WO2007049734A1 - ポリエチレン系樹脂組成物及びそのフィルム - Google Patents

ポリエチレン系樹脂組成物及びそのフィルム Download PDF

Info

Publication number
WO2007049734A1
WO2007049734A1 PCT/JP2006/321470 JP2006321470W WO2007049734A1 WO 2007049734 A1 WO2007049734 A1 WO 2007049734A1 JP 2006321470 W JP2006321470 W JP 2006321470W WO 2007049734 A1 WO2007049734 A1 WO 2007049734A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
resin composition
density polyethylene
film
layered silicate
Prior art date
Application number
PCT/JP2006/321470
Other languages
English (en)
French (fr)
Inventor
Sachio Hotta
Ikuya Miyamoto
Yoshiaki Hamada
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to JP2007542675A priority Critical patent/JPWO2007049734A1/ja
Publication of WO2007049734A1 publication Critical patent/WO2007049734A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • the present invention relates to a polyethylene-based resin composition excellent in physical properties such as elastic modulus and a film thereof. More particularly, the present invention relates to a multilayer film having characteristics suitable for shrink packaging as a packaging material, and mainly used for food packaging.
  • Polyolefin resin represented by polyethylene, polypropylene, and the like is used in various applications such as packaging materials, automotive materials, and household appliance materials.
  • a method of mixing an inorganic filler such as talc or glass fiber has been studied. Since these inorganic fillers are aggregated in polyolefin resin on the micrometer order, it is necessary to add a large amount of inorganic filler in order to obtain a sufficient effect of improving physical properties. For this reason, there is a problem that it is not suitable for applications that require weight reduction and transparency.
  • an inorganic filler is present in a large amount and agglomerated as described above in a film with a thickness of about 10 m, which is used for food packaging, it is packaged with poor transparency. There were problems such as making it difficult to see the contents.
  • a composite material obtained by melt-kneading layered silicate organically treated with a cationic surfactant into a polar resin such as nylon has a layered silicate in the nanometer order.
  • a polar resin such as nylon
  • mechanical properties such as the elastic modulus of rosin can be improved with a relatively small addition amount.
  • this method is limited to polar resins having a high affinity for layered silicates, and cannot be applied to polyolefin resins such as polyethylene and polypropylene having poor polarity.
  • Patent Document 1 discloses a block copolymerization of a monomer (for example, styrene) whose unsaturated carboxylic acid or derivative thereof and the product of the reactivity ratio thereof are 1 or less.
  • a method of melt-kneading a graft-modified copolymer-modified polyolefin resin and a modified layered silicate is disclosed. According to this method, the filler is It is reported that the layered silicate can be uniformly dispersed in the polyolefin resin, and the obtained polyolefin composite material is excellent in elastic modulus and heat resistance.
  • Patent Document 2 discloses a nanocomposite based on a clay, a polymer matrix, and a block copolymer or graft copolymer having a layered structure and a cation exchange capacity of 30 to 250 milliequivalents per 100 grams. It is disclosed.
  • the nanocomposite material also has one or more first structural units in which the block or graft copolymer is miscible with the clay and one or more second structural unit forces that are miscible with the polymer matrix.
  • the clay can be mixed extremely uniformly into the matrix polymer, and the obtained composite material is said to have high heat resistance and mechanical strength.
  • Patent Document 3 discloses a polyolefin polymer containing a functional group having a molecular weight of 500 to 1,000,000 (component A) and an organically modified layered clay mineral (component B) hydrogen-bonded to the functional group. And a clay composite material comprising a polyolefin resin matrix (component C) in which the components A and B are dispersed.
  • This clay composite material is characterized in that the content of the functional group is not less than 0.001 mmolZg and not more than 0.45 mmolZg with respect to the component A.
  • the layered clay mineral is well dispersed in the matrix, and the mechanical properties of the matrix are remarkably improved.
  • Non-Patent Document 1 discloses a polyethylene-clay nanocomposite composition obtained by melt-kneading linear low-density polyethylene, maleic acid-modified linear low-density polyethylene, and organic montmorillonite. With regard to the composition, excellent mechanical properties, rheological properties, gas, etc. are obtained by using organic montmorillonite having a specific alkyl group chain. Assuming that transparency is obtained.
  • this nanocomposite composition when used in a film with a thickness of about 10 ⁇ m, such as a film for food packaging, the aggregates resulting from the composite material become visible and the transparency is reduced. The commercial value as a packaging film is impaired.
  • the present inventors have clarified that characteristics suitable for shrink packaging, that is, excellent heat-fusibility and low-temperature shrinkage cannot be obtained sufficiently.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-30039
  • Patent Document 2 Special Table 2001-512773
  • Patent Document 3 Japanese Patent No. 3489411
  • Non-patent literature 1 S. Hotta, D. R. Paul, Nanocomposites lormed from linear low density polyethylene and organoclays, Polymer 45 (2004) 7639-7654
  • An object of the present invention is to provide a polyethylene-based resin composition that is excellent in mechanical properties such as elastic modulus and has film and sheet characteristics such as transparency and stretchability.
  • a further object of the present invention is a polyethylene-based resin that has high strength even in a thin wall, is excellent in heat-fusibility and low-temperature shrinkability, exhibits sufficient transparency and gloss in practical use, and has excellent shrink packaging suitability. It is to provide a film.
  • the present invention is as follows.
  • T melting point
  • A modified low-density polyethylene having a polar functional group in the molecule
  • B O. 05-40% by weight
  • the organically modified layered silicate (C) is obtained by organically modifying a synthetic fluorinated mica represented by the following formula (1) with an organic cationic surfactant, (1) The polyethylene-based resin composition described in 1.
  • the melt viscosity parameter (V) represented by the formula (3) showing the relationship between the melt viscosity of the linear low density polyethylene (A) and the modified low density polyethylene (B) is 0.6 to 1.
  • V V / V (3)
  • V Melting of linear low density polyethylene (A) at a shear rate of lOOsec- 1
  • V Melt pruning of modified low density polyethylene (B) at a shear rate of lOOsec- 1
  • a polyethylene-based resinous multilayer film comprising at least one layer composed of the polyethylene-based resin composition according to any one of items (1) to (5).
  • a polyethylene resin multilayer film comprising at least one layer comprising the polyethylene resin composition according to any one of items (1) to (5) as one component.
  • the polyethylene-based resin composition according to the present invention has a very high elastic modulus improvement as compared with the polyolefin-based resin composition obtained by a conventional technique that does not impair the elongation and transparency of the polyethylene film. An effect is obtained. In addition, it has good heat fusion and shrinkage at low temperatures. Therefore, it is possible to reduce the thickness of the film and reduce the amount of filler added, which is useful not only for various films but also for saving resources.
  • the linear low density polyethylene (A) in the present invention includes ethylene homopolymer, ethylene and propylene, butene-1, 1, pentene 1, 4-methyl-pentene 1, hexene-1, otaten-1, etc.
  • Examples include copolymers with at least one kind of monomer selected from 3 to 18 (X-olefins are also selected.
  • Multi-site catalysts and single-site catalysts may be polymerized with different catalysts. , But polymerized with a single site catalyst Is preferred because it is more transparent.
  • the linear low-density polyethylene (A) of the present invention has a melting point (T) of 110 ° C or less by differential scanning calorimetry (DSC).
  • the melting point (T) described here refers to the following three step force melting crystallization-melting profile measurement using a differential scanning calorimeter Diamond DSC (trade name) manufactured by PerkinElmer Ichi Japan Co., Ltd.
  • the peak temperature of the secondary melting curve in Step 3 was defined as the melting point (T). When two or more melting peaks were observed, the lowest peak temperature having 20% or more of the total heat of fusion was defined as the melting point (T).
  • Step 1 Hold at 30 ° C for 1 minute ⁇ Increase to 200 ° C in 10 ° CZ minutes (primary melting)
  • Step 2 Hold at 200 ° C for 1 minute ⁇ Decrease to 30 ° C in 10 ° CZ minutes (Crystal)
  • Step 3 Hold at 30 ° C for 1 minute ⁇ Increase to 200 ° C in 10 ° CZ minutes (secondary melting)
  • the melting point (T) is 110 ° C or less, excellent heat-fusibility and low-temperature shrinkage necessary for films, particularly shrink packaging films, can be obtained. In other words, if the heat seal temperature is increased or shifted to the low temperature side, sealing and shrinking can be performed in a short time, and high-speed automatic continuous packaging can be handled. In order to obtain a tighter and more beautiful package while supporting high-speed continuous packaging, it is more preferable that the melting point (T) is 107 ° C or less, which is 100 ° C or less. Is more preferable. These melting points are affected by the molecular weight of the polymer main chain, the molecular weight and degree of branching of the side chains, and the molecular weight distribution.
  • the modified low-density polyethylene (B) having a polar functional group in the molecule in the present invention is a product in which a polar functional group is introduced into its side chain or main chain by modification of low-density polyethylene resin.
  • the polar functional group include a carboxylic acid group, an acid anhydride group, a hydroxyl group, a thiol group, a nitro group, an amide group, and an imide group.
  • Modified low density polyethylene There are a polymerization type that is modified after polymerization, or a method of modification when decomposing high molecular weight polyethylene resin. Above all, the polymerization type is preferred.
  • the content of the polar functional group contained in the modified low density polyethylene (B) is 0.05 to 0.25 mmol / g with respect to the modified polyethylene! /. More preferably, it is the range of 0.08-0.2 mmolZg.
  • the polar functional group content is 0.05 mmolZg or more, intercalation of the organically modified layered silicate, that is, an inter force rate is likely to occur. Therefore, it is preferable because mechanical properties such as elastic modulus of the obtained polyethylene-based resin composition are improved.
  • the amount of the polar functional group is 0.25 mmol Zg or less, the inter force rate is sufficiently generated and the compatibility with the low density polyethylene (A) as a matrix is high. For this reason, the dispersion of the organically modified layered silicate in the entire polyethylene-based resin composition is favorable, and aggregates are generated, so that the transparency of the film is improved.
  • the modified low density polyethylene (B) that can be used in the present invention is not limited as long as it satisfies the above requirements. From the viewpoint of compatibility with the linear low density polyethylene resin (A), a modified linear low density polyethylene is preferred.
  • modified low-density polyethylene (B) include, for example, Mitsui Chemicals, trade name, Admer LB548, modified low-density polyethylene such as LF128, Mitsui's DuPont Polychemical, trade name, Fusabond E MB226D, MB528D, MX110D, Mitsui Chemicals, trade name, Admer NB508, NF518, NF548, Crompton, trade name, Polybond 3109 modified linear low density polyethylene.
  • Fusabond E MB226D and MB528D are preferred. This is because the amount of the polar functional group is in a particularly suitable range, and the physical properties of the polyethylene resin composition that can be obtained immediately after the occurrence of an inter force rate to the organically modified layered silicate are further improved.
  • the layered silicate used to obtain the organically modified layered silicate (C) in the present invention includes, for example, smectite clay minerals such as montmorillonite, sabonite, hectorite, piderite, stevensite, nontronite, bar Examples include miquilite and swelling my strength.
  • smectite clay minerals such as montmorillonite, sabonite, hectorite, piderite, stevensite, nontronite, bar
  • miquilite and swelling my strength examples include miquilite and swelling my strength.
  • These layered silicates may be refined natural products or synthetic products synthesized by known methods such as hydrothermal method! / ⁇ .
  • montmorillonite and swelling mica are highly effective in improving physical properties.
  • the synthetic fluorinated mica having a large aspect ratio is a composition of the present invention.
  • a higher elastic modulus improvement effect can be obtained by orienting by secondary (molding) processing such as injection molding and film stretching after being uniformly dispersed therein. Furthermore, re-aggregation of organic layered silicate during secondary processing is easy to suppress, that is, it is easy to suppress the formation of aggregates even in thin film packaging films! / I like it.
  • montmorillonite examples include SouthernClay, trade name, Cloisite Na, Kunimine Industries, trade name, Kunipia RG, and examples of synthetic fluorinated mica include trade name, Somasif ME100, etc. Can be mentioned.
  • These layered silicates have a continuous layer structure, and cations such as sodium ions, potassium ions, and lithium ions exist between the layers, and are hydrophilic. For this reason, polar solvents such as water and alcohol penetrate into the layers and swell, and partly peels and disperses. Swelling refers to a state in which the distance between layers is expanded by interposing a third substance between layers. Further, the peeling dispersion refers to a state where the layers are separated from each other by further swelling, and the layered structure collapses and is finely dispersed.
  • the layered silicate preferably has a cation exchange capacity (CEC) of 50 to 150 meq ZlOOg.
  • CEC cation exchange capacity
  • the interlayer of the layered silicate can be greatly swollen.
  • the amount is less than 50 milliequivalents ZlOOg, cation exchange with the cationic surfactant is not sufficiently performed, and it may be difficult to swell the layers of the layered silicate. If it exceeds 150 milliequivalents ZlOOg, the bonding between the layers of the layered silicate becomes strong and may be difficult to swell.
  • the cationic surfactant used to obtain the organically modified layered silicate (C) refers to a salt formed by a coordinate bond between an organic component and a Lewis base.
  • quaternary ammonium salt is an organic amine compound that generates a cation when dissolved in an acidic polar solvent, and has a structure represented by the following chemical formula (4).
  • R, R, R, R are each independently hydrogen, methinole, ethinore, pro
  • Saturated or unsaturated hydrocarbon chain represented by pill, lauryl, oleyl, stearyl and the like.
  • the hydrocarbon chain may be straight or have a branched structure.
  • the hydrocarbon chain may be derived from natural products such as beef tallow and coconut oil.
  • the affinity between the organically modified layered silicate (C) and the linear low-density polyethylene (A) is insufficient, and a sufficient physical property improving effect is obtained. It may not be obtained.
  • it is an anion and is not particularly limited, it mainly corresponds to a halide ion such as a salt ion or a bromide ion.
  • cationic surfactants include, for example, quaternary ammonium salts such as dimethyl distearyl ammonium bromide (or chloride), octadecyltrimethyl ammonium bromide (or cupride), and octa And amines such as decyltrimethylamine.
  • the organically modified layered silicate (C) in the present invention is obtained by treating the layered silicate with a cationic surfactant and exchanging it with a cation existing between the layers and a cation of the cationic surfactant.
  • the presence of organic cations between layers improves the affinity with organic solvents and organic substances. That is, while the layered silicate is swollen by a polar solvent such as water, the organically modified layered silicate has a property of swelling when an organic substance is taken in between the layers.
  • Organized layered silicates are easy to peel and disperse in organic materials such as thermoplastic resin because of such properties.
  • the interlayer distance hO of the organically modified layered silicate (C) may be set to 19 to 35A. preferable. More preferably, it is 24-35A, most preferably 30-35A.
  • the value of hO can be controlled by the combination of the cationic surfactant hydrocarbon chain described above and the cation exchange amount (CEC) of the layered silicate.
  • this Somasif MAE (trade name) has a higher elastic modulus improving effect due to orientation by secondary (molding) processing after being uniformly dispersed in the composition of the present invention having a large aspect ratio. Further, since reaggregation of the organically modified layered silicate at the time of secondary processing is easily suppressed, it is particularly preferably used in the present invention.
  • the proportion of each component in the polyethylene-based resin composition of the present invention is such that the linear low-density polyethylene (A) having a melting point (T) of 110 ° C or lower by differential scanning calorimetry (DSC) is 20%. ⁇ 99.85 wt%, modified low density polyethylene (B) with polar functional group in the molecule is 0.05 to 40 wt%, layered silicate modified with cationic surfactant (organized layered silicate ( C) is 0.1 to 40 weight 0/0.
  • the linear low density polyethylene (A) is 30 to 99.77.
  • the modified low density polyethylene (B) is 0.075 to 35% by weight
  • the organically modified layered silicate (C) is 0.15 to 35% by weight. More preferably, the linear low density polyethylene (A) is 40 to 99.7% by weight, the modified low density polyethylene (B) is 0.1 to 30% by weight, and the organically modified layered silicate (C) is 0%. 2 to 30% by weight.
  • the ratio of the organically modified layered silicate (C) is less than 0.1% by weight, the physical properties such as the elastic modulus of the polyethylene-based resin composition cannot be improved. On the other hand, if it exceeds 40% by weight, the melt viscosity of the polyethylene-based resin composition becomes too high, and the moldability may be impaired.
  • the ratio of the modified low-density polyethylene (B) having a polar functional group in the molecule is preferably 0.5 times or more by weight with respect to the organically modified layered silicate (C). When the ratio is 0.5 times or more, the modified low density polyethylene force S inter force is easily generated between the layers of the organically modified layered silicate. As a result, the interface between the layered silicate and the low-density polyethylene becomes larger, and the effect of reinforcing the layered silicate strength S-polyethylene resin increases.
  • the linear low density polyethylene (A), the modified low density polyethylene (B), and the organically modified layered silicate (C) may be mixed and dispersed with a melt kneader.
  • melt kneader examples include kneaders such as Banbury mixers and roll mixers, and twin-screw extruders (screw rotational speeds are in the same direction and different directions).
  • the order of mixing may be simultaneous mixing of linear low density polyethylene (A), modified low density polyethylene (B) having a polar functional group in the molecule, and organically modified layered silicate (C). You may mix in the order of.
  • the modified low-density polyethylene (B) and the organically modified layered silicate (C) are mixed and kneaded for about 5 to 10 minutes, and then the linear low-density polyethylene (A) is added. And further mixing for about 5 to 10 minutes; or, the modified low density polyethylene (B) and the organically modified layered silicate (C) are melt-kneaded into a master batch in advance, and then the linear low density polyethylene (A)
  • a mixing method in which the mixture is kneaded and then melt-kneaded is preferable.
  • a mixture of linear low-density polyethylene (A), modified low-density polyethylene (B), and organically modified layered silicate (C) previously mixed in a single-screw extruder in a dry state is put into a hopper. And then melt-kneading (top feed method). Kneading with a twin-screw extruder, which can enhance dispersibility by efficiently applying cutting stress during kneading, is more preferable. When a twin screw extruder is used, the same top feed method as that of a single screw extruder can be used.
  • the organic layered silicate is supplied from the side feeder provided in the middle of the extruder.
  • a method of adding (C) and further melt-kneading (side feed method) can also be employed. By such a method, it is possible to obtain a high mechanical property improving effect such as an elastic modulus by minimizing breakage due to shear stress of the organically modified layered silicate.
  • the value of the melt viscosity parameter (V) indicating the relationship between the melt shear viscosity of the linear low density polyethylene (A) and the melt shear viscosity of the modified low density polyethylene (B) is: A range force of 0.3 to 1.3 is preferable, and a range of 0.6 to 1.2 is more preferable.
  • the melt viscosity parameter (V) described here is calculated as follows. Toyo Seiki Co., Ltd. Capillograph 1C (trade name) with a 10 mm length and 1. Omm nozzle diameter attached to the barrel tip, barrel temperature set to 190 ° C, linear low density polyethylene
  • the pellet of (A) or modified low density polyethylene (B) is divided into several times and filled in the barrel with sufficient air to melt.
  • the piston speed is increased from 0.5, 1, 2, 5, 10, 20, 50, lOOmmZmin in stages and the shear rate is changed to extrude from the first, and the apparent melt shear viscosity at each shear rate is calculated. To do. From the obtained melt shear viscosity curve, the apparent melt shear viscosity V of the linear low density polyethylene (A) at a shear rate of lOOsec- 1 and the apparent melt pruning of the modified low density polyethylene (B).
  • V V / V (3)
  • melt viscosity parameter (V) is 0.3 to 1.3, linear low density polyethylene
  • modified low density polyethylene (B) have sufficient compatibility, and modified low density polyethylene
  • the organically modified layered silicate having an affinity for the modified low density polyethylene (B) that is well dispersed (B) also aggregates.
  • the physical properties of the molded product are uniform, and even in the case of a food packaging film having a thickness of about 10 micrometers, aggregates are not easily seen and the commercial value is not impaired.
  • the melt viscosity parameter 1 is within the preferred range of the present invention by selecting each resin so that the melt shear viscosity values of the linear low density polyethylene (A) and the modified low density polyethylene (B) are close to each other. It is possible to fit.
  • the polyethylene-based resin composition in the present invention includes an antioxidant, an ultraviolet absorber, and the like, which are usually used in the art, in an amount that does not adversely affect the desired physical properties of the resin composition.
  • Various additives such as a heat stabilizer, a light stabilizer, a flame retardant, a plasticizer, a nucleating agent, a colorant, a lubricant, and a surface brightness improving agent can be added.
  • the polyethylene-based resinous yarn composition according to the present invention is formed by extrusion molding such as water-cooled or air-cooled inflation molding, simultaneous biaxial stretching, sequential biaxial stretching, T-die extrusion molding, and extrusion lamination molding. It can be formed into a film or sheet. In addition, it can also be used for molded products by injection molding, blow molding, etc., bead foam molded products by in-mold foaming, and extrusion foam molded products using chemical foaming agents or physical foaming agents.
  • the resin composition is oriented in the above-described molding process to form a resin composition. It is preferable to arrange the organically modified layered silicate in the product. In particular, when stretching is performed in film forming, the degree of orientation of the organically modified layered silicate is increased, and the resulting molded article is further increased in elastic modulus. Also, in injection molding, if the resin composition is filled into the mold as slowly as possible to prevent clogging in the mold and mold, the resin composition is cooled and fixed at the contact surface with the mold.
  • the melting point (T) by differential scanning calorimetry (DSC) of the polyethylene-based resin composition in the present invention is 110 ° C or less.
  • the tensile modulus is preferably 150 MPa or more.
  • the bow I tension elastic modulus described here is an autograph AG5000D (trade name) manufactured by Shimadzu Corporation, and a dumbbell specimen (JIS K7113 type 2) made of polyethylene-based resin composition at a test speed of 5 mmZmin. Calculate from the initial slope (less than 1% strain rate) of the stress-strain curve obtained by pulling.
  • the external ratio (LZD) as obtained by organically modifying the synthetic fluorinated mica suitably used in the present invention with an organic cationic surfactant By using a large organic layered silicate; side feeding the organic layered silicate promotes exfoliation of the organic layered silicate while minimizing the decrease in L due to shear fracture. This can be achieved by increasing dispersibility and increasing LZD as much as possible.
  • the polyethylene-based resin composition satisfying the above requirements of the present invention is formed into a film, the polyethylene-based resin composition has excellent heat-fusibility, low-temperature shrinkage and rigidity.
  • the polyethylene-based resin film in the present invention is a single-layer film comprising the polyethylene-based resin composition of the present invention; the polyethylene-based resin of the present invention forms a single layer, and at least the layer A multilayer film including one or more layers; the polyethylene-based resin composition of the present invention constitutes one component of the layer, and is at least one of the multilayer films including one or more layers.
  • the polyolefin resin film in the present invention is subjected to orientation as described above to further enhance the effect of improving the elastic modulus and the like, in order to further improve the elastic modulus and the like, roll stretching method, tenter stretching method, bubble inflation method (double bubble method is used). It is preferable to stretch the film by, for example).
  • the method of forming a film by the simultaneous biaxial stretching method is preferred from the viewpoint of stretchability and other rationality. Further, the stretching is preferably performed at least in one direction at an area stretching ratio of 3 to 50 times, more preferably 4 to 40 times, and is appropriately selected depending on the application.
  • At least one layer of the film of the present invention may be crosslinked.
  • This cross-linking treatment is performed before and after the stretched film is irradiated with an electron beam (for example, having an energy of 50 to: LOOOkV), ultraviolet rays, X-rays, ⁇ -rays, ⁇ -rays, and single-sided or double-sided irradiation.
  • a method force S-clean by an electron beam for example, 50 to: a predetermined depth of transmission is controlled with an energy of LOOOkV
  • Cross-linking treatment can improve heat-fusibility, heat resistance, stretched film stability (inhibition of necking, uniformity of thickness, improvement of stretch ratio, expansion of stretch temperature condition range, etc.) Used accordingly.
  • Examples of preferred configurations of the multi-layer stretched film of the present invention for example, both surface layers which also ethylene-vinyl acetate copolymer Physical
  • the thickness ratio of each layer to the total layer is 10 to 60 by weight 0/0
  • the polyethylene resin composition of the present invention and ethylene-vinyl acetate copolymer both intermediate layers having 15-80% by weight, polypropylene and polypropylene Z polybutene 1 copolymer having 10-60% by weight core force
  • a multilayer stretched film composed of 3 types and 5 layers surface layer—intermediate layer—core layer—intermediate layer—surface layer).
  • the polyethylene-based resin composition of the present invention constituting the intermediate layer of this multilayer stretched film is, for example, linear low-density polyethylene 20 to 99.85% by weight, maleic acid-modified linear polyethylene 0.05 to 40 weight 0/0, can be adjusted by the ratio of the organically modified layered silicate from 0.1 to 40 weight 0/0.
  • the proportion of the polyethylene-based resin composition of the present invention in the intermediate layer is preferably 10 to 50% by weight! /.
  • An example of a suitable composition of the crosslinked multilayer stretched film in the present invention is, for example, as a thickness ratio of each layer occupying the entire layer, both surface layers comprising low density polyethylene and linear low density polyethylene force are 5 to 40 weights.
  • a cross-linked multi-layer stretched film composed of 2 to 3 layers (surface layer, core layer, surface layer) of 60 to 95% by weight of the core layer made of the polyethylene-based resinous yarn and composition of the present invention; or low density Both surface layers that also have polyethylene and linear low density polyethylene strength are 5 to 40% by weight, both intermediate layers that also have polyethylene resin composition strength of the present invention are 20 to 50% by weight, low density polyethylene and linear low density
  • the thickness of the film in the present invention is preferably 100 / zm or less in order to obtain a high improvement effect such as elastic modulus while maintaining high transparency and excellent heat-fusibility and low-temperature shrinkage. More preferably, it is 20 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the measurement, calculation, and evaluation methods for indicators and physical properties used in the present invention are as follows.
  • Step 1 Hold at 30 ° C for 1 minute ⁇ Increase to 200 ° C in 10 ° CZ minutes (primary melting)
  • Step 2 Hold at 200 ° C for 1 minute ⁇ Decrease to 30 ° C in 10 ° CZ minutes (Crystal)
  • Step 3 Hold at 30 ° C for 1 minute ⁇ Increase to 200 ° C in 10 ° CZ minutes (secondary melting)
  • a capillary with a length of 10 mm and a nozzle diameter of 1. Omm was attached to the barrel tip of Capillograph 1C (trade name) manufactured by Toyo Seiki Seisakusho, and the barrel temperature was set to 190 ° C.
  • the pellets of linear low density polyethylene (A) or modified low density polyethylene (B) were divided into several times and filled in a barrel while being sufficiently deflated.
  • the piston speed was increased stepwise to 0.5, 1, 2, 5, 10, 20, 50, lOOmmZmin and the shear rate was varied to extrude from the first, and the apparent melt shear viscosity at each shear rate was calculated. From the obtained melt shear viscosity curve, the apparent low melt polyethylene viscosity (V) of linear low density polyethylene (A) at a shear rate of lOOsec— 1, V, modified low density polyethylene (B)
  • the tensile break elongation (%) was calculated from the breaking point when the dumbbell specimen having the same tensile modulus as above was used and pulled at a test speed of 50 mmZmin.
  • a single cast film (thickness: about 100 ⁇ m) of a polyethylene-based resin composition was produced with a single screw extruder equipped with a T die, and the obtained film was visually evaluated as follows.
  • Tensile modulus M (MP of multi-layer stretched film using only linear low density polyethylene resin (A) used in polyethylene resin composition instead of ethylene resin composition a) was measured. Value obtained by dividing M by M
  • the film was fixed with double-sided tape on the edge of a wooden frame with an outer dimension of 180mm X 180mm so that there was no slack.
  • the film was shrunk by passing through a hot air tunnel at 90 ° C for 3 seconds, and left at room temperature (about 23 ° C) for about 3 minutes. Thereafter, the center of the film was pulled out about 10 mm vertically with a metal rod having a diameter of 15 mm and a hemispherical tip.
  • the surface of the film was observed and evaluated according to the following criteria.
  • Elastic modulus improvement effect, elasticity, transparency, heat fusion, Z low temperature shrinkage, all are ⁇ , and can be suitably used as a packaging film
  • All are ⁇ or ⁇ , for packaging Practical level as a film
  • a twin screw extruder Nehon Steel Works Co., Ltd. ⁇ 30 ⁇ (trade name)
  • KLOCKNER F85 (trade name) injection molding machine at 190 ° C, injection pressure 127. IMPa, holding pressure 101.2MPa, holding time 4 seconds, cooling time 30 seconds.
  • Table 1 shows the melting point of this polyethylene-based resin composition and the evaluation results of tensile properties using the test piece.
  • Table 1 shows the melting point of the obtained polyethylene-based resin composition and the evaluation results of the tensile properties using the test piece.
  • a pellet of a polyethylene-based resin composition and a test piece were obtained under the same conditions as in Example 5 except that the organic layered silicate was side-fed.
  • Table 1 shows the melting point of the obtained polyethylene-based resin composition and the evaluation results of the tensile properties using the test piece.
  • pellets of a polyethylene-based resin composition and test pieces were obtained under the same conditions as in Example 3.
  • Table 1 shows the melting point of the obtained polyethylene-based resin composition and the evaluation results of tensile properties using the test piece.
  • polyethylene resin composition pellets and test pieces were obtained. Table 1 shows the melting point of the obtained polyethylene-based resin composition and the evaluation results of the tensile properties using the test piece.
  • the pellets and test pieces of polyethylene-based resin composition were obtained in Table 1.
  • Table 1 shows the melting points of the obtained polyethylene-based resin compositions and the evaluation results of tensile properties using the test pieces.
  • Example 3 Same as Example 3 except that Metaguchisen linear low density polyethylene ("Sumikasen E FV101" (trade name), melting point 107 ° C, manufactured by Sumitomo Chemical Co., Ltd.) was used as the linear low density polyethylene. Under the conditions, a polyethylene-based resin composition pellet and a test piece were obtained. Table 1 shows the melting point of the obtained polyethylene-based resin composition and the evaluation results of tensile properties using test pieces.
  • Metaguchisen linear low density polyethylene (“Sumikasen E FV101" (trade name), melting point 107 ° C, manufactured by Sumitomo Chemical Co., Ltd.) was used as the linear low density polyethylene.
  • a polyethylene-based resin composition pellet and a test piece were obtained. Table 1 shows the melting point of the obtained polyethylene-based resin composition and the evaluation results of tensile properties using test pieces.
  • Example 3 The same conditions as in Example 3 were used except that Metaguchisen linear low density polyethylene ("Sumikasen E FV201" (trade name), melting point 10 by Sumitomo Chemical Co., Ltd.) was used as the linear low density polyethylene.
  • Metaguchisen linear low density polyethylene (“Sumikasen E FV201” (trade name), melting point 10 by Sumitomo Chemical Co., Ltd.) was used as the linear low density polyethylene.
  • Polyethylene-based resin composition pellets and test pieces were obtained, and the melting points of the obtained polyethylene-based resin compositions and the results of evaluation of tensile properties using the test pieces are shown in Table 1.
  • Example 1 A test piece of an injection-molded product of Metaguchisen linear low density polyethylene (“Evolue SP05 40” (trade name), melting point 88 ° C., manufactured by Prime Polymer Co., Ltd.) was obtained under the same conditions as in Example 1.
  • Table 1 shows the evaluation results of the tensile properties using the obtained specimens.
  • a test piece of an injection-molded product of Metaguchisen linear low density polyethylene ("Umeru 15 20F" (trade name), melting point 98 ° C, manufactured by Ube Maruzen Polyethylene Co., Ltd.) was obtained under the same conditions as in Example 1. .
  • Table 1 shows the evaluation results of the tensile properties using the obtained test pieces.
  • a test piece of meta-molded linear low density polyethylene (“Sumikasen E FV101" (trade name), melting point 107 ° C, manufactured by Sumitomo Chemical Co., Ltd.) was obtained under the same conditions as in Example 1. It was. Table 1 shows the evaluation results of tensile properties using the obtained specimens.
  • a test piece of an injection-molded product having a meta-guchisen linear low-density polyethylene (“SUMICACEN E FV201” (trade name) manufactured by Sumitomo Chemical Co., Ltd.) and a melting point of 10 was obtained under the same conditions as in Example 1.
  • Table 1 shows the evaluation results of tensile properties using the test pieces.
  • the polyethylene-based resin composition of the present invention is very high without substantially changing the melting point of the linear low-density polyethylene (A) used and without greatly reducing the elongation.
  • the effect of improving the tensile modulus is obtained.
  • Table 2 shows the aggregate evaluation results of the film obtained.
  • Example 10 modified with linear low density polyethylene
  • V 0. 6
  • Table 2 shows the results of evaluating the aggregates of the film.
  • the polyethylene-based resin composition of the present invention can suppress the generation of aggregates when formed into a film, and good transparency can be obtained.
  • the obtained unstretched tube was sent to a stretched portion and heated by hot air heating using an infrared heater.
  • the zone was stretched in the longitudinal direction, and the stretch ratio was adjusted by the speed ratio between the heated pinch roller and the winder. While cooling with an air cooling ring, air was injected to form bubbles and stretched at 55 ° C. Then, a slight heat set was performed at 50 ° C as a foldable double film in the deflator section, and the film was wound off by a winder.
  • the draw ratio in the transverse direction was adjusted by the width of the film and the width of the parison at this time. As for the draw ratio, the extrusion rate was adjusted so as to obtain a predetermined thickness using the ratio at which the bubble was most stable.
  • Table 3 shows the results of evaluating the tensile modulus improvement effect, transparency, heat-fusibility, and low-temperature shrinkage properties of the obtained film.
  • the multilayer stretched film using the polyethylene-based resin composition of the present invention has a high tensile elastic modulus improvement effect, transparency, excellent heat-fusibility, and low-temperature shrinkage. It is a film.
  • the resulting unstretched tube having a thickness of about 560 ⁇ m was subjected to crosslinking treatment by irradiating with an electron beam of 500 kV accelerated by 85 kGy.
  • an electron beam of 500 kV accelerated by 85 kGy 500 kV accelerated by 85 kGy.
  • the unstretched tube was heated to 140 ° C by radiant heating with an infrastructure heater, inject air into the tube about 8-9 times in the flow direction by the speed ratio between the two sets of rolls.
  • the film was stretched about 6 to 7 times in the width direction (perpendicular to the machine flow direction), and cooled by applying cold air to the part with the largest bubble diameter from the air ring.
  • Table 4 shows the results of evaluation of the tensile modulus improvement effect, transparency, heat-fusibility, and low-temperature shrinkage of the obtained film.
  • the cross-linked multilayer stretched film using the polyethylene-based resin composition of the present invention has a high tensile elastic modulus improving effect, and can maintain sufficient firmness even when it is thinned. It is a film that combines transparency, excellent heat-fusibility, and low-temperature shrinkage.
  • the polyethylene-based resin composition of the present invention has excellent mechanical properties, transparency, stretch processability, heat-fusibility, and low-temperature shrinkage, and is suitable as a shrink wrapping film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 本発明によれば、示差走査熱量測定(DSC)による融点(Tm)が110°C以下である直鎖状低密度ポリエチレン(A)20~99.85重量%;極性官能基を分子内に有する変性低密度ポリエチレン(B)0.05~40重量%;及び、層状珪酸塩をカチオン系界面活性剤により修飾した有機化層状珪酸塩(C)0.1~40重量%を含む、ポリエチレン系樹脂組成物が提供される。

Description

明 細 書
ポリエチレン系樹脂組成物及びそのフィルム 技術分野
[0001] 本発明は、弾性率等の物性に優れたポリエチレン系榭脂組成物並びにそのフィル ムに関する。更に詳しくは、包装材料としてシュリンク包装に適した特性を有しており 、主として食品包装の用途に使用される多層フィルムに関する。
背景技術
[0002] ポリエチレン、ポリプロピレンなどに代表されるポリオレフイン系榭脂は、包装用資材 、 自動車用材料、家電製品材料など、様々な用途に用いられている。これらポリオレ フィン系榭脂の機械物性を改良するため、タルクやガラス繊維のような無機フィラーを 混合する方法が従来から検討されてきた。しカゝしこれらの無機フイラ一はポリオレフィ ン系榭脂中にマイクロメートルオーダーで凝集しているため、十分な物性改良効果を 得るために、多量の無機フィラーの添加が必要となる。そのため、軽量化や透明性を 必要とされる用途には不向きであるという問題があった。特に食品包装用に供される ような厚みが 10 m程度のフィルム中に、上記のように多量かつ凝集した状態で無 機フイラ一が存在した場合、透明性が悪ィ匕して包装される内容物の視認が困難にな るなどの問題があった。
[0003] 一方、カチオン性界面活性剤で有機化処理した層状珪酸塩をナイロンのような極 性榭脂に溶融混練して得られる複合材料は、層状珪酸塩が榭脂中にナノメートルォ ーダ一で分散している。そのために、比較的少ない添加量で榭脂の弾性率等の機 械物性を改良できることが報告されている。しかし、この方法は層状珪酸塩と親和性 の高い極性樹脂に限られており、極性の乏しいポリエチレン、ポリプロピレン等のポリ ォレフィン系榭脂には適用できない。
[0004] この問題を解決するために、特許文献 1には、不飽和カルボン酸またはその誘導体 とそれらとの反応性比の積が 1以下となる単量体 (例えばスチレンなど)をブロック共 重合またはグラフト共重合させた共重合変性ポリオレフイン樹脂と、変性処理した層 状珪酸塩とを溶融混練する方法が開示されている。この方法〖こよると、フィラーである 層状珪酸塩をポリオレフイン榭脂中に均一分散させることができ、得られたポリオレフ イン複合材料は、弾性率、耐熱性に優れることが報告されている。しカゝしこの方法で は、不飽和カルボン酸またはその誘導体とスチレンなどの単量体との 2種類をブロッ ク共重合またはグラフト共重合させなければ効果が発現しない。そのため、製造工程 が煩雑であるという問題点があった。さらには変性ポリオレフイン中の変性度が高い ため、疎水性などの本来のポリオレフインの特性が失われるという問題があった。
[0005] 一方、特許文献 2には、層状構造と 100グラム当たり 30〜250ミリ当量の陽イオン 交換容量を持つ粘土、ポリマーマトリックス、およびブロック共重合体またはグラフト共 重合体に基づくナノ複合材料が開示されている。このナノ複合材料は、ブロック共重 合体またはグラフト共重合体が粘土と混和する 1以上の第一構造単位と、ポリマーマ トリックスと混和する 1以上の第二構造単位力もなる。この方法によれば、粘土はマトリ ックスポリマー中に極めて均一に混合でき、得られた複合材料は高い耐熱性や機械 強度を有するとされている。
[0006] また、特許文献 3には、官能基を含有する分子量 500〜1, 000, 000のポリオレフ イン系重合体 (A成分)とその官能基に水素結合した有機化層状粘土鉱物 (B成分)と 、前記 A成分と B成分を分散させたポリオレフイン樹脂のマトリクス (C成分)よりなる粘 土複合材料が開示されている。この粘土複合材料は、前記官能基の含有量が前記 A成分に対して 0. OOlmmolZg以上で、かつ 0. 45mmolZg以下であることを特徴 とする。この複合材料においては、マトリクス中に層状粘土鉱物が良好に分散し、マト リクスの機械的性質が顕著に改善されるとして 、る。
[0007] しかし、これらの方法はポリスチレンやポリプロピレンには適用できる力 低密度ポリ エチレンや直鎖状低密度ポリエチレンなどのポリエチレン系榭脂においては、機械 物性の改良効果が十分でない。さらには、これらポリエチレン系榭脂が本来有する良 好な延伸性等が損なわれるという問題があった。
[0008] 非特許文献 1には直鎖状低密度ポリエチレン、マレイン酸変性直鎖状低密度ポリエ チレン、有機化モンモリロナイトを溶融混練して得られるポリエチレン一クレイナノコン ポジット組成物が開示されている。当該組成物については、特定のアルキル基鎖を 有する有機化モンモリロナイトを用いることで優れた機械特性、レオロジー特性、ガス 透過性が得られるとして 、る。
しかしこのナノコンポジット組成物を食品包装用フィルムのような厚みが 10 μ m程度 のフィルムに用いた場合は、複合材料に起因する凝集物が視認されるようになって 透明性が低下し、食品包装用フィルムとしての商品価値が損なわれる。また、シュリン ク包装に適した特性、すなわち優れた熱融着性や低温収縮性を充分に得られな ヽこ とが、本発明者らの研究により明らかになつている。
[0009] 以上の如ぐ高い機械物性を有しながらもポリエチレンが本来有する良好な延伸性 や透明性を損なうことがなぐ特にフィルム包装に要求される優れた熱融着性、低温 収縮性を兼ね備えた組成物は得られていない。また近年、省資源という観点からは 成形品の薄肉化、すなわち高強度化の要求が高まり、フィルム自動包装機に代表さ れる著 ヽ高速化対応と!/ヽぅ点で、良好な熱融着性や低温収縮性が必須となってき ている。これらの要求を総合的に満足する組成物、フィルムが強く望まれている。
[0010] 特許文献 1 :特開平 10— 30039号公報
特許文献 2:特表 2001— 512773号公報
特許文献 3:特許 3489411号公報
非特干文献 1 : S. Hotta, D. R. Paul、 Nanocomposites lormed from linear low density polyethylene and organoclays、 Polymer 45 (2004) 7639 - 7654
発明の開示
発明が解決しょうとする課題
[0011] 本発明の目的は、弾性率等の機械物性に優れ、かつ透明性や延伸加工性等のフ イルム、シート特性を備えたポリエチレン系榭脂組成物を提供することである。本発明 の更なる目的は、薄肉でも高強度を有し、熱融着性や低温収縮性に優れ、実用上十 分な透明性や光沢を発揮し、シュリンク包装適性が良好なポリエチレン系榭脂フィル ムを提供することである。
課題を解決するための手段
[0012] 本発明者等は、上記課題を解決するために鋭意研究を重ねた。その結果、低融点 の直鎖状低密度ポリエチレン、特定の条件を満たす変性低密度ポリエチレン及び有 機化層状珪酸塩を組み合わせることにより、層状珪酸塩が均一に分散したポリエチレ ン系榭脂組成物が得られること、またそのポリエチレン系榭脂組成物は本来ポリェチ レンが持つ透明性や延伸加工性を損なうことなぐ機械物性、特に弾性率が格段に 向上し、優れたシュリンク包装用フィルム特性を有することを見出し、本発明を完成さ せるに至った。
すなわち、本発明は以下のとおりである。
(1) .示差走査熱量測定による融点 (T )が 110°C以下である直鎖状低密度ポリェチ レン (A) 20〜99. 85重量%;極性官能基を分子内に有する変性低密度ポリエチレ ン (B) O. 05〜40重量%;及び、層状珪酸塩をカチオン系界面活性剤により修飾し た有機化層状珪酸塩 (C) O. 1〜40重量%を含む、ポリエチレン系榭脂組成物。
(2) .有機化層状珪酸塩 (C)が下記式 (1)で表される合成フッ素化雲母を有機カチ オン系界面活性剤で有機修飾して得られたものである、 (1)項に記載のポリエチレン 系榭脂組成物。
NaMg Si O (F OH ) (0. 8≤ a≤1. 0) (1)
2. 5 4 10 a (1 - a ) 2
(3) .有機化層状珪酸塩 (C)の X線回折測定をした際、 2 0 =0〜10° の範囲にお ける回折パターンのメインピークが示す 2 Θの値から、式(2)を用いて算出する層間 距離 hOが 19〜35Aである、(1)項または(2)項に記載のポリエチレン系榭脂組成物 hO(A) = l. 54(A) /2sin 0 (2)
(4) .前記直鎖状低密度ポリエチレン (A)と変性低密度ポリエチレン (B)の溶融剪断 粘度の関係を示す式(3)で表される溶融粘度パラメーター (V)が 0. 6〜1. 3である、 (1)項〜(3)項のいずれか 1項に記載のポリエチレン系榭脂組成物。
V=V /V (3)
LDPE LDPEm
V :剪断速度が lOOsec—1における直鎖状低密度ポリエチレン (A)の溶融
LDPE
剪断粘度
V :剪断速度が lOOsec—1における変性低密度ポリエチレン (B)の溶融剪
LDPEm
断粘度
(5) .示差走査熱量測定による融点 (T )が 110°C以下であり、引張弾性率が 150M Pa以上である、(1)項〜(4)項のいずれか 1項に記載のポリエチレン系榭脂組成物。
(6) .直鎖状低密度ポリエチレン (A)、変性低密度ポリエチレン (B)、有機化層状珪 酸塩 (C)を二軸押出機で溶融混練するに際し、有機化層状珪酸塩 (C)をサイドフィ ード法により添加することを含む、(1)項〜(5)項のいずれか 1項に記載のポリエチレ ン系榭脂組成物の製造方法。
(7) . (1)項〜(5)項のいずれか 1項に記載のポリエチレン系榭脂組成物力もなるポリ エチレン系榭脂単層フィルム。
(8) . (1)項〜(5)項のいずれか 1項に記載のポリエチレン系榭脂組成物により単一 で構成された層を 1層以上含むポリエチレン系榭脂多層フィルム。
(9) . (1)項〜(5)項のいずれか 1項に記載のポリエチレン系榭脂組成物を 1成分と して含む層を 1層以上含むポリエチレン系榭脂多層フィルム。
(10) . (7)項〜(9)項のいずれ力 1項に記載のポリエチレン系榭脂フィルムを延伸し て得られるポリエチレン系榭脂延伸フィルム。
(11) . (7)項〜(9)項のいずれか 1項に記載のポリエチレン系榭脂フィルムを架橋延 伸して得られるポリエチレン系榭脂架橋延伸フィルム。
発明の効果
[0014] 本発明によるポリエチレン系榭脂組成物は、ポリエチレン系フィルムの有する伸び や透明性等を損なうことなぐ従来の技術により得られるポリオレフイン系榭脂組成物 と比較して非常に高い弾性率改良効果が得られる。さらに、低温での良好な熱融着 性、収縮性も併せ持つ。そのため、フィルムの薄肉化や、フィラー添カ卩量の低減も可 能となり、各種フィルムとして有用であるばかりか、省資源化にも有効である。
発明を実施するための最良の形態
[0015] 以下に、本発明を詳細に説明する。
本発明における直鎖状低密度ポリエチレン (A)としては、エチレンの単独重合体、 エチレンとプロピレン、ブテン一 1、ペンテン 1、 4-メチルーペンテン 1、へキセン —1、オタテン— 1等の炭素数が 3〜18の (X—ォレフインカも選ばれる少なくとも 1種 類の単量体との共重合体が挙げられる。マルチサイト系触媒、シングルサイト系触媒 の 、ずれの触媒にて重合されたものでもよ 、が、シングルサイト触媒で重合されたも のの方が透明性が優れるのでより好まし 、。
[0016] また、本発明の直鎖状低密度ポリエチレン (A)の示差走査熱量測定 (DSC)による 融点 (T )は、 110°C以下である。ここで述べる融点 (T )とは、(株)パーキンエルマ 一ジャパン社製の示差走査熱量計 Diamond DSC (商品名)を用い、以下に示す 3 ステップ力 なる融解 結晶化—融解プロファイルの測定を行い、ステップ 3におけ る 2次融解曲線のピーク温度を融点 (T )とした。融解ピークが 2つ以上認められる場 合は、全融解熱量の 20%以上を有する最も低温側のピーク温度をその融点 (T )と した。
ステップ 1: 30°Cで 1分間保持→200°Cまで 10°CZ分で昇温(1次融解) ステップ 2: 200°Cで 1分間保持→30°Cまで 10°CZ分で降温 (結晶化) ステップ 3: 30°Cで 1分間保持→200°Cまで 10°CZ分で昇温(2次融解)
[0017] この融点(T )が 110°C以下であると、フィルム、特にシュリンク包装用フィルムに必 要な優れた熱融着性や低温収縮性が得られる。すなわち、ヒートシール温度ゃシユリ ンク温度が低温側に拡大、或いはシフトすることで、短時間でのシールとシュリンクが 可能になり、高速の自動連続包装にも対応可能となる。高速ィ匕が進む連続自動包装 に対応しながら、よりタイトで美麗な包装体を得るためには、融点 (T )が 107°C以下 であることがより好ましぐ 100°C以下であることが更に好ましい。これら融点はポリマ 一主鎖の分子量、側鎖の分子量及び分岐度、分子量分布により影響を受ける。 上記、融点 (T )が 110°C以下の直鎖状低密度ポリエチレンの具体例としては、住 友化学社製、商品名、スミカセン E FV101 (T = 107°C)、 FV201 (T = 101°C)
m m 、
FV202 (T = 107°C)、三井化学社製、商品名、エボリユー SP0540 (T =88°C)、
m m
宇部興産製、商品名、ュメリット 0540F(T =87°C)、 1520F(T =98°C)等が挙げ
m m
られる。
[0018] 本発明における極性官能基を分子内に有する変性低密度ポリエチレン (B)とは、 低密度ポリエチレン榭脂の変性によって、その側鎖または主鎖に極性官能基を導入 したものである。上記の極性官能基としては、例えば、カルボン酸基、酸無水物基、 水酸基、チオール基、ニトロ基、アミド基、イミド基等が挙げられる。
変性低密度ポリエチレン (B)の製造方法に特に限定はなぐ低密度ポリエチレンを 重合してから変性する重合型、あるいは高分子量ポリエチレン榭脂を分解する際に 変性する方法などがある。なかでも重合型が好ま 、。
[0019] 変性低密度ポリエチレン (B)中に含まれる極性官能基の含有量は変性ポリェチレ ンに対し、 0. 05〜0. 25mmol/gであること力好まし!/、。更に好ましくは 0. 08〜0. 2mmolZgの範囲である。極性官能基含有量が 0. 05mmolZg以上であると、有機 化層状珪酸塩の層間への挿入、即ちインター力レートが起こりやすい。そのため、得 られるポリエチレン系榭脂組成物の弾性率等の機械物性が向上するので好ましい。 極性官能基量が 0. 25mmolZg以下であると、インター力レートが十分に起き、かつ マトリックスである低密度ポリエチレン (A)との相溶性も高い。そのため、ポリエチレン 系榭脂組成物全体への有機化層状珪酸塩の分散が良好となり、凝集物が発生し〖こ くぐフィルムの透明性が良くなるので好ましい。
本発明で用いることができる変性低密度ポリエチレン (B)は、上記の要件を満たし ていれば構わない。直鎖状低密度ポリエチレン榭脂 (A)との相溶性の点から、直鎖 状低密度ポリエチレンを変性したものが好まし 、。
[0020] 変性低密度ポリエチレン (B)の具体例としては、例えば、三井化学社製、商品名、 アドマー LB548、同じく LF128等の変性低密度ポリエチレン、三井 'デュポンポリケミ カル社製、商品名、 Fusabond E MB226D、同じく MB528D、 MX110D、三井 化学社製、商品名、アドマー NB508、同じく NF518、 NF548、 Crompton社製、商 品名、 Polybond3109の変性直鎖状低密度ポリエチレンを挙げることができる。その 中でも Fusabond E MB226D、同じく MB528Dが好ましい。極性官能基量が特 に好適な範囲にあり、有機化層状珪酸塩へのインター力レートが起こりやすぐ得ら れるポリエチレン榭脂組成物の物性がより向上するためである。
[0021] 本発明における有機化層状珪酸塩 (C)を得るために用いる層状珪酸塩としては、 例えば、モンモリロナイト、サボナイト、ヘクトライト、パイデライト、スティブンサイト、ノ ントロナイト等のスメクタイト系粘土鉱物、バーミキユライト、膨潤性マイ力等が挙げられ る。これらの層状珪酸塩は、天然品を精製したものであってもよぐ水熱法など公知の 方法で合成した合成品であってもよ!/ヽ。中でもモンモリロナイトや膨潤性雲母は物性 改良効果が高い。特にアスペクト比が大きい合成フッ素化雲母は、本発明の組成物 中に均一に分散させた後の射出成形やフィルム延伸等の二次 (成形)加工で配向さ せることで、より高い弾性率改良効果が得られる。さらには、二次加工の際の有機化 層状珪酸塩の再凝集を抑制しやす ヽ、すなわち膜厚の薄 ヽ食品包装フィルムでも凝 集物の発生が抑制しやす!/、と 、う点で好まし 、。
上記、モンモリロナイトの具体例としては、 SouthernClay社製、商品名、 Cloisite Na、クニミネ工業社製、商品名、クニピア RG、合成フッ素化雲母の例としてはコー プケミカル社製、商品名、ソマシフ ME100などが挙げられる。
[0022] これらの層状珪酸塩は連続した層構造を有しており、その層間にはナトリウムイオン 、カリウムイオン、リチウムイオンなどの陽イオンが存在し、親水性を有している。その ため、水、アルコールなどの極性溶媒が層間に入り込んで膨潤し、一部が剥離分散 するという性質を持つ。膨潤とは、層と層の間に第 3の物質が介入することで層間距 離が拡張された状態を指す。また、剥離分散とは膨潤がさらに進むことで層と層が剥 離し、層状構造が崩れて微細に分散した状態を指す。
[0023] 上記、層状珪酸塩は陽イオン交換量(Charge Exchange Capacity: CEC)が 5 0〜150ミリ当量 ZlOOgであることが好ましい。これによつて、層状珪酸塩の層間を 大きく膨潤させることができる。 50ミリ当量 ZlOOg未満の場合には、カチオン系界面 活性剤との間で陽イオンの交換が十分に行われず、層状珪酸塩の層間を膨潤させ ることが難しい場合がある。 150ミリ当量 ZlOOgを超えると層状珪酸塩の層間の結合 が強くなり、膨潤させることが難しくなる可能性がある。
[0024] また、本発明で 、う有機化層状珪酸塩 (C)を得るために用いるカチオン系界面活 性剤は、有機物成分とルイス塩基が配位結合をつくることによって生成された塩を指 す。例えば、 4級アンモ-ゥム塩ゃ酸性の極性溶媒に溶解させた際に陽イオンを発 生する有機アミンィ匕合物等がこれに該当し、下記化学式 (4)で表される構造を有す る。
[化 1]
Figure imgf000010_0001
2一 N+— R4 X— (4)
R3
(化学式中、 R 、 R 、 R 、 Rはそれぞれ独立して水素、あるいはメチノレ、ェチノレ、プロ
1 2 3 4
ピル、ラウリル、ォレイル、ステアリル等に代表される飽和あるいは不飽和炭化水素鎖 である。該炭化水素鎖は直鎖であっても分岐構造を有していてもよい。また炭化水素 鎖は、牛脂やヤシ油に代表されるような天然物に由来するものでもよい。また、 R 〜 Rの炭化水素鎖のうち少なくとも 1つは、炭素数が 10以上であることが好ましい。最
4
長の炭化水素鎖を構成する炭素数が 10未満であると、有機化層状珪酸塩 (C)と直 鎖状低密度ポリエチレン (A)との親和性が不十分となり、十分な物性改良効果が得 られない場合がある。 ΧΊまァニオンを示し、特に限定されないが、主に塩ィ匕物イオン や臭化物イオンなどのハロゲンィ匕物イオンがこれに該当する。
カチオン系界面活性剤の具体例としては、例えば、ジメチルジステアリルアンモ-ゥ ムブロミド(あるいはクロリド)、ォクタデシルトリメチルアンモ-ゥムブロミド(あるいはク 口リド)などの 4級アンモ-ゥム塩、ォクタデシルトリメチルァミンなどのアミン類などが 挙げられる。
本発明における有機化層状珪酸塩 (C)とは、層状珪酸塩をカチオン系界面活性剤 で処理して、層間に存在する陽イオンとカチオン系界面活性剤の陽イオンと交換して 有機化したものである。層間に有機カチオンが存在することによって、有機溶媒や有 機物との親和性が向上する。すなわち、層状珪酸塩が水などの極性溶媒によって膨 潤するのに対し、有機化層状珪酸塩は、その層間に有機物を取り込むことで膨潤す る性質を持つ。有機化層状珪酸塩は、そのような性質の故に熱可塑性榭脂などの有 機物中で剥離分散しやすくなる。
カチオン系界面活性剤と層状珪酸塩から有機化層状珪酸塩を合成する方法として は特に制限はない。アミンィ匕合物を用いる場合においては、塩酸等により親水性溶 媒を酸性にした上で層状珪酸塩を分散させ、アミンィ匕合物を陽イオン化した上でィォ ン交換を行う方法を用いることができる。
[0026] なお、本発明にお 、て、ポリエチレン系榭脂組成物が高 、物性改良効果を得る為 には、有機化層状珪酸塩 (C)の層間距離 hOを 19〜35Aにすることが好ましい。更 に好ましくは 24〜35A、最も好ましくは 30〜35Aである。
ここで述べる hOは、(株)リガク社製 X線回折装置 RINT2000 (商品名)を用い、加 速電圧 40kV、カロ速電流 200mA、走査速度 1° /min, Cuの Κ α線で測定した粉 末 X線回折パターンの 2 Θ =0〜10° の範囲におけるメインピークが示す 2 Θの値か ら、式 (2)を用いて算出する。
hO (A) = l. 54 (A) /2sin 0 (2)
この hOの値は、先に述べたカチオン系界面活性剤の炭化水素鎖や、層状珪酸塩 の陽イオン交換量 (CEC)の組み合わせによって制御することができる。
[0027] この要件を満足する有機化層状珪酸塩の具体例としては、モンモリロナイトをジメチ ルジアルキルアンモ-ゥム塩で修飾した Southern Clay社製、商品名、 Cloisitel 5A (hO = 31. 5A)、同じぐ Cloisite20A(hO = 24. 2 A)や、式(1)で表される合 成フッ素化雲母をジメチルジアルキルアンモ-ゥム塩で修飾したコープケミカル社製 、商品名、ソマシフ MAE (hO = 34. OA)などが挙げられる。
NaMg Si O (F OH ) (0. 8≤ a≤1. 0) (1)
2. 5 4 10 a (1 - a ) 2
特に、このソマシフ MAE (商品名)は、アスペクト比が大きぐ本発明の組成物中に 均一に分散させた後の二次 (成形)加工による配向により、より高い弾性率改良効果 が得られる。また、二次加工の際の有機化層状珪酸塩の再凝集も抑制しやすいため 、本発明で特に好適に用いられる。
[0028] 本発明のポリエチレン系榭脂組成物中の各成分の割合は、示差走査熱量測定 (D SC)による融点 (T )が 110°C以下の直鎖状低密度ポリエチレン (A)が 20〜99. 85 重量%、極性官能基を分子内に有する変性低密度ポリエチレン (B)が 0. 05〜40重 量%、層状珪酸塩をカチオン系界面活性剤により修飾した有機化層状珪酸塩 (C)が 0. 1〜40重量0 /0である。好ましくは、直鎖状低密度ポリエチレン (A)が 30〜99. 77 5重量%、変性低密度ポリエチレン (B)が 0. 075〜35重量%、有機化層状珪酸塩( C)が 0. 15〜35重量%である。更に好ましくは、直鎖状低密度ポリエチレン (A)が 4 0-99. 7重量%、変性低密度ポリエチレン (B)が 0. 1〜30重量%、有機化層状珪 酸塩(C)が 0. 2〜30重量%である。
有機化層状珪酸塩 (C)の割合が 0. 1重量%未満では、ポリエチレン系榭脂組成物 の弾性率等の物性を改良するには至らない。一方、 40重量%を超えると、ポリエチレ ン系榭脂組成物の溶融粘度が高くなり過ぎ成形加工性が損なわれる可能性がある。 また、極性官能基を分子内に有する変性低密度ポリエチレン (B)の割合は有機化層 状珪酸塩 (C)に対して重量比で 0. 5倍以上であることが好ましい。 0. 5倍以上であ ると有機化層状珪酸塩の層間に変性低密度ポリエチレン力 Sインター力レートしやすく なる。これによつて層状珪酸塩と低密度ポリエチレンの界面が大きくなり、層状珪酸塩 力 Sポリエチレン系榭脂を補強する効果が増大する。
本発明のポリエチレン系榭脂組成物は、直鎖状低密度ポリエチレン (A)、変性低 密度ポリエチレン (B)、及び有機化層状珪酸塩 (C)を溶融混練装置により混合分散 すればよい。溶融混練装置としては、例えばバンバリ一ミキサー、ロールミキサーなど の混練機や 2軸押出機 (スクリュー回転数が同方向、異方向)等が挙げられる。混合 の順序は、直鎖状低密度ポリエチレン (A)、極性官能基を分子内に有する変性低密 度ポリエチレン (B)、有機化層状珪酸塩 (C)を同時に混合してもよいし、任意の順序 で混合してもよい。混練機を用いる場合には、変性低密度ポリエチレン (B)と有機化 層状珪酸塩 (C)を混合して 5〜10分程度混練し、引き続いて直鎖状低密度ポリェチ レン (A)を添加して更に 5〜 10分程度混合する方法;又は、変性低密度ポリエチレン (B)と有機化層状珪酸塩 (C)を溶融混練して予めマスターバッチとしてから、直鎖状 低密度ポリエチレン (A)と混合した後、溶融混練する混合法が好ましい。押出機を用 いる場合は、単軸押出機に予め乾燥状態で混合した直鎖状低密度ポリエチレン (A) 、変性低密度ポリエチレン (B)および有機化層状珪酸塩 (C)の混合物をホッパーか ら投入して溶融混練する方法(トップフィード法)が挙げられる。混練時に効率的に剪 断応力をかけることで分散性を高められる二軸押出機による混練がより好ましい。二 軸押出機を用いる場合、単軸押出機と同じぐトップフィード法を用いることもできる。 また、直鎖状低密度ポリエチレン (A)と変性低密度ポリエチレン (B)を混合し、ホッパ 一から投入して溶融混練した後、押出機途中に設けられたサイドフィーダ一より有機 化層状珪酸塩 (C)を添加して更に溶融混練する方法 (サイドフィード法)を採ることも できる。そのような方法によって、有機化層状珪酸塩の剪断応力による破壊を最小限 にして弾性率等の高い機械物性改良効果を得ることができる。
[0030] また、本発明にお 、ては直鎖状低密度ポリエチレン (A)の溶融剪断粘度と変性低 密度ポリエチレン (B)の溶融剪断粘度の関係を示す溶融粘度パラメーター (V)の値 は 0. 3〜1. 3の範囲力 子ましく、より好ましくは 0. 6〜1. 2の範囲である。
ここで述べる溶融粘度パラメーター (V)は、次のようにして算出する。(株)東洋精機 製作所製キヤピログラフ 1C (商品名)のバレル先端に 10mmの長さと 1. Ommのノズ ル径を有するキヤピラリーを取り付け、バレル温度を 190°Cに設定、直鎖状低密度ポ リエチレン (A)または変性低密度ポリエチレン (B)のペレットを数回に分けて充分に 空気を抜きながらバレル内に充填、溶融させる。ピストン速度を 0. 5、 1、 2、 5、 10、 2 0、 50、 lOOmmZminと段階的に上げて剪断速度を変えながらキヤビラリ一より押出 し、それぞれの剪断速度における見掛けの溶融剪断粘度を算出する。得られた溶融 剪断粘度のカーブより、剪断速度が lOOsec—1における直鎖状低密度ポリエチレン( A)の見かけの溶融剪断粘度 V 、変性低密度ポリエチレン (B)の見かけの溶融剪
LDPE
断粘度 V を求め、以下の式(3)より Vを求める。
LDPEm
V = V /V (3)
LDPE LDPEm
[0031] この溶融粘度パラメーター (V)が 0. 3〜1. 3であれば、直鎖状低密度ポリエチレン
(A)と変性低密度ポリエチレン (B)の相溶性が十分であり、変性低密度ポリエチレン
(B)の分散がよぐ変性低密度ポリエチレン (B)と親和性を持った有機化層状珪酸塩 も凝集しに《なる。その結果、成形品の物性が均質となり、厚みが 10マイクロメート ル程度の食品包装用フィルムの場合でも、凝集物が視認されにくくなり商品価値が 損なわれることがない。
溶融粘度パラメータ一は、直鎖状低密度ポリエチレン (A)と変性低密度ポリエチレ ン (B)の溶融剪断粘度の値を近づけるように各々の榭脂を選定することで本発明の 好適な範囲に収めることが可能である。 [0032] 本発明におけるポリエチレン系榭脂組成物には、当該榭脂組成物の所望の物性に 悪影響を及ぼさない範囲の量で、当技術分野で通常用いられる酸化防止剤、紫外 線吸収剤、熱安定剤、光安定剤、難燃剤、可塑剤、造核剤、着色剤、滑剤、表面光 沢改良剤等の種々の添加剤を添加することができる。
[0033] なお、本発明におけるポリエチレン系榭脂糸且成物は水冷或いは空冷のインフレ一 シヨン成形、同時 2軸延伸、逐次 2軸延伸、 Tダイによる押出成形、押出ラミネーシヨン 成形などの押出成形でフィルム状やシート状に成形することが可能である。またそれ 以外にも射出成形、ブロー成形等による成形品、型内発泡によるビーズ発泡成形品 、化学発泡剤や物理発泡剤を用いた押出発泡成形品にも使用可能である。
[0034] なお、本発明のポリエチレン系榭脂組成物を用いた成形品の弾性率等の改良効果 を更に高めるために、上記の成形過程において榭脂組成物に配向をかけ、榭脂組 成物中で有機化層状珪酸塩を配列させることが好ましい。特に、フィルム成形におい て延伸をかけた場合は、有機化層状珪酸塩の配向度が高くなり、その結果として得ら れる成形品の弾性率が更に高まる。また、射出成形においても、キヤビティや金型内 で詰まりが生じないようにできる限りゆっくり榭脂組成物を金型内へ充填した場合は、 金型との接触面で榭脂組成物が冷却固定され、先端部との間で榭脂組成物が引き 伸ばされながら流れるフアウンテンフローと呼ばれる噴水状の榭脂流動が生じる。そ のため、得られる成形品の表層における有機化層状珪酸塩の配向度が高まり、高い 弾性率改良効果を得ることができる。
[0035] 本発明におけるポリエチレン系榭脂組成物の示差走査熱量測定 (DSC)による融 点 (T )は 110°C以下である。引張弾性率は 150MPa以上であることが好ましい。 ここで述べる弓 I張弾性率は、島津製作所 (株)製オートグラフ AG5000D (商品名 ) を用いて、ポリエチレン系榭脂組成物のダンベル試験片 (JIS K7113 2号形)を試 験速度 5mmZminで引っ張って得た応力一歪曲線図の初期(歪率 1%未満)の傾 斜より算出する。この引張試験に用いるダンベル試験片 CFIS K7113 2号形)は、 本発明のポリエチレン系榭脂組成物の乾燥ペレットを Klockner Ferromatic Des ma GmbH製 KLOCKNER F85 (商品名)射出成形機にて、 190°C、射出圧力 1 27. lMPa、保持圧力 101. 2MPa、保持時間 4秒、冷却時間 30秒で成形して得ら れる。
[0036] 引張弾性率を 150MPa以上にするためには、本発明で好適に用いられる合成フッ 素化雲母を有機カチオン系界面活性剤で有機修飾して得られるようなァスぺ外比( LZD)の大きな有機化層状珪酸塩を用いることにより;また、有機化層状珪酸塩をサ イドフイードすることにより剪断破壊による Lの低下を最小限に抑制しつつ、有機化層 状珪酸塩の剥離を促進して分散性を高め LZDをできる限り高めることにより達成で きる。
本発明の上記要件を満たすポリエチレン系榭脂組成物はフィルムにした際、優れ た熱融着性や低温収縮性とハリ'コシといった剛性を兼ね備えたものとなる。
[0037] 本発明におけるポリエチレン系榭脂フィルムとは、本発明のポリエチレン系榭脂組 成物からなる単層フィルム;本発明のポリエチレン系榭脂が単一で層を構成し、少な くともその層が 1層以上含まれる多層フィルム;本発明のポリエチレン系榭脂組成物 が層の 1成分を構成し、少なくともその層が 1層以上含まれる多層フィルムのいずれ かである。
[0038] 本発明におけるポリオレフイン系榭脂フィルムは、先述のように配向をかけて弾性率 等の改良効果を更に高めるために、ロール延伸法、テンター延伸法、バブルインフレ ーシヨン法 (ダブルバブル法を含む)等により延伸するのが好ま 、。様々な延伸法 があるが、同時二軸延伸法で製膜される方法が、延伸性その他合理性等より好まし い。また、延伸は、好ましくは、少なくとも 1方向に面積延伸倍率で 3〜50倍、より好ま しくは 4〜40倍で延伸し、用途により適宜選択される。
[0039] さらに、本発明のフィルムは、その少なくとも一つの層が架橋されていてもよい。厚 み方向における架橋度がほぼ均一である場合、特定の層が主に架橋されている場 合、表層から厚み方向に架橋度が逐漸次変化する場合、両表層が主として架橋して いて厚み方向に適宜分布をもつ場合のいずれであってもよい。この架橋処理は、延 伸製膜を行う前後に、電子線 (例えば、 50〜: LOOOkVのエネルギーのもの)、紫外線 、X線、 α線、 γ線当のエネルギー線により片面、両面照射、また厚み方向に架橋の 分布が生ずるような照射を行う方法;またはパーオキサイド等 (場合により、特定層に 架橋助剤、特定層に架橋遅延剤等の併用もよい)の添加後に加熱処理を行う方法; または両方法の併用;あるいは、その他の公知の方法によって改質処理を行ってもよ い。好ましくは、電子線 (例えば、 50〜: LOOOkVのエネルギーで透過深度を所定にコ ントロールして)による方法力 Sクリーンでよい。架橋処理により、熱融着性、耐熱性、延 伸製膜安定性 (ネッキングの抑制、厚みの均一性、延伸倍率の向上、延伸温度条件 範囲の拡大等)を向上することができ、必要に応じて用いられる。
[0040] 本発明における多層延伸フィルムの好適な構成の例は、例えば、全層に占める各 層の厚み比率としてエチレン 酢酸ビニル共重合体力もなる両表面層が 10〜60重 量0 /0、本発明のポリエチレン系榭脂組成物とエチレン—酢酸ビニル共重合体力もな る両中間層が 15〜80重量%、ポリプロピレンとポリプロピレン Zポリブテン 1共重 合体力もなる芯層が 10〜60重量%の 3種 5層(表面層—中間層-芯層—中間層― 表面層)で構成される多層延伸フィルム等である。
また、この多層延伸フィルムの中間層を構成する本発明のポリエチレン系榭脂組成 物は、例えば、直鎖状低密度ポリエチレン 20〜99. 85重量%、マレイン酸変性直鎖 状ポリエチレン 0. 05〜40重量0 /0、有機化層状珪酸塩 0. 1〜40重量0 /0の比率で調 整できる。中間層に占める本発明のポリエチレン系榭脂組成物の割合は、 10〜50 重量%であることが好まし!/、。
[0041] 本発明における架橋多層延伸フィルムの好適な組成の例は、例えば、全層に占め る各層の厚み比率として低密度ポリエチレンと直鎖状低密度ポリエチレン力 なる両 表面層が 5〜40重量%、本発明のポリエチレン系榭脂糸且成物からなる芯層が 60〜9 5重量%の 2種 3層(表面層 芯層 表面層)で構成される架橋多層延伸フィルム; あるいは、低密度ポリエチレンと直鎖状低密度ポリエチレン力もなる両表面層が 5〜4 0重量%、本発明のポリエチレン系榭脂組成物力もなる両中間層が 20〜50重量%、 低密度ポリエチレンと直鎖状低密度ポリエチレン力もなる芯層が 10〜75重量%の 3 種 5層(表面層 中間層 芯層一中間層 表面層)で構成される架橋多層延伸フィ ルム等である。
また本発明におけるフィルムの厚みは、高 、透明性と優れた熱融着性や低温収縮 性を維持しつつ、弾性率等の高い改良効果を得るために、 100 /z m以下であること が好ましぐより好ましくは 20 μ m以下、さらに好ましくは 10 μ m以下である。 実施例
[0042] 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの実施 例により限定されるものではない。
本発明で用いられる指標及び物性の測定、算出及び評価方法などは以下の通りで ある。
[0043] (1)融点: T
(株)パーキンエルマ一ジャパン社製の示差走査熱量計 Diamond DSC (商品名) を用い、以下に示す 3ステップ力 なる融解 結晶化—融解プロファイルの測定を行 い、ステップ 3における 2次融解曲線のピーク温度を融点 (T )とした(単位: °C)。融 解ピークが 2つ以上認められる場合は、全融解熱量の 20%以上を有する最も低温側 のピーク温度をその融点 (T )とした。
ステップ 1: 30°Cで 1分間保持→200°Cまで 10°CZ分で昇温(1次融解) ステップ 2: 200°Cで 1分間保持→30°Cまで 10°CZ分で降温 (結晶化) ステップ 3: 30°Cで 1分間保持→200°Cまで 10°CZ分で昇温(2次融解)
[0044] (2)有機化層状珪酸塩の X線回折測定
(株)リガク社製 X線回折装置 RINT2000 (商品名)を用い、加速電圧 40kV、加速 電流 200mA、走査速度 1° Zmin、 Cuの Κ α線による粉末 X線回折により粉末 X線 回折パターンを得た。これに基づき、上記式 (2)を用いて ho (A)を算出した。
[0045] (3)溶融粘度パラメーター: V
(株)東洋精機製作所製キヤピログラフ 1C (商品名)のバレル先端に 10mmの長さと 1. Ommのノズル径を有するキヤピラリーを取り付け、バレル温度を 190°Cに設定した 。直鎖状低密度ポリエチレン (A)または変性低密度ポリエチレン (B)のペレットを数 回に分けて充分に空気を抜きながらバレル内に充填、溶融させた。ピストン速度を 0. 5、 1、 2、 5、 10、 20、 50、 lOOmmZminと段階的に上げて剪断速度を変えながら キヤビラリ一より押出し、それぞれの剪断速度における見掛けの溶融剪断粘度を算出 した。得られた溶融剪断粘度のカーブより、剪断速度が lOOsec—1における直鎖状低 密度ポリエチレン (A)の見かけの溶融剪断粘度 V 、変性低密度ポリエチレン (B)
LDPE
の見かけの溶融剪断粘度 V を求め、 V=V /V より Vを算出した
LDPEm LDPE LDPEm [0046] (4)ポリエチレン系榭脂組成物の引張弾性率及び相対引張弾性率
島津製作所 (株)製オートグラフ AG5000D (商品名)を用いて、ポリエチレン系榭 脂組成物のダンベル試験片 (JIS K7113 2号形)を試験速度 5mmZminで引つ 張り、応力 歪曲線図を得た。その応力 歪曲線図の初期 (歪率 1%未満)の傾斜よ り引張弾性率 E (MPa)を算出した。同様の方法で上記ポリエチレン系榭脂組成物に 用いた直鎖状低密度ポリエチレン榭脂 (A)のみで成形した射出成形品の引張弾性 率 E (MPa)を算出した。 Eを Eで除した値 E/Eを相対引張弾性率とした。
0 0 0
[0047] (5)ポリエチレン系榭脂組成物の引張破断伸び
上記引張弾性率と同じダンベル試験片を使用し、試験速度 50mmZminで引つ張 つた場合の破断点より引張破断伸び (%)を算出した。
(6)フィルムの凝集物評価
ポリエチレン系榭脂組成物単一のキャストフィルム(厚み約 100 μ m)を Tダイ備え 付けた単軸押出機で作製し、得られたフィルムを目視により下記のように評価した。
◎:凝集物が全く確認できず、透明性も良好なレベル
〇:若干の凝集物があるが、透明性は良好なレベル
△:凝集物が多ぐ透明性にも問題があるレベル
X:凝集物が非常に多ぐ製膜も困難なレベル
[0048] (7)多層延伸フィルム及び架橋多層延伸フィルムの引張弾性率改良効果の評価 本発明のポリエチレン系榭脂組成物をその構成成分とする多層延伸フィルム及び 架橋多層延伸フィルムから、 10mm幅 X 150mm長の短冊を MD方向(フィルムの押 出方向)及び TD方向(フィルムの押出方向と直交する方向)でそれぞれ切り出して試 験片とした。島津製作所 (株)製オートグラフ AG— IS (商品名)を用い、試験片をチヤ ック間距離 100mm、試験速度 5mmZminで引っ張って応力一歪曲線図を得た。応 カー歪曲線図の初期(歪率 1%未満)の傾斜より、フィルムの押出方向(MD方向)、 幅方向(TD方向)の引張弾性率 M 、M (MPa)をそれぞれ n= 5の平均で算出し
MD TD
た。更に M 、 M を平均して引張弾性率 M (MPa)とした。同様の方法で上記ポリ
MD TD
エチレン系榭脂組成物の代わりに、そのポリエチレン系榭脂組成物に用いた直鎖状 低密度ポリエチレン榭脂 (A)のみを用いた多層延伸フィルムの引張弾性率 M (MP a)を測定した。 Mを Mで除した値 MZMを相対引張弾性率として、引張弾性率改
0 0
良効果を下記のように評価した。
◎:引張弾性率改良効果が非常に高ぐ 30%の薄肉化に対応可能
(相対引張弾性率 1. 3以上)
〇:引張弾性率改良効果が高い (相対引張弾性率 1. 1以上 1. 3未満)
△:引張弾性率改良効果が低い湘対引張弾性率 1. 0以上 1. 1未満)
X:引張弾性率改良効果が認められない湘対引張弾性率 1. 0未満) [0049] (8)多層延伸フィルム及び架橋多層延伸フィルムの透明性評価
日本電色社製、商品名、 NDH— 300Aを用い、室温 27°Cにおいて、 ASTM— D— 1003に従い、本発明の多層延伸フィルム及び架橋多層延伸フィルムのヘイズ を測定した。
◎:内容物の視認が良好 (ヘイズが 2. 5以下)
〇:内容物の視認が容易(ヘイズが 2. 5超 5. 0以下)
△:内容物の視認が困難 (ヘイズが 5. 0超)
[0050] (9)多層延伸フィルム及び多層架橋延伸フィルムの熱融着性 '低温収縮性評価 内部の底部に lOOgの金属板を貼り付けた一般市販の PP製トレー (概略寸法:縦 1 50mm,横 115mm、高さ 23mm)の縦方向に沿って、フィルムを筒状に折り曲げた。 このフィルムの両端がだぶつかずにトレー底部で約半分の面積が 2枚重ねになるよう にトレーを包み込み、続、てトレーの横方向に沿って折り曲げな 、で残って 、るフィ ルムの両端をだぶつかないように折り曲げ、トレー底部で重ね合わせた。この時、トレ 一底部では 3枚、 5枚重ねの部分ができている。このように準備したトレーを、 130°C に調整された熱板上に 2秒間載せて底シールを行った。その後 90〜: L 10°Cの熱風 加熱式のトンネルを約 1秒で通過させてフィルムを収縮させ、仕上がり状態を以下の 基準で評価した。
シール状態が良好 (シール部の端を軽く引っ張っても剥離しない)かつ 収縮も 90〜110°Cの全範囲で良好
〇:シール状態は良好だが、収縮がやや不足
△:一部分がシールされておらず、収縮不足 X :全く底シールされない
[0051] (10)多層延伸フィルムの総合評価
◎:弾性率改良効果、透明性、熱融着性 z低温収縮性、全てが◎であり、
包装用フィルムとして好適に使用できるレベル
〇:全てが ©か〇であり、包装用フィルムとして実用レベル
△ :△があり、包装用フィルムとして使用が困難なレベル
X: Xがあり、包装用フィルムとして実用レベルでない
[0052] (11)多層架橋延伸フィルムのハリ 'コシ評価
外寸法が 180mm X 180mmの木枠の縁に、弛みがないようにフィルムを両面テー プで固定した。次いで、この状態で 90°Cの熱風トンネルを 3秒間通過させフィルムを 収縮させ、室温 (約 23°C)で約 3分放置した。その後、フィルムの中央を直径 15mm φで先端が半球状になった金属棒で垂直に約 10mm押し込んで抜き取った。その 1 分後にフィルムの表面を観察して、以下の基準で評価した。
◎:充分な弾性があり、弛みゃシヮまたは局部的な凹みが全くな 、
〇:弾性があり、弛みゃシヮまたは局部的な凹みが殆どない
△:弾性がなぐ弛みゃシヮまたは局部的な凹みがわずかに認められる X:弹性がなぐ明らかに弛みやシヮ、局部的な凹みが残っている
[0053] (12)多層架橋延伸フィルムの総合評価
◎:弾性率改良効果、ハリ ·コシ、透明性、熱融着性 Z低温収縮性、 全てが◎であり、包装用フィルムとして好適に使用できるレベル 〇:全てが ©か〇であり、包装用フィルムとして実用レベル
△ :△があり、包装用フィルムとして使用が困難なレベル
X: Xがあり、包装用フィルムとして実用レベルでない
[0054] [実施例 1]
直鎖状低密度ポリエチレンとしてメタ口セン直鎖状低密度ポリエチレン( (株)プライ ムポリマー社製"エボリユー SP0540" (商品名)、融点 88°C) 90. 0重量%、変性低 密度ポリエチレンとしてマレイン酸変性直鎖状低密度ポリエチレン (三井'デュポンポ リケミカル社製" Fusabond E MB226D" (商品名)、極性官能基量 =0. 09mmol /g) 5. 0重量%を、 2軸押出機(日本製鋼所 (株)製 ΤΕΧ30 α (商品名))のホッパ 一から投入して、バレル温度 150〜200°C、スクリュー回転数 300rpmで溶融混練を 行った。次いで、押出機途中に設けられたサイドフィーダ一より有機化層状珪酸塩と してジメチルジアルキルアンモ-ゥムモンモリロナイト(Southern Clay Product社 製" Cloisite 15A" (商品名):h0 = 31. 5A) 5. 0重量0 /0を添加して、更に混練を 行なった (サイドフィード法)。押出機先端に取り付けられたマルチノズルダイより押出 してストランドとし、冷水槽で冷却後にカットした。その後、 80°Cで 24時間以上乾燥し てポリエチレン系榭脂組成物のペレットを得た。得られたペレットは、融点 (T )を測 定した。また KLOCKNER F85 (商品名)射出成形機にて、 190°C、射出圧力 127 . IMPa、保持圧力 101. 2MPa、保持時間 4秒、冷却時間 30秒で成形し、 JIS K7 113 2号形試験片を得た。このポリエチレン系榭脂組成物の融点と試験片を用いた 引張物性の評価結果を表 1に示す。
[0055] [実施例 2]
直鎖状低密度ポリエチレンを 83. 4重量0 /0、変'性低密度ポリエチレンを 8. 3重量0 /0 、有機化層状珪酸塩を 8. 3重量%とした以外は実施例 1と同様の条件でポリエチレ ン系榭脂組成物のペレットと、試験片を得た。得られたポリエチレン系榭脂組成物の 融点と試験片を用いた引張物性の評価結果を表 1に示す。
[0056] [実施例 3]
有機化層状珪酸塩として合成フッ素化雲母 (コープケミカル (株)社製"ソマシフ MA E" (商品名) :h0 = 34. OA)を用いた以外は実施例 2と同様の条件でポリエチレン 系榭脂組成物のペレットと、試験片を得た。得られたポリエチレン系榭脂組成物の融 点と試験片を用いた引張物性の評価結果を表 1に示す。
[0057] [実施例 4]
有機化層状珪酸塩を直鎖状低密度ポリエチレン及び変性低密度ポリエチレンと混 合してホッパー力 押出機に投入した (トップフィード法)以外は、実施例 2と同様の 条件でポリエチレン系榭脂組成物のペレットと、試験片を得た。得られたポリエチレン 系榭脂組成物の融点と試験片を用いた引張物性の評価結果を表 1に示す。
[0058] [実施例 5] 有機化層状珪酸塩としてジメチルジアルキルアンモ-ゥムモンモリロナイト(Southe rn Clay Product社製" Cloisite 20A" (商品名): h0=24. 2 A)を用いた以外 は、実施例 4と同様の条件でポリエチレン系榭脂組成物のペレットと、試験片を得た。 得られたポリエチレン系榭脂組成物の融点と試験片を用いた引張物性の評価結果を 表 1に示す。
[0059] [実施例 6]
有機化層状珪酸塩をサイドフィードした以外は、実施例 5と同様の条件でポリェチ レン系榭脂組成物のペレットと、試験片を得た。得られたポリエチレン系榭脂組成物 の融点と試験片を用いた引張物性の評価結果を表 1に示す。
[0060] [実施例 7]
有機化層状珪酸塩をトップフィードした以外は、実施例 3と同様の条件でポリエチレ ン系榭脂組成物のペレットと、試験片を得た。得られたポリエチレン系榭脂組成物の 融点と試験片を用いた引張物性の評価結果を表 1に示す。
[0061] [実施例 8]
変性低密度ポリエチレンとしてマレイン酸変性直鎖状低密度ポリエチレン (三井'デ ュポンポリケミカル社製" Fusabond MB528D" (商品名)、極性官能基量 =0. 13 mmol/g)を用いた以外は、実施例 3と同様の条件でポリエチレン系榭脂組成物の ペレットと、試験片を得た。得られたポリエチレン系榭脂組成物の融点と試験片を用 いた引張物性の評価結果を表 1に示す。
[0062] [実施例 9]
有機化層状珪酸塩としてジメチルジアルキルアンモ-ゥムモンモリロナイト(Southe rn Clay Product社製" Cloisite 25A,,(商品名): h0=18. 6 A)を用いた以外 は、実施例 4と同様の条件でポリエチレン系榭脂組成物のペレットと、試験片を得た。 得られたポリエチレン系榭脂組成物の融点と試験片を用いた引張物性の評価結果を 表 1に示す。
[0063] [実施例 10]
直鎖状低密度ポリエチレンとしてメタ口セン直鎖状低密度ポリエチレン (宇部丸善ポ リエチレン (株)社製"ュメリット 1520F" (商品名)、融点 98°C)を用いた以外は、実施 例 3と同様の条件でポリエチレン系榭脂組成物のペレットと、試験片を得た。得られた ポリエチレン系榭脂組成物の融点と試験片を用いた引張物性の評価結果を表 1に示 す。
[0064] [実施例 11]
直鎖状低密度ポリエチレンとしてメタ口セン直鎖状低密度ポリエチレン (住友化学( 株)社製"スミカセン E FV101" (商品名)、融点 107°C)を用いた以外は、実施例 3 と同様の条件でポリエチレン系榭脂組成物のペレットと、試験片を得た。得られたポリ エチレン系榭脂組成物の融点と試験片を用いた引張物性の評価結果を表 1に示す
[0065] [実施例 12]
直鎖状低密度ポリエチレンとしてメタ口セン直鎖状低密度ポリエチレン (住友化学( 株)社製"スミカセン E FV201" (商品名)、融点 10 を用いた以外は、実施例 3 と同様の条件でポリエチレン系榭脂組成物のペレットと、試験片を得た。得られたポリ エチレン系榭脂組成物の融点と試験片を用いた引張物性の評価結果を表 1に示す
[0066] [比較例 1]
メタ口セン直鎖状低密度ポリエチレン( (株)プライムポリマー社製"エボリユー SP05 40" (商品名)、融点 88°C)の射出成形品試験片を実施例 1と同様の条件で得た。得 られた試験片を用いた引張物性の評価結果を表 1に示す。
[0067] [比較例 2]
直鎖状低密度ポリエチレン(Dow Chemical社製" Dowlex2032" (商品名 )、融 点 122°C)の射出成形品試験片を実施例 1と同様の条件で得た。得られた試験片を 用いた引張物性の評価結果を表 1に示す。
[0068] [比較例 3]
直鎖状低密度ポリエチレンとして(Dow Chemical社製" Dowlex2032" (商品名 )、融点 122°C)を用いた以外は、実施例 9と同様の条件でポリエチレン系榭脂組成 物のペレットと、試験片を得た。得られたポリエチレン系榭脂組成物の融点と試験片 を用いた引張物性の評価結果を表 1に示す。 [0069] [比較例 4]
メタ口セン直鎖状低密度ポリエチレン (宇部丸善ポリエチレン (株)社製"ュメリット 15 20F" (商品名)、融点 98°C)の射出成形品試験片を実施例 1と同様の条件で得た。 得られた試験片を用いた引張物性の評価結果を表 1に示す。
[0070] [比較例 5]
メタ口セン直鎖状低密度ポリエチレン (住友ィ匕学 (株)社製"スミカセン E FV101" ( 商品名)、融点 107°C)の射出成形品試験片を実施例 1と同様の条件で得た。得られ た試験片を用いた引張物性の評価結果を表 1に示す。
[0071] [比較例 6]
メタ口セン直鎖状低密度ポリエチレン (住友化学 (株)社製"スミカセン E FV201" ( 商品名)、融点 10 の射出成形品試験片を実施例 1と同様の条件で得た。得られ た試験片を用いた引張物性の評価結果を表 1に示す。
表 1の結果力も判るように、本発明のポリエチレン系榭脂組成物は、用いた直鎖状 低密度ポリエチレン (A)の融点をほとんど変えることなぐまた伸びを大きく低下させ ることなぐ非常に高い引張弾性率改良効果が得られている。
[0072] [実施例 13]
実施例 8で得られたポリオレフイン系榭脂組成物(直鎖状低密度ポリエチレンと変性 低密度ポリエチレンの溶融粘度パラメーター: V=0. 9)を、その先端に Tダイを備え た単軸押出機を用いて、バレル温度 150〜200°C、スクリュー回転数 50rpmで溶融 混練を行い、厚み 100 m程度のキャストフィルムを得た。得られたフィルムの凝集 物評価結果を表 2に示す。
[0073] [実施例 14]
実施例 3で得られたポリオレフイン系榭脂組成物(直鎖状低密度ポリエチレンと変性 低密度ポリエチレンの溶融粘度パラメーター: V=0. 4)を用いた以外は、実施例 13 と同様の条件でキャストフィルムを得た。得られたフィルムの凝集物評価結果を表 2に 示す。
[0074] [実施例 15]
実施例 10で得られたポリオレフイン系榭脂組成物(直鎖状低密度ポリエチレンと変 性低密度ポリエチレンの溶融粘度パラメーター: V=0. 6)を用いた以外は、実施例 1 3と同様の条件でキャストフィルムを得た。得られたフィルムの凝集物評価結果を表 2 に示す。
[0075] [実施例 16]
実施例 11で得られたポリオレフイン系榭脂組成物(直鎖状低密度ポリエチレンと変 性低密度ポリエチレンの溶融粘度パラメーター: V=0. 8)を用いた以外は、実施例 1 3と同様の条件でキャストフィルムを得た。得られたフィルムの凝集物評価結果を表 2 に示す。
[0076] [実施例 17]
実施例 12で得られたポリオレフイン系榭脂組成物(直鎖状低密度ポリエチレンと変 性低密度ポリエチレンの溶融粘度パラメーター: V=0. 6)を用いた以外は、実施例 1 3と同様の条件でキャストフィルムを得た。得られたフィルムの凝集物評価結果を表 2 に示す。
[0077] [比較例 7]
直鎖状低密度ポリエチレンとして(Dow Chemical社製" Dowlex2032" (商品名 )、融点 122°C)、有機化層状珪酸塩としてジメチルジアルキルアンモ-ゥムモンモリ ロナイト(Southern Clay Product社製" Cloisite 20A,,(商品名): h0=24. 2A )を用いた以外は、実施例 8と同様の条件でポリエチレン系榭脂組成物のペレットを 得た (直鎖状低密度ポリエチレンと変性低密度ポリエチレンの溶融粘度パラメーター : V= 16. 4)。このペレットを用い、実施例 13と同様の条件でキャストフィルムを得た 。得られたフィルムの凝集物評価結果を表 2に示す。
表 2から明らかなように、本発明のポリエチレン系榭脂組成物は、フィルムにした際 の凝集物の発生を抑制でき、良好な透明性が得られて 、る。
[0078] [実施例 18〜20、比較例 8]
表 3に示すような組成で、 3台の押出機を使用し、 3種 5層の環状ダイスより両表面 層、芯層、両中間層からなる 5層構成のチューブを溶融押出し、水冷リングを用いて 急冷却して未延伸チューブ (パリソン)を得た。各層所定の比率になるように、各押出 量を調整し、断面観察にて層構成を確認した。押出機の温度設定は長手方向で 6つ の温度調整ゾーンがあり、榭脂供給ホッパーから順に表面層、中間層の押出機につ ヽて ίま、 180°C、 200°C、 210°C、 220°C、 230°C、 230°Cで行!ヽ、芯層【こつ!ヽて【ま 、 200。C、 200。C、 200。C、 190。C、 190。C、 190。Cで行なった。
[0079] 得られた未延伸チューブを延伸部に送り、赤外加熱ヒーターを用いて熱風加熱に て加熱した。そのゾーンでは縦方向に延伸されており、その延伸倍率は、加熱入りの ピンチローラーの速度と巻き取り機の速度の速度比で調整した。空冷リングで冷却さ せながらエアーを注入してバブルを形成、 55°Cで延伸した。その後、デフレータ部で 折りたたみダブルのフィルムとして 50°Cで若干のヒートセットを行 、、巻き取り機で卷 き取った。この時のフィルムの幅とパリソンの幅にて横方向の延伸倍率を調整した。 延伸倍率については、バブルが一番安定する倍率を用い、所定の厚みとなるよう押 出量を調整した。スリツターにて、ダブルのフィルム原反よりシングルに剥ぎながらスリ ットを行い実施例 18〜20、比較例 8の多層延伸フィルムを得た。得られたフィルムの 引張弾性率改良効果、透明性、熱融着性 ·低温収縮性評価結果を表 3に示す。 表 3の結果力も判るように本発明のポリエチレン系榭脂組成物を用いた多層延伸フ イルムは、高い引張弾性率改良効果と透明性、優れた熱融着性、低温収縮性を兼ね 備えたフィルムである。
[0080] [実施例 21〜23、比較例 9〜12]
表 4に示すような組成で、 3台の押出機を使用し、 2種 3層の環状ダイスより両表面 層、芯層からなる 3層構成のチューブを溶融押出し、水冷リングを用いて急冷却して 約 560 μ mの厚みの未延伸チューブ (パリソン)を得た。各層所定の比率になるように 、各押出量を調整し、断面観察にて層構成を確認した。押出機の温度設定は長手方 向で 6つの温度調整ゾーンがあり、榭脂供給ホッパー力も順に 180°C、 200°C、 220 。C、 230°C、 245°C、 245°Cで行なった。得られた厚み約 560 μ mの未延伸チューブ に対して 500kVの加速した電子線を 85kGy照射して架橋処理を行った。引き続!/ヽ てインフラヒーターによる輻射加熱で未延伸チューブを 140°Cまで加熱しつつ、 2組 の-ップロール間の速度比により流れ方向に約 8〜9倍、チューブ内にエアーを注入 することにより幅方向(機械の流れ方向に対し垂直方向)に約 6〜7倍延伸し、エアー リングよりバブル最大径の部分に冷風を当てて冷却した。その後、折りたたんで、両 端をスリットしつつシングルに剥ぎながら巻き取り機で巻き取って厚み約 9〜 11 μ m のフィルム原反を得た。得られたフィルムの引張弾性率改良効果、透明性、熱融着 性 ·低温収縮性評価結果を表 4に示す。
表 4の結果力 判るように本発明のポリエチレン系榭脂組成物を用いた架橋多層延 伸フィルムは高い引張弾性率改良効果を有しており、薄肉化しても充分なハリ 'コシ を維持できる上に透明性、優れた熱融着性、低温収縮性を兼ね備えたフィルムであ る。
[表 1-1]
S〔〕^0082T
Figure imgf000028_0001
Figure imgf000029_0001
^
Figure imgf000029_0002
s〔〕^0084wl
Figure imgf000030_0001
Figure imgf000031_0001
S〔sU00841I
Figure imgf000032_0001
^ §3〔41
Figure imgf000033_0001
Figure imgf000034_0001
本発明のポリエチレン系榭脂組成物は、優れた機械物性、透明性、延伸加工性、 熱融着性、低温収縮性を有し、シュリンク包装用フィルムとして好適である。

Claims

請求の範囲
[1] 示差走査熱量測定による融点 (τ )が 110°C以下である直鎖状低密度ポリエチレ ン (A) 20〜99. 85重量%;極性官能基を分子内に有する変性低密度ポリエチレン( B) 0. 05〜40重量%;及び、層状珪酸塩をカチオン系界面活性剤により修飾した有 機化層状珪酸塩 (C) O. 1〜40重量%を含む、ポリエチレン系榭脂組成物。
[2] 有機化層状珪酸塩 (C)が下記式 (1)で表される合成フッ素化雲母を有機カチオン 系界面活性剤で有機修飾して得られたものである、請求項 1記載のポリエチレン系榭 脂組成物。
NaMg Si O (F OH ) (0. 8≤ a≤1. 0) (1)
2. 5 4 10 a (1 - a ) 2
[3] 有機化層状珪酸塩 (C)の X線回折測定をした際、 2 Θ =0〜10° の範囲における 回折パターンのメインピークが示す 2 Θの値から、式 (2)を用いて算出する層間距離 h0が 19〜35Aである、請求項 1または 2に記載のポリエチレン系榭脂組成物。
hO (A) = l. 54 (A) /2sin 0 (2)
[4] 前記直鎖状低密度ポリエチレン (A)と変性低密度ポリエチレン (B)の溶融剪断粘 度の関係を示す式(3)で表される溶融粘度パラメーター (V)が 0. 3〜1. 3である、請 求項 1〜3のいずれか 1項に記載のポリエチレン系榭脂組成物。
V=V /V (3)
LDPE LDPEm
V :剪断速度が lOOsec—1における直鎖状低密度ポリエチレン (A)の溶融剪
LDPE
断粘度
V :剪断速度が lOOsec—1における変性低密度ポリエチレン (B)の溶融剪断
LDPEm
粘度
[5] 示差走査熱量測定による融点 (T )が 110°C以下であり、引張弾性率が 150MPa 以上である、請求項 1〜4のいずれか 1項に記載のポリエチレン系榭脂組成物。
[6] 直鎖状低密度ポリエチレン (A)、変性低密度ポリエチレン (B)、有機化層状珪酸塩
(C)を二軸押出機で溶融混練するに際し、有機化層状珪酸塩 (C)をサイドフィード 法により添加することを含む、請求項 1〜5のいずれか 1項に記載のポリエチレン系榭 脂組成物の製造方法。
[7] 請求項 1〜5のいずれか 1項に記載のポリエチレン系榭脂組成物力もなるポリェチ レン系榭脂単層フィルム。
[8] 請求項 1〜5のいずれか 1項に記載のポリエチレン系榭脂組成物により単一で構成 された層を 1層以上含むポリエチレン系榭脂多層フィルム。
[9] 請求項 1〜5のいずれか 1項に記載のポリエチレン系榭脂組成物を 1成分として含 む層を 1層以上含むポリエチレン系榭脂多層フィルム。
[10] 請求項 7〜9のいずれか 1項に記載のポリエチレン系榭脂フィルムを延伸して得ら れるポリエチレン系榭脂延伸フィルム。
[11] 請求項 7〜9のいずれか 1項に記載のポリエチレン系榭脂フィルムを架橋延伸して 得られるポリエチレン系榭脂架橋延伸フィルム。
PCT/JP2006/321470 2005-10-28 2006-10-27 ポリエチレン系樹脂組成物及びそのフィルム WO2007049734A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542675A JPWO2007049734A1 (ja) 2005-10-28 2006-10-27 ポリエチレン系樹脂組成物及びそのフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-315139 2005-10-28
JP2005315139 2005-10-28

Publications (1)

Publication Number Publication Date
WO2007049734A1 true WO2007049734A1 (ja) 2007-05-03

Family

ID=37967842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321470 WO2007049734A1 (ja) 2005-10-28 2006-10-27 ポリエチレン系樹脂組成物及びそのフィルム

Country Status (2)

Country Link
JP (1) JPWO2007049734A1 (ja)
WO (1) WO2007049734A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004978A (ja) * 2014-06-19 2016-01-12 富士フイルム株式会社 太陽電池バックシート用白色積層ポリエステルフィルム及びその製造方法、太陽電池バックシート、並びに太陽電池モジュール
JP2016028150A (ja) * 2007-06-01 2016-02-25 プランティック・テクノロジーズ・リミテッド デンプンナノコンポジット材料
JP2016215412A (ja) * 2015-05-15 2016-12-22 旭化成株式会社 帯状フィルム、包装体
JP2018111319A (ja) * 2018-04-03 2018-07-19 旭化成株式会社 ポリエチレン系架橋シュリンクフィルム
KR102416188B1 (ko) * 2021-02-18 2022-07-05 한국세라믹기술원 선도유지 패키징용 항균성 세라믹 하이브리드 필름 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129056A (ja) * 1998-10-21 2000-05-09 Showa Denko Kk 接着性樹脂複合体及びその積層体
JP2003206364A (ja) * 2001-11-12 2003-07-22 Sekisui Film Kk 微多孔フィルム及びその製造方法
JP2003530444A (ja) * 2000-03-08 2003-10-14 オムノヴア ソリユーシヨンズ インコーポレーテツド 有機的に変性された粘土を含む耐燃性ポリオレフィン組成物
WO2004009697A1 (ja) * 2002-07-19 2004-01-29 Asahi Kasei Kabushiki Kaisha ポリオレフィン樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129056A (ja) * 1998-10-21 2000-05-09 Showa Denko Kk 接着性樹脂複合体及びその積層体
JP2003530444A (ja) * 2000-03-08 2003-10-14 オムノヴア ソリユーシヨンズ インコーポレーテツド 有機的に変性された粘土を含む耐燃性ポリオレフィン組成物
JP2003206364A (ja) * 2001-11-12 2003-07-22 Sekisui Film Kk 微多孔フィルム及びその製造方法
WO2004009697A1 (ja) * 2002-07-19 2004-01-29 Asahi Kasei Kabushiki Kaisha ポリオレフィン樹脂組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028150A (ja) * 2007-06-01 2016-02-25 プランティック・テクノロジーズ・リミテッド デンプンナノコンポジット材料
JP2016004978A (ja) * 2014-06-19 2016-01-12 富士フイルム株式会社 太陽電池バックシート用白色積層ポリエステルフィルム及びその製造方法、太陽電池バックシート、並びに太陽電池モジュール
JP2016215412A (ja) * 2015-05-15 2016-12-22 旭化成株式会社 帯状フィルム、包装体
JP2018111319A (ja) * 2018-04-03 2018-07-19 旭化成株式会社 ポリエチレン系架橋シュリンクフィルム
KR102416188B1 (ko) * 2021-02-18 2022-07-05 한국세라믹기술원 선도유지 패키징용 항균성 세라믹 하이브리드 필름 및 이의 제조방법

Also Published As

Publication number Publication date
JPWO2007049734A1 (ja) 2009-04-30

Similar Documents

Publication Publication Date Title
ES2816699T3 (es) Métodos, composiciones y mezclas para formar artículos que tienen resistencia al resquebrajamiento por estrés ambiental mejorada
US5254617A (en) Resin composition for producing a film and method for producing a film by using the same
JP4327956B2 (ja) 繊維強化ポリプロピレン系複合材料
WO2015116958A9 (en) Nanocomposite packaging film
JP5276091B2 (ja) ポリオレフィン組成物を製造する方法
US7211620B2 (en) Foldable polyolefin films
EP1245620A2 (en) Polypropylene base porous film and production process for the same
WO2010001471A1 (ja) Evoh複合体の製造方法
WO2007049734A1 (ja) ポリエチレン系樹脂組成物及びそのフィルム
JPS6215090B2 (ja)
KR20220131348A (ko) 연신 시트를 제조하기 위한 수지 조성물, 연신 시트, 및 연신 시트의 제조 방법
JP5363280B2 (ja) 架橋ポリエチレンからなる再生樹脂組成物及び熱収縮性フィルム
KR101909577B1 (ko) 투명성, 연질성 및 수축률이 우수한 폴리프로필렌 수지 조성물 폴리프로필렌 수지 조성물 제조방법
JP7018300B2 (ja) 農業用ポリオレフィン系多層フィルム
JP5674608B2 (ja) ポリプロピレン系樹脂組成物、それからなる積層体および二軸延伸ポリプロピレンフィルム
JP2007245459A (ja) ポリオレフィン系樹脂架橋多層延伸フィルム
KR20160059184A (ko) 수축율이 우수한 폴리프로필렌 수지 조성물 제조방법
JP5388429B2 (ja) 樹脂複合体およびその製造方法
JP2007260911A (ja) ポリオレフィン系樹脂の架橋多層延伸フィルム
JP3461951B2 (ja) ポリオレフィン組成物
JPH0651813B2 (ja) 多孔性シ−トの製造方法
JPH0764942B2 (ja) 多孔性シ−トの製造方法
JP2001294717A (ja) ポリオレフィン系樹脂組成物及び該組成物から得られるポリオレフィンフィルム
WO2023127973A1 (ja) イージーピール層用のシート
JP2606346B2 (ja) 多孔性フイルム又はシートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822438

Country of ref document: EP

Kind code of ref document: A1