WO2007049667A1 - 静電分離方法および静電分離装置 - Google Patents

静電分離方法および静電分離装置 Download PDF

Info

Publication number
WO2007049667A1
WO2007049667A1 PCT/JP2006/321323 JP2006321323W WO2007049667A1 WO 2007049667 A1 WO2007049667 A1 WO 2007049667A1 JP 2006321323 W JP2006321323 W JP 2006321323W WO 2007049667 A1 WO2007049667 A1 WO 2007049667A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
surface electrode
ash
electrostatic
resin
Prior art date
Application number
PCT/JP2006/321323
Other languages
English (en)
French (fr)
Inventor
Noboru Takikawa
Keiichi Mashio
Manabu Masamoto
Kouji Fukumoto
Yasuhiro Mayumi
Original Assignee
Kawasaki Plant Systems Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Plant Systems Kabushiki Kaisha filed Critical Kawasaki Plant Systems Kabushiki Kaisha
Priority to US11/991,903 priority Critical patent/US8071904B2/en
Priority to CN2006800342163A priority patent/CN101267890B/zh
Priority to EP06822299.1A priority patent/EP1941949B1/en
Priority to KR1020087004870A priority patent/KR100940082B1/ko
Publication of WO2007049667A1 publication Critical patent/WO2007049667A1/ja
Priority to US13/283,486 priority patent/US8653394B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/09Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces at right angles to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/60Use of special materials other than liquids
    • B03C3/64Use of special materials other than liquids synthetic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C7/00Separating solids from solids by electrostatic effect
    • B03C7/02Separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass

Definitions

  • the present invention relates to an electrostatic separation method and an electrostatic separation device for separating unburned carbon ash contained in coal ash by electrostatic force.
  • the present invention relates to an electrostatic separation method and an electrostatic separation device for separating ash contained in coal ash generated in, for example, a boiler of a coal-fired thermal power plant.
  • coal ash generated in boilers of coal-fired thermal power plants contains about 20% or more of unburned carbon, which can be separated and recovered and used as an energy source.
  • unburned carbon unburned carbon
  • W02002 / 076620 (Patent Document 1) describes a particle electrostatic separation method, an electrostatic separation apparatus, and a manufacturing system, and includes a mixture of a conductive component and an insulating component. Electrostatic separators have been proposed that separate body materials into their components by electrostatic force.
  • FIG. 5 of this Patent Document 1 shows an example of a conventional electrostatic separation device.
  • the electrodes are arranged vertically, and the bottom electrode 1 has air permeability.
  • a gas dispersion plate electrode laminate sintered porous electrode
  • air box 6 installed below the bottom electrode 1 for fluidizing the powder.
  • Patent Literature 1 W02002 / 076620 Publication
  • the present invention solves the problems of the prior art as described above, and even when the unburned component concentration of coal ash generated from the boiler of a coal-fired thermal power plant is as high as 15 to 30%, It is possible to stably separate ash without generating high unburned ash (high unburned ash and low unburned ash), and the high unburned ash can be reused as fuel.
  • An object of the present invention is to provide an electrostatic separation method and an electrostatic separation apparatus that can be reused, for example, as a secondary raw material for concrete.
  • the present invention has been made as a result of intensive studies in order to solve the above-described problems, and the gist of the present invention is as follows.
  • an electrostatic separation method for separating unburned carbon ash contained in coal ash by electrostatic force a lower electrode and an upper electrode are provided, and a voltage application circuit between the lower electrode and the upper electrode is provided in the circuit.
  • An electrostatic separation method comprising a high-dielectric resin portion, and separating unburned carbon ash in coal ash by generating a DC electric field between the lower surface electrode and the upper surface electrode
  • An electrostatic separation apparatus comprising a high dielectric resin portion provided in the middle of a voltage application circuit between the lower surface electrode and the upper surface electrode.
  • a lower surface electrode and an upper surface electrode installed at a predetermined interval from the lower surface electrode are provided, A high dielectric resin portion is provided on the upper surface electrode, and a DC power source connected to at least one of the lower surface electrode or the upper surface electrode is provided, and voltage is applied between the lower surface electrode and the upper surface electrode.
  • the top electrode is a mesh electrode having a resin rod electrode made of a high dielectric resin and a large number of openings through which coal ash can pass (6) or (7 ) Electrostatic separation device.
  • An apparatus having a structure in which a resin rod or a resin plate is sandwiched between metal terminals is inserted in the middle of the lower surface electrode and / or the power supply line between the upper surface electrode and a DC power supply.
  • the electrostatic separator according to any one of (6) to (11).
  • the unburned component concentration of coal ash generated from the boiler of a coal-fired thermal power plant is as high as 15 to 30%, and even in this case, ash can be stably separated without generating a spark. (Separation into high unburned ash and low unburned ash) is possible, and high unburned ash is reused as fuel.
  • the low unburned ash provides a significant industrially useful effect, for example, by providing an electrostatic separation method and an electrostatic separation device that can be reused as a secondary raw material for concrete.
  • FIG. 1 is a diagram illustrating a conventional electrostatic separation device.
  • FIG. 2 is a diagram for explaining a spark generation mechanism in a conventional electrostatic separation device.
  • FIG. 3 is a diagram for explaining a spark generation mechanism in a conventional electrostatic separation device.
  • FIG. 4 is a diagram illustrating an embodiment using a resin rod electrode in the electrostatic separation device of the present invention.
  • FIG. 5 is a diagram illustrating an embodiment using a plate electrode made of a high dielectric resin in the electrostatic separator of the present invention.
  • FIG. 6 is a diagram illustrating a mechanism for preventing current generation in the electrostatic separation device of the present invention.
  • FIG. 7 is a diagram illustrating Embodiment 1 using a resin rod electrode and air supply in the electrostatic separation device of the present invention.
  • FIG. 8 is a diagram illustrating Embodiment 2 using a resin rod electrode, air supply, and a low dielectric in the electrostatic separation device of the present invention.
  • FIG. 9 is a diagram illustrating Embodiment 3 using a resin rod electrode, an air pipe and a low dielectric in the electrostatic separation device of the present invention.
  • FIG. 10 is a diagram illustrating Embodiment 4 using a resin rod electrode, air piping, and a low dielectric in the electrostatic separation device of the present invention.
  • FIG. 11 is a diagram illustrating Embodiment 5 using a resin rod electrode, air piping, and a ring-shaped weight in the electrostatic separation device of the present invention.
  • FIG. 12 is a view exemplifying Embodiment 6 using a resin rod electrode and an intermediate insertion resin rod electrode in the electrostatic separation device of the present invention.
  • FIG. 13 is a diagram illustrating Embodiment 7 using a resin rod electrode and an intermediate insertion resin rod electrode in the electrostatic separation device of the present invention.
  • FIG. 14 shows an embodiment 8 using a resin rod electrode for intermediate insertion in the electrostatic separation device of the present invention.
  • FIG. 15 is a diagram illustrating Embodiment 9 using an intermediate insertion resin rod electrode in the electrostatic separation device of the present invention.
  • FIG. 16 is a diagram showing an example of an electrostatic separation device of the present invention that performs batch processing.
  • FIG. 17 is a diagram showing an example of the electrostatic separation device of the present invention that performs continuous processing when the resin rod electrode 8 is present.
  • FIG. 18 is a diagram showing an example of an electrostatic separation device of the present invention that performs continuous processing when the resin rod electrode 8 is not provided.
  • the inventors have developed an ash separation technology for separating unburned carbon ash into high unburned carbon ash and low unburned carbon ash when the unburned carbon concentration in the coal ash generated by coal-fired boiler power is as high as 15-30%. (Technology) is under scrutiny, and the following explanation will be based on the premise that coal ash is used.
  • a mesh electrode (hereinafter referred to as a “resin mesh electrode”) using a high-dielectric resin as an insulator, and conducted the same experiment.
  • the resin mesh electrode used for mesh electrode 2 (a mesh with dozens of ⁇ 10 holes on a 3mm thick flat plate) can be directly fed by a metal terminal at the feed point for DC high-voltage power. This is a high-dielectric resin, and a dipole is generated inside the resin, so that the same potential as the power supply potential can be applied uniformly to the surface of the resin network electrode. What has been possible is what we have used in this experiment because we have repeatedly found various experiments.
  • the spark generation mechanism is qualitatively that corona discharge occurs in areas where the electric field is strong, and an avalanche phenomenon occurs while ionizing the surrounding air. Subsequent detailed description is omitted. As a result, a thin plasma discharge path (streamer) is formed, the upper and lower electrodes are electrically short-circuited, and the power source electrons are continuously supplied. If you look at the force, a steep current will flow. This phenomenon appears to be a spark.
  • the force that is the result of the examination of an example of a metal mesh electrode is 3 KV / mm, and the wire diameter of the metal mesh electrode is ⁇ 1 mm (Theoretically, the following theoretical formula can be derived if the applied wire voltage V is applied to the metal mesh electrode and the spatial gap G between the upper and lower electrodes is as follows:
  • V Ec-r-ln (G / r)--(a)
  • the wire diameter can be increased to prevent the occurrence of sparks.
  • the grease rod electrode 8 (corresponding to the high dielectric resin portion of the present invention, hereinafter referred to as the grease rod electrode 8) is connected to the mesh electrode 2 (metal mesh electrode or resin mesh electrode) and the DC high voltage power source 4 The idea was to insert it between the metal terminals 7 at the feed point.
  • a flat plate electrode made of a high dielectric resin having no mesh (corresponding to the high dielectric resin part of the present invention, the following) I thought of using 2 '.
  • any high dielectric resin such as phenol resin or vinyl chloride resin can be used.
  • Air containing pulverized carbon increases conductivity, and current flows.
  • the diameter of the resin rod electrode 8 is desirably ⁇ 5 to 150, preferably ⁇ 20 to 40, and the length is desirably 0 to 300 mm, preferably 0 to 200 mm.
  • the thickness of the resin mesh electrode and the resin plate electrode is desirably 1 to 20 mm, preferably 3 to 5 mm.
  • the generation of current can also be suppressed by partially removing the powder adhesion on the lower surface of the upper electrode. Even when it is difficult to remove powder adhesion, positive and negative ions generated due to powder adhesion cannot be transferred to the power supply side or ground side. It has been confirmed in additional verification experiments, though detailed explanation is omitted, that the current generation suppression effect is achieved by inserting the grease rod electrode between the power supply side and ground side power supply lines.
  • the resin rod electrode inserted in the middle of this power supply line also corresponds to the high dielectric material resin portion of the present invention, and is hereinafter referred to as an intermediate insertion resin rod electrode
  • Embodiments 1 to 7 show cases where the resin rod electrode 8 is provided, and Embodiments 8 and 9 show cases where the resin rod electrode 8 is not provided.
  • FIG. 7 is a diagram exemplifying Embodiment 1 that uses a resin rod electrode and a means for removing adhering powder by supplying air in the electrostatic separator of the present invention.
  • the top electrode 2 is formed near the bottom of the resin rod electrode 8 corresponding to the high dielectric resin portion of the present invention. Lead the air piping from the top and remove the powder directly with air.
  • the current flows because the powder adhering to the lower part of the resin rod electrode 8 causes ionization, and the current flows. Therefore, it is possible to prevent the generation of current by removing the adhered powder directly by blowing air. Is possible.
  • the removal range is desirably the entire surface removal, and preferably 2 to 4 times the diameter of the resin rod electrode.
  • the amount of air is desirably 1 to 20 m / s, preferably 5 to 15 m / s, in terms of linear velocity.
  • FIG. 8 is a diagram illustrating Embodiment 2 using a resin rod electrode, means for removing attached powder by air supply, and a low dielectric material in the electrostatic separation device of the present invention.
  • a low dielectric 9 plate is attached in the vicinity of the lower part of the resin rod electrode 8 corresponding to the high dielectric resin part of the present invention, and an air pipe is led from the upper part of the upper electrode 2 and directly powdered with air. Remove.
  • the material of the low dielectric 9 may be any low dielectric material such as Teflon (registered trademark) resin or silicon resin.
  • FIG. 9 is a diagram illustrating Embodiment 3 using a resin rod electrode, a means for removing adhered powder using an air pipe, and a low dielectric in the electrostatic separation device of the present invention.
  • a low dielectric 9 plate is attached near the lower part of the resin rod electrode 8 corresponding to the high dielectric resin part of the present invention, and an air pipe is led from the lower part of the upper surface electrode 2 and directly powdered with air. Remove.
  • the distance between the air pipe and the upper surface electrode 2 may be determined according to the required spraying area.
  • FIG. 10 is a diagram exemplifying Embodiment 4 using a resin rod electrode, means for removing adhering powder using an air pipe, and a low dielectric material in the electrostatic separation device of the present invention.
  • Air is passed through the inside of the resin rod electrode 8 corresponding to the high dielectric material resin portion of the present invention, and a porous plate is attached in the vicinity of the lower portion to remove the powder.
  • FIG. 11 is a diagram exemplifying Embodiment 5 using a resin rod electrode, means for removing adhering powder by air piping, and a ring-shaped weight in the electrostatic separation device of the present invention.
  • a ring-shaped weight 11 is attached to the resin rod electrode 8 corresponding to the high dielectric material resin portion of the present invention to remove the powder.
  • the inner diameter of the ring-shaped weight 11 may be 1 mm or more larger than the diameter of the resin rod electrode.
  • the weight is desirably 5 to 300 g, preferably 20 to 100 g.
  • any of a rubber system, a resin system, a ceramic system, and a metal system may be used.
  • the weight is not limited to the ring shape but may be a ball shape or may be arranged on the entire surface.
  • FIG. 12 is a diagram illustrating Embodiment 6 using the resin rod electrode and the intermediate insertion resin rod electrode in the electrostatic separation apparatus of the present invention.
  • a resin rod electrode 12 for intermediate insertion corresponding to the high dielectric resin portion of the present invention is inserted between the power supply wires of the resin rod electrode 8 to the DC high-voltage power supply 4, and the following current countermeasures are taken. Do.
  • the diameter of the resin rod electrode 12 for charging is desirably ⁇ 5 to 150, preferably ⁇ 20 to 40, and may be a circle or a corner.
  • the length is desirably 2 to 500 mm, preferably 50.
  • FIG. 13 is a diagram exemplifying Embodiment 7 using the resin rod electrode and the intermediate insertion resin rod electrode in the electrostatic separation device of the present invention.
  • An intermediate insertion resin rod electrode 12 'corresponding to the high dielectric resin portion of the present invention is inserted into the ground line of the DC high voltage power source 4 to take measures against current.
  • FIG. 14 is a diagram exemplifying Embodiment 8 using the intermediate insertion grease rod electrode in the electrostatic separator of the present invention.
  • an intermediate insertion resin rod electrode 12 corresponding to the high dielectric material of the present invention is inserted to take measures against current.
  • FIG. 15 is a diagram illustrating an embodiment 9 using the intermediate insertion grease rod electrode in the electrostatic separator of the present invention.
  • An intermediate insertion grease rod electrode 12 'corresponding to the high dielectric grease part of the present invention is inserted into the ground line of the DC high voltage power source 4 to take measures against current.
  • any material can be used as long as it is a high-dielectric resin such as phenol resin or salty resin resin.
  • Top electrode 2 Structure (1) Mesh electrode 2 (Fabric mesh electrode) W100 X L200 X 3t
  • Upper and lower electrode gap 80mm (distance between vertical direction of lower electrode 1 and upper electrode 2)
  • Air is guided from the top of the top electrode to the center of the bottom surface of the top electrode by air piping 13 and blown.
  • Adhesive powder removal area Near the lower part of the resin rod electrode D50mm range 14 Air blowing speed: 10m / s
  • Vibration condition of vibrator 5 amplitude 2mm, frequency 28Hz
  • Top electrode 2 Structure (1) Mesh electrode 2 (Fabric mesh electrode) W100 X L200 X 3t
  • Upper and lower electrode gap 80mm (distance between vertical direction of lower electrode 1 and upper electrode 2)
  • Air blowing speed 10m / s
  • Vibration condition of vibrator 5 amplitude 2mm, frequency 28Hz
  • Top electrode 2 Configuration (1) Mesh electrode 2 (Fabric mesh electrode) W100 X L200 X 3t
  • Upper and lower electrode gap 80mm (distance between vertical direction of lower electrode 1 and upper electrode 2)
  • Adhesive powder removal area Near the bottom of the resin rod electrode D50mm range 14 Air blowing speed: 5m / s
  • Vibration condition of vibrator 5 amplitude 2mm, frequency 28Hz
  • Top electrode 2 Structure (1) Mesh electrode 2 (Fabric electrode) W200 X L1600 X 3t
  • Upper and lower electrode gap 80mm (distance between vertical direction of lower electrode 1 and upper electrode 2)
  • Ring specifications inner diameter 22mm, weight 75g X 4
  • Vibration condition of vibrator 5 amplitude 2mm, frequency 28Hz
  • the carbon concentration of high unburned carbon ash was 67% (26kg / h), and the carbon concentration of low unburned carbon ash was 9% (74kg / h).
  • Top electrode 2 Structure (1) Mesh electrode 2 (Fabric electrode) W200 X L1600 X 3t
  • Upper and lower electrode gap 80mm (distance between vertical direction of lower electrode 1 and upper electrode 2)
  • Vibration condition of vibrator 5 amplitude 2mm, frequency 28Hz 6) Dispersion air supply: 260L / min
  • Top electrode 2 Configuration Mesh electrode 2 (Metal mesh electrode) W200 X L1600 X Wire diameter ⁇ 1
  • Upper and lower electrode gap 80mm (distance between vertical direction of lower electrode 1 and upper electrode 2)
  • Vibration condition of vibrator 5 amplitude 2mm, frequency 28Hz
  • High unburned carbon ash was recovered from the suction port under the above conditions. As a result, the spike-like current waveform becomes smooth, the current value is about 30 wA, and the ash separation result shows that the carbon concentration of high unburned carbon ash is 67% (26 kg / h), and that of low unburned carbon ash. The carbon concentration was 9% (74kg / h).
  • Top electrode 2 configuration Grease plate electrode W200 X L1600 X 3t (alternative to mesh electrode 2)
  • Upper and lower electrode gap 80mm (distance between vertical direction of lower electrode 1 and upper electrode 2)
  • Vibration condition of vibrator 5 amplitude 2mm, frequency 28Hz

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrostatic Separation (AREA)

Abstract

【課題】石炭焚火力発電所のボイラーから発生するには石炭灰の未燃分濃度が15~30%と高い場合においても、スパークを発生することなく安定的に灰の分離(高未燃分灰と低未燃分灰への分離)が可能であり、高未燃分灰は燃料として再利用を行ない、低未燃分灰は、例えばコンクリートの副原料として再利用することができる静電分離方法および静電分離装置を提供する。 【解決手段】石炭灰に含まれる未燃炭素灰を静電気力により分離する静電分離方法において、略平板状の下面電極とその上方に、高誘電体樹脂部を有する上面電極とを設け、前記下面電極もしくは上面電極のいずれか一方の電極をプラス極、他方の電極をマイナス極として、前記下面電極と上面電極との間に直流電界を発生させて静電気力による分離ゾーンを形成させ、該分離ゾーンに供給した石炭灰中の未燃炭素灰を分離することを特徴とする静電分離方法および静電分離装置。

Description

明 細 書
静電分離方法および静電分離装置
技術分野
[0001] 本発明は、石炭灰に含まれる未燃炭素灰を静電気力により分離する静電分離方法 および静電分離装置に関する。
[0002] 具体的には、例えば石炭焚火力発電所のボイラーなどで発生する石炭灰に含まれ る灰を分離する静電分離方法および静電分離装置に関する。
背景技術
[0003] 例えば石炭焚火力発電所のボイラーなどで発生する石炭灰には約 20%以上の未 燃炭素が含まれており、この未燃炭素を分離'回収してエネルギー源として用いるこ とが検討されており、従来力 種々の提案がなされている。
[0004] 例えば、 W02002/076620号公報(特許文献 1)には、粒子の静電分離方法および 静電分離装置ならびに製造システムが記載されており、導電性成分と絶縁性成分が 混在する粉粒体の原料を静電気力によりそれぞれの成分に分離する静電分離装置 が提案されている。
[0005] この特許文献 1の図 5 (本願の図 1参照)には、従来の静電分離装置の一例が示さ れており、電極は上下配置になっており底面電極 1に通気性を有するガス分散板電 極 (積層燒結多孔式電極)を配置し、粉の流動化のためにその底面電極 1の下側に 設置された風箱 6からエアーを吹き込む構造となっている。
[0006] また、上面電極 2には粒子が通過しうる多数の開口部を有する略平板状のメッシュ 電極が配置されており、更に、装置全体に振動を付与する振動機またはノッカー 5が 取り付けられている。そして、その上下面電極間に直流高圧電圧を印加し、静電分 離ゾーン 3に導電性粒子 (未燃分)と絶縁性粒子 (灰分)が混在する粉粒体の原料( 未燃分濃度 =導電性粒子重量比 2〜5%)を投入し装置に振動を付与しながら静電 分離を行なう方法が記載されて 、る。
[0007] しかし、この特許文献 1に記載された方法では、導電性成分と絶縁性成分が混在 する粉粒体の原料の未燃分濃度が 15〜30%と高い場合には、静電分離ゾーン 3の エアーの導電性成分の濃度が高くなることは避けられず、絶縁性が低下しスパーク が発生することで分離性能が低下するという問題点があった。
特許文献 1: W02002/076620号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、前述のような従来技術の問題点を解決し、石炭焚火力発電所のボイラ 一から発生する石炭灰の未燃分濃度が 15〜30%と高い場合においても、スパークを 発生することなく安定的に灰の分離 (高未燃分灰と低未燃分灰への分離)が可能で あり、高未燃分灰は燃料として再利用を行ない、低未燃分灰は、例えばコンクリート の副原料として再利用することができる静電分離方法および静電分離装置を提供す ることを課題とする。
課題を解決するための手段
[0009] 本発明は、前述の課題を解決するために、鋭意検討の結果なされたものであり、そ の要旨とするところは、特許請求の範囲に記載した通りの下記内容である。
(1)石炭灰に含まれる未燃炭素灰を静電気力により分離する静電分離方法におい て、下面電極と上面電極とを設け、前記下面電極と前記上面電極との間の電圧印加 回路中に高誘電体榭脂部を有し、前記下面電極と上面電極との間に直流電界を発 生させることにより石炭灰中の未燃炭素灰を分離することを特徴とする静電分離方法
(2)石炭灰に含まれる未燃炭素灰を静電気力により分離する静電分離方法におい て、下面電極と高誘電体榭脂部を有する上面電極とを設け、前記下面電極と上面電 極との間に直流電界を発生させることにより石炭灰中の未燃炭素灰を分離することを 特徴とする(1)に記載の静電分離方法。
(3)前記上面電極に、棒状の高誘電体榭脂部を有するメッシュ電極としたことを特徴 とする(1)または (2)に記載の静電分離方法。
(4)前記上面電極を、高誘電体榭脂を用いた平板電極としたことを特徴とする(1)乃 至(3)の 、ずれかに記載の静電分離方法。
(5)前記上面電極に付着粉の除去手段を備えたことを特徴とする(1)乃至 (4)の ヽ ずれかに記載の静電分離方法。
(6)石炭灰に含まれる未燃炭素灰を静電気力により分離する静電気分離装置にお いて、下面電極と該下面電極から所定間隔をおいてその上側に設置された上面電 極とを設け、前記下面電極と前記上面電極との間の電圧印加回路の途中に高誘電 体榭脂部を設けたことを特徴とする静電分離装置。
(7)石炭灰に含まれる未燃炭素灰を静電気力により分離する静電気分離装置にお いて、下面電極と該下面電極から所定間隔をおいてその上側に設置された上面電 極とを設け、該上面電極に高誘電体榭脂部を設け、前記下面電極または上面電極 の少なくとも一方に接続された直流電源とを備えており、下面電極と上面電極との間 に電圧が印加されることを特徴とする (6)に記載の静電分離装置。
(8)前記上面電極を高誘電体榭脂で製作された榭脂棒電極と、石炭灰が通過しうる 多数の開口部とを有するメッシュ電極としたことを特徴とする(6)または(7)に記載の 静電分離装置。
(9)前記上面電極を高誘電体榭脂で製作された平板電極としたことを特徴とする (6) 乃至 (8)の 、ずれかに記載の静電分離装置。
(10)前記上面電極への付着粉を除去する手段として、エアーを用いて粉の除去が できるように構成されてなることを特徴とする(6)乃至(9)の ヽずれかに記載の静電 分離装置。
(11)前記上面電極への付着粉を除去する手段として、電極に振動または衝撃手段 が構成されてなることを特徴とする(6)乃至(10)の 、ずれかに記載の静電分離装置
( 12)前記下面電極および/または前記上面電極と直流電源との間の給電線の途中 に、金属端子で榭脂棒または榭脂板を挟んだ構造の装置を装入したことを特徴とす る(6)乃至( 11)の 、ずれかに記載の静電分離装置。
発明の効果
本発明によれば、石炭焚火力発電所のボイラーから発生する石炭灰の未燃分濃度 が 15〜30%と高 、場合にぉ 、ても、スパークを発生することなく安定的に灰の分離( 高未燃分灰と低未燃分灰への分離)が可能であり、高未燃分灰は燃料として再利用 を行ない、低未燃分灰は、例えばコンクリートの副原料として再利用することができる 静電分離方法および静電分離装置を提供することができるなど、産業上有用な著し い効果を奏する。
図面の簡単な説明
[図 1]従来の静電分離装置を例示する図である。
[図 2]従来の静電分離装置におけるスパーク発生メカニズムを説明する図である。
[図 3]従来の静電分離装置におけるスパーク発生メカニズムを説明する図である。
[図 4]本発明の静電分離装置における榭脂棒電極を用いた実施形態を例示する図 である。
[図 5]本発明の静電分離装置における高誘電体榭脂からなる平板電極を用いた実施 形態を例示する図である。
[図 6]本発明の静電分離装置における電流発生を防止するメカニズムを説明する図 である。
[図 7]本発明の静電分離装置における榭脂棒電極およびエアー供給を用いた実施 形態 1を例示する図である。
[図 8]本発明の静電分離装置における榭脂棒電極、エアー供給および低誘電体を用 いた実施形態 2を例示する図である。
[図 9]本発明の静電分離装置における榭脂棒電極、エアー配管および低誘電体を用 いた実施形態 3を例示する図である。
[図 10]本発明の静電分離装置における榭脂棒電極、エアー配管および低誘電体を 用いた実施形態 4を例示する図である。
[図 11]本発明の静電分離装置における榭脂棒電極、エアー配管およびリング状の重 りを用いた実施形態 5を例示する図である。
[図 12]本発明の静電分離装置における榭脂棒電極および中間挿入用榭脂棒電極を 用いた実施形態 6を例示する図である。
[図 13]本発明の静電分離装置における榭脂棒電極および中間挿入用榭脂棒電極を 用いた実施形態 7を例示する図である。
[図 14]本発明の静電分離装置における中間挿入用榭脂棒電極を用いた実施形態 8 を例示する図である。
[図 15]本発明の静電分離装置における中間挿入用榭脂棒電極を用いた実施形態 9 を例示する図である。
[図 16]バッチ処理を行う本発明の静電分離装置の実施例を示す図である。
[図 17]榭脂棒電極 8がある場合の連続処理を行う本発明の静電分離装置の実施例 を示す図である。
[図 18]榭脂棒電極 8がない場合の連続処理を行う本発明の静電分離装置の実施例 を示す図である。
発明を実施するための最良の形態
[0012] 本発明の実施形態について、図 2乃至図 17を用いて詳細に説明する。
[0013] 発明者らは、石炭焚ボイラー力 発生する石炭灰に含まれる未燃炭素濃度が 15〜 30%と高い場合における灰分離技術 (高未燃炭素灰と低未燃炭素灰に分離する技 術)に関して鋭意検討中であり、以下、原料は石炭灰を使用する前提で説明を行なう ことにする。
[0014] <金属網での実験 >
前述の従来技術の問題点の確認のために実際に前述の特許文献 1に記載された 装置構造と同等機能の小型装置(平面積 W100mm X L200mm、上下電極間 80mm)を 準備し検証実験を行なうことにした。そして、図 1に示すような、上面電極 2のメッシュ 電極に金属網電極(目開き: 15mm,素線径 φ lmm)を準備し、その金属網電極に直 流高圧電源 4から直接給電を行ない、原料として石炭灰 (未燃炭素濃度が 15〜30% )を使用し、実験を行った。以下に実験結果を示す。
[0015] 金属網を用いた実験の結果、図 2に示すように、電圧 5KV以上で上下電極間の各 部からスパーク発生し分離性能が低下することが判明した。
[0016] よって、金属網電極では、石炭灰 (未燃分濃度が 15〜30%)を使用することでスパ ークが発生することはこの実験で検証できた。
[0017] <榭脂網での実験 >
次に、スパーク対策も含め、金属網電極の代替として、絶縁物である高誘電体榭脂 を使用した網電極 (以下榭脂網電極と言う)を準備し同様に実験を行なった。 [0018] ここで、メッシュ電極 2に使用した榭脂網電極 (厚さ 3mmの平板に φ 10の孔を数十 個開けた網)は、直流高圧電源力も給電点の金属端子で直接給電を行なうと高誘電 体榭脂であり榭脂内部で双極子が発生して給電電位と同電位を榭脂網電極表面に 均一に印加することが可能で、その電位を利用して静電分離が可能であることは、こ れまで、種々の実験を重ね見出していたので今回の実験で使用したものである。
[0019] 榭脂網を用いた実験の結果、図 3に示すように電圧 20KV以上で給電点の金属端 子と下面電極間でスパークが発生し分離性能が低下することが判明した。
[0020] この実験でもスパーク発生電圧は金属網よりやや高くなつて 、るがスパークが発生 することが判明した。
[0021] よって、電圧の高い低いはあるもののメッシュ電極 2の材質には関係なくスパークが 発生するため、次に発明者らは、そのスパーク発生メカニズムおよびスパーク発生防 止について考えることにした。
[0022] <スパーク発生メカニズム >
スパークの発生メカニズムは、定性的には、電界の強い部分でコロナ放電が発生し 周囲の空気を電離しながら電子なだれ現象が発生する。その後の詳述は省略する 力 結果的にはプラズマ状の細い放電路 (ストリーマ)が形成され、上下電極間は電 気的に短絡状態となり、電源力 電子が連続的に供給されるので電源側力 見れば 急峻な電流が流れることになる。この現象がスパークとなって見えるものである。
[0023] また、ここで少し定量的に考えてみることにする。ここでは、金属網電極の一例の検 討結果である力 一般的に空気のコロナ放電開始電界 Ec (電離開始電圧)は 3KV/m mとされており、金属網電極の素線径が φ 1mm (素線半径 r= 0.5mm)で、金属網電極 への印加電圧 V、上下電極間の空間ギャップ Gとすれば、理論的には下記の理論式 を導出することができる。
V=Ec-r-ln (G/r) - --(a)
この (a)式を変形して、電離が開始する空間ギャップ Gを求めると以下に式となる。 G=r-exp (V/Ec/r)•••(b)
この (b)式に r=0.5mm、 Ec=3KV/mm、印加電圧 V=5、 6、 7、 8KVを代入して電離開 始空間ギャップ Gを求めると、 G = 14、 27、 53、 103mmとなることが判明した。 [0024] つまり、石炭灰の未燃炭素濃度が高くなれば静電分離ゾーンの絶縁性も低下する ので、上下電極間空間ギャップ G=80mmであっても空間ギャップ Gが等価的には減少 する方向になるので金属網電極では 6〜7KV付近でもスパークが発生したものと思わ れる。また、榭脂網電極の給電点の金属端子からのスパーク発生電圧は 20KV以上と やや高いものの、これは、スパーク発生経路が榭脂網電極を一部迂回するようになる ため、等価的には空間ギャップが長くなつた効果があるためであると考えられる。
[0025] <スパーク発生防止について >
金属網電極だけに注目すれば、スパークの発生防止を行なうには素線径を太くす れば良い。例えば、上記検討条件で素線径を φ 2mm (素線半径 r=lmm)にすること で、印加電圧 V=8KVで電離開始空間ギャップ G = 14mmとすることができ効果があ ることは理解できるが、金属網電極の重量が重くなり取り付けを強化する必要がある ばかりでなぐ市販品では対応できなくなり、特注品となる可能性も出てくるので費用 面でも高価になり経済的ではなくなる。
[0026] よって、ここでのスパーク発生防止の考え方である力 電子なだれ現象〜ストリーマ の発生を防止することを考えた。その具体的な対策は、金属網電極 (または、榭脂網 電極)に直流高圧電源カゝら給電点の金属端子を金属網電極 (または、榭脂網電極) に直接給電を行なっていたのが問題であると考えた。そして、対策 1として、電子の電 源からの急激な供給を防止し、かつ、電位は伝える必要があるとの考えのもとに、図 4 に示すように、高誘電体榭脂からなる榭脂棒電極 8 (本発明の高誘電体榭脂部に相 当し、以下榭脂棒電極 8と言う)を、メッシュ電極 2 (金属網電極または榭脂網電極)と 直流高圧電源 4からの給電点の金属端子 7の間に装入することを発想した。
[0027] これによつて、分離ゾーン 3における未燃分 (C)濃度が 15〜30%と高い場合であつ ても、電子の電源力もの急激な供給を防止することによって灰分離性能の低下を招く ことなくスパーク発生を防止することができる。
[0028] また、対策 2として、メッシュ電極 2の代替として、図 5に示すような網目を有しない高 誘電体榭脂からなる平板電極 (本発明の高誘電体榭脂部に相当し、以下榭脂板電 極と言う) 2'を使用することを発想した。そして、実際に実験を行なってみたところ、分 離ゾーン 3における未燃分 (C)濃度が 15〜30%と高 、場合であっても、電子の電源 力 の急激な供給を防止することによって灰分離性能の低下を招くことなくスパーク の発生を防止することを見出した。
[0029] 以下の説明は榭脂網電極と金属網電極と榭脂板電極での共通することなので、榭 脂網電極 =金属網電極 =榭脂板電極と取り扱い単なる上面電極と言う。
[0030] なお、本発明の高誘電体榭脂部の材質に関しては、フエノール榭脂、塩化ビニル 榭脂などの高誘電体榭脂であれば何でも使用できる。
[0031] <電流発生について >
しかし、スパークの発生を防止出来たものの、連続運転時間が 10分程度を過ぎると 僅かに電流の流れる現象が発生し、次第に増加し 1mA程度にまで達すると、直流高 圧電源装置の電流制限機能 (電流を設定電流 1mAに保持しながら電圧を下げる機 能)が働き、印加電圧が下がってしまい、分離性能の低下を招くことになつてしまった 。よって、次に電流発生メカニズムおよび電流発生防止について考えることにした。
[0032] <電流発生メカニズム推定のための実験 >
電流発生の原因として以下の 5項目を推定し、榭脂棒電極と榭脂網電極との組み 合わせの実験装置での確認と電流発生の原因追求を行なっていった。
(推定 1)
榭脂棒電極に実際に 1mA程度の電流が流れて 、る。
(推定 1対する確認実験結果)
実際に高分子構造の榭脂に電流値は 10のマイナス 11乗 (A/cm2)であり殆ど電流 は流れな 、ことが理解できるので、これが原因でな!、ことが判明した。
(推定 2)
直流高圧電源力 榭脂棒電極への給電点の金属端子での電離による正、負イオン が発生し、そのイオンが榭脂棒電極、その他の壁面に蓄積することによって電流が流 れている。
(推定 2対する確認実験結果)
イオン蓄積であれば電源極性の切換えを行なえば、イオン中和が発生するために 電源切換え直後においては電流が減少するはずであるが、実験の結果は電流減少 は認められな力つたのでこれが原因でないことも判明した。 (推定 3)
微粉炭素を含む空気が導電性を増し電流が流れる。
(推定 3対する確認実験結果)
負荷運転で 60分経過後に電流値は 0.1mAまで達した。その後に負荷運転を停止し、 その状態で電流の流れる状況を調査したが、実験の結果は、負荷運転を停止した状 態でも電流は 0.1mA流れたのでこれが原因でないことも判明した。
(推定 4)
榭脂棒電極表面に付着した粉による電流経路形成が原因で電流が流れる。
(推定 4対する確認実験結果)
負荷運転で 60分経過後に電流値は 0.1mAまで達した。その後に負荷運転を停止し、 その状態で榭脂棒電極表面に付着した粉を除去した。実験の結果は、粉を除去して も電流は 0.1mA流れたこれが原因でないことも判明した。
(推定 5)
上面電極下面への粉付着 (ミクロ突起物付着)により部分的に電界が強くなり電離が 発生。その電離により発生する正、負イオンが電源側、接地側に移動し電流が流れ る。
(推定 5対する確認実験結果)
負荷運転中に上面電極下面に付着した粉をエアー直接吹付けることで除去を行な つてみた。実験の結果電流が流れないことが確認でき、この上面電極下面への粉付 着が電流発生の原因であることが判明した。
(電流発生部分特定のための追加実験)
また、上面電極下面の粉付着が電流発生原因であることは判明したが、全面か、部 分的かを確認するための実験を行うことにした。その結果、榭脂棒電極下部付近の 粉を部分的に除去を行なうことで電流が流れないことが判明した。
<電流発生メカニズムの推定 >
上記の各種実験の結果から電流発生メカニズムを推定した結果、図 6に示すように 、電圧を印加して負荷運転を行なうと、上面電極 2の裏面に粉が静電気力で付着す る。榭脂棒電極 8の下部付近の電界は他の上面電極部分より強ぐ粉が付着すると 粉はミクロな突起物であり、突起物表面の電界は強ぐ除々にコロナ放電を開始し、 空気を電離して、正、負イオンを発生させ、そのイオンで帯電した粉が更にその上に 付着し堆積していく。そして、粉体層が厚くなつてくると粉内部の保持する電荷が大き くなり、粉体層内の電界強度が大きくなり増幅的に正、負イオンを発生させることにな る。その正、負イオンが電源側、接地側に引き寄せられ各々で電子の受け渡しを行 な ヽ電源側からみれば電流が流れる
ことになるものと推定した。
[0034] <スパーク、電流発生対策について >
よって、整理を行なうと、金属網電極や榭脂網電極などのメッシュ電極 2の上部に榭 脂棒電極 8を設けたり、メッシュ電極の代替として榭脂板電極 2'を使用することで、電 子の電源力もの急激な供給を防止することでスパークを抑制することができる。
[0035] 榭脂棒電極 8の直径としては、望ましくは φ 5〜150、好ましくは φ 20〜40であり、長 さとしては、望ましくは 0〜300mm、好ましくは 0〜200mmである。また、榭脂網電極、 榭脂板電極の厚みは望ましくは l〜20mm、好ましくは 3〜5mmで良い。
[0036] そして、上面電極下面の粉付着の部分的な除去を行なうことで電流発生も抑制す ることができる。また、粉付着の除去が困難である場合においても、粉付着により発生 した正、負イオンが電源側、接地側との電子の受け渡しが出来ないように、榭脂棒電 極 8と同等の榭脂棒電極を電源側、接地側の給電線の中間に挿入することで電流発 生の抑制効果があることは、詳述は省略するが追加検証実験にて確認済みである。
(この給電線の中間に挿入する榭脂棒電極も、本発明の高誘電体榭脂部に相当し、 以下、中間挿入用榭脂棒電極と言う)
以下に、本発明の静電分離装置の好ましい実施形態について説明する。
[0037] 実施形態 1〜7は榭脂棒電極 8を有する場合、実施形態 8, 9は榭脂棒電極 8を有し ない場合を示す。
[0038] (実施形態 1)
図 7は、本発明の静電分離装置における榭脂棒電極およびエアー供給による付着 粉の除去手段を用 、た実施形態 1を例示する図である。
[0039] 本発明の高誘電体榭脂部に相当する榭脂棒電極 8の下部付近まで上面電極 2の 上部からエアー配管を導き、直接エアーで粉の除去を行なう。
[0040] 電流が流れるのは榭脂棒電極 8の下部付近に付着した粉が原因で電離が発生し 電流が流れるので、その付着粉を直接エアーを吹き付け除去することで電流発生を 防止することが可能である。
[0041] 除去を行なう範囲としては、望ましくは全面除去であって、好ましくは榭脂棒電極直 径の 2〜4倍である。
[0042] また、エアー量は線速で望ましくは l〜20m/s、好ましくは 5〜15m/sである。
[0043] (実施形態 2)
図 8は、本発明の静電分離装置における榭脂棒電極、エアー供給による付着粉の 除去手段および低誘電体を用いた実施形態 2を例示する図である。
[0044] 本発明の高誘電体榭脂部に相当する榭脂棒電極 8の下部付近に低誘電体 9の板 を取り付け、かつ、上面電極 2の上部からエアー配管を導き、直接エアーで粉の除去 を行なう。
[0045] 榭脂棒電極 8の下部付近に低誘電体 9の板を取り付けることで、粉の付着量を軽減 することが出来るため、エアー吹き付けで粉の除去が容易となる。
[0046] 低誘電体 9の材質はテフロン (登録商標)榭脂、シリコン榭脂等の低誘電体物質で あれば何でも良い。
[0047] (実施形態 3)
図 9は、本発明の静電分離装置における榭脂棒電極、エアー配管による付着粉の 除去手段および低誘電体を用いた実施形態 3を例示する図である。
[0048] 本発明の高誘電体榭脂部に相当する榭脂棒電極 8の下部付近に低誘電体 9の板 を取り付け、かつ、上面電極 2の下部からエアー配管を導き、直接エアーで粉の除去 を行なう。
[0049] 榭脂棒電極 8の下部付近に低誘電体の板を取り付けることで、粉の付着量を軽減 することが出来るため、エアー吹き付けで粉の除去が容易となる。
[0050] エアー配管と上面電極 2との距離は吹付け必要吹付け面積に応じて決定すると良 い。
[0051] (実施形態 4) 図 10は、本発明の静電分離装置における榭脂棒電極、エアー配管による付着粉 の除去手段および低誘電体を用いた実施形態 4を例示する図である。
[0052] 本発明の高誘電体榭脂部に相当する榭脂棒電極 8の内部にエアーを通し、下部 付近に多孔板を取り付け、粉の除去を行なう。
[0053] 榭脂棒電極 8の内部にエアーを通し、下部付近に多孔板 10を取り付け、粉の除去 を行なうことで、外部からのエアー配管の供給が不要となり容易に粉の除去が可能と なる。なお、エアーは榭脂棒電極を通さず、エアー配管で多孔板に直接エアー供給 しても良い。
[0054] 多孔板 10に関しては、圧損面、目詰り面から実験で都度決定するのが良い。
[0055] (実施形態 5)
図 11は、本発明の静電分離装置における榭脂棒電極、エアー配管による付着粉 の除去手段およびリング状の重りを用いた実施形態 5を例示する図である。
[0056] 本発明の高誘電体榭脂部に相当する榭脂棒電極 8にリング状の重り 11を取り付け 粉の除去を行なう。
[0057] 榭脂棒電極 8にリング状の重り 11を取り付けることで、装置全体の振動が伝わり、リ ング状の重り 11が振動し、その振動で榭脂棒電極 8の下部付近の粉の除去が可能と なる。
[0058] リング状の重り 11の内径は榭脂棒電極直径より 1mm以上大きくすると良 、。
[0059] また、重さは望ましくは 5〜300g、好ましくは 20〜100gである。材質に関しては、ゴム 系統、榭脂系統、セラミック系統、金属系統の何れでも良い。重りはリング状に限定す るのではなくボール状であっても良ぐまた、全面に配置しても良い。
[0060] (実施形態 6)
図 12は、本発明の静電分離装置における榭脂棒電極および中間挿入用榭脂棒電 極を用いた実施形態 6を例示する図である。
[0061] 榭脂棒電極 8〜直流高圧電源 4の給電線の間に、本発明の高誘電体榭脂部に相 当する中間挿入用榭脂棒電極 12を装入し下記の電流対策を行なう。
[0062] つまり、粉付着により発生した正、負イオンが電源側との電子の受け渡しが出来な
V、ように給電線の中間に中間挿入用榭脂棒電極 12を装入することで電流の流れを 防止する。
[0063] 装入用の榭脂棒電極 12の直径としては、望ましくは φ 5〜150、好ましくは φ 20〜40 であり、円形でなくても角でも良い。長さとしては、望ましくは 2〜500mm、好ましくは 50
〜100mmで良い。
[0064] (実施形態 7)
図 13は、本発明の静電分離装置における榭脂棒電極および中間挿入用榭脂棒電 極を用いた実施形態 7を例示する図である。
[0065] 直流高圧電源 4の接地線に、本発明の高誘電体榭脂部に相当する中間挿入用榭 脂棒電極 12'を装入し電流対策を行なう。
[0066] 粉付着により発生した正、負イオンが接地側との電子の受け渡しが出来ないように 給電線の中間に中間挿入用榭脂棒電極 12'を装入することで電流の流れを防止す る。
[0067] (実施形態 8)
図 14は、本発明の静電分離装置における中間挿入用榭脂棒電極を用いた実施形 態 8を例示する図である。
[0068] 上面電極 2〜直流高圧電源 4の給電線の間に、本発明の高誘電体榭脂部に相当 する中間挿入用榭脂棒電極 12を装入し電流対策を行なう。
[0069] 粉付着により発生した正、負イオンが電源側との電子の受け渡しが出来ないように 給電線の中間に中間挿入用榭脂棒電極 12を装入することで電流の流れを防止する
[0070] (実施形態 9)
図 15は、本発明の静電分離装置における中間挿入用榭脂棒電極を用いた実施形 態 9を例示する図である。
[0071] 直流高圧電源 4の接地線に本発明の高誘電体榭脂部に相当する中間挿入用榭脂 棒電極 12'を装入し電流対策を行なう。
[0072] 粉付着により発生した正、負イオンが接地側との電子の受け渡しが出来ないように 給電線の中間に中間挿入用榭脂棒電極 12'を装入することで電流の流れを防止す る。 [0073] 榭脂網電極、榭脂棒電極、榭脂板電極の材質に関しては、フエノール榭脂、塩ィ匕 ビュル榭脂などの高誘電体榭脂であれば何でも使用できる。
実施例
[0074] 本発明の静電分離方法および静電分離装置を、下記条件にて実施した。
[0075] (実施例 1)
図 16に示すバッチ処理を行う静電分離装置を用いて以下の基本構成および条件 にて実験した。
1)上面電極 2構造:(1)メッシュ電極 2 (榭脂網電極) W100 X L200 X 3t
(2)榭脂棒電極 8 2O X L1OO
2)上下電極ギャップ: 80mm (下面電極 1と上面電極 2の鉛直方向間距離)
3)原粉:未燃炭素濃度 25%を含む石炭灰 (100g)を使用
4)電流対策:上面電極の上部からエアー配管 13で上面電極下面中央へエアーを導 き吹付け
付着粉除去面積:榭脂棒電極下部付近 D50mmの範囲 14 吹付けエアー線速: 10m/s
5)振動機 5の振動条件:振幅 2mm、周波数 28Hz
6)分散用エアー供給量: 16L/min
上記の条件により高未燃炭素灰を吸引口から回収した。その結果、電流値は 10 A 程度となり、灰分離結果は高未燃炭素灰の炭素濃度 68% (28g)、低未燃炭素灰の炭 素濃度 8% (72g)となった。
[0076] (実施例 2)
図 16に示すバッチ処理を行う静電分離装置を用いて以下の基本構成および条件 にて実験した。
1)上面電極 2構造:(1)メッシュ電極 2 (榭脂網電極) W100 X L200 X 3t
(2)榭脂棒電極 8 2O X L1OO
2)上下電極ギャップ: 80mm (下面電極 1と上面電極 2の鉛直方向間距離)
3)原粉:未燃炭素濃度 27%を含む石炭灰 (100g)を使用
4)電流対策:下記の対策 1、対策 2の各々の効果を確認した。 [0077] (対策 1)上部電極の上部力 エアー配管 13でエアーを導き上面電極下 面中央に吹付け + 低誘電体 9の板(□ 50mm)
(対策 2)上部電極の下部力 エアー配管 15でエアーを導き上面電極下面 中央に吹付け + 低誘電体 9の板(□ 50mm) 付着粉除去面積:榭脂棒電極下部付近 D50mmの範囲 14
吹付けエアー線速: 10m/s
5)振動機 5の振動条件:振幅 2mm、周波数 28Hz
6)分散用エアー供給量: 16L/min
上記の条件により高未燃炭素灰を吸引口から回収した。その結果、対策 対策 2の 双方の実験結果は殆ど同じであり、電流値は 4 A程度とさらに低くなり、灰分離結果 は高未燃炭素灰の炭素濃度 70% (32g)、低未燃炭素灰の炭素濃度 7% (68g)となつ た。
[0078] (実施例 3)
図 16に示すバッチ処理を行う静電分離装置を用いて以下の基本構成および条件 にて実験した。
1)上面電極 2構成: (1)メッシュ電極 2 (榭脂網電極) W100 X L200 X 3t
(2)榭脂棒電極 8 2O X L1OO
2)上下電極ギャップ: 80mm (下面電極 1と上面電極 2の鉛直方向間距離)
3)原粉:未燃炭素濃度 21%を含む石炭灰 (100g)を使用
4)電流対策:榭脂棒電極内部貫通によるエアー供給 + 多孔板面積(D50mm)
(榭脂棒電極 8の構造を図 10の構造と同様とした)
付着粉除去面積:榭脂棒電極下部付近 D50mmの範囲 14 吹出しエアー線速: 5m/s
5)振動機 5の振動条件:振幅 2mm、周波数 28Hz
6)分散用エアー供給量: 16L/min
上記の条件により高未燃炭素灰を吸引口から回収した。その結果:電流値は 2 A程 度とさらに低くなり、灰分離結果は、高未燃炭素灰の炭素濃度 65% (25g)、低未燃炭 素灰の炭素濃度 6% (75g)となった。 [0079] (実施例 4)
図 17に示す連続処理を行う静電分離装置を用いて以下の基本構成および条件に て実験した。
1)上面電極 2構造:(1)メッシュ電極 2 (榭脂網電極) W200 X L1600 X 3t
(2)榭脂棒電極 8 φ 20 Χ ί100 Χ 4本
2)上下電極ギャップ: 80mm (下面電極 1と上面電極 2の鉛直方向間距離)
3)原粉:未燃炭素濃度 24%を含む石炭灰、連続供給量 100kg/h
4)電流対策:榭脂棒電極にリング状の重り 11を取りつける方式
リング仕様:内径 22mm、重量 75g X 4個
5)振動機 5の振動条件:振幅 2mm、周波数 28Hz
6)分散用エアー供給量: 260L/min
上記の条件により高未燃炭素灰を吸引口から回収した。その結果、榭脂棒電極 4本 の合計電流値は 20 μ Α程度で、灰分離結果は
高未燃炭素灰の炭素濃度 67% (26kg/h)、低未燃炭素灰の炭素濃度 9% (74kg/h)と なった。
[0080] (実施例 5)
図 17に示す連続処理を行う静電分離装置を用いて以下の基本構成および条件に て実験した。
1)上面電極 2構造:(1)メッシュ電極 2 (榭脂網電極) W200 X L1600 X 3t
(2)榭脂棒電極 8 φ 20 Χ ί100 Χ 4本
2)上下電極ギャップ: 80mm (下面電極 1と上面電極 2の鉛直方向間距離)
3)原粉:未燃炭素濃度 29%を含む石炭灰、連続供給量 100kg/h
4)電流対策:下記の対策 1、対策 2の各々の効果を確認した。
[0081] (対策 1)榭脂棒電極〜直流高圧電源の供給線の間に榭脂棒電極 12を挿 入
(対策 2)直流高圧電源の接地線に榭脂棒電極 12'を挿入 揷入用の榭脂棒電極仕様: φ 20 X L60
5)振動機 5の振動条件:振幅 2mm、周波数 28Hz 6)分散用エアー供給量: 260L/min
上記の条件により高未燃炭素灰を吸引口から回収した。その結果:対策 1、対策 2の 双方の実験結果は殆ど同じであり、榭脂棒電極 4本の合計電流値は 2 μ Α程度で、灰 分離結果は高未燃炭素灰の炭素濃度 69% (33kg/h)、低未燃炭素灰の炭素濃度 9 % (67kg/h)となった。
[0082] (実施例 6)
図 18に示す連続処理を行う静電分離装置を用いて以下の基本構成および条件に て実験した。
1)上面電極 2構成:メッシュ電極 2 (金属網電極) W200 X L1600 X素線径 φ 1
2)上下電極ギャップ: 80mm (下面電極 1と上面電極 2の鉛直方向間距離)
3)原粉:未燃炭素濃度 24%を含む石炭灰、連続供給量 100kg/h
4)電流対策:榭脂棒電極〜直流高圧電源の供給線の間に榭脂棒電極 12を挿入 揷入用の榭脂棒電極仕様: φ 20 X L60
5)振動機 5の振動条件:振幅 2mm、周波数 28Hz
6)分散用エアー供給量: 260L/min
上記の条件により高未燃炭素灰を吸引口から回収した。その結果、スパイク状の電 流波形が滑らかになり、電流値は 30 w A程度で、灰分離結果は高未燃炭素灰の炭 素濃度 67% (26kg/h)、低未燃炭素灰の炭素濃度 9% (74kg/h)となった。
[0083] (実施例 7)
図 18に示す連続処理を行う静電分離装置を用いて以下の基本構成および条件に て実験した。
1)上面電極 2構成:榭脂板電極 W200 X L1600 X 3t (メッシュ電極 2の代替)
2)上下電極ギャップ: 80mm (下面電極 1と上面電極 2の鉛直方向間距離)
3)原粉:未燃炭素濃度 30%を含む石炭灰、連続供給量 100kg/h
4)電流対策:直流高圧電源の接地線に榭脂棒電極 12 'を挿入
揷入用の榭脂棒電極仕様: φ 20 X L60
5)振動機 5の振動条件:振幅 2mm、周波数 28Hz
6)分散用エアー供給量: 260L/min 上記の条件により高未燃炭素灰を吸引口から回収した。その結果、電流値は 25 A 程度で、灰分離結果は高未燃炭素灰の炭素濃度 71% (35kg/h)、低未燃炭素灰の 炭素濃度 8%(65kg/h)となった。
以上の実施例により、石炭焚火力発電所のボイラーから発生するには石炭灰の未 燃分濃度が 15〜30%と高い場合においても、スパークを発生することなく安定的に 灰の分離 (高未燃分灰と低未燃分灰への分離)が可能であることが確認された。

Claims

請求の範囲
[1] 石炭灰に含まれる未燃炭素灰を静電気力により分離する静電分離方法において、 下面電極と上面電極とを設け、前記下面電極と前記上面電極との間の電圧印加回 路中に高誘電体榭脂部を有し、前記下面電極と上面電極との間に直流電界を発生 させることにより石炭灰中の未燃炭素灰を分離することを特徴とする静電分離方法。
[2] 石炭灰に含まれる未燃炭素灰を静電気力により分離する静電分離方法において、 下面電極と高誘電体榭脂部を有する上面電極とを設け、前記下面電極と上面電極と の間に直流電界を発生させることにより石炭灰中の未燃炭素灰を分離することを特 徴とする請求項 1に記載の静電分離方法。
[3] 前記上面電極に、棒状の高誘電体榭脂部を有するメッシュ電極としたことを特徴と する請求項 1または 2に記載の静電分離方法。
[4] 前記上面電極を、高誘電体榭脂を用いた平板電極としたことを特徴とする請求項 1 乃至 3の ヽずれか一項に記載の静電分離方法。
[5] 前記上面電極に付着粉の除去手段を備えたことを特徴とする請求項 1乃至 4のい ずれか一項に記載の静電分離方法。
[6] 石炭灰に含まれる未燃炭素灰を静電気力により分離する静電気分離装置にぉ 、 て、下面電極と該下面電極から所定間隔をおいてその上側に設置された上面電極と を設け、前記下面電極と前記上面電極との間の電圧印加回路の途中に高誘電体榭 脂部を設けたことを特徴とする静電分離装置。
[7] 石炭灰に含まれる未燃炭素灰を静電気力により分離する静電気分離装置におい て、下面電極と該下面電極から所定間隔をおいてその上側に設置された上面電極と を設け、該上面電極に高誘電体榭脂部を設け、前記下面電極または上面電極の少 なくとも一方に接続された直流電源とを備えており、下面電極と上面電極との間に電 圧が印加されることを特徴とする請求項 6に記載の静電分離装置。
[8] 前記上面電極を高誘電体榭脂で製作された榭脂棒電極と、石炭灰が通過しうる多 数の開口部とを有するメッシュ電極としたことを特徴とする請求項 6または 7に記載の 静電分離装置。
[9] 前記上面電極を高誘電体榭脂で製作された平板電極としたことを特徴とする請求 項 6乃至 8の 、ずれか一項に記載の静電分離装置。
[10] 前記上面電極への付着粉を除去する手段として、エアーを用いて粉の除去ができ るように構成されてなることを特徴とする請求項 6乃至 9の 、ずれか一項に記載の静 電分離装置。
[11] 前記上面電極への付着粉を除去する手段として、電極に振動または衝撃手段が構 成されてなることを特徴とする請求項 6乃至 10のいずれか一項に記載の静電分離装 置。
[12] 前記下面電極および/または前記上面電極と直流電源との間の給電線の途中に、 金属端子で榭脂棒または榭脂板を挟んだ構造の装置を装入したことを特徴とする請 求項 6乃至 11のいずれか一項に記載の静電分離装置。
PCT/JP2006/321323 2005-10-27 2006-10-26 静電分離方法および静電分離装置 WO2007049667A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/991,903 US8071904B2 (en) 2005-10-27 2006-10-26 Electrostatic separation method and electrostatic separation device
CN2006800342163A CN101267890B (zh) 2005-10-27 2006-10-26 静电分离方法以及静电分离装置
EP06822299.1A EP1941949B1 (en) 2005-10-27 2006-10-26 Electrostatic separation method and electrostatic separator
KR1020087004870A KR100940082B1 (ko) 2005-10-27 2006-10-26 정전분리방법 및 정전분리장치
US13/283,486 US8653394B2 (en) 2005-10-27 2011-10-27 Electrostatic separation method and electrostatic separation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-312801 2005-10-27
JP2005312801A JP4749118B2 (ja) 2005-10-27 2005-10-27 静電分離方法および静電分離装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/991,903 A-371-Of-International US8071904B2 (en) 2005-10-27 2006-10-26 Electrostatic separation method and electrostatic separation device
US13/283,486 Continuation US8653394B2 (en) 2005-10-27 2011-10-27 Electrostatic separation method and electrostatic separation device

Publications (1)

Publication Number Publication Date
WO2007049667A1 true WO2007049667A1 (ja) 2007-05-03

Family

ID=37967777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321323 WO2007049667A1 (ja) 2005-10-27 2006-10-26 静電分離方法および静電分離装置

Country Status (6)

Country Link
US (2) US8071904B2 (ja)
EP (1) EP1941949B1 (ja)
JP (1) JP4749118B2 (ja)
KR (1) KR100940082B1 (ja)
CN (1) CN101267890B (ja)
WO (1) WO2007049667A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749118B2 (ja) * 2005-10-27 2011-08-17 新日本製鐵株式会社 静電分離方法および静電分離装置
DE102010026445A1 (de) * 2010-07-08 2012-01-12 Evonik Degussa Gmbh Flugaschetrennung mittels Koronaentladung
WO2016072540A1 (ko) * 2014-11-06 2016-05-12 군산대학교산학협력단 플라즈마를 이용한 플라이 애시의 미연탄소 제거방법
KR101547939B1 (ko) 2015-03-19 2015-08-28 동아대학교 산학협력단 코로나 방전형 정전선별법을 이용하여 바텀애쉬로부터 미연탄소 회수방법
CN105226344B (zh) * 2015-11-09 2017-12-29 中国矿业大学 一种废旧锂离子电池中钴酸锂和石墨的回收方法
CN105618732B (zh) * 2015-12-29 2017-07-25 北京钢研高纳科技股份有限公司 一种高温合金粉末的制备方法
JP6784025B2 (ja) * 2016-01-12 2020-11-11 三菱マテリアル株式会社 フライアッシュの製造方法
JP6733254B2 (ja) * 2016-03-28 2020-07-29 三菱マテリアル株式会社 フライアッシュの製造方法
JP6850983B2 (ja) * 2017-01-30 2021-03-31 三菱マテリアル株式会社 石炭灰中の未燃カーボン量を低減させる方法
JP7229505B2 (ja) * 2018-05-21 2023-02-28 国立大学法人山形大学 静電吸着装置
CN110885076B (zh) * 2019-12-23 2021-05-25 哈尔滨工业大学 一种气相高效连续选择性分离碳纳米管的方法
US11986839B2 (en) * 2020-10-23 2024-05-21 Kawasaki Jukogyo Kabushiki Kaisha Electrostatic separator
WO2022085182A1 (ja) * 2020-10-23 2022-04-28 川崎重工業株式会社 静電分離装置及び方法
KR20230138265A (ko) * 2022-03-23 2023-10-05 한국핵융합에너지연구원 유전분체의 선별장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148044U (ja) * 1984-03-09 1985-10-01 三菱重工業株式会社 粉粒体の分別回収装置
WO2002076620A1 (fr) * 2001-03-27 2002-10-03 Kawasaki Jukogyo Kabushiki Kaisha Procede de separation electrostatique de particules, appareil de separation electrostatique de particules et systeme de traitement
JP2004025128A (ja) * 2002-06-28 2004-01-29 Hitachi Zosen Corp 導電材とプラスチック材の振動式選別装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2689648A (en) * 1952-02-18 1954-09-21 Doenges Long Motors Inc Separation of metallic from nonmetallic particles
US2847124A (en) * 1955-02-08 1958-08-12 Gen Mills Inc Suppressor electrode for a perforated type of electrostatic separator machine
US3331192A (en) * 1963-10-14 1967-07-18 Floyd V Peterson Electrical precipitator apparatus of the liquid spray type
CA984765A (en) 1971-11-02 1976-03-02 James H. Vincent Electrostatic precipitator employing dielectric grids
US3814879A (en) * 1971-03-09 1974-06-04 Westinghouse Electric Corp Circuit interrupter with improved trap for removing particles from fluid insulating material
US3991312A (en) * 1975-11-25 1976-11-09 General Electric Company Ionization chamber
US4172028A (en) * 1978-09-29 1979-10-23 Electro-Power-Tech., Inc. Fine particle separation by electrostatically induced oscillation
US4247390A (en) * 1978-10-23 1981-01-27 Knoll Frank S Method of separating vermiculite from the associated gangue
DE3120945A1 (de) * 1980-05-28 1982-04-08 Fuji Electric Co., Ltd., Kawasaki, Kanagawa Elektrostatische sortiervorrichtung
US4440638A (en) * 1982-02-16 1984-04-03 U.T. Board Of Regents Surface field-effect device for manipulation of charged species
JPS60148044A (ja) 1984-01-13 1985-08-05 Toshiba Corp 蛍光ランプ
JPH02108747U (ja) * 1989-02-17 1990-08-29
JP2529030Y2 (ja) * 1990-05-10 1997-03-12 ミドリ安全工業株式会社 電気集塵器のコレクタ
JPH04158224A (ja) * 1990-10-22 1992-06-01 Toyota Tsusho Kk レベル検出回路
JPH04193362A (ja) * 1990-11-28 1992-07-13 Hitachi Ltd 電気集塵器
JPH069871B2 (ja) * 1990-11-30 1994-02-09 アキレス株式会社 熱可塑性合成樹脂シートのウエルダー加工方法
JPH0645648U (ja) * 1992-10-15 1994-06-21 株式会社ゼクセル 自動車用空気清浄装置
JPH078836A (ja) * 1993-06-21 1995-01-13 Daikin Ind Ltd 電気集塵エレメントの集塵電極板
JPH08179590A (ja) 1994-12-27 1996-07-12 Sharp Corp 帯電装置およびその製造方法
US5829598A (en) * 1995-04-28 1998-11-03 Separation Technologies, Inc. Method and apparatus for electrostatic separation
JP3895771B2 (ja) * 1996-04-25 2007-03-22 セパレーション・テクノロジーズ・エルエルシー 静電分離方法と装置
DE19913614C1 (de) * 1999-03-25 2000-05-11 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Behandlung von strömenden Gasen, insbesondere von Abgasen
US6320148B1 (en) * 1999-08-05 2001-11-20 Roe-Hoan Yoon Electrostatic method of separating particulate materials
JP3622600B2 (ja) * 1999-10-27 2005-02-23 三菱電機株式会社 電気集塵装置
US6498313B1 (en) * 1999-12-23 2002-12-24 University Of Kentucky Research Foundation Electrostatic particle separation system, apparatus, and related method
US6797908B2 (en) * 2002-04-10 2004-09-28 Outokumpu Oyj High-tension electrostatic classifier and separator, and associated method
EP1705765A4 (en) * 2004-01-13 2013-05-29 Daikin Ind Ltd DISCHARGE DEVICE AND AIR CLEANING DEVICE
JP2006043684A (ja) * 2004-06-30 2006-02-16 Nippon Steel Corp 灰分離装置、灰分離方法およびそれを用いた未燃炭素分離方法
JP4749118B2 (ja) * 2005-10-27 2011-08-17 新日本製鐵株式会社 静電分離方法および静電分離装置
KR101610024B1 (ko) * 2008-12-01 2016-04-21 삼성전자 주식회사 전기집진장치 및 그 전극

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148044U (ja) * 1984-03-09 1985-10-01 三菱重工業株式会社 粉粒体の分別回収装置
WO2002076620A1 (fr) * 2001-03-27 2002-10-03 Kawasaki Jukogyo Kabushiki Kaisha Procede de separation electrostatique de particules, appareil de separation electrostatique de particules et systeme de traitement
JP2004025128A (ja) * 2002-06-28 2004-01-29 Hitachi Zosen Corp 導電材とプラスチック材の振動式選別装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1941949A4 *

Also Published As

Publication number Publication date
US20090065402A1 (en) 2009-03-12
US8653394B2 (en) 2014-02-18
CN101267890A (zh) 2008-09-17
JP4749118B2 (ja) 2011-08-17
KR100940082B1 (ko) 2010-02-02
US20120043261A1 (en) 2012-02-23
CN101267890B (zh) 2011-01-12
JP2007117873A (ja) 2007-05-17
EP1941949A1 (en) 2008-07-09
EP1941949A4 (en) 2011-04-27
US8071904B2 (en) 2011-12-06
EP1941949B1 (en) 2019-05-15
KR20080033474A (ko) 2008-04-16

Similar Documents

Publication Publication Date Title
JP4749118B2 (ja) 静電分離方法および静電分離装置
JP6374582B2 (ja) ガスイオン化装置、イオン化したガス流を生成する方法及びコロナ放電イオン化装置の中で自由電子の雲を陰イオンに変える方法
CN102844108B (zh) 从电晕放电电离棒的气体离子中分离污染物
JP2005294178A (ja) コロナ放電型イオナイザ
JP2014053317A (ja) 静電荷中和用の清浄なコロナガス電離
JP6784025B2 (ja) フライアッシュの製造方法
Muzafarov et al. Improving the efficiency of electrostatic precipitators
US4472174A (en) Method and apparatus for providing and using RF generated plasma for particle charging in electrostatic precipitation
US6482253B1 (en) Powder charging apparatus
CN108906329A (zh) 电极系统及静电抑尘装置
JP2008262746A (ja) イオンバランス調整電極およびこれを備えた除電装置
KR101658676B1 (ko) 이온 생성장치
JP5950963B2 (ja) 粉体の除電装置
JP2011129351A (ja) 交流高電圧放射式除電装置
JP2005276655A (ja) コロナ放電型イオナイザ
JPH10235228A (ja) 静電選別装置
Iuga et al. Particle charge neutralization in roll-type electroseparators
JP3690991B2 (ja) 静電選別装置
KR20180080251A (ko) 코로나 방전 이온화 바에서 가스 이온으로부터 오염물의 분리
JP2008282715A (ja) イオンバランス調整回路およびこれを備えた除電装置
WO2002092233A1 (en) Device by gas cleaning
JP2005222869A (ja) イオン発生装置
JP2005222868A (ja) イオン発生装置
HU209719B (en) An improved electric dust-separator
GB191417175A (en) An Improved Process for Electrically Separating Suspended Bodies from Electrically Insulating Fluids, especially Gaseous Fluids.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034216.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087004870

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006822299

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11991903

Country of ref document: US