supply between the sub-networks, while leaving a Vertical spacing between sub-array lines of approximately 0.8 wavelengths.
  • the oblique positioning is further advantageous in that it allows to machine the body of the waveguide so as to practice oblique slots (the feed lines will then be perpendicular to the slots, as is schematically illustrated in FIG. 5a), which makes it possible to obtain an optimal distribution of the currents on the slots resulting from the propagation modes of the electromagnetic fields inside the waveguide.
  • An application that will be made of the antenna system according to the invention relates to transmissions in the band of 22.1 to 23.1 GHz, but the invention is of course in no way limited to this particular range of frequencies.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

L' invention concerne un système d'antenne plate (10) comportant au moins un sous-réseau d'éléments rayonnants (a1-a4) disposé sur une face d'un substrat superposé à un plan de masse (5), chaque sous-réseau étant constitué d'une pluralité d'éléments rayonnants (3) aptes à être alimentés par une ligne d'alimentation de sous-réseau (b1-b4) à laquelle ils sont reliés, une fente (F1-F4) étant pratiquée dans le plan de masse (5) en regard de chaque ligne d'alimentation de sous-réseau (b1-b4), le système comportant en outre une ligne de transmission d'énergie (G) agencée par rapport au plan de masse de manière à réaliser un couplage électromagnétique par fente entre ladite ligne de transmission d'énergie et chacune des lignes d'alimentation de sous-réseau, le système étant caractérisé en ce que la ligne de transmission d'énergie est agencée pour s'étendre en oblique par rapport aux lignes d'alimentation de sous-réseaux.

Description

SYSTEME D'ANTENNE PLATE A ACCES DIRECT EN GUIDE D'ONDES
Le domaine de l'invention est celui des antennes de télécommunication, et plus particulièrement celui des antennes pour faisceaux hertziens (antennes FH).
L'invention concerne plus précisément une antenne plate pour faisceaux hertziens alimentée par un guide d'ondes.
Les antennes paraboliques sont couramment utilisées pour les faisceaux hertziens. Un guide d'ondes rectangulaire est généralement connecté à un coffret déporté à l'arrière de l'antenne parabolique pour réaliser l'accès radio électrique de l'antenne. On a représenté de manière schématique sur la figure 1 a une antenne parabolique 1 raccordée à un guide d'ondes G. A surface équivalente, les antennes plates sont connues pour être globalement aussi efficaces que les antennes paraboliques. Les antennes plates sont en outre caractérisées par leur compacité et leur faible prise au vent (notamment du fait d'une faible épaisseur) et tendent ainsi à être préférées aux antennes paraboliques. Un avantage de la technologie imprimée exploitée dans le cadre de l'antenne plate est sa bonne capacité d'adaptation aux connexions coaxiales, par exemple celles du type SMA - 3 ,5 mm. Comme cela est schématiquement représenté sur la figure 1 b, il est ainsi possible de raccorder une antenne plate 2 dotée d'un connecteur coaxial à un guide d'ondes G par l'intermédiaire d'une transition guide-coaxial TGC.
De manière classiquement connue en soi, et comme cela est représenté sur la figure 2, l'antenne plate 2 comprend un réseau d'éléments rayonnants intégrés au substrat diélectrique de l'antenne.
L'antenne 2 comprend plus précisément un ensemble de sous-réseaux linéaires ara4 parallèles entre eux, chaque sous-réseau linéaire ara4 étant constitué d'un ensemble d'éléments rayonnants 3. Les éléments rayonnants sont typiquement chacun constitués d'une surface carrée conductrice dont un coin est relié à une ligne d'alimentation de sous-réseau brb4 (typiquement sous la forme d'une ligne micro-ruban).
La figure 2 représente plus précisément un exemple de réalisation de l'alimentation d'une antenne plate 2 par l'intermédiaire d'une transition guide- coaxial TGC. A cet effet, une ligne d'alimentation L (typiquement une ligne micro-ruban) alimentée par le guide d'ondes par l'intermédiaire de la transition guide-coaxial TGC est agencée transversalement aux sous- réseaux linéaires ara4. Cette ligne d'alimentation L permet ainsi d'alimenter les lignes d'alimentation de sous-réseaux et par conséquent les éléments rayonnants de l'ensemble des sous-réseaux.
La solution de la figure 2 n'est toutefois pas totalement satisfaisante.
La connectique coaxiale est effectivement fragile et sensible aux coupes galvaniques. En outre, la ligne d'alimentation micro-ruban L présente des pertes linéiques importantes, généralement supérieures aux pertes du guide d'ondes.
Il est connu, par exemple du document US 6,509,874, de pratiquer une fente dans le plan de masse en regard de chaque ligne d'alimentation de sous-réseau et d'agencer un guide d'ondes - sous la forme d'un canal pratiqué en surface d'un corps métallique - par rapport au plan de masse de manière à ce que ledit guide s'étende perpendiculairement aux sous- réseaux. On réalise de la sorte un couplage électromagnétique par fente entre ledit guide d'ondes et chacune des lignes d'alimentation de sous- réseau. Toutefois, avec un tel agencement orthogonal, les sous-réseaux sont alimentés en opposition de phase (tous les 180°). Et il s'avère alors nécessaire de prévoir des moyens pour compenser les +/- 180° de déphasage.
Le document US 6,509,874 montre ainsi (cf. notamment la figure 3b) une alimentation des sous-réseaux par des fentes en opposition de phase, et une correction de phase réalisée en déplaçant les rangées d'éléments rayonnants le long de la ligne d'alimentation d'une longueur électrique de +/- 180°.
Une autre solution pour la correction de phase est présentée dans le document US 6,313,807 et consiste à alimenter chaque réseau par l'un ou l'autre côté du guide d'ondes.
L'invention a pour objectif de proposer une antenne plate FH qui ne présente pas les inconvénients liés à l'utilisation d'une transition guide coaxial, tout en permettant une alimentation equiphase de tous les éléments rayonnants d'un même sous-réseau. A cet effet, l'invention propose un système d'antenne plate comportant au moins un sous-réseau d'éléments rayonnants disposé sur une face d'un substrat superposé à un plan de masse, chaque sous-réseau étant constitué d'une pluralité d'éléments rayonnants aptes à être alimentés par une ligne d'alimentation de sous-réseau à laquelle ils sont reliés, une fente étant pratiquée dans le plan de masse en regard de chaque ligne d'alimentation de sous-réseau, le système comportant en outre une ligne de transmission d'énergie agencée par rapport au plan de masse de manière à réaliser un couplage électromagnétique par fente entre ladite ligne de transmission d'énergie et chacune des lignes d'alimentation de sous-réseau, le système étant caractérisé en ce que la ligne de transmission d'énergie est agencée pour s'étendre en oblique par rapport aux lignes d'alimentation de sous- réseaux.
Certains aspects préférés, mais non limitatifs, de ce système sont les suivants : - la ligne de transmission d'énergie est un guide d'ondes rectangulaire dont une face est plaquée contre le plan de masse, et des fentes de rayonnement d'onde sont pratiquées dans ladite face du guide d'ondes de manière à ce que les fentes du plan de masse et les fentes du guide d'ondes soient superposées ; - la ligne de transmission d'énergie est un guide d'ondes ayant une forme de U en section, et ledit guide d'ondes est agencé de manière à ce que le plan de masse ferme l'espace du guide d'ondes ;
- la ligne de transmission d'énergie est une ligne triplaque comprenant une ligne conductrice prise en sandwich entre deux plans de masse de ligne triplaque, des fentes de rayonnement d'onde étant pratiquées dans celui des plans de masse de ligne triplaque qui est plaqué contre ledit plan de masse de manière à ce que les fentes du plan de masse et les fentes de la ligne triplaque soient superposées ; - la ligne de transmission d'énergie est une ligne triplaque comprenant une ligne conductrice prise en sandwich entre deux plans de masse de ligne triplaque, et en ce que l'un des plans de masse de la ligne triplaque est confondue avec ledit plan de masse ;
- le système comprend une pluralité de sous-réseaux linéaires parallèles entre eux et en ce que les fentes pratiquées dans le plan de masse sont positionnées verticalement aux lignes d'alimentation ;
- les fentes pratiquées dans la ligne de transmission sont des entailles pratiquées en oblique dans la longueur de la ligne de transmission ;
- dans le système, le positionnement de chaque ligne d'alimentation par rapport à la fente correspondante est réalisé de manière à contrôler le taux de couplage entre la ligne de transmission d'énergie et ladite ligne d'alimentation ;
- chaque ligne d'alimentation de sous-réseau comporte des moyens de pondération des amplitudes de rayonnement des éléments rayonnants du sous-réseau ;
- les moyens de pondération comprennent des transformateurs d'impédance intercalés entre les éléments rayonnants ;
- la taille des éléments rayonnants d'un sous-réseau est pondérée de manière à réaliser une pondération des amplitudes de rayonnement desdits éléments rayonnants ; - la pondération de la taille d'un élément rayonnant sous la forme d'une surface conductrice consiste à réduire l'une des dimensions caractéristiques de ladite surface ; et
- la ligne d'alimentation d'un sous-réseau d'éléments rayonnants est une ligne micro-ruban.
D'autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels, outre les figures 1 a, 1 b et 2 déjà commentées :
- la figure 1 c représente de manière schématique une antenne plate disposant d'un accès direct en guide d'ondes ;
- la figure 3 représente un mode de réalisation possible d'un système d'antenne plate ; - les figures 4a et 4b illustrent différentes manières de réaliser une pondération d'amplitudes des éléments rayonnants ;
- les figures 5a et 5b illustrent le couplage par fente entre un guide d'ondes et une ligne d'alimentation en fonction de la position de la ligne par rapport au centre de la fente ; - la figure 6 représente un mode de réalisation avantageux d'un système d'antenne plate selon l'invention.
En référence à la figure 1 c, on a représenté de manière particulièrement schématique une antenne plate 20 disposant d'un accès direct en guide d'ondes G. Sur la figure 3, on a représenté un mode de réalisation possible d'un système 10 d'antenne plate. Sur cette figure 3, on a repris, pour les éléments communs avec la figure 2, les mêmes références.
Le système 10 comporte une antenne plate 20 ainsi qu'un guide d'ondes G.
L'antenne plate 20 comprend de manière classique en soi une plaque conductrice métallique plane constituant un plan de masse 5 (à l'arrière sur la figure 3), et un substrat sous la forme d'une plaque diélectrique superposée et sensiblement parallèle à la plaque de masse
Un circuit est imprimé sur la face du substrat opposée au plan de masse 5 et comporte des éléments rayonnants 3. L'antenne 20 comprend un ensemble de sous-réseaux linéaires ara4 disposés sur la face du substrat opposée au plan de masse, parallèles entre eux, chaque sous-réseau linéaire ara4 étant constitué d'un ensemble d'éléments rayonnants 3 aptes à être alimentés par une ligne d'alimentation de sous-réseau brb4 à laquelle ils sont reliés. La ligne d'alimentation est typiquement une ligne micro-ruban (« microstrip » selon la terminologie anglo-saxonne) imprimée sur le même substrat ou sur une autre couche.
Les éléments rayonnants sont typiquement constitués d'une surface carrée conductrice dont un sommet est relié à la ligne d'alimentation de sous-réseau brb4 correspondante, la diagonale du carré partant de ce sommet étant perpendiculaire à la ligne d'alimentation brb4 correspondante.
Bien entendu l'invention n'est pas limitée à une forme particulière des éléments rayonnants, ni à une liaison particulière à la ligne d'alimentation correspondante.
Les éléments rayonnants peuvent ainsi être constituées d'une surface conductrice ayant la forme d'un polygone (par exemple un triangle ou un rectangle) voire d'un cercle.
Les éléments rayonnants peuvent en outre être alimentés en d'autres points de la surface conductrice qu'en l'un des sommets de ladite surface, par exemple le long de l'une des côtés ou encore à l'intérieur de la surface conductrice. Dans ce dernier exemple, on peut notamment ouvrir une "route" dans la surface conductrice en faisant pénétrer la ligne d'alimentation dans la surface conductrice tout en laissant de chaque côté de la ligne des segments absents de métallisation.
Une fente F1-F4 est pratiquée dans le plan de masse 5 en regard de chaque ligne d'alimentation de sous-réseau brb4. Les fentes sont préférentiellement identiques. Chaque fente F1-F4 est ainsi placée transversalement à la ligne d'alimentation correspondante.
Lorsque les sous-réseaux sont des sous-réseaux linéaires parallèles entre eux, on choisira préférentiellement des fentes rectangulaires positionnées verticalement aux lignes d'alimentation.
Le système 10 comprend également une ligne de transmission d'énergie G agencée par rapport au plan de masse 5 de manière à réaliser un couplage électromagnétique par fente entre ladite ligne de transmission et chacune des lignes d'alimentation de sous-réseau. La ligne de transmission d'énergie peut être un guide d'ondes, ou tout autre type de lignes de transmission, en particulier une ligne triplaque.
Le guide d'ondes a par exemple un guide d'ondes ayant une forme rectangulaire en section. Il peut également s'agir d'un guide d'ondes ayant une forme de U en section. Les champs électromagnétiques se propagent dans la cavité rectangulaire du guide d'ondes du bas vers le haut dans l'exemple de la figure 3.
Une résistance terminale (non représentée) peut être prévue au niveau d'une plaque supérieure 1 1 du guide d'ondes G. Lorsque le guide d'ondes a une forme rectangulaire en section, des fentes de rayonnement d'onde, identiques aux fentes du plan de masse sont pratiquées, par exemple par usinage, dans le corps du guide d'ondes, en particulier sur l'une des faces du guide d'ondes destinée à être plaquée contre le plan de masse 5 de manière à ce que les fentes du plan de masse et les fentes du guide d'ondes soient superposées (pour ces raisons, on a pris les mêmes références pour désigner l'ensemble des fentes). Les champs électromagnétiques se propageant dans l'espace du guide rayonnent alors, par l'intermédiaire des fentes superposées pratiquées dans le plan de masse de l'antenne et dans la face du guide d'ondes plaquée contre le plan de masse, et viennent exciter les lignes d'alimentation des sous-réseaux. Lorsque le guide d'ondes a une forme de U en section, le guide d'ondes est agencé de manière à ce que le plan de masse 5 ferme l'espace du guide d'ondes. Les champs électromagnétiques se propageant dans l'espace du guide rayonnent alors par l'intermédiaire des fentes pratiquées dans le plan de masse de l'antenne.
Bien entendu la structure d'antennes comporte en outre un moyen d'alimentation en énergie de la ligne de transmission (non représenté), de manière à fournir de l'énergie électrique à ladite ligne, cette énergie se propageant à l'intérieur de celle-ci et rayonnant par les fentes F1-F4. Comme déjà mentionné, des fentes sont pratiquées sur une même face du guide d'ondes (lorsque qu'un guide d'ondes rectangulaire est utilisé), et ladite face est agencée en regard du plan de masse de l'antenne 20, du côté opposé au substrat diélectrique de l'antenne. De telle manière, l'accès en guide est solidaire du plan de masse de l'antenne. L'accès est beine entendu également solidaire du plan de masse lorsque celui-ci vient fermer l'espace du guide d'ondes.
On peut également prévoir une ligne d'alimentation en énergie sous la forme d'une ligne triplaque comprenant une ligne conductrice en sandwich entre deux plans de masse de ligne triplaque. Selon une première variante, l'un des plans de masse de ligne triplaque est confondu avec le plan de masse de l'antenne (dans lequel les fentes sont pratiquées).
Selon une autre variante, des fentes de rayonnement d'onde sont pratiquées dans l'un des plans de masse de ligne triplaque qui est plaqué contre le plan de masse de l'antenne de manière à ce que les fentes du plan de masse 5 et celles du plan de masse de la ligne triplaque soient superposées.
Dans l'exemple non représentatif de l'invention de la figure 3 (vue en perspective), la ligne de transmission (ici sous la forme d'un guide d'ondes, mais cela s'applique également au mode de réalisation à ligne triplaque) est agencée de sorte à ce qu'elle s'étende globalement perpendiculairement aux lignes d'alimentation de sous-réseaux. Dans un tel cas de figure, les fentes sont pratiquées dans la longueur de la ligne de transmission (par exemple sous la forme d'entailles rectangulaires) de manière à être positionnées perpendiculairement aux lignes d'alimentation. Du fait de ce couplage, un transfert d'énergie s'opère entre lignes de transmission d'énergie, c'est-à-dire entre le guide d'ondes ou la ligne triplaque d'une part et chacune des lignes d'alimentations de sous-réseau d'autre part. De telle sorte, chaque ligne d'alimentation de sous-réseau est alors excitée par l'énergie rayonnée par les fentes, et alimente alors l'ensemble des éléments de rayonnement reliés à cette ligne.
Là où la structure d'antenne de la figure 2 prévoit l'alimentation des sous-réseaux d'éléments rayonnants par une ligne d'alimentation transversale L, la structure d'antenne selon l'invention propose ainsi d'utiliser une pluralité de fentes pratiquées de manière à réaliser un couplage électromagnétique entre chaque sous-réseau et un tronçon de la ligne de transmission d'énergie, du côté opposé au substrat diélectrique de l'antenne.
On notera que le document FR 2 646 565 propose de réaliser des fentes dans un guide d'ondes rectangulaires de manière à ce que l'énergie se propage dans le guide pour rayonner directement vers l'espace libre par le biais de fentes.
Au contraire de la présente invention, ce document ne se rapporte pas à l'alimentation d'une antenne présentant un circuit sur lequel des éléments rayonnants sont imprimés, et ne traite donc pas de l'alimentation de tels éléments. Ce document n'envisage en outre aucunement d'exploiter le rayonnement de fentes pour réaliser un couplage entre deux lignes de transmission d'énergie, et notamment un couplage du guide d'ondes avec des lignes d'alimentation d'éléments rayonnants.
L'antenne plate constitue un réseau d'éléments rayonnants. En l'absence d'une pondération d'amplitudes des éléments rayonnants, le niveau des lobes secondaires est susceptible de s'établir à -13 dB environ. La description ci-après concerne deux modes de réalisation possible d'une pondération d'amplitudes des éléments rayonnants de l'antenne plate permettant notamment de contenir le niveau de lobes secondaires, par exemple à environ - 20 dB. On notera que ces modes de réalisation ne sont pas limitées au cadre de la présente invention pour un accès direct en guide d'ondes par couplage électromagnétique par fente entre le guide d'ondes et les lignes d'alimentation de sous-réseau. On notera également que ces modes de réalisation peuvent être mis en œuvre séparément ou conjointement. Selon un premier mode de réalisation possible, tel qu'illustré sur la figure 4a, on intercale des transformateurs d'impédance T entre les éléments rayonnants 3 d'un même sous-réseau dans la ligne d'alimentation de sous- réseau bj.
Les transformateurs T sont plus précisément prévus avec des rapports de transformation correspondant aux atténuations progressives que l'on souhaite obtenir.
Les transformateurs T sont typiquement des transformateurs quart d'ondes ou demi d'ondes ; il peut également s'agir de transformateurs disposant de lois dites progressives (par exemple des lois exponentielles ou logarithmiques).
Selon un deuxième mode de réalisation possible, tel qu'illustré sur la figure 4b, la pondération est « intégrée » aux éléments rayonnants 3 en faisant varier la surface desdits éléments.
En particulier, la réduction de la surface d'un élément rayonnant s'accompagne d'une réduction la capacité de transfert d'énergie depuis l'élément rayonnant vers l'extérieur, en conservant toutefois un même niveau de signal.
Ce deuxième mode de réalisation s'avère avantageux dans la mesure où il permet de ne pas utiliser de transformateurs. Ceux-ci produisent effectivement des discontinuités sur la ligne d'alimentation bj de sous-réseau.
Et ces discontinuités engendrent à leur tour un rayonnement parasite en partie responsable des niveaux importants de composante croisée dans le plan H du diagramme de rayonnement de l'antenne plate (à environ - 10 dB).
En réalisant une telle pondération « intégrée », la ligne d'alimentation de sous-réseau bj ne présente donc plus les discontinuités liées à l'utilisation de transformateurs.
Les différents éléments rayonnants 3 du sous-réseau sont alors équipondérés en ce qu'ils sont tous alimentés de la même manière par la ligne d'alimentation b|.
Les éléments rayonnants ont généralement la forme de plaques conductrices carrées, de côté 12, où représente la longueur d'onde guidée sur le substrat du circuit imprimé sur lequel sont formés les éléments rayonnants et qui correspond à la fréquence de rayonnement principale de l'antenne.
A titre d'exemple de réduction de surface d'un élément, on considère un élément rayonnant sous la forme d'une plaque conductrice rectangulaire, possédant une longueur de /2 et une largeur de /n, où n est supérieur à 2.
En d'autres termes, on réduit ici uniquement un côté d'un élément carré. Le fait de conserver un côté de longueur /2 permet en effet de conserver comme fréquence de rayonnement ladite fréquence principale. D'une manière plus générale, il s'agit de réduire l'une des dimensions caractéristiques de l'élément rayonnant (un côté dans le cas d'une élément rayonnant polygonal, le diamètre dans le cas d'un élément rayonnant sous la forme d'un cercle).
Comme cela est schématiquement représenté sur la figure 4b, la pondération « intégrée » est préférentiellement mise en œuvre en favorisant les éléments rayonnants 3i au centre du sous-réseau (par rapport au point d'excitation P de la ligne d'alimentation du sous-réseau au centre de la ligne), et en réduisant progressivement la taille des éléments rayonnants 32, 33 au fur et à mesure que l'on s'écarte du point d'excitation P, de manière symétrique par rapport au point P. Revenant à la description de la structure d'antenne selon l'invention, et selon un mode de réalisation avantageux de l'invention, on contrôle le transfert d'énergie entre les deux lignes de transmission (entre le guide d'ondes ou la ligne triplaque et une ligne d'alimentation de sous-réseau), c'est-à-dire que l'on contrôle le taux de couplage, en jouant sur le décalage de la ligne d'alimentation de sous-réseau par rapport au centre de la fente.
Comme déjà mentionné précédemment, les fentes sont identiques entre elles (par exemple des entailles rectangulaires identiques pratiquées à la fois dans le plan de masse et dans le corps du guide d'ondes à section rectangulaire) et on notera que le contrôle du taux de couplage est réalisé dans le cadre de l'invention sans jouer sur les dimensions des fentes (c'est- à-dire notamment sans prévoir différentes tailles de fentes).
Ce contrôle du taux de couplage s'avère avantageux en ce qu'il permet de compenser le décroissement de la puissance des champs électromagnétiques se propageant à l'intérieur du guide d'ondes
(décroissance progressive vers une extrémité terminale - plaque supérieure
1 1 du guide d'ondes G - de la propagation de l'énergie dans l'espace du guide d'ondes) en augmentant progressivement le taux de couplage guide d'ondes/ligne d'alimentation de sous-réseau dans le sens entrant (du bas vers le haut sur la figure 3).
On a représenté sur la figure 5a, une fente Fj de longueur L (en réalité deux fentes superposées lorsque l'on utilise un guide d'ondes à section rectangulaire, ou encore une ligne triplaque dont un plan de masse est plaquée contre le plan de masse de l'antenne) venant exciter une ligne d'alimentation bj de sous-réseau. Il est connu que la distribution des courants le long d'une fente d'une demi-longueur d'onde possède une valeur maximale au centre et décroissante vers les extrémités.
Le couplage avec une ligne d'alimentation bι de sous-réseau, placée transversalement à la fente Fj est donc tributaire de cette loi de distribution des courants. Ainsi plus la ligne bj s'écarte du centre de la fente, plus le couplage est faible. Sur la figure 5a, trois positionnements possibles de la ligne bj par rapport à la fente Fi sont représentés. Le point b illustre le cas où la ligne bι est placée perpendiculairement à la fente Fi au niveau du centre de la fente. Les points a et c illustrent des cas où la bj est placée perpendiculairement à la fente F1 en étant décalée par rapport au centre de la fente. En particulier le point c est plus décalé par rapport au centre de la fente que ne l'est le point a.
On a représenté sur la figure 5b le taux de couplage entre la fente et la ligne d'alimentation en fonction du positionnement longitudinal de la ligne par rapport à la fente. On constate que le couplage est maximal lorsque la ligne bι est placée perpendiculairement à la fente Fi au niveau du centre de la fente (point b). Le couplage décroît au fur et à mesure que l'on s'écarte du centre la fente (cf. points a et c ; couplage en a supérieur au couplage en c).
La figure 6 illustre le mode de réalisation avantageux d'un système d'antenne plate selon l'invention selon lequel on réalise un contrôle du taux de couplage entre la ligne de transmission d'énergie et les différentes lignes d'alimentation. La ligne de transmission (ici guide d'ondes G) présente une série de fentes F1-F4 obliques, et est ici agencé légèrement en oblique par rapport aux lignes d'alimentation des sous-réseaux de manière à ce que les fentes du guide d'ondes soient superposées aux fentes du plan de masse et ainsi positionnées perpendiculairement aux lignes d'alimentation, tout en faisant progressivement varier, d'une ligne d'alimentation de sous-réseau à l'autre, le taux de couplage entre le guide d'ondes et la ligne d'alimentation.
Dans l'exemple ici représenté, le taux de couplage croît d'une ligne d'alimentation à l'autre dans le sens entrant (du bas vers le haut sur la figure
6). Sur cette figure 6, on a représenté par des croix le positionnement de chaque ligne d'alimentation par rapport à la fente correspondante. Initialement, pour la première fente depuis l'entrée du guide d'ondes dans le sens entrant, la croix est éloignée du centre de la fente. Un faible couplage s'opère donc. Au fur et à mesure que l'on progresse dans le sens de propagation de l'énergie dans le guide d'ondes, la croix s'approche progressivement du centre de la fente correspondante, et le taux de couplage augmente ainsi progressivement. Au niveau du dernier sous-réseau, la croix coïncide avec le centre de la fente correspondant, le taux de couplage est alors maximal.
L'agencement selon l'invention du guide d'ondes en oblique par rapport aux lignes d'alimentation des sous-réseaux, tel qu'illustré par la figure 6, est outre adapté pour permettre une alimentation de tous les éléments rayonnants d'un même sous-réseau avec la même phase (alimentation equi- phase).
Les deux types de lignes de transmissions (guide d'ondes d'une part, ligne d'alimentation de sous-réseau d'autre part) possèdent des milieux diélectriques différents. La longueur d'ondes dans le substrat de faibles pertes de l'antenne est de l'ordre de 0.7 à 0.8 fois la longueur d'ondes dans l'espace libre. La longueur d'ondes dans l'espace libre est quant à elle proche de la longueur d'ondes dans le guide d'ondes.
D'une manière générale, afin d'éviter la remontée des lobes secondaires potentiellement importants dans le diagramme de rayonnement de l'antenne, il est important de veiller à ce que l'écart entre les éléments rayonnants ne dépasse pas environ 0.8 longueur d'onde dans l'espace libre.
Dans le cas d'un sous-réseau réseau linéaire alimenté par une ligne micro-ruban, ladite ligne, qui fait 0.8 longueur d'onde dans le vide entre deux éléments rayonnants, possède une longueur électrique d'une longueur d'onde dans le diélectrique entre deux éléments rayonnants, permettant l'alimentation de tous les éléments avec la même phase.
Ainsi dans le cadre de l'invention, la longueur d'ondes dans le guide étant très proche de celle dans le vide, le positionnement du guide d'ondes en oblique par rapport aux lignes d'alimentation des sous-réseaux permet d'aboutir à un écart d'une longueur d'ondes dans le vide, et par conséquent une alimentation équi-phase entre les sous-réseaux, tout en laissant un espacement vertical entre les lignes des sous-réseaux d'environ 0.8 longueur d'ondes.
On notera que le positionnement en oblique est en outre avantageux en ce qu'il permet d'usiner le corps du guide d'ondes de manière à y pratiquer des fentes obliques (les lignes d'alimentation seront alors perpendiculaires aux fentes, comme cela est schématiquement illustré sur la figure 5a), ce qui permet d'obtenir une distribution optimale des courants sur les fentes, issues des modes de propagation des champs électromagnétiques à l'intérieur du guide d'ondes. Une application que l'on fera du système d'antenne selon l'invention concerne les transmissions dans la bande de 22,1 à 23,1 GHz, mais l'invention n'est bien entendu aucunement limitée à cette gamme particulière de fréquences.

Claims

REVENDICATIONS
1. Système d'antenne plate (10) comportant au moins un sous-réseau d'éléments rayonnants (ara4) disposé sur une face d'un substrat superposé à un plan de masse (5), chaque sous-réseau étant constitué d'une pluralité d'éléments rayonnants (3) aptes à être alimentés par une ligne d'alimentation de sous-réseau (brb4) à laquelle ils sont reliés, une fente (F1-F4) étant pratiquée dans le plan de masse (5) en regard de chaque ligne d'alimentation de sous-réseau (brb4), le système comportant en outre une ligne de transmission d'énergie (G) agencée par rapport au plan de masse de manière à réaliser un couplage électromagnétique par fente entre ladite ligne de transmission d'énergie et chacune des lignes d'alimentation de sous-réseau, le système étant caractérisé en ce que la ligne de transmission d'énergie est agencée pour s'étendre en oblique par rapport aux lignes d'alimentation de sous-réseaux.
2. Système selon la revendication 1 , caractérisé en ce que la ligne de transmission d'énergie est un guide d'ondes rectangulaire (G) dont une face est plaquée contre le plan de masse (5), et en ce que des fentes de rayonnement d'onde sont pratiquées dans ladite face du guide d'ondes de manière à ce que les fentes du plan de masse et les fentes du guide d'ondes soient superposées.
3. Système selon la revendication 1 , caractérisé en ce que la ligne de transmission d'énergie est un guide d'ondes ayant une forme de U en section, et en ce que ledit guide d'ondes est agencé de manière à ce que le plan de masse (5) ferme l'espace du guide d'ondes.
4. Système selon la revendication 1 , caractérisé en ce que la ligne de transmission d'énergie est une ligne triplaque comprenant une ligne conductrice prise en sandwich entre deux plans de masse de ligne triplaque, des fentes de rayonnement d'onde étant pratiquées dans celui des plans de masse de ligne triplaque qui est plaqué contre ledit plan de masse de manière à ce que les fentes du plan de masse (5) et les fentes de la ligne triplaque soient superposées.
5. Système selon la revendication 1 , caractérisé en ce que la ligne de transmission d'énergie est une ligne triplaque comprenant une ligne conductrice prise en sandwich entre deux plans de masse de ligne triplaque, et en ce que l'un des plans de masse de la ligne triplaque est confondue avec ledit plan de masse (5).
6. Système selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une pluralité de sous-réseaux linéaires parallèles entre eux et en ce que les fentes (F1-F4) pratiquées dans le plan de masse (5) sont positionnées verticalement aux lignes d'alimentation.
7. Système selon la revendication précédente, en combinaison avec la revendication 2 ou la revendication 4, caractérisé en ce que les fentes pratiquées dans la ligne de transmission sont des entailles pratiquées en oblique dans la longueur de la ligne de transmission.
8. Système selon l'une des revendications précédentes, dans lequel le positionnement de chaque ligne d'alimentation par rapport à la fente correspondante est réalisé de manière à contrôler le taux de couplage entre la ligne de transmission d'énergie et ladite ligne d'alimentation.
9. Système selon l'une des revendications précédentes, caractérisé en ce que chaque ligne d'alimentation de sous-réseau (brb4) comporte des moyens de pondération des amplitudes de rayonnement des éléments rayonnants (3) du sous-réseau.
10. Système selon la revendication précédente, caractérisé en ce que les moyens de pondération comprennent des transformateurs d'impédance (T) intercalés entre les éléments rayonnants (3).
1 1. Système selon l'une des revendications précédentes, caractérisé en ce que la taille des éléments rayonnants (3) d'un sous-réseau (brb4) est pondérée de manière à réaliser une pondération des amplitudes de rayonnement desdits éléments rayonnants.
12. Système selon la revendication précédente, caractérisé en ce que la pondération de la taille d'un élément rayonnant sous la forme d'une surface conductrice consiste à réduire l'une des dimensions caractéristiques de ladite surface.
13. Système selon l'une des revendications précédentes, caractérisé en ce que la ligne d'alimentation d'un sous-réseau d'éléments rayonnants est une ligne micro-ruban.
PCT/EP2006/068430 2005-11-14 2006-11-14 Systeme d'antenne plate a acces direct en guide d'ondes WO2007054582A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008540599A JP2009516446A (ja) 2005-11-14 2006-11-14 直接アクセス用導波管を備えた平面アンテナ装置
EP06819455A EP1949496B1 (fr) 2005-11-14 2006-11-14 Systeme d'antenne plate a acces direct en guide d'ondes
US12/085,006 US20090096692A1 (en) 2005-11-14 2006-11-14 Flat Antenna System With a Direct Waveguide Access
KR1020087014216A KR101166665B1 (ko) 2005-11-14 2006-11-14 직접적 도파관 접속수단을 구비하는 평면형 안테나 시스템
ES06819455T ES2384887T3 (es) 2005-11-14 2006-11-14 Sistema de antena plana con acceso directo en guía de ondas
CN2006800425236A CN101310413B (zh) 2005-11-14 2006-11-14 具有直接波导接入的平面天线系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0511527 2005-11-14
FR0511527A FR2893451B1 (fr) 2005-11-14 2005-11-14 Systeme d'antenne plate a acces direct en guide d'ondes.

Publications (1)

Publication Number Publication Date
WO2007054582A1 true WO2007054582A1 (fr) 2007-05-18

Family

ID=36204540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/068430 WO2007054582A1 (fr) 2005-11-14 2006-11-14 Systeme d'antenne plate a acces direct en guide d'ondes

Country Status (8)

Country Link
US (1) US20090096692A1 (fr)
EP (1) EP1949496B1 (fr)
JP (1) JP2009516446A (fr)
KR (1) KR101166665B1 (fr)
CN (1) CN101310413B (fr)
ES (1) ES2384887T3 (fr)
FR (1) FR2893451B1 (fr)
WO (1) WO2007054582A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005296A (ja) * 2011-06-17 2013-01-07 Hitachi Chem Co Ltd 線路層間接続器、線路層間接続器を有する平面アレーアンテナ、平面アレーアンテナモジュール
WO2013131552A1 (fr) 2012-03-05 2013-09-12 Huawei Technologies Co., Ltd. Procédé pour améliorer les performances de transfert intercellulaire dans un système de communication sans fil cellulaire
CN105676007A (zh) * 2016-02-17 2016-06-15 北京森馥科技股份有限公司 偶极子天线以及使用该偶极子天线的全向性探头
TWI765755B (zh) * 2021-06-25 2022-05-21 啟碁科技股份有限公司 天線模組與無線收發裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939527A (en) * 1989-01-23 1990-07-03 The Boeing Company Distribution network for phased array antennas
US6133877A (en) * 1997-01-10 2000-10-17 Telefonaktiebolaget Lm Ericsson Microstrip distribution network device for antennas
US6313807B1 (en) * 2000-10-19 2001-11-06 Tyco Electronics Corporation Slot fed switch beam patch antenna
US20020149531A1 (en) * 2001-04-16 2002-10-17 Smith Terry M. Waveguide slot array capable of radiating shaped beams
US6509874B1 (en) * 2001-07-13 2003-01-21 Tyco Electronics Corporation Reactive matching for waveguide-slot-microstrip transitions

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812501A (en) * 1954-03-04 1957-11-05 Sanders Associates Inc Transmission line
US3665480A (en) * 1969-01-23 1972-05-23 Raytheon Co Annular slot antenna with stripline feed
GB1529541A (en) * 1977-02-11 1978-10-25 Philips Electronic Associated Microwave antenna
JPS6124311A (ja) * 1984-07-13 1986-02-03 Matsushita Electric Works Ltd マイクロストリツプラインアンテナ
JPH03101507A (ja) * 1989-09-14 1991-04-26 Yagi Antenna Co Ltd 平面アンテナ
JPH0563409A (ja) * 1991-08-29 1993-03-12 Nissan Motor Co Ltd 導波管
JPH08186436A (ja) * 1994-12-27 1996-07-16 Toshiba Corp マイクロストリップアレイアンテナ
US5539361A (en) * 1995-05-31 1996-07-23 The United States Of America As Represented By The Secretary Of The Air Force Electromagnetic wave transfer
JP3306592B2 (ja) * 1999-05-21 2002-07-24 株式会社豊田中央研究所 マイクロストリップアレーアンテナ
EA003712B1 (ru) * 1999-09-14 2003-08-28 Паратек Майкровэйв, Инк. Фазированные антенные решетки с последовательным возбуждением и диэлектрическими фазовращателями
US6452550B1 (en) * 2001-07-13 2002-09-17 Tyco Electronics Corp. Reduction of the effects of process misalignment in millimeter wave antennas
JP2003209411A (ja) * 2001-10-30 2003-07-25 Matsushita Electric Ind Co Ltd 高周波モジュールおよび高周波モジュールの製造方法
US20060273973A1 (en) 2005-06-02 2006-12-07 Chandler Cole A Millimeter wave passive electronically scanned antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939527A (en) * 1989-01-23 1990-07-03 The Boeing Company Distribution network for phased array antennas
US6133877A (en) * 1997-01-10 2000-10-17 Telefonaktiebolaget Lm Ericsson Microstrip distribution network device for antennas
US6313807B1 (en) * 2000-10-19 2001-11-06 Tyco Electronics Corporation Slot fed switch beam patch antenna
US20020149531A1 (en) * 2001-04-16 2002-10-17 Smith Terry M. Waveguide slot array capable of radiating shaped beams
US6509874B1 (en) * 2001-07-13 2003-01-21 Tyco Electronics Corporation Reactive matching for waveguide-slot-microstrip transitions

Also Published As

Publication number Publication date
JP2009516446A (ja) 2009-04-16
KR20080072048A (ko) 2008-08-05
KR101166665B1 (ko) 2012-07-24
US20090096692A1 (en) 2009-04-16
EP1949496B1 (fr) 2012-05-16
ES2384887T3 (es) 2012-07-13
CN101310413A (zh) 2008-11-19
FR2893451A1 (fr) 2007-05-18
CN101310413B (zh) 2012-11-28
EP1949496A1 (fr) 2008-07-30
FR2893451B1 (fr) 2009-10-16

Similar Documents

Publication Publication Date Title
CA2024992C (fr) Antenne plane
CA1290449C (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
FR2641904A1 (fr) Dispositif d'antenne pour une polarisation circulaire
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
EP3602689B1 (fr) Antenne electromagnetique
FR2817661A1 (fr) Dispositif pour la reception et/ou l'emission de signaux multifaisceaux
FR2778272A1 (fr) Dispositif de radiocommunication et antenne bifrequence realisee selon la technique des microrubans
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
CA2869648A1 (fr) Repartiteur de puissance compact bipolarisation, reseau de plusieurs repartiteurs, element rayonnant compact et antenne plane comportant un tel repartiteur
EP3843202A1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
EP1949496B1 (fr) Systeme d'antenne plate a acces direct en guide d'ondes
EP1466384B1 (fr) Dispositif pour la reception et/ou l emission d ondes e lectromagnetiques a diversite de rayonnement
EP2059973B1 (fr) Système multi-antenne à diversité de polarisation
FR2742003A1 (fr) Antenne et assemblage d'antennes pour la mesure d'une distribution de champ electromagnetique en micro-ondes
EP2610966B1 (fr) Antenne compacte large bande à très faible épaisseur et à double polarisations linéaires orthogonales opérant dans les bandes V/UHF
FR2859824A1 (fr) Antenne a diversite de polarisation
FR3089358A1 (fr) Elément rayonnant à accès multiples
EP3692598B1 (fr) Antenne à substrat ferromagnétique dispersif partiellement saturé
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
EP0337841A1 (fr) Antenne boucle large bande à alimentation dissymétrique, notamment antenne pour émission, et antenne réseau formée d'une pluralité de telles antennes
EP1152483B1 (fr) Elément rayonnant hyperfréquence bi-bande
FR2784236A1 (fr) Antenne a commutation en frequence
EP0831550B1 (fr) Antenne-réseau polyvalente
EP4167378A1 (fr) Dispositif d'antennes radiofrequences isolees

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680042523.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12085006

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2008540599

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006819455

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087014216

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006819455

Country of ref document: EP